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Abstract

This paper argues that, in the presence of dispersed information, individual-
level idiosyncratic noise may propagate at the aggregate level when agents are
connected through a social network. When information about a common funda-
mental is incomplete and heterogeneous across agents, it is beneficial to consider
the actions of other agents because of the additional information conveyed by
these actions. We refer to the act of using other agents’ actions in the individual
decision process as social learning. This paper shows that social learning aimed
at reducing the error of individual actions with respect to the fundamental may
increase the error of the aggregate action depending on the network topology.
Moreover, if the network is very asymmetric, the error of the aggregate action
does not decay as predicted by the law of large numbers.
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1 Introduction

Human beings are social animals. The characteristic of social animals is that they live

in groups and interact with other members of the group to perform vital tasks, such as

defense or feeding. Several studies in biology document forms of interaction in which

the group allows individuals to take advantage of the information gathered by others.

Pulliam (1973) for example studies the flocking behavior of finches and shows that

an advantage of feeding in groups is to increase the probability to detect a predator

(“many eyes effect”). If one finch spots a predator and decides to fly off in alarm, the

other finches observe this action and follow without having actually seen the danger.

Moreover, assuming that anti-predatory vigilance is costly, for example because it is

time consuming and alternative to feeding, the group provides a simple and effective

cost sharing mechanism (Fernandez et al., 2003). In fact, the propensity to live in

groups and learn from others’ behavior can be considered an evolutionary response

that promotes survival in complex environments for both animals and human beings

(Henrich, 2015).

There are countless social and economic situations in which human beings are

influenced by what others around them are doing when deciding upon an action.

The decisions of others can be relevant for individual decision making for a variety

of reasons. First, in the presence of payoff externalities, the actions of others can

directly influence the utility function. Typical examples are market environments

with strategic complementarities. Second, the decisions of other agents may matter

for individual decision making in the presence of informational externalities. In such

environments individual decisions reflect relevant information, hence observing the

actions of others allows to exploit such information.

We focus on the second scenario and consider the case in which informational

externalities arise due to dispersed information, i.e., information which is incomplete

and heterogeneous across agents. Following Bandura and McClelland (1977), we call

the act of observing and learning from other agents’ actions social learning.

The goal of this paper is to show that, although social learning increases the

accuracy of individual actions when information is dispersed, at the aggregate level

accuracy can decrease depending on the structure of the social network shaping the

patterns of interaction and learning among individuals. To this end, we consider

a setting where agents receive independent noisy signals about the true value of a
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common variable of interest and social learning occurs through an arbitrary social

network. Although in our setting individual payoffs do not depend on the decisions

of others, agents have an incentive to pay attention to other individuals because

their decisions reflect valuable additional information. This simple setup, in which

there are no strategic complementarities and the interaction among agents is purely

informational, allows us to isolate the impact of different network topologies on the

transmission of idiosyncratic noise from the individual to the aggregate level.1

The essence of the model is as follows. A set of agents must take an action, re-

ceive a private signal on a common payoff-relevant fundamental state variable, and

can observe the actions of a subset of other agents. The subset of observable agents is

defined by a social network. The “observational structure” defined by the network is

exogenous and can correspond to e.g., geographical proximity or social relationships.

The setup of the model is very general and can be applied to a variety of economic

environments. For the sake of concreteness, we frame the analysis in a setup where

a group of forecasters make predictions about an economic fundamental of interest.

This is a relevant example as expectations play a central role in every segment of eco-

nomics. In this setting we show that social learning aimed at increasing the accuracy

of individual forecasts may reduce accuracy at the aggregate level. Our main results,

contained in Propositions 1 – 3 below, can be summarized as follows.

First, the case of isolated forecasters, i.e., forecasters acting only in reaction to

their own signal, represents an upper bound for the error of individual forecasts mea-

sured as expected squared forecast error. In fact, when agents can observe each

other’s predictions, they are able to increase the accuracy of their forecasts. This

is quite intuitive as, with social learning, each forecaster is able to exploit the ad-

ditional information embedded in other agents’ predictions. Moreover, this result is

independent on the topology of the network.

Second, while reducing the error at the individual level, social learning may, on the

other hand, lead to an increase of the error at the aggregate level defined as expected

squared error of the average forecast. In fact, the case of isolated agents represents

a lower bound for the squared error of aggregate forecasts and, depending on the

1Models with noisy signals and strategic complementarities have been considered by Morris
and Shin (2002), Angeletos and Pavan (2007), Angeletos and La’O (2013), Colombo et al. (2014),
Benhabib et al. (2015), Chahrour and Gaballo (2015) and Angeletos et al. (2016) among others.
All papers mentioned above abstract from considerations about the impact of social learning at the
aggregate level for different social networks topologies, which is instead the focus of this paper.
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properties of the network topology, learning by observing other agents’ predictions

may reduce aggregate accuracy.

Finally, our paper shows that imperfect information may have an impact on the

squared error of the average forecast even when the number of forecasters is large.

The effect of idiosyncratic noise on aggregate outcomes has traditionally been dis-

carded following the standard diversification argument. According to the latter, in

an economy composed by N agents, the aggregate effect of independent idiosyncratic

disturbances should decay at a rate 1/
√
N and it is therefore negligible in large

economies (see e.g., Lucas, 1977). We show that the diversification argument may

not hold in our framework in the presence of social networks. In fact, social networks

may translate imperfect information at the individual level into forecast errors at the

aggregate level. In particular, our results demonstrate that when the informational

network is very asymmetric, i.e., a small set of agents have relatively high in-degrees,

then the aggregate squared error decays at a rate much slower than 1/
√
N . In other

words when many agents look at the forecasts of the same small number of agents,

then the influence exerted by agents that are very central in the informational network

decays very slowly as the number of agents in the economy increases.

Results on aggregate forecast errors have important implications for economic

outcomes. Expectations play a key role in economics and finance since decisions of

economic agents crucially depend on their beliefs about the state of the economy.

Households’ consumption decisions depend on their expected income and real inter-

est rates. In the presence of nominal rigidities, firms’ pricing decisions depend on

their expectations about marginal costs and inflation. Trading behavior in financial

markets is affected by beliefs about fundamentals. Moreover, policy decisions may

react to markets’ expectations. For example, central banks increasingly monitor pri-

vate sector expectations when choosing monetary policy. As a consequence, economic

performance and welfare are strongly affected by aggregate expectations. Consider

as a first example the outcome of court trials. In situations where court decisions

depend on deliberations of a jury, errors in aggregate beliefs may result in biased

sentences. Moreover, it is easy to show that aggregate forecast errors are positively

related to the volatility of aggregate forecasts. In models where aggregate consump-

tion depends on aggregate expectations (see e.g. Branch and McGough, 2009), welfare

losses are proportional to the volatility of aggregate expectations as shown by Lucas

(2003). Finally, prices in financial markets typically depend on aggregate forecasts
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about future prices and economic fundamentals. Volatility of aggregate beliefs results

in volatility of market prices, which in turn affects welfare as in the case of investors

that are mean-variance optimizers.

Our work relates to several strands of research. Banerjee (1992), Bikhchandani

et al. (1992) and Smith and Sørensen (2000) among others study learning models

in which agents can observe the actions of other agents. These papers investigate

whether sequential learning mechanisms, defined as observational learning, lead to

informational cascades, and to an inefficient aggregation of private information. In-

formational cascades are defined in Bikhchandani et al. (1992) as situations in which

agents follow the actions of the preceding agents, disregarding their own private in-

formation. Informational cascades emerge when the set of possible actions is discrete

(Bikhchandani et al., 1998). In our analysis we consider simultaneous decisions as

in Gale and Kariv (2003), and a continuous set of possible actions, ruling out the

possibility of informational cascades. Moreover, we introduce a network structure

defining the patterns of social learning and show that it plays an important role for

aggregate outcomes. Ellison and Fudenberg (1993, 1995) study private information

aggregation when agents can observe choices and payoffs of other agents and use rule

of thumb heuristics to decide their own action. They show that even with simple

heuristic behaviors, social learning can lead to efficient outcomes. We analyze in-

stead a framework in which optimizing agents do not observe other agents’ payoffs

and we focus on the impact of the observational network on individual and aggregate

deviations from the fundamental.

The papers stemming from the seminal contribution of DeGroot (1974), e.g., Bala

and Goyal (1998), Golub and Jackson (2010), Acemoglu et al. (2011) and DeMarzo

et al. (2003), analyze instead richer network structures. These papers focus on net-

work topologies ensuring convergence to the true underlying fundamental (or uni-

dimensional opinions) both under Bayesian and non-Bayesian learning/updating of

beliefs. We consider a setting in which agents aggregate information optimally con-

ditional on their knowledge of the network structure as described in Section 2, and

we focus on the accuracy of aggregate actions.

Another important stream of literature related to our work concerns the social

value of public information in presence of imperfect private information (see e.g.,

Morris and Shin, 2002; Angeletos and Pavan, 2004; Colombo et al., 2014, among oth-

ers). The model in which we frame our analysis presents several substantial differences
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with this literature. First, the focus of our paper is on the impact of social learning

on the accuracy of aggregate forecasts rather then on social welfare. Second, in our

framework agents do not have access to public information, but they can observe the

actions of different subsets of other agents. Finally, to isolate the network effect on

the individual actions, we assume that there are no strategic complementarities.

Our work is also related to the literature on the impact of idiosyncratic shocks

at the aggregate level. Dupor (1999) and Horvath (1998, 2000) debated about the

diversification argument mentioned above. Gabaix (2011) shows that the 1/
√
N di-

versification argument does not apply when the firm size distribution is sufficiently

fat-tailed, while Acemoglu et al. (2012) show that the argument is not valid in the

presence of asymmetric input-output links between sectors.2 We show that, even in

the presence of economic agents with identical size and without input-output rela-

tions between different sectors, the diversification argument may fail in the presence

of dispersed information and social learning.

Finally, this paper is similar in spirit to Barrdear (2014), who studies the in-

fluence of social learning over an opaque observational network. Barrdear (2014)

considers agents interacting in an environment featuring strategic complementarities

and focuses on the impact of higher-order beliefs. In such setup, in order to make the

problem tractable, it is necessary to impose some restrictions on the network structure

and on agents’ knowledge of the latter. We consider instead a simpler setup without

strategic complementarities, which allows us to isolate the effect of arbitrary network

topologies, without imposing any restriction on agents’ knowledge of the network.

The outline of the paper is as follows. Section 2 presents a model with dispersed

information and social learning. Section 3 analyzes the effect of different network

topologies at the individual and aggregate level. Section 4 concludes.

2Earlier contributions on the topic include Jovanovic (1987) and Durlauf (1993) who show that
strategic complementarities and local firms’ interactions may translate shocks occurring at the firm-
level into aggregate volatility. Moreover, Bak et al. (1993) focus on the role of supply chains in
aggregate fluctuations.
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2 Model

The economy is populated by a finite set of expected utility maximizing agents,

N = {1, 2, . . . , N}, indexed by i = 1 . . . N . Individual utility is given by

ui = −(ki − θ)2 ,

where ki ∈ IR denotes the action of agent i and θ ∈ IR is an unknown exogenous

fundamental. To frame our analysis in a concrete economic example, consider a set

of forecasters trying to predict a relevant economic variable. In this setup ki can be

thought of as forecaster i’s prediction of the variable of interest denoted by θ. The

optimal forecast is therefore given by

ki = Ei[θ] = E[θ|Ii] , (1)

where Ii is the information set available to agent i. For the sake of simplicity, sup-

pose that θ is drawn independently in each time period. This allows us to drop the

time subscript and consider forecast decisions in an arbitrary time period. More-

over, we consider an improper uniform prior distribution for notational convenience.

Forecasters receive a private signal si about the fundamental

si = θ + σεi , (2)

where σ is the standard deviation of the private signal and εi ∼ N (0, 1) is an i.i.d.

idiosyncratic disturbance.3 Notice that Eqs. (1) - (2) ensure that forecasters’ payoffs

are independent from each other and that interaction among forecasters is purely

informational.

When agents cannot observe forecast decisions of other agents in the economy,

the information set of each forecaster consists only of her private signal. Therefore,

since all stochastic elements are normally distributed, in isolation we have that

ki = E[θ|Ii] = si . (3)

3In order to simplify the analysis, we consider uncorrelated private signals with homogeneous
variance σ2. In Online Appendix 3 we explore the implications of private signals with heterogeneous
variance σ2

i , while in Online Appendix 4 we analyse the implications of correlated private signals.
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Now consider the case in which forecasters can observe the predictions of a subset of

other forecasters (as in e.g., Banerjee, 1992; Bikhchandani et al., 1992) through an

exogenous directed social network. The network is described by an N ×N matrix Ψ,

whose elements are ψij ∈ {0, 1}. If forecaster i observes forecaster j, then ψij = 1,

otherwise ψij = 0. Matrix Ψ can be asymmetric and links can be one-sided, so that

we may have ψij = 1 and ψji = 0. The network topology determines the observational

structure, i.e., the subset of other forecasters observable by each forecaster. We denote

the subset of forecasters observed by forecaster i as Ψ(i) = {j ∈ N|ψij = 1} and the

information set of forecaster i as Ii = {si, kj∈Ψ(i)}. Given that private signals are

normally distributed and, as shown below in Eq. (5), equilibrium decisions are linear

aggregation of signals, optimal information weighting strategies are linear. Therefore,

forecaster i’s expected value of θ and optimal forecast decision can be written as:

ki = αisi + (1− αi)
∑
j

wijkj , (4)

where αi denotes the weight given to private information relative to the information

obtained from the network, and the set {wij} collects the relative weights assigned

to the decisions of observed forecasters. Forecasters set the values αi and {wij}
optimally using available information, therefore the following necessary conditions

for optimality must hold:

a) 0 < αi ≤ 1 ∀i;

b) wii = 0 and wij ≥ 0 with j 6= i, j ∈ Ψ(i) ∀i;

c)
∑

j∈Ψ(i) wij = 1 ∀i.

The first condition simply states that optimizing forecasters do not disregard their

private signal. The second condition means that forecasters must assign weakly pos-

itive weights to other forecasters’ decisions. The reason why some weights can be

zero is that observation of different agents in the network may convey the same infor-

mation. This means that optimal information weighting should avoid the persuasion

bias, i.e., failure to account for possible repetitions in received information as defined

in DeMarzo et al. (2003).4 The last condition ensures the unbiasedness of equilibrium

4In general, given the network structure, it is not always possible to completely eliminate the
persuasion bias. As argued below, our results are valid even if agents fail to properly account
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signal aggregation. The specific values of weights {αi, wij} depend on the exogenous

network structure. In order to encompass any possible network topology, in what

follows we derive the model’s equilibrium for generic weights {αi, wij} subject only

to the general optimality conditions a), b) and c). Although, as argued below, our

results do not depend on the specific set of weights {αi, wij}, for the sake of com-

pleteness in Section 2.1 we offer a characterization of optimal information weighting

for specific network structures.

In each period forecasters choose predictions simultaneously. Let k denote the

N × 1 vector of individual forecast decisions, s the N × 1 vector of private signals, D

the diagonal matrix defined as [D]ii = αi ,∀i, and W the N ×N stochastic matrix of

weights wij (i.e.,
∑

j wij = 1). We can then write Eq. (4) in matrix form as

k = Ds+ (I−D)Wk ,

where the entries of matrices D and W depend on the exogenous network structure

and on the weights chosen by firms. The rational expectations equilibrium is then

given by

k = [I− (I−D)W]−1Ds . (5)

Eq. (5) shows that, when predictions are observable through the informational net-

work, the equilibrium forecast decisions are linear combinations of private signals.

The extreme case in which αi = 1 ∀i is equivalent to the case of isolation in which

agents only consider their private information and the network does not play any role.

The equilibrium in Eq. (5) can be rationalized as follows. Forecasts are submit-

ted at the end of each time interval. For the sake of concreteness, one can think

about respondents to surveys of forecasts (e.g., Survey of Professional Forecasters),

who must post a forecast every quarter. Within the quarter, forecasters receive their

signal, formulate their provisional forecast and may communicate with other respon-

dents to the survey. Communicated provisional forecasts are then incorporated in the

information set to improve forecasts’ precisions. The equilibrium in Eq. (5) can be

thought of as the fixed point of the dynamic process

kτ = Ds+ (I−D)Wkτ−1 , (6)

for possible repetitions of the information they receive and weight information according to their
subjective relative precision.
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occurring in notional time τ within the quarter, in which each forecaster observes the

provisional predictions of other agents in the social network and updates her beliefs

according to Eq. (4). The following lemma establishes conditions for convergence of

the dynamic process in Eq. (6) and thus for the the existence of the equilibrium in

Eq. (5).

Lemma 1. When conditions a), b) and c) are satisfied, the rational expectations

equilibrium in (5) exists for any network topology.

The proof is in Appendix A, where we show that the equilibrium in Eq. (5) exists

also under more general conditions regarding the weights αi, i.e., when some αi = 0,

provided that each firm in the network is reached, directly or indirectly, by at least

one signal. At this point it is also worth emphasizing the differences between the

information weighting à la DeGroot (1974) (see e.g., DeMarzo et al., 2003; Golub

and Jackson, 2010, among others) and the information weighting in Eq. (4). In

DeGroot (1974) agents take their decisions in each step τ using a weighted average

of decisions in τ − 1, including their own. In our setting, agents take their forecast

decisions using a weighted average of other agents’ predictions and their own private

signal. The former mechanism may lead to solutions in which agents do not take

into account their own signals in equilibrium. On the other hand, the mechanism

described in Eq. (4), provided that αi > 0 ∀i, ensures that the information contained

in private signals is not disregarded in equilibrium decisions.

The goal of the paper is to investigate the impact of social learning on the expected

quadratic deviation of individual and aggregate forecasts from the fundamental. In

the remainder we will refer to these measures respectively as individual and aggregate

error. The error of individual forecasts is therefore defined as

v(ki) ≡ E(ki − θ)2 .

Moreover, let us define the aggregate action as the sum of individual forecasts, nor-

malized by the number of agents in the economic system

K =
1

N

∑
i

ki . (7)
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The error of the aggregate forecast is thus given by

v(K) ≡ E(K − θ)2 .

Before proceeding with the analysis, we remark that considering a diffuse prior for

θ does not affect our analysis. We are in fact interested in comparing expected

squared deviations of individual and aggregate forecast from the fundamental in case

of isolation and in the presence of social learning. Results on the comparison between

the two cases do not depend on the assumed variance of θ (see Online Appendix 1).

2.1 Equilibrium and Optimal Information Weighting

The specific values of {αi, wij} are endogenous to the optimal information weighting

problem and depend on the exogenous network structure. In order to assess the objec-

tive informational content of each observed decision, and set αi and wij accordingly,

forecasters must know the exact structure of the network. The reason is that each

individual decision is an aggregation of signals, as described in Eq. (5). In fact, the

information conveyed by the forecast decision of each agent j, depends not only on its

signal sj, but also on the information (i.e., signals) contained in the decisions observed

by agent j and so on. Hence, to weight their private information and the decisions

of others according to objective informational content, forecasters need to know the

source of all the information that influenced, both directly and indirectly, the deci-

sions of other agents. This is consistent with the behavior of optimizing agents setting

weights on different sources of information knowing the equilibrium in Eq. (5). In

the remainder of the section we characterize optimal weights for given simple network

structures represented in Fig. 1.5 Although extremely simple, such structures can be

considered as building blocks for more complicated network topologies.

The network topologies depicted in Fig. 1 are representative of qualitatively differ-

ent types of informational structures. The topology displayed in Fig. 1(a) refers to an

acyclic network, i.e., a case in which the information embedded in individual signals

is not present in observed actions. On the contrary, the topology in Fig. 1(b) depicts

a cyclic network, i.e., a scenario in which the information contained in individual

signals is present in observed actions. As shown below, these settings correspond

to qualitatively different scenarios for information weighting. In both examples each

5Details on the computation of optimal weights are provided in Online Appendix 2.
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1 2 3

(a) Acyclic network

12

(b) Cyclic network

Figure 1: Examples of different network types (acyclic vs. cyclic).

forecaster can observe the prediction of only another agent in the economy, therefore,

by construction, wij = 1 for j ∈ Ψ(i) for all i. We can thus focus on αi, i.e., how

each forecaster i weights its private information relative to information in the social

network.

Consider the acyclic network in Fig. 1(a). Forecaster 3 observes only her private

signal, so she will set α3 = 1 and predict k3 = s3. In this case the error v(k3) coincides

with the variance of signal σ2. Forecaster 2 observes both her private signal s2 and the

prediction k3 of forecaster 3, so that her forecast is given by k2 = α2s2 + (1− α2)k3.

Optimal weighting of information requires forecaster 2 to set α2 according to the

relative precision of s2, i.e., v(s2)−1 = σ−2, compared to precision of the informational

content of k3, namely

α2 =
σ−2

σ−2 + σ−2
=

1

2
,

where we have used the fact that k3 = s3. Therefore, the error of prediction k2 is

given by

v(k2) =
(
α2

2 + (1− α2)2
)
σ2 =

1

2
σ2 .

Forecaster 1 observes signal s1 and the prediction k2, so that k1 = α1s1 + (1− α1)k2.

Therefore weight α1 is given by

α1 =
v(s1)−1

v(s1)−1 + v(k2)−1
=

σ−2

σ−2 + 2σ−2
=

1

3
.
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Therefore the error of forecast k1 is given by

v(k1) =
(
α2

1 + (1− α1)2(α2
2 + (1− α2)2)

)
σ2 =

1

3
σ2 .

Consider now the cyclic network in Fig. 1(b), where forecaster 1 observes fore-

caster 2, and viceversa. The difference with the acyclic network is that in this case

the information contained in the signal of e.g., forecaster 1 enters her decision both di-

rectly and indirectly, through observation of the prediction of forecaster 2. Therefore,

for each α1 > 0, we have that forecaster 1 suffers from persuasion bias, in the sense

that she fails to account for the repetition of information contained in s1. The same

reasoning applies to forecaster 2. If the information conveyed by individual signal si

is already present in her observational network, forecaster i should set αi → 0 in order

to minimize the persuasion bias and avoid overweighting the information contained

in si. Notice however that αi should be strictly positive, otherwise the information

contained in si would not enter the network at all, violating optimality condition a)

above. To formalize the argument above, consider the forecasts of agents 1 and 2 in

the simple network described in Fig. 1(b):

k1 = α1s1 + (1− α1)k2

k2 = α2s2 + (1− α2)k1 .

Equilibrium forecasts are therefore given by

k1 =
α1

α1 + α2 − α1α2

s1 +
(1− α1)α2

α1 + α2 − α1α2

s2

k2 =
α2

α1 + α2 − α1α2

s2 +
(1− α2)α1

α1 + α2 − α1α2

s1 .

From the equations above it is clear that each equilibrium forecast is a combination of

both s1 and s2. Since signals have the same precision, optimal information weighting

requires the equilibrium weights of both signals to be 1/2. Consider for example

forecast k1. When (α1, α2)→ (0, 0) along the same line, we indeed have that

lim
(α1,α2)→(0,0)

α1

α1 + α2 − α1α2

=
1

2
.
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A symmetric argument applies to equilibrium weights in forecast k2.6 The results

derived for these simple examples can be applied to more complex network structures.

Finally, we remark that the optimal weighting described above requires complete

knowledge of the network structure, as well as common knowledge of rationality.

However, all the results derived in the paper are valid for any set of weights {αi, wij}
provided that the necessary conditions a), b), c) listed in Section 2 are satisfied.

In particular, our findings also apply to cases in which forecasters are boundedly

rational and weight information according to subjective (instead of objective) relative

precisions, which can be thought of as the outcome of any estimation heuristic.

3 Network Topology, Individual and Aggregate Er-

ror

In this section we focus on the impact of social learning on the accuracy of both

individual and aggregate forecasts, and relate it to the structure of the network char-

acterizing the interaction patterns among forecasters.

To help the intuition we will complement the exposition of our results with simple

examples. Fig. 2 displays two different network configurations. In both cases we have

N = 3 and all forecasters observe the prediction of another agent. In the network

depicted in Fig. 2(a) each forecaster observes the prediction of a different agent, so

that all nodes in the network have the same in-degree. In the network depicted in

Fig. 2(b) all forecasters observe the same agent i = 2 and the latter observes another

forecaster j = 3, so that in-degrees are heterogeneous across nodes in the network.

1

2

3

(a) Homogeneous in-degree network

1 2 3

(b) Heterogeneous in-degree network

Figure 2: Examples of different network types (homogeneous vs. heterogeneous in-degree).

6It is reasonable to consider (α1, α2) → (0, 0) along the same line since signals have the same
precision and there is common knowledge of rationality.
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The corresponding adjacency matrices are shown in Eq. (8)

Whom =

(
0 1 0
0 0 1
1 0 0

)
Whet =

(
0 1 0
0 0 1
0 1 0

)
, (8)

where Whom refers to the homogeneous in-degree network in Fig. 2(a) and Whet refers

to the heterogeneous in-degree network in Fig. 2(b). In both cases, given that each

forecaster can observe only another forecaster in the network, the weight wij assigned

to that observation is equal to 1 by construction. In the following sections we will use

these simple network configurations as examples to illustrate the impact of different

topologies on forecast errors at the individual and aggregate level, but we remark

that our results are derived for arbitrary network structures.

3.1 Accuracy of Individual Forecasts

In what follows we show that social learning leads to higher accuracy of individual

forecasts. Using Eq. (5), individual forecasts in equilibrium can be written as

ki =
∑
j

ŵijαjsj ,

where ŵij denotes the element (i, j) of matrix Ŵ defined as Ŵ ≡ [I− (I−D)W]−1.

Before proceeding with the analysis, we describe an important property of the

matrix C ≡ ŴD, which maps private signals into equilibrium forecasts according to

Eq. (5), in the following lemma.

Lemma 2. Matrix C is a stochastic matrix, i.e.,
∑

j ŵijαj = 1 ∀i.

The proof is in Appendix A. The error of individual forecasts is then given by

v(ki) = E(ki − θ)2

= E

(∑
j

ŵijαjsj − θ

)2

= E

(
θ
∑
j

ŵijαj +
∑
j

ŵijαjεj − θ

)2

=
∑
j

ŵ2
ijα

2
jσ

2 ,

(9)
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where the last equality follows from Lemma 2 and from the fact that idiosyncratic

disturbances are independent across agents. In the case of isolated forecasters there

are no informational links between them, i.e., W is a matrix of zeros (hence Ŵ is

an identity matrix), and αi = 1 ∀i, meaning that agents only consider their private

signal and therefore

v(ki) = σ2 . (10)

Social learning happens when αi < 1 and wij > 0 for at least one j 6= i, which means

that forecaster i has at least one informational link with another forecaster j, and she

uses the information embedded in the prediction made by forecaster j. The impact

of social learning on individual forecast errors is stated in the following proposition:

Proposition 1. The individual expected squared forecast error in the case of

social learning is always less than the individual expected squared forecast error in

case of isolated agents, that is ∑
j

ŵ2
ijα

2
j < 1 . (11)

The proof is in Appendix A. Proposition 1 shows that social learning is beneficial

from forecasters’ point of view. In this way agents are in fact able to increase the

precision of their individual forecasts of the fundamental. The intuition for this result

is that the information about fundamentals contained in individual signals is spread

through the network and in equilibrium forecasters are able to exploit this additional

information by observing the predictions of other agents.

The following examples illustrate the information spreading mechanism in the net-

works described in Fig. 2. Before proceeding, we remark that the reasoning followed

in the simple examples below to set weights {αi, wij} reflects information weighting

according to objective relative precisions along the lines described in Section 2.1.

As discussed in Section 2.1, qualitative results do not change when information is

weighted according to generic subjective relative precisions.

Example 1.

Consider the informational structure described in Fig. 2(a). In this case

the prediction of e.g., forecaster 1 is given by k1 = α1s1 + (1− α1)w12k2,

i.e., using both the private signal s1 and the prediction of forecaster 2,

which in turn is formulated using her private signal s2 and the prediction

16



of forecaster 3. The network structure allows to incorporate information

from other forecasters’ signals in individual predictions. In fact, in equi-

librium we have that forecasts are determined according to Eq. (5) and

therefore the way in which private signals are spread through the net-

work depends on the matrix C ≡ [I− (I−D) W]−1 D. Given the struc-

ture of the network, each forecaster observes directly or indirectly the

predictions of all other forecasters in the network. Therefore, for each

forecaster i, the information conveyed by the network already includes

her own signal si. Consider for example forecaster 1 who is observing

the prediction of forecaster 2, which in turn observes the prediction of

forecaster 3. The structure of the network implies that forecaster 1 is

observing indirectly forecaster 3, which is in turn observing forecaster 1

herself. The network is therefore cyclic and each forecaster is facing the

optimal weighting problem discussed in Section 2.1 for the topology in

Fig. 1(b). In fact, the information contained in the signal of forecaster i

is included in her prediction both directly, with weight αi, and indirectly,

with weight 1 − αi. When all forecasters set αi → 0 (strictly positive),

matrix Chom ≡ [I− (I−D) Whom]−1 D is given by

Chom =

(
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

)
.

The expression above shows that, due to the network of observational

links, the individual prediction of each forecaster is influenced by the

private signals of all forecasters. For example, prediction k1 is given by

k1 =
3∑
j=1

c1jsj =
1

3
s1 +

1

3
s2 +

1

3
s3 .

The expression above makes clear that matrix Chom reflects optimal infor-

mation weighting since in equilibrium each signal is weighted according

to its objective relative precision. Given the topology of the network in

the example we have that, for each forecaster, the error of individual pre-

dictions with social learning is given by 0.33σ2 and thus smaller than the

case of isolation. ♣
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The reduction of individual forecast errors in the presence of social learning with

respect to the case of isolation is independent of the network structure. In fact, as

long as a forecaster has at least one informational link and therefore looks at the

prediction of at least one additional forecaster (on top of reacting to its own signal),

the deviation of its forecast from the fundamental will be lower than the case of

isolation.

Nevertheless, different network topologies may imply different levels of individual

squared errors, as shown in the following example.

Example 2.

Consider the informational structure described in Fig. 2(b). Forecasters

2 and 3 are solving the same information weighting problem described

in Section 2.1 for the topology in Fig. 1(b). Therefore we have that

α2 = α3 → 0 (strictly positive). Forecaster 1 observes the prediction

of forecaster 2, which contains information from s2 and s3, while her pre-

diction is not observed by any other forecaster in the network. Therefore

she faces an information weighting problem similar to that of forecaster 1

in the example in Fig. 1(a). In fact, to reflect objective relative precision,

the weight assigned by forecaster 1 to her own signal must be equal to the

inverse of the total number of signals affecting her equilibrium forecast,

i.e., α1 = 1/3. Matrix Chet is therefore equal to

Chet =

(
1/3 1/3 1/3
0 1/2 1/2
0 1/2 1/2

)
.

The expression above shows that the prediction of forecaster 1 is based

on information contained in the individual signals of two additional fore-

casters, while the predictions of forecasters 2 and 3 only exploit informa-

tion from one additional agent. We have therefore that v(k1) = 0.33σ2,

while v(k2) = v(k3) = 0.5σ2. In the presence of heterogeneity in agents’

in-degrees, individual prediction errors may differ across forecasters, but

they are still lower than the case of isolated forecasters. ♣
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3.2 Accuracy of Aggregate Forecast

In this section we show that when forecasters look at other agents’ predictions to make

their own forecasts, the error of the aggregate forecast may increase with respect to

the case of isolation depending on the topology of the informational network. Using

Eqs. (5) and (7), we can write aggregate forecast as

K =
1

N

∑
i

∑
j

ŵijαjsj , (12)

where again ŵij denotes the element (i, j) of the matrix Ŵ defined as Ŵ ≡ [I− (I−
D)W]−1. Using matrix C ≡ ŴD we can define the 1×N vector v′ as

v′ ≡ e′C , (13)

where e′ ≡ [1, . . . , 1], so that vj =
∑

i cij = αj
∑

i ŵij and

K =
1

N

∑
j

vjsj .

Vector v can be defined as an influence vector, since each element vj determines the

influence of signal sj on aggregate forecast. The influence vector v is related to the

Bonacich (in-degree) centrality measure (Bonacich, 1987). If the Bonacich centrality

of forecaster j (summarized by the term
∑

i ŵij) in the observational network in-

creases, the influence of forecaster j’s signal will increase. But there is also a second

effect. Given the observational network, increasing αj (holding constant all αi 6=j), will

increase the influence of forecaster j’s signal. The intuition is that, if αj is relatively

high, forecaster j’s signal will be largely reflected in its prediction, and therefore it

will have relatively higher influence on the predictions of agents observing j. The
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squared error of K can be written as

v(K) = E(K − θ)2

= E

(
1

N

∑
i

∑
j

ŵijαjsj − θ

)2

= E

(
1

N

∑
i

θ
∑
j

ŵijαj +
1

N

∑
i

∑
j

ŵijαjεj − θ

)2

=
1

N2

∑
j

v2
jσ

2 ,

(14)

where the last equality follows from Lemma 2 and from the fact that idiosyncratic

disturbances are independent across agents. In the absence of social learning we have

that vj = 1 for all j, and therefore the error of the aggregate forecast is

v(K) =
σ2

N
. (15)

The impact of social learning on the accuracy of the aggregate forecast is described

in the following proposition:

Proposition 2. The expected squared error of the aggregate forecast in the case

of social learning is always greater than, or equal to, the expected squared error of

the aggregate forecast in the case of isolated agents, that is

1

N

∑
j

v2
j ≥ 1 . (16)

The proof is in Appendix A. According to Proposition 2, the case of isolated

forecasters represents a lower bound for the aggregate error. The intuition for this

result is that social learning introduces correlation among individual forecasts. In

the absence of social learning we have that individual decisions are independent from

each other and therefore the aggregate error depends on the sum of individual errors,

that is

v(K) =
1

N2

∑
i

v(ki) . (17)

In the presence of social learning, individual decisions are not independent and there-

fore the aggregate error depends also on the covariance among individual decisions,
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as dictated by the network structure, so that

v(K) =
1

N2

∑
i

v(ki) +
2

N2

∑
i 6=j

cov(ki, kj) . (18)

The impact of social learning is twofold. First, as shown in Proposition 1, The first

term of Eq. (18), i.e., the sum of individual forecast errors is lower when compared

to the case of isolated forecasters in Eq. (17). Second, social learning introduces a

covariance element given by the second term in Eq. (18). Proposition 2 shows that the

net effect depends on the structure of the observational network and on the weights

attached by each forecaster to the different sources of information. In particular, if

vector v has heterogeneous entries, the error of the aggregate forecast increases. The

only case in which the error of the aggregate forecast under social learning is equal to

the case of isolation is when the signal of each forecaster in the network has exactly

the same influence on aggregate forecast, i.e., when vj = 1 for all j. This scenario

is verified when all forecasters in the network have the same weighted in-degree and

out-degree, as in Fig. 2(a), and weights αi are homogeneous. Any other case results in

an influence vector with heterogeneous elements and thus the error of the aggregate

forecast increases with respect to the case of isolation.

The following example illustrates the impact of heterogeneous centralities among

forecasters on aggregate accuracy.

Example 3.

Consider the networks described in Figs. 2(a) and 2(b) and the matrices

of equilibrium weights derived in Examples 1 and 2. Given matrices Chom

and Chet, we can compute the influence vectors associated to each network

using Eq. (13):

vhom =

(
1
1
1

)
vhet =

(
1/3
4/3
4/3

)
.

Each element vi of the influence vector describes the sum of equilibrium

weights assigned to signal si. The higher vi, the higher the centrality of

forecaster i. In the network described in Fig. 2(b), forecaster 2 is highly

central since all other forecasters look at her prediction when making their

own choices. Note that forecaster 3 is also highly central. The reason is

that the prediction of forecaster 3 is used by forecaster 2. The centrality
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of each forecaster i, as measured by the influence vector, depends not

only on the number of agents directly observing forecaster i, but also on

the number of other forecasters observing agents who are looking at i.

This means that the influence of each forecaster is recursively related to

the influence of other forecasters who observe her prediction (see Jackson

et al., 2015). On the contrary, in the network described in Fig. 2(a), all

firms have the same centrality. Using Eq. (14) we can compute the error

of aggregate forecasts for both networks

v(Khom) = 0.33σ2 v(Khet) = 0.41σ2 .

For the network in Fig. 2(a), the error of the aggregate forecast is equal

to the case of isolated forecasters, i.e., σ2/3, meaning that the reduction

in the sum of individual errors and the positive covariances in individual

decisions balance each other out (see Eq. (18)). On the opposite, hetero-

geneity in the centrality of forecasters, as in the case of the network in

Fig. 2(b), leads to an increase in the error of the aggregate forecast. ♣

3.3 Decay Rate of the Aggregate Forecast Error

In this section we characterize the decay rate of the aggregate forecast error as the

number of forecasters in the network grows large. In particular, we show how the

limiting behavior of the aggregate error as N → ∞ depends on the distribution of

the influence vector’s elements and ultimately on the structural properties of the

informational network.

Consider a sequence of networks indexed by the number of forecasters N ≥ 1, with

the structure of informational links described by WN . The corresponding sequences

of aggregate forecasts and influence vectors are denoted respectively by {KN} and

{vN}. Assuming that the variance of idiosyncratic signals is independent of the size

of the network N , i.e., σ2
N = σ2 ∀N , we have that

v(KN) =
σ2

N2

∑
j

v2
j,N .

Let us define the following notation. Given two series of positive real numbers {xN}
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and {aN}, we write xN ∼ aN if there exist M ≥ 0 and finite constants A > 0 and

A ≤ B <∞, such that infN≥M xN/aN ≥ A and supN≥M xN/aN ≤ B. In other words,

xN ∼ aN means that for N ≥M the sequences {xN} and {aN} grow at the same rate.

Moreover, we write xN = Ω(aN) if there exist M ≥ 0 and finite constant A > 0, such

that infN≥M xN/aN ≥ A. This means that, for decreasing sequences, xN decreases

more slowly than aN .

Therefore we can write that√
v(KN) ∼ 1

N
‖vN‖2 . (19)

Eq. (19) implies that the error of the aggregate forecast may decay with a rate dif-

ferent from 1/
√
N , i.e., the rate implied by the law of large numbers, according to

the properties of the influence vector vN . The limiting behavior of ‖vN‖2 as N →∞
depends on the distribution of vj,N . In the following proposition we characterize the

decay rate of the aggregate error for both cases of fat-tailed and thin-tailed distribu-

tion of vj,N .

Proposition 3. Consider a series of forecasters’ networks indexed by N ≥ 1.

Assume that elements in the sequence of influence vectors v1, . . . , vN have a power

law distribution, so that

PN (vj,N > x) = cNL(x)x−ζ

where cN ∼ 1 is a sequence of real positive numbers, L(x) is slowly varying func-

tion, meaning that limx→∞ L(x)xε = ∞ and limx→∞ L(x)x−ε = 0 for all ε > 0,

and maxj vj,N ∼ N1/ζ. Then, as N →∞, the aggregate error follows

a)
√

v(KN) = Ω
(
N (1−ζ)/ζ−ε′) for 1 < ζ ≤ 2

b)
√

v(KN) ∼ N−1/2 for ζ > 2

where ε′ = ε/(2ζ).

The proof is in Appendix A. Proposition 3 implies that when the distribution of

forecasters signals’ influence v has thin tails (ζ > 2), then the (squared root of the)

aggregate forecast error decays at rate 1/
√
N . On the contrary, when the distribution

has fat tails (1 < ζ ≤ 2) the decay rate is much slower. A fat-tailed distribution of v

implies a greater heterogeneity in the influences of forecasters’ signals, corresponding
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to the case in which many forecasters look at the prediction of the same small number

of forecasters. When a small number of forecasters are highly central, hence very

influential in the network, the impact of their signals decays slowly as the number of

agent N increases. This implies that, in the presence of dispersed information, social

learning and very asymmetric network structures, significant aggregate errors may

result from idiosyncratic noise at the micro-level, even if the number of firms is very

large.

Influence vector and network primitives

We can relate forecasters’ influence to the structural properties of the observational

network. Using Lemma 1 (and results in Appendix A.1) we can write matrix C,

mapping individual signals into equilibrium forecasts, as

C =
∞∑
z=0

[(I−D)W]z D .

From the expression above and the definition of influence vector in Eq. (13), it follows

that

v′ = e′

(
∞∑
z=0

[(I−D)W]z D

)
,

which implies that the influence vector satisfies the following inequality

v′ ≥ e′D + e′(I−D)WD .

Each element vj of the influence vector thus satisfies

vj ≥ αj + αj
∑
i

(1− αi)wij . (20)

From Eq. (20) it straightforward to see that the influence of each signal j on aggregate

forecast is directly related to the weighted in-degree of forecaster j, i.e.,
∑

i(1−αi)wij.
Since the sum of signal influences is bounded from above, i.e.,

∑
j vj = N , it is easy

to see that we can only observe an asymmetric distribution of vj if some forecasters

have a large in-degree, i.e., they are observed by a large number of other forecasters in

the network. In informational structures characterized by heterogeneous in-degrees,

forecasters with a relatively large in-degree have high centrality in the network and
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therefore their signals have large influence on aggregate forecast.

4 Conclusions

The behavior of peers, friends or in general other members of a social or economic

group, represents a valuable source of information for the homo oeconomicus. Ob-

servation of others’ behavior is deeply rooted in human nature as a consequence of

the adaptation to complex environments, where it is difficult to collect and process

all available information. This paper shows that this micro-behavior, which we have

called social learning, can have relevant consequences at the aggregate level. The

aggregate effect of social learning depends on the topology of the network describing

the links between agents. We show that, according to the network structure, social

learning in the presence of dispersed information can propagate idiosyncratic noise at

the aggregate level.

If the network is symmetric, in the sense that all agents have the same influence in

equilibrium, then the aggregate forecast error with social learning is at its minimum

level and coincides with the aggregate error when agents are isolated. For any other

network configuration, social learning leads to an increase in the aggregate error.

The accuracy of the aggregate forecast is negatively related to the concentration of

influence in the network.

Moreover, we show that the diversification argument does not always apply in

the presence of social learning. If the influence vector is sufficiently asymmetric, i.e.,

there exist few very influential agents in the network, then the aggregate impact of

independent individual-level shocks does not decay at a rate equal to 1/
√
N , resulting

therefore in a significant error at the aggregate level.

As previously argued, errors in aggregate beliefs may affect economic performance

and welfare whenever decisions and economic outcomes depend on aggregate expec-

tations. Examples range from the outcomes of court trials to welfare losses related

to volatility in consumption and asset prices.

An important question regards the empirical relevance of social learning. From a

qualitatively point of view, the impact of social learning crucially depends, as argued

above, on the topology of the observational network. Galeotti and Goyal (2010) list

a series of empirical works suggesting asymmetric topologies in informational net-

works. In accordance to the empirical evidence, they propose a network formation
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game, in which asymmetric topologies emerge as the equilibrium outcome. Moreover,

Goyal et al. (2016) present experimental evidence supporting the emergence of asym-

metric informational networks. Bikhchandani et al. (1992, 1998) argue in favor of

the presence of fashion leaders, i.e., “expert” agents observed by many other agents,

and Gilbert and Lieberman (1987) show that “smaller firms tend to imitate the in-

vestment activity of others”. Therefore, we conclude that it is highly plausible that

observational networks are asymmetric, and consequently that dispersed information

and social learning play an important role for the accuracy of aggregate forecasts.
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Appendix A Proofs

A.1 Proof of Lemma 1

Proof. Iterating Eq. (6) we get

kτ =
τ−1∑
z=1

[(I−D)W]z Ds+ [(I−D)W]τ k0 .

where k0 is the vector of initial conditions, i.e., the initial provisional forecasts s.

Within each period forecasters observe the temporary predictions of forecasting agents

in their information network and update their decision before the true state of the

world θ is revealed, resulting in a convergence process à la DeGroot (1974) and

subsequent literature (e.g., DeMarzo et al., 2003; Golub and Jackson, 2010).

Define A ≡ (I−D)W. We then have that limτ→∞Aτ = 0 and
∑∞

z=0 Az = [I−A]−1

when the spectral radius of A, defined as ρ(A) = max1≤i≤N |λi| where λi is the i-th

eigenvalue of A, is strictly smaller than one. Then notice that

‖A‖∞ = max

{∑
j

|(1− αi)wij| | 1 ≤ i ≤ N

}
= max {|(1− αi)| | 1 ≤ i ≤ N} ,

given that matrix W is stochastic. Moreover, for a generic eigenvector-eigenvalue pair

(x, λ) with x 6= 0, we have that λx = Ax and therefore

‖λx‖∞ = |λ| ‖x‖∞ = ‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞ ⇒ |λ| ≤ ‖A‖∞ ,

where the inequality follows from the submultiplicativity property of the matrix norm.

When 0 < αi ≤ 1 ∀i ∈ [1, N ], we have that ‖A‖∞ < 1 implying that ρ(A) < 1.

In the following we show that the equilibrium in Eq. (5) exists also under more

general conditions. Before identifying such conditions let us introduce the following

definitions. Following Golub and Jackson (2010), we define a group of nodes Z ⊂ N

as closed relative to a generic adjacency matrix Ω if i ∈ Z and ωij > 0 imply that

j ∈ Z. A closed group of nodes is minimally closed relative to Ω if it is closed and

no nonempty strict subset is closed.

The equilibrium in Eq. (5) exists when
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a) 0 ≤ αi ≤ 1 ∀i ∈ [1, N ] with at least one αi > 0, and matrix W is irreducible.

b) 0 ≤ αi ≤ 1 and for each minimally closed group Zj relative to (I− D)W there

exists at least one i ∈ Zj such that αi > 0.

Proof. We start by proving that if A = (I − D)W is irreducible and at least one

αi > 0, then it must be that ρ(A) < 1. Notice that when at least one αi > 0, then

matrix A is substochastic. Denoting by e′ = [1 . . . 1], this implies that Ae ≤ e and

Ae 6= e. When matrix A is irreducible, from the Perron-Frobenius theorem it follows

that ρ(A) = 1 would imply Ae = e, which is impossible by construction. Therefore

ρ(A) < 1 follows from the result ρ(A) ≤ ‖A‖∞ derived above.

Let’s now consider the case in which A is reducible. In general, if 0 ≤ αi < 1, the

reducibility of matrix A follows from the reducibility of matrix W. If instead αi = 1

for some agents i ∈ [1, N ], then matrix A is reducible even if matrix W is irreducible.

In what follows we define conditions such that ρ(A) < 1 when A is reducible. If A is

reducible, then following Meyer (2000, page 694), it is possible to write matrix A in

the canonical form for reducible matrices

A ∼



A11 A12 · · · A1r A1,r+1 A1,r+2 · · · A1,m

0 A22 · · · A2r A2,r+1 A2,r+2 · · · A2,m

...
. . .

...
...

... · · · ...

0 0 · · · Arr Ar,r+1 Ar,r+2 · · · Ar,m

0 0 · · · 0 Ar+1,r+1 0 · · · 0

0 0 · · · 0 0 Ar+2,r+2 · · · 0
... · · · ...

...
...

. . .
...

0 0 · · · 0 0 0 · · · Am,m


,

where each A11, . . . ,Arr is either irreducible or [0]1×1, and Ar+1,r+1, . . .Amm are ir-

reducible. As noted in Meyer (2000), the effect of such a symmetric permutation is

simply to relabel the nodes in the original network. Therefore a generic Asz denotes

the sub-network describing the connections from agents in rows s to agents in columns

z. Define α(s) as the vector containing the αi set by each agent i belonging to the

set described by rows s.

As a first step, consider the matrices Akk for k = 1, 2, . . . , r and observe that

ρ(Akk) < 1 for each k = 1, 2, . . . , r, for any possible value of entry αi in vector

α(k). This is certainly true when Akk = [0]1×1, so consider the case in which Akk is
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irreducible and notice that Akk is substochastic by construction because there must

be blocks Akj, j 6= k that have nonzero entries. From the previous result we know

that irreducible substochastic matrices are characterized by a spectral radius strictly

smaller than one.

Consider now the matrices Akk for k = r+ 1, . . . ,m, which refer to the minimally

closed groups relative to A. These matrices are substochastic if and only if at least

one αi in vector α(k) is positive. Once again, these irreducible stochastic matrices

are characterized by a spectral radius strictly smaller than one.

Therefore, when at least one agent i in each minimally closed group of A sets

αi > 0, we conclude that ρ(A) < 1.

In other words, for equilibrium in Eq. (5) to exist, each agent must receive at least

one signal directly and/or indirectly. If αi > 0 ∀i, this condition is satisfied for any

possible network topology. If instead αi = 0 for some agent i, then for equilibrium in

Eq. (5) to exist, at least one agent i in any minimally closed group must have αi > 0

guaranteeing that all agents in the network are reached by at least one signal.

A.2 Proof of Lemma 2

Proof. Define the vector e′ = [1 . . . 1]. Proving that
∑

j ŵijαj = 1 ∀i is equivalent to

prove that Ce = e or equivalently that C−1e = e, since C is invertible. Start from

C = [I− (I−D)W]−1D ,

and pre-multiply both sides by C−1 to get

I = C−1[I− (I−D)W]−1D .

Post-multiplying by D−1

D−1 = C−1[I− (I−D)W]−1 ,

and by [I− (I−D)W] we get

D−1[I− (I−D)W] = C−1 .
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Post-multiplying both sides by e, we have

C−1e = D−1[I− (I−D)W]e

C−1e = D−1[e− (I−D)We]

C−1e = D−1[e− (I−D)e]

C−1e = D−1[e− e+ De]

C−1e = D−1De

C−1e = e ,

where the third equality follows from the fact that W is stochastic.

A.3 Proof of Proposition 1

Proof. Having established the result in Lemma 2 we can proceed to prove Proposition

1 as follows. Eq. (11) follows from the comparison of Eqs. (9) and (10). We start by

defining an M-matrix (Plemmons, 1977):

Definition. An N ×N matrix C that can be expressed in the form C = sI−A,

where aij ≥ 0 is the (ij)-th element of matrix A, 1 ≤ i, j ≤ N and s ≥ ρ(A), the

maximum of the moduli of the eigenvalues of A, is called an M-matrix.

It is straightforward to show that matrix I− (I−D)W is an M-matrix. Define s = 1

and A = (I − D)W. By construction we know that aij ≥ 0, while we showed in the

proof of Theorem 1 that ρ(A) ≤ 1.

Since I− (I−D)W is an M-matrix, we know that it is inverse-positive (Plemmons,

1977), i.e., each element ŵij of Ŵ = [I− (I− D)W]−1 is non-negative. From Lemma

2 we know that
∑

j ŵijαj = 1 and therefore, given that 0 < αj ≤ 1 ∀j, we have that

0 ≤ ŵijαj < 1 ∀j. Therefore, defining f(x) = x2, we have that

∑
j

f(ŵijαj) ≤ f

(∑
j

ŵijαj

)
= 1 ,

where the inequality follows from the fact that f is a superadditive function for non-

negative real numbers. The only case in which the above expression holds as an

equality is when there is no social learning, i.e., when W is a zero matrix (meaning

that Ŵ is an identity matrix) and αj = 1 ∀j.
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A.4 Proof of Proposition 2

Proof. Eq. (16) follows from the comparison of Eqs. (14) and (15). We can rewrite

Eq. (16) as ∑
j

v2
j ≥ N ⇒ ‖v‖2 ≥

√
N ,

and prove it using the Cauchy-Schwarz inequality. In fact, noticing from the results

in Lemma 2 that
∑

j vj = N , we can write

(∑
j

v2
j

)
·N ≥

(∑
j

vj

)2

‖v‖2

√
N ≥ N

‖v‖2 ≥
√
N .

A.5 Proof of Proposition 3

Proof. We start by considering case a) in which 1 < ζ ≤ 2. Recall from Eq. (19) that

std (KN) ∼ 1

N
‖vN‖2 .

For N →∞ we have that

‖vN‖2 =

√∑
j

v2
j,N =

√
NE

[
v2
j,N

]
.

Defining vmax,N ≡ maxj vj,N we can write, since v2 is a non-negative random variable,

that

E
[
v2
j,N

]
=

∫ vmax,N

0

2xPN(vj,N > x)dx = 2cN

∫ vmax,N

0

xL(x)x−ζdx .

Given that L(x) is a slowly varying function such that limx→∞ L(x)x−ε = 0 for

ε > 0, we have that

E
[
v2
j,N

]
= 2cN

∫ vmax,N

0

xL(x)x−ζdx ≥ 2cN

∫ vmax,N

0

x1−ζ−εdx .
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Given that vmax,N ∼ N1/ζ , we can compute the integral to get

E
[
v2
j,N

]
≥ 2cN(2− ζ − ε)−1

[
x2−ζ−ε]N1/ζ

0
= c̄NN

2−ζ−ε
ζ ,

where c̄N ≡ 2cN(2− ζ − ε)−1. This implies that

1

N
‖vN‖2 =

1

N

√
NE

[
v2
j,N

]
≥ c̄NN

1−ζ
ζ
− ε

2ζ .

From the last equation it follows that

std (KN) = Ω(N
1−ζ
ζ
−ε′) ,

where ε′ ≡ ε
2ζ

.

We now consider case b). We start by noticing that when ζ > 2 we have that

E
[
v2
j,N

]
= V , where 0 < V <∞. Therefore

‖vN‖2 =
√
NE

[
v2
j,N

]
=
√
NV ,

from which it follows that

std (KN) ∼ N−1/2 .
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