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Abstract  12 

Context 13 

A landscape is defined as a “system of ecosystems” and this is a model in which karst areas can easily be 14 

integrated. In karst areas, much of the connectivity between the units of the landscape is underground, with 15 

aquifers and caves forming a continuous layered tissue. However, underground environments are among the 16 

least studied landscapes on Earth because of limited accessibility and the difficulty of performing surveys. 17 

Objectives 18 

The aim of this paper is to provide a conceptual framework for applying principles of landscape ecology to 19 

research on karst environments. 20 

Methods 21 

By adapting the standard patch-corridor-matrix model to a 3d model, the main issues that need to be 22 

addressed were identified. These include identifying the main morphological (surface and underground) karst 23 

features; determining the landscape structure through its features, composition, and configuration; and 24 

developing adequate indices. 25 

Results 26 

The landscape spatial structure of different karst areas influences fundamental ecological functions and 27 

biodiversity patterns. Determining how structure, biodiversity, and functions relate reveals important insights 28 
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into the functioning of karst systems. Emphasizing the provisioning of ecosystem services is essential in 29 

supporting the concept that karst regions are vital for human well-being because they host valuable resources 30 

and fundamental ecosystem processes. The paper discusses how this framework helps address anthropogenic 31 

impacts and conservation issues on karst. 32 

 33 

Conclusions 34 

The potential of applying a landscape approach to karst systems lies in developing models that provide 35 

ecological information relevant to understanding karst systems and understanding their implications for 36 

natural resources management. 37 

 38 

1. Introduction 39 

Karst environments are systems with peculiar geomorphological and hydrogeological characteristics 40 

and are considered some of Earth's most fragile natural systems (Brinkmann and Parise 2012). Karst areas 41 

represent approximately 15% of the world’s terrestrial zones, and they host valuable resources such as water, 42 

soil, and vegetation, providing habitats for several animal species, both epigean and hypogean, many of them 43 

being rare or endemic (Ford and Williams 2007; Williams 2008; Mammola et al. 2019). Simultaneously, 44 

almost 17% of the human population lives in karst areas, and 25% of them rely on groundwater (Ford and 45 

Williams 2007; Goldscheider et al. 2020), making these areas very valuable. 46 

Terrestrial systems are generally represented as a mosaic of surface elements, but in karst areas the 47 

three-dimensional development of underground environments has a strong ecological relationship with the 48 

surface. In karst environments, a large part of the connectivity between the landscape units extends 49 

underground, with aquifer systems and empty spaces forming a continuous tissue developed on several levels 50 

(Helf and Olson 2017). A “system of ecosystems,” as the landscape is defined (Forman 1995a), is a model in 51 

which karst systems, and in particular underground karst, can easily be integrated. Accepting this model 52 

would allow the development of a holistic approach that involves rethinking the protection of caves, which 53 

should not be considered isolated environmental units, as defined in many environmental policies. For 54 

example, the EU Habitats Directive is the main European legislative framework for the conservation of 55 

habitats (Directive 1992/43/EEC) and governs the protection of caves as a distinct and self-contained habitat, 56 
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distinguishing them from the rest of the karst landscape (“Caves not open to the public,” Natura 2000 code: 57 

8310; “Fields of lava and natural excavations,” Natura 2000 code: 8320; “Submerged or partially submerged 58 

sea caves,” Natura 2000 code: 8330). 59 

National or regional cave registers are a typical tool used to designate caves and are sometimes 60 

available as online databases or publications (see, e.g., Price 2014; Ferrario and Tognini 2016). Cave 61 

registers are usually systematic collections of information about the location and characteristics of caves, and 62 

they are the basis for protection measures in the territory. The term “cave,” however, is variably defined in 63 

different countries and by different authors. The International Union of Speleology (https://www.uis-64 

speleo.org/) defines caves eligible to be cataloged in official registers as cavities with a horizontal or vertical 65 

development exceeding 5 m and a planimetric development /entrance width ratio >1, provided they are large 66 

enough for human beings to enter. This is a human-based, or cavers’ definition; from a geological point of 67 

view, caves are connected voids formed by different “underground processes” (excluding rock primary 68 

porosity), whatever their dimensions. Caves can therefore be defined by their genesis (i.e., created by 69 

mechanical processes such as collapse or erosion, by chemical dissolution, by volcanic processes, etc.). 70 

Despite these differences, the common theme linking the various kinds of cavities is their interest to human 71 

explorers and their use as habitat by cave-adapted organisms (White and Culver 2011). Whatever definition 72 

of caves is adopted, considering caves as “single elements” is insufficient for their protection, as this 73 

hampers the capacity to implement effective conservation of these environments and associated resources. 74 

It has sometimes been assumed that caves are isolated elements because populations of cave-adapted 75 

organisms can be extremely isolated (Culver 1970; Snowman et al. 2010; Balogh et al. 2020), although there 76 

is growing evidence of extensive gene flow between karst systems (Buhay and Crandall 2005). Cave 77 

entrances are critical for human access, they typically occur as a chance intersection of an evolving 78 

underground environment with the surface (Culver and Pipan 2019) and represent only a small portion of a 79 

cave system. In fact, cave entrances can be too small for human access or be absent. As an extreme example, 80 

caves without entrances include the Scot Hollow Cave in West Virginia (Lane et al. 2018) and the Pestera 81 

Movile Cave in Romania (Sarbu et al. 2019), and many other caves with no entrance have been discovered 82 

by drilling or mining activities. The network of fissures, joints, and bedding planes, the epikarst, the 83 

interstitial habitats, the shallow subterranean habitats, and the “milieu souterrain superficiel” (see Box 1 84 
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Glossary) should be considered together with caves and other underground voids, as they contribute to the 85 

complex system of a karst landscape. 86 

Given the vulnerability of these environments and the complex interconnections between karst 87 

landscape elements, it is crucial to shift the attention to the landscape level. This paper discusses how 88 

landscape ecology can contribute to the study and conservation of karst areas, paying specific attention to the 89 

underground domain. It addresses the classification of karst landscape elements and how landscape metrics 90 

could be further developed for a better description of karst landscapes and considers the fundamental aspect 91 

of the relationships between landscape structure, biodiversity, and ecosystem functioning. Finally, it 92 

discusses the ecosystem services of karst areas and the implications for karst conservation.  93 
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 94 

  95 

BOX 1. GLOSSARY 
 

Bedding planes: The surfaces separating a layer of a sedimentary rock from the preceding and successive 

ones. 

 

Blind and dry valleys: A blind valley is a river valley originating abruptly from a karst output or spring; a dry 

valley is a river valley in which the water disappears underground via a stream sink or swallet, or by leakage to 

a cave below. 

 

Epigean: Pertaining to the surface domain. 

 

Epikarst: The uppermost weathered zone of carbonate rocks. 

 
Habitat biophysical structure: The physical structure of a habitat consisting of biotic elements such as 

vegetation and abiotic elements such as rocks, sediments, and minerals deposits. 

 

Hypogean: Pertaining to the domain below the epigean (also called underground or subterranean). 

 

Interstitial habitats: Voids between sand or fine gravel grains that can be filled with water. 

 

Joint: A planar or gently-curving crack separating two parts of once continuous rock. 

 

Karst: A geologic region characterized by layers of carbonate (limestone and dolostone) rocks affected by 

karst processes (mainly chemical dissolution) pierced by sinkholes and dolines and underlain by caves and 

underground streams. 

 

MSS (Milieu Souterrain Superficiel): Underground network of empty air-filled voids and cracks developing 

within multiple layers of rock fragments (also called superficial underground compartment, Juberthie and 

Delay, 1981). 

 

Planimetric surface: A surface with representation only of the relative horizontal positions of elements, 

without topographic elements (i.e. elevation). 

  

Sinkholes: Depressions in the ground that have no natural external surface drainage and where rainfall collects 

and typically drains into the subsurface. They are also called dolines and can be formed either by chemical 

dissolution processes associated with infiltrating rainwaters or by the collapse and breakdown of pre-existing 

caves. 

 

Speleothems: Cave formations of mineral deposits and cave sediments (e.g., stalactites, stalagmites, flowstone 

covering sediments.) 

 

Spring: A natural flow of underground water from rock or soil onto the land surface or into a surface water 

body. 

 

SSHs (Shallow Subterranean Habitats): Aphotic subterranean habitats relatively close to the surface and 

consisting of the spaces between rocks. These habitats are more variable than caves, with a pronounced annual 

temperature cycle and a higher availability of organic matter. They contain species modified for subterranean 

life and species unique to these habitats, and are important gateways to the subterranean domain (Culver and 

Pipan 2014). 

 

Vadose: Underground condition where voids are mainly air-filled, and only partly or occasionally water-filled. 

This zone is also known as the unsaturated zone. In the vadose zone, speleogenesis is mainly the result of free-

running water from the surface. Vadose cave passages are typically underground canyons, vertical shafts, or 

domepits. 
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2. Applying principles of landscape ecology to karst environments 96 

 97 

2.1 Defining elements, mosaics and spatial patterns 98 

 99 

A first step in describing a landscape is to identify its elements (Zonneveld 1989; Table 1). Karst 100 

landscapes occur when dissolution is the primary agent modeling the landscape (Culver and Pipan 2019). 101 

Because of dissolution, these landscapes have distinct features such as caves, sinkholes, springs, blind and 102 

dry valleys, and many others (Figure 1, Box 1). Although karst elements are mainly created by chemical 103 

processes of rock dissolution, physical, biological, and microbiological processes also contribute to karst 104 

evolution. Indeed, karst environments are not the passive result of a reaction between water and rock, but 105 

they are the product of dynamic interactions between rock and a continuous flux of energy and matter in and 106 

out of caves (water, air, nutrients, etc.) at varying scales of impact. When describing a karst area, each 107 

element in the landscape can be characterized by recording specific features such as type, size, shape, origin, 108 

location, and function. The characterization of elements and their location in space leads to the definition of a 109 

mosaic of elements composing the landscape. By characterizing the karst landscape as an arrangement of 110 

various elements, fundamental landscape properties can be determined, such as composition, diversity of 111 

patch types, spatial configuration, fractal dimension, and arrangement complexity (Figure 1). This helps 112 

describe landscape and elements patterns, scale, connectivity, networks, circuitry, or mesh size (McGarigal 113 

2014), which are important features when analyzing landscape-scale ecological processes in an environment. 114 

For example, water drainage in karst is affected by several elements in the landscape, such as topographical 115 

features, water and topographic gradients, characteristics of input in the catchment area (diffuse/concentrated 116 

inflow) and the output zone (springs), and the characteristics and development of caves systems. Species 117 

dispersal is another landscape-scale process affected by the connectivity of elements and the presence and 118 

position of barriers (Verhoeven et al. 2017). Ecosystems are not isolated systems and cannot be understood 119 

without considering the flow of energy and material across their boundaries. Considering ecosystems as 120 

“open” systems requires an understanding of how mosaics of ecosystems interact and are spatially organized 121 

to affect ecological exchanges and ecosystem processes. 122 

 123 
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2.2 Scale 124 

The identification of the appropriate scale of analysis is a core question in subterranean biology. The 125 

theory of scale and hierarchy is a key framework for understanding pattern-process relationships and became 126 

the basis for landscape ecology (Turner et al. 2001; Cushman et al. 2010), but it has rarely been applied to 127 

karst environments. Most studies focus on fine-scale features such as springs or caves (Herrando-Pea et al. 128 

2008) and only rarely consider the whole karst basin as the scale of analysis. The relevant scale depends on 129 

the research aims and the system itself, as different problems require distinct scales of analysis and a multi-130 

scale method is often required. Cave or microhabitat approaches may be useful for answering questions 131 

related to specific fauna requirements or adaptation (e.g., Ficetola et al. 2018), but an examination at the 132 

drainage system scale is required to address hydrological and macroecological issues and to understand how 133 

the links between multiple elements determine the processes occurring across the whole system. 134 

Researchers in subterranean biology have been slow to take up the conceptual framework of the 135 

ecosystem (Odum 1953) mainly because of uncertainty related to the definition of size, inputs, and outputs of 136 

the subterranean ecosystems (Culver and Pipan 2019). This barrier has been partially overcome by studies 137 

showing the importance of drainage system-level analyses (Rouch 1977; Simon et al. 2007; Schneider et al. 138 

2011). In a pioneering study, Gilber (1986) estimated the hydrological balance of an entire karst basin in 139 

France by reporting water evapotranspiration, runoff, infiltration, and output as a percentage of precipitation 140 

in the study area, revealing that infiltration was more than twice the surface runoff and was related to the 141 

ratio of basin covered by soluble or insoluble rock. He also estimated the yearly flux of components such as 142 

organic matter, indicating the relationship between the organic carbon entering and leaving the system 143 

(Gilber, 1986). Nevertheless, studies assessing the flow across the whole drainage system remain scarce 144 

(examples include Jones 1997, on the karst hydrologic budget and Simon et al. 2007, on organic carbon 145 

flow).  146 

 147 

2.3 Three-dimensional spatial metrics and their representation 148 

The patch-corridor-matrix model perceives the landscape as a planimetric surface (Forman 1995b), 149 

and it is therefore difficult to fit aspects of three-dimensional patterns into this concept. The necessity of 150 
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considering a third vertical dimension in landscape analysis has been often highlighted (Hoechstetter et al. 151 

2008; Wu et al. 2017). The two-dimensional representation limits the analysis because it does not allow the 152 

inclusion of ecologically meaningful structures, with a consequent loss of valuable information about 153 

landscape heterogeneity. Considering the three-dimensional geometries of areas opens up perspectives for a 154 

more realistic representation of structure elements (Hoechstetter et al. 2006). However, current studies 155 

mainly refer to surface terrain features such as roughness, landform, relief, or the vertical structure of 156 

vegetation (topography- or elevation-related features) (Dorner et al. 2002; Mücke et al. 2010). In karst areas, 157 

key information may be lost due to an inability to describe the landscape structure with appropriate three-158 

dimensional metrics, and this is a particular problem for underground environments. For example, a flooded 159 

gallery should be characterized not just by its length and width but also by its height, sinuosity (i.e., 160 

curvilinear, rectilinear, ramiform - see Palmer 2012), volume (which may stock water), and wall roughness, 161 

and by the sediments and deposits that totally or partly choke it. Furthermore, elements of the underground 162 

environment occur at a given depth, and a z-value associated with the x and y coordinates is needed to 163 

determine their location in the space. Hence, it is essential to develop adequate metrics - which do not yet 164 

exist for karst areas - to capture the 3D-features of the elements. These metrics would provide a more 165 

realistic assessment of the landscape’s spatial structure, thus assisting a better understanding of karst patterns 166 

and processes (Stupariu et al. 2010). Subterranean environments require more sophisticated analysis methods 167 

than the 3D-landscape characterizations of the Earth’s surface performed using remote sensing (Blaschke et 168 

al. 2004; Hoechstetter et al. 2008). Remote sensing is impossible in the subterranean domain, and new 169 

techniques are needed to overcome this limitation. Some of these have been tested, such as geophysical 170 

exploration combined with 3D laser scanning (Ba et al. 2020) or electrical resistivity tomography (Sono et al. 171 

2020; Mogren 2020), but these techniques are generally expensive and need refinement before they can be 172 

broadly adopted. 173 

2.4 Advantages and limitations in the study of underground environments 174 

 Karst landscapes have some peculiarities that assist or limit the investigation of the systems 175 

themselves. Factors making underground environments easier to study than their surface counterparts include 176 

the stability of many features and the fact that biotic characteristics are determined by a limited number of 177 
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factors, such as distance from the surface and water availability. The distance from the surface determines 178 

temperature, light, and nutrient availability, while water is a primary driver for the occurrence of organisms 179 

and determines the movements of both biotic (species) and abiotic (sediments, nutrients) masses (Schneider 180 

et al. 2011; Lunghi et al. 2017; Ficetola et al. 2018). Moreover, underground environments have species-poor 181 

biotic communities because only a limited number of specialized species can thrive in these extreme 182 

environments (Romero 2009), which can make their description easier. Consequently, trophic networks are 183 

simpler (Gibert and Deharveng 2002), with primary producers and herbivores often missing and 184 

decomposers, predators, or parasites well represented (Mohr and Poulson 1966). 185 

 Limitations in investigating underground environments are related to difficulties in exploring, 186 

mapping, and collecting accurate data on geology, hydrology (Jeannin et al. 2007), and biodiversity (Ficetola 187 

et al. 2019). Mapping these environments is the first prerequisite for a reliable representation of the 188 

landscape and its characteristics. Direct explorations of underground realm may be costly and challenging 189 

because they require sustained efforts and complex organizational structures to support the activities and can 190 

be time-consuming, with even caves of a modest size requiring multiple trips (White 2019; see Box 2 Cave 191 

surveying).  192 

 193 

BOX 2. CAVE SURVEYING 

Cave exploration requires the physical entering of cave passages, which can be narrow, vertical, wet, muddy, 

choked with boulders or sediment, or even completely water-filled. Cave surveying can therefore be very 

challenging, and very few electronic and automatic instruments work in such tough conditions. Hand 

clinometers, compasses and tape are still commonly used; cave drawings are hand-made by surveyors, who 

normally work in teams of three as a minimum; and the data are later transformed into maps and sketches, so 

that surveying a long and complex cave system can be a very time-consuming activity. In a wide, horizontal, 

and easy cave, surveys normally require 8 to 10 hours for every 500 meter length, but in a difficult cave with 

vertical shafts or very narrow passages, the surveying speed is much slower and it may take several days to 

explore just a few meters. In recent years, new materials, equipment, and technologies have made cave 

exploration easier. The greatest improvement in the exploration of submerged caves has come from 

rebreathing, a diving technology that reduces the volume and weight of scuba tanks, thus increasing the 

explorer’s autonomy. The rebreather technology has allowed distances and depths to be reached that were 

previously unthinkable. However, cave exploration remains extremely challenging and dangerous. 
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 194 

In addition to mapping the underground elements, correlating their elevation with aerial photographs and 195 

using elevation controls such as geographic surface benchmarks help build the final map projected onto 196 

topographic overlays (Kambesis 2007). Direct mapping of underground environments also allows the 197 

recording of important information such as groundwater drainage, water flow rate, streams confluence, and 198 

cave morphologies and the occurrence of animals, fossils, speleothems, cave minerals, and sediments, 199 

allowing a greater understanding of cave origins and evolution, which is essential for underground systems 200 

investigation. 201 

 Indirect methods can help underground mapping and partially overcome surveying difficulties. For 202 

example, information on hydrology can be derived from dye-tracing techniques: a non-toxic dye (typically a 203 

fluorescent dye such as Tinopal or Uranine) is injected into a sink or a cave stream, and its arrival time and 204 

concentration are recorded at specific output points (springs). This technique, combined with geological and 205 

hydrological data, allows the catchment area and the output points of a karst system to be defined, together 206 

with throughput rates and recharge and storage amounts, to evaluate the system’s vulnerability to pollutants. 207 

Indirect investigations may also involve air tracing, air pressure, temperature, and flow measurements in 208 

multi-entrance caves systems, to evaluate fluxes throughout the cave and energy exchanges with the surface. 209 

Indirect methods usually require physical cave exploration for sampling. Integrating direct exploration and 210 

indirect approaches may be helpful, and thus the possibility of using landscape surface characteristics to infer 211 

underground structures needs to be investigated. For example, spring outflow hydrograph and chemograph 212 

analysis, which correlates discharge, temperature, and water chemistry variations of a karst spring with 213 

input/rainfall in the catchment area, can help evaluate the degree of karstification and the main 214 

characteristics of a karst drainage system (e.g., large karst conduits drainage, i.e., well-karstified aquifers, 215 

versus diffuse drainage through poorly karstified joints, i.e., fissured aquifers) (Ford and Williams 2007). 216 

 217 

3. Integrating landscape ecology and assessment of ecosystem services in the study of karst areas 218 

Landscape ecology is based on the principle that ecosystem composition, structure, and function 219 

partially depend on the spatial and temporal context of the ecosystem (i.e., its landscape context) so that 220 

ecological observations at any location are affected by its boundary conditions - that is, by what is around. 221 
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This approach has been applied to various natural and anthropogenic landscapes, from tropical regions to 222 

agricultural areas and urban areas to deep oceans (Naveh and Lieberman 2013; Young et al. 2017). This 223 

paper proposes a framework to integrate landscape ecology principles (elements, mosaics, patterns, 224 

disturbances) with the study of karst areas, particularly the subterranean dimension (Figure 2).  225 

 226 

3.1 Biodiversity in karst landscapes  227 

Ecological and evolutionary factors determine biodiversity in karst environments. Karst age, the 228 

cave’s origin, past climate events (e.g., glaciation), and biogeographic processes have shaped the distribution 229 

of organisms, and the interplay between these factors is complex (see Mammola et al. 2015). The current 230 

distribution of organisms in underground environments largely depends on nutrient availability, water 231 

supply, light, or niche differentiation (Christman and Culver 2001; Lunghi et al. 2014). Subterranean species 232 

generally have narrow distribution ranges, which results in high spatial turnover in species composition 233 

across regions, with clusters of spatially structured populations that may evolve into new species (Zagmajster 234 

et al. 2018; Ficetola et al. 2020). The high endemism levels are related to the fragmentation of the 235 

subterranean habitats in karst landscapes and the long-term persistence and relative stability of subterranean 236 

environments (Gibert and Deharveng 2002). In this context, the analysis of habitat patch distribution can 237 

illuminate the evolutionary processes caused by the isolation of populations (Chiari et al. 2012). 238 

Much of underground biodiversity is yet to be described (Manenti et al., 2018; Ficetola et al., 2019). In 239 

addition to identifying species, the modeling of their distribution in subterranean environments is a further 240 

task of primary importance (Mammola and Leroy 2018). How organisms interact with the landscape depends 241 

on their needs and on the characteristics of the landscape itself. Landscape elements can represent both 242 

barriers and corridors for movement. Some cave organisms need to live in underground habitats for their 243 

entire life cycle (troglobites and stygobites), while others enter or live in caves for specific needs 244 

(troglophiles). The movements of these organisms are determined by landscape characteristics. The 245 

composition of the matrix and how patches are arranged within the space may determine isolation (Chiari et 246 

al. 2012) or aggregation (Biswas 2010) of animal populations, and this influences genetic exchanges and 247 

interspecific interactions, which have consequences for the survival of populations. It has been observed that 248 
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the extinction of cave-dwelling metapopulations depends on the complexity of the network, particularly on 249 

the size and spatial arrangement of habitat patches, together with species movement (Campbell Grant 2011).  250 

There is a growing interest in relationships between subterranean habitats and biodiversity (Zagmajster et al. 251 

2018). The diversity of subterranean species is determined by the interplay between productivity, habitat 252 

availability, spatial heterogeneity, energy production, and climate suitability (Eme et al. 2015). The overall 253 

diversity tends to be higher in regions characterized by high surface productivity (energy) (Culver et al. 254 

2006) and high density of caves (this can be an effect of higher habitat availability, or of better sampling) 255 

(Christman and Culver 2001; Ficetola et al. 2014; Christman and Zagmajster 2012). However, additional 256 

factors can increase the richness of subterranean species, including habitat heterogeneity (Sket et al. 2004) 257 

and regional species richness (Malard et al. 2009), highlighting the importance of landscape context in 258 

biodiversity patterns. Nevertheless, biodiversity patterns are also influenced by subterranean dispersal 259 

(Culver and Pipan 2019), which is determined by the arrangement and types of landscape elements. 260 

Understanding the connectivity of landscapes requires data on specific dispersal behaviors and pathways in 261 

subterranean systems that are often lacking. For large animals such as bats, the general capacity of 262 

permeation in a landscape is known, and barriers are readily detectable (Furey and Racey 2016), but for 263 

terrestrial arthropods, water-dwelling animals and microorganisms, there is not enough knowledge available. 264 

 265 

3.2 Landscape structure and ecosystem function in karst environments 266 

The relationship between ecological functions and spatial patterns is a key theme of landscape 267 

ecology that helps inform land management practices. This approach may also shed light on the functioning 268 

of karst landscapes. In karst landscapes, material and energy flows follow complex pathways that are not 269 

always fully understood. Generally, water occurs at the surface and enters the subterranean system at the 270 

rock-soil interface, following vertical and horizontal pathways (e.g., Helf and Olson 2017). The biophysical 271 

structure of habitats influences many ecological processes. Water flow, water storage, rock erosion and 272 

dissolution, speleothems and sediment deposition, organic matter accumulation, nutrient flow, rate of 273 

photosynthesis close to the entrances, air-flow, organisms’ niche availability, and organisms’ movements 274 

(Lunghi et al. 2017) are all examples of these processes. A general pattern of the source of energy and its 275 

destination in subterranean habitats is presented in Figure 3. Temporal and spatial dynamics are also 276 
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fundamental factors (Turner 1990). For example, flooding dynamics determine community changes and 277 

affect the overall flux of materials such as sediments or organic matter (Simon and Benfield 2001). 278 

Moreover, karst landscapes are formed by geochemical processes that are generally ongoing because of 279 

water flow, and the morphology of the rocks is therefore reshaped continuously as a result of continuous 280 

dissolution, new rock formation, or changes in hydrological regimes. 281 

Biodiversity influences ecosystem functioning and determines many fundamental ecosystem 282 

processes, including water purification or nutrient cycling (Mace et al. 2012). However, it is still largely 283 

unknown how biodiversity sustains ecosystem functions and services in karst areas. Certainly, functional 284 

diversity is central to understand ecosystems functioning. It can be measured by the diversity of functional 285 

traits of a community and is of primary ecological importance because it influences ecosystem dynamics, 286 

stability, productivity, nutrient balance, and other aspects of ecosystem functioning (Tilman 2001, Cadotte et 287 

al. 2011). Functional diversity can explain variation in ecosystem function even when species diversity does 288 

not, thus offering crucial insights (Cadotte et al. 2011). The functional diversity of subterranean 289 

environments has rarely been studied, but it can reveal unexpected patterns. Confounding the expectation of 290 

lower functional diversity in such a harsh environment, Fernandes and colleagues (2016) demonstrated that 291 

cave isopods (Oniscidea) show higher functional diversity compared to surface taxa, possibly because they 292 

find more suitable conditions, including lower predation pressures and greater water availability, and this 293 

promotes their distribution and diversification. Knowing the functional diversity of organisms is fundamental 294 

because it is one of the most effective predictors of ecosystem functioning (Song et al. 2014). The growing 295 

availability of theoretical and technical frameworks and the development of trait databases for animals and 296 

microorganisms enable a greater understanding of underground functional diversity (Moretti et al. 2017; 297 

Nguyen et al. 2016; White et al. 2020), but there is still a significant gap in knowledge concerning the traits 298 

and ecology of cave organisms. 299 

 300 

3.3 Karst ecosystem services 301 

Ecosystem services (ES) are defined as the goods and services deriving from ecosystems that 302 

contribute, directly or indirectly, to human well-being (MEA 2005). The recognition, evaluation, and 303 

monitoring of these benefits may offer new empirical and conceptual tools that can be combined with more 304 
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traditional approaches (e.g., the establishment of protected areas and endangered species protection) to 305 

support the management of natural systems and promote sustainable human development (Müller et al. 306 

2010). For these reasons, an integrated assessment of the ES of karst environments should be a primary goal 307 

for conservation. The almost total absence of such studies makes such assessments urgent (however, see ES 308 

approach to karst areas by Žujo and Marinšek 2012; Quine et al. 2017; Wang 2019). This paper provides a 309 

list of potential ES provided by karst areas, indicated separately for surface and underground environments 310 

(Table 2). Underground karst supports many services, providing water and genetic material from species, 311 

regulating water fluxes and chemical and biological conditions, transforming biochemical and physical 312 

inputs, and regulating and maintaining abiotic and biotic factors overall. Other important services deriving 313 

from underground environments are related to the cultural dimension of humans and, although undervalued, 314 

cultural ecosystem services are essential for human health and well-being (Bratman et al. 2019). Cultural 315 

benefits derived from the exploitation of natural environments include outdoor and recreational activities and 316 

the aesthetic appeal of calcareous forms, fossils, and underground spaces. Furthermore, cave settings 317 

encourage social gatherings and human interactions both for sport and scientific purposes, and interactions 318 

with the natural environment shape people’s sense of personal identity. The physical, mental, and cultural 319 

enrichment that can be achieved in caves makes them some of the most intriguing environments on Earth 320 

(Figure 4). 321 

Several experiences and studies have reported that the evaluation of ES is an effective practical strategy for 322 

environment conservation. It is used to prioritize key biodiversity areas for conservation (Shrestha et al. 323 

2021), to identify conflicts between nature conservation and human societies (Setälä et al. 2014; Bezák et al. 324 

2017), and to inform conservation planning (Mitchell et al. 2021). These insights can be included in strategic 325 

environmental assessments (tools supporting decision-making to make sustainable territorial plans; Semeraro 326 

2021) or can even be integrated into economic decision-making (Banerjee et al. 2020; Yang et al. 2020). 327 

Finally, the ES approach ensures that the complex relationships between nature and humans are clearly 328 

understood and explicitly stated, promoting solutions that balance the existence of human societies with 329 

nature (Luck et al. 2009; Beaumont et al. 2017). However, the current measures of services fail to capture 330 

adequately the benefits humans derive from karst areas. 331 

 332 
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3.4 Human impact and opportunities for karst conservation  333 

Landscape dynamics occur over temporal and spatial scales: evolution and geological processes act 334 

over long timespans, colonization and reproductive processes act over medium to short timescales, and local 335 

disturbance processes can have immediate consequences. Among local disturbances there is the human 336 

impact that can alter landscape context and biodiversity. Impacts on underground environments and 337 

processes include land use and land cover change, pollution of soil and water, water pumping, mining and 338 

quarrying exploitation, rock excavation for underground infrastructures, modifications of conditions of 339 

underground water drainage, and disturbance and poaching of fauna.  340 

While human activities can foster conservation in the subterranean environment, they can also 341 

determine impacts if not correctly managed. For example, cave tourism and caving entail people entering 342 

caves, which are extremely fragile environments. Direct experience of subterranean environments enhances 343 

people’s awareness, ecological knowledge, and connection to nature, and this can result in respectful 344 

behavior and environmental stewardship. At the same time, tourists may negatively impact cave habitats by 345 

changing microhabitat availability (e.g., with light or the creation of pathways), continuous treading, the 346 

introduction of alien species, acoustic pollution, and direct disturbance resulting from people touching 347 

speleothems and animals (Mammola et al. 2017). Similarly, caving is fundamental for exploring the 348 

underground environment, recording biodiversity data or enhancing speleologists’ knowledge, and caving 349 

associations are often the first promoters of cave protection. However, this activity can be invasive if cavers’ 350 

behavior is not regulated. Luckily, most cavers and speleologists regulate their activities, abandoning 351 

explorations if there is a danger of damaging speleothems or preventing visits to bat-inhabited caves when 352 

the bats are hibernating or nursing. However, the trade-offs between cave exploitation by humans and cave 353 

protection can be complex and require careful evaluation. 354 

Despite the close dependence humans on karst, protection policies are often absent, incomplete, or 355 

ineffective at the landscape scale. As karst systems are intrinsically fragile environments with high 356 

connectivity among their elements, they would benefit from a landscape conservation approach that goes 357 

beyond the conservation of single caves or single cave species. Local conservation actions are effective on 358 

small scale but do not prevent landscape-level threats. This shift in perspective from “the site” to “the site 359 

embedded in a landscape” has profound implications for management. Landscape knowledge is the 360 
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fundamental requirement when defining conservation priorities and regulating activities that may influence 361 

the landscape, and this can only be achieved by undertaking comprehensive landscape studies. For example, 362 

the European Landscape Convention has established landscape quality objectives and consequent 363 

recommended actions that could serve as models for other countries (Déjeant-Pons 2006). It is important to 364 

include social perceptions of landscapes and manage trade-offs between human activities and karst 365 

protection, ensuring the safeguarding of both. This aspect is of particular importance, as strengthening 366 

relationships between populations and their surroundings underpins sustainable development (Makhzoumi et 367 

al. 2011).  368 

 369 

4. Conclusion 370 

The potential of applying a landscape approach to karst systems lies both in developing models that provide 371 

ecological information relevant to the understanding of karst systems (spatial heterogeneity, ecological 372 

connectivity, ecosystem functionality) and in understanding the possible implications for resource 373 

management. A landscape ecology approach enables an understanding of the dynamics of the karst regions 374 

and provides a rationale for improving their management and conservation. An adequate understanding of 375 

structure, biodiversity, and functioning of karstic systems and a greater awareness of their value through the 376 

quantification of benefits derived by humanity is of paramount importance for addressing the sustainable 377 

exploitation of the resources associated with them and promoting effective and large-scale conservation 378 

choices. The valorization of ecosystem services is here indicated as a way to implement karst protection for 379 

conservationists seeking to combine conservation and human development successfully. 380 

 381 
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