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Abstract (ca. 250 words) 25 

  26 

 Macroinvertebrate assemblages are the most common bioindicators used for stream 27 

biomonitoring, yet the standard approach exhibits several time-consuming steps, including the 28 

sorting and identification of organisms based on morphological criteria. In this study, we 29 

examined if DNA metabarcoding could be used as an efficient molecular-based alternative to 30 

the morphology-based monitoring of stream using macroinvertebrates. We compared results 31 

achieved with the standard morphological identification of organisms sampled in 18 sites 32 

located on 15 French wadeable streams to results obtained with the DNA metabarcoding 33 

identification of sorted bulks of the same macroinvertebrate samples, using read numbers 34 

(expressed as relative frequencies) as a proxy for abundances. We especially evaluated how 35 

combining and filtering metabarcoding data obtained from three different markers (COI: BF1-36 

BR2, 18S: Euka02 and 16S: Inse01) could improve the efficiency of bioassessment. 37 

 One hundred and forty taxa were identified based on morphological criteria, and 127 38 

were identified based on DNA metabarcoding of the three markers, with an overlap of 99 taxa. 39 

The threshold values used for sequence filtering based on the ñbest identityò criterion and the 40 

number of reads had an effect on the assessment efficiency of data obtained with each marker. 41 

Compared to single marker results, combining data from different markers allowed improving 42 

the match between biotic index values obtained with the bulk-DNA versus morphology-based 43 

approaches. Both approaches assigned the same ecological quality class to a majority (86%) 44 

of the site sampling events, highlighting both the efficiency of metabarcoding as a 45 

biomonitoring tool but also the need for further research to improve this efficiency.  46 
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Introduction 47 

 Human activities have major negative impacts on freshwater ecosystems with drastic 48 

consequences on their biodiversity at the global scale (Dudgeon et al., 2006, Vörösmarty et 49 

al., 2010). In this context, important directives have been implemented to assess the 50 

ecological status of freshwater systems (e.g. the Water Framework Directive, hereafter 51 

abbreviated ñWFDò, in Europe [Directive 2000/60/EC]) or to protect their integrity (the Clean 52 

Water Act in the USA [Public Law 92-500]). There is therefore a major need for tools that allow 53 

large-scale, efficient monitoring of the ecological status of water bodies, with the ultimate 54 

objectives of identifying the underlying causes of the observed deterioration in water quality 55 

(or habitat suitability) and taking the appropriate measures to improve the ecological status of 56 

the monitored ecosystems. Such monitoring usually involves the survey of specific groups of 57 

organisms, i.e. Biological Quality Elements (BQEs) in the WFD: fishes, macroinvertebrates, 58 

macrophytes, phytoplankton and diatoms. Standard monitoring approaches are generally 59 

based on the morphological identification of sampled organisms using harmonized, 60 

intercalibrated protocols. Depending on the standards and the studied BQE, these approaches 61 

may exhibit several limitations: (i) they can be destructive/invasive, (ii) they can be resource-62 

intensive, i.e. time-consuming and financially expensive, and (iii) they require taxonomic 63 

expertise for morphology-based identification, whereas such expertise is continually declining 64 

in many countries (Hutchings, 2017; Terlizzi, Bevilacqua, Fraschetti, & Boero, 2003). 65 

 DNA metabarcoding is an innovative molecular-based alternative for ecosystem 66 

monitoring. This approach consists first in extracting DNA from environment samples of 67 

sediment, soil, water, faeces, or directly from community bulks (Hering et al., 2018; Taberlet, 68 

Coissac, Pompanon, Brochmann, & Willerslev, 2012). DNA is then amplified using versatile 69 

molecular markers and sequenced through high-throughput sequencing. These sequences 70 

are compared to those found in reference databases, online and/or developed for a given 71 

project (e.g. Baird, Pascoe, Zhou, & Hajibabaei, 2011; Rimet et al., 2016), in order to obtain a 72 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060
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list of taxa potentially present in the monitored ecosystem or in the bulk sample of the surveyed 73 

community. 74 

 Compared to traditional morphology-based methods, the metabarcoding approach is 75 

usually considered as non-invasive (for instance, when directly extracting DNA from water 76 

samples; Dejean et al., 2012; Valentini, Pompanon, & Taberlet, 2009), and comparably 77 

inexpensive and rapid (Baird & Hajibabaei, 2012; Ji et al., 2013; Taberlet et al., 2012). It can 78 

also allow for better taxon identification than morphological expertise (Sweeney, Battle, 79 

Jackson, & Dapkey, 2011), and an overall better detection of all the species in aquatic 80 

ecosystems (Civade et al., 2016; Valentini et al., 2016). Moreover, metabarcoding also allows 81 

a sound estimate of the beta diversity (Ji et al., 2013; Serrana, Miyake, Gamboa, & Watanabe, 82 

2019; Sweeney et al., 2011; Yu et al., 2012), and is a reliable source of information for policy 83 

making (Ji et al., 2013). Therefore, metabarcoding has been considered as a potential and 84 

credible alternative to morphology-based monitoring for both terrestrial and aquatic 85 

ecosystems (Baird & Hajibabaei, 2012; Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017; 86 

Shaw, Weyrich, & Cooper, 2017). In freshwaters, several studies have highlighted the 87 

biomonitoring potential of metabarcoding, which could efficiently discriminate streams 88 

according to their ecological quality (Gibson et al., 2015; Hajibabaei et al., 2011; Ji et al., 2013; 89 

Kuntke, de Jonge, Hesselsøe, & Lund Nielsen, 2020; Mächler et al., 2019; Serrana et al., 2019; 90 

Sweeney et al., 2011; Zizka, Geiger, & Leese, 2020). For instance, eDNA information on 91 

eukaryotic communities in bottom sediments has been strongly associated to land-use 92 

pressure types (Xie et al., 2017), and macroinvertebrate bulk data have been used to infer key 93 

gradients of stream condition, including dissolved oxygen, dissolved organic carbon, total 94 

nitrogen and conductivity (Emilson et al., 2017). 95 

 The main objective of this study was to test the ability of metabarcoding, applied to 96 

standardized bulk samples of benthic macroinvertebrates, to assess the ecological status of 97 

streams based on a large-scale biomonitoring program performed within the WFD context. 98 
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Using metabarcoding on bulk samples could allow to bypass the organism identification step, 99 

which is time-consuming and a source of uncertainty due to operator misidentifications and 100 

inter-operator identification variability (Metzeling, Chessman, Hardwick, & Wong, 2003). We 101 

also investigated how to improve the bioassesment ability of metabarcoding by testing: 102 

(i) combinations of different markers and primer sets, selected for their ability to identify a large 103 

range of benthic macroinvertebrate groups. If individual markers can exhibit some bias in the 104 

detection of taxa in a given sample (Elbrecht & Leese, 2015, 2017; Piñol, Mir, Gomez-Polo, & 105 

Agustí, 2015), using multiple markers which efficiently amplify different taxonomic groups can 106 

limit the global bias of detection. However, increasing the number of markers inflates the time 107 

and cost of analyses (Clarke, Soubrier, Weyrich, & Cooper, 2014); and, 108 

(ii) varying threshold values for metabarcoding data filtering. Namely, we investigated the 109 

minimal threshold values for best identity match (the percentage of similarity between a 110 

sequence and a barcode found in a reference database) and the number of reads for the 111 

identified Molecular Operational Taxonomic Units (MOTUs). Classically, a single threshold 112 

value is chosen for best identity matches, either one value per taxonomic level of interest (e.g. 113 

species, genus) or a unique value for all the taxonomic levels. For arthropods, a unique 114 

threshold value generally close to 97% is frequently found in the literature (e.g. 97% in Elbrecht 115 

& Leese, 2017; Serrana et al., 2018; 2019; Yu et al., 2012; 97.5% in Carew, Kellar, Pettigrove, 116 

& Hoffmann, 2018; 98% in Lobo, Shokralla, Costa, Hajibabaei, & Costa, 2017). Low 117 

abundance (in terms of number of reads) MOTUs, e.g. exhibiting a relative abundance lower 118 

than 0.003% (Elbrecht & Leese, 2017) or 0.005% (Bokulich et al., 2013; Carew et al., 2018) 119 

in a given sample, are usually excluded from metabarcoding data, as they are considered 120 

unreliable (e.g. Elbrecht & Leese, 2017; Elbrecht et al., 2017). 121 

 122 
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 The selection of genetic markers (e.g. mitochondrial vs. nuclear, single vs. multicopy, 123 

fast evolving vs. conserved, protein-coding vs. ribosomal), the respective primer sets as well 124 

as the threshold values are important decisions to take in a metabarcoding experiment, but 125 

for which no clear guidelines exist (but see Bokulich et al., 2013). Such decisions may have a 126 

strong impact on the DNA-based bioassessment, which could be exacerbated by the high 127 

phylogenetic diversity of benthic invertebrates in a single sample. For example, taxonomic 128 

groups that are not as well amplified as other groups by a given primer set or marker could be 129 

filtered out of the dataset due to their low numbers of reads. The amplification rate can indeed 130 

vary greatly among the major taxonomic groups in benthic invertebrate assemblages, even 131 

when accounting for biomass (Elbrecht et al., 2017). 132 

 We systematically studied the efficiency of the three selected markers and of all the 133 

possible combinations of these markers, by comparing bulk-DNA and standard results through 134 

the lens of the French Multimetric Invertebrate Index (I2M2; Mondy, Villeneuve, Archaimbault, 135 

& Usseglio-Polatera, 2012). The I2M2 was designed as a WFD-compliant index for the 136 

invertebrate-based ecological assessment of French wadeable streams. The standardized 137 

taxonomic levels needed for calculating the I2M2 are mainly the genus level, except for Diptera, 138 

Hirudinea and Turbellaria (family level) and Nematoda or Oligochaeta identified as such 139 

(standard XP T90-388; AFNOR, 2010). We tested the usefulness of metabarcoding for 140 

assessing and discriminating the ecological status of streams, based on a set of streams with 141 

a wide range of ecological features. 142 

  143 
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Material & Methods 144 

  145 

Sampling sites and data acquisition 146 

 Sampling was conducted in 18 sites on 15 streams belonging to five different stream 147 

types defined according to stream order (Strahler, 1957) and French hydroecoregions 148 

(Wasson, Chandesris, Pella, & Blanc, 2002; Wasson, Chandesris, Pella, Sauquet, & Mengin, 149 

2006) (Fig. 1; see also Table S1 in the Supplementary Material). Streams were selected from 150 

two national networks, surveying (i) reference sites (Réseau de Référence, RdR, about 400 151 

sites) and (ii) the mean ecological quality of French streams via the long-term survey of a large 152 

selection of sites (Réseau de Contrôle de Surveillance, RCS, about 1500 sites). These 153 

surveys have allowed gathering a lot of information on chemical and hydro-morphological 154 

pressures impairing water quality and habitats since 2007 (Larras et al., 2017; Mondy et al., 155 

2012). The selection of sites was based on three criteria: their geographic origin (two different 156 

hydro-eco-regions x nine streams), pressure intensity and category (water quality degradation 157 

or hydrological alteration), and stream type (Wasson et al., 2002). Pressure intensity ranged 158 

from ñvery lowò impairment corresponding to ñLeast Impaired River Reachesò (LIRRs; 159 

following Dolédec & Statzner, 2008; Mondy et al., 2012; Statzner, Bady, Dolédec, & Schöll, 160 

2005), to ñmoderateò or ñstrongò impairment, both corresponding to ñImpaired River Reachesò 161 

(IRRs). We selected IRRs which had been impaired by only one main pressure category 162 

(water quality degradation or hydrological alteration) over the 2007-2012 period. Sites were a 163 

priori grouped by triplet within a given stream type, including one LIRR and two IRRs, one IRR 164 

exhibiting a moderate impairment and the other a stronger impairment level. 165 

 Macroinvertebrate community sampling occurred in autumn 2014 and spring 2015. 166 

Thirty-six macroinvertebrate field sampling events were done following a standardized 167 

protocol (French standard XP T90-333; AFNOR, 2009), commonly used in France in the 168 
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context of the WFD. This protocol advocates the sampling of macroinvertebrates in eight 169 

dominant habitats (i.e. with an individual share of at least 5% coverage at reach scale) and 170 

four marginal ones (i.e. with an individual share of less than 5% coverage) in three successive 171 

phases (Fig. 2A). Each habitat is characterized by its substrate type (among twelve categories) 172 

and its superficial current velocity range in front of the substrate (among four categories). 173 

Sampled marginal substrates (phase A; samples 1-4) and the first four dominant ones (phase 174 

B, samples 5-8) are selected according to a decreasing gradient of ñhosting capacityò (i.e. their 175 

ability to support a rich and diverse invertebrate assemblage; this gradient is defined by the 176 

norm XP T90-333). The four other samples performed on dominant substrates (phase C, 177 

samples 9-12) are made in proportion to their individual benthic coverages. A Surber sampler 178 

(net mesh size = 500 µm, opening area = 1/20 m²) was used to sample macroinvertebrates in 179 

each habitat. Samples were preserved in undenatured alcohol (ca. 70% final concentration), 180 

for up to one year. In laboratory, organisms were sorted, numbered and identified at the 181 

standardized taxonomic level (standard XP T90-388; AFNOR, 2010). Some individuals, 182 

difficult to identify at the required taxonomic level (e.g. early instars or organisms altered during 183 

the sampling process), were identified at the best taxonomic level possible (i.e. 29 individuals 184 

from eight taxa over 89157 individuals catch during the whole study). After taxonomic 185 

identification on morphological criteria, all the sorted organisms, i.e. the "bulk samples" (N = 186 

432), were stored in 95° undenatured alcohol (for up to one year) and sent for metabarcoding. 187 

 188 

I2M2 index calculation 189 

 Faunal data (i.e. abundance per taxon x phase x site) were combined per site, as 190 

indicated in Fig. 2A, to calculate the values of the five individual metrics aggregated in the I2M2 191 

index (Mondy et al., 2012). These five metrics are the total taxonomic richness, the Shannon-192 

Weaver diversity index (Shannon & Weaver, 1963), the Average Score Per Taxon (ASPT; 193 



10 

Armitage, Moss, Wright, & Furse, 1983), and the proportions of ovoviviparous (Ovoviviparity) 194 

and polyvoltine (Polyvoltinism) organisms in the invertebrate assemblage. The I2M2 index was 195 

constructed and calibrated over 10 chemical and 7 hydromorphological pressure categories 196 

(see Mondy et al., 2012, for further details). One sub-index per pressure category is first 197 

calculated as the weighted mean of the values of the five metrics, with the weights equal to 198 

the ability of each metric to discriminate between LIRRs and IRRs for this pressure category 199 

(quantified by its ñdiscrimination efficiencyò, DE; Ofenbºck, Moog, Gerritsen, & Barbour, 2004). 200 

Then, the final I2M2 index value is calculated as the arithmetic mean of the 17 sub-index values 201 

(Mondy et al., 2012). 202 

  203 

Metabarcoding 204 

Bulk samples were homogenized using an IKA ULTRA-TURRAX Tube Drive control 205 

system with sterile 20 mL tubes and 10 steel beads (5 mm Ø) by grinding at 4,000 rpm for 15 206 

min (IKA, Staufen im Breisgau, Germany). Complete samples were then incubated overnight 207 

at 56 ÁC in 5 mL of lysis buffer (Tris-HCl 0.1 M, EDTA 0.1 M, NaCl 0.01 M and N-lauroyl 208 

sarcosine 1%, pH 7.5ï8.0). Extractions were then completed using the DNeasy Blood Tissue 209 

Kit (Qiagen GmbH, Hilden, Germany), according to the manufacturer's instructions. DNA 210 

extracts were recovered in a total volume of 300ɛL. Two DNA extractions were performed per 211 

bulk sample. Negative extractions without samples were systematically performed to monitor 212 

possible contaminations. 213 

Three primer pairs respectively corresponding to three different markers were used for 214 

each sample, Inse01 for a mitochondrial 16S rDNA region (Elbrecht et al., 2016; Taberlet, 215 

Bonin, Zinger, & Coissac, 2018), Euka02 for a nuclear 18S rDNA region (Guardiola et al., 216 

2015) and BF1-BR2 for the Cytochrome c Oxidase I (COI) region (Elbrecht & Leese, 2017). 217 

DNA amplifications were performed in a final volume of 20 ɛL, using 2 ɛL of extract DNA as 218 
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template. The amplification mixture contained 10 ÕL of Applied BiosystemsÊ Master Mix 219 

AmpliTaq GoldÊ 360, 0.2 ɛg/ɛL of bovine serum albumin (BSA, Roche Diagnostic, Basel, 220 

Switzerland) and 0.5 µM of each primer for COI and 16S primers or 0.2 µM for 18S primers. 221 

Two PCR replicates were amplified for each DNA extraction and each primer pair, for a total 222 

of four PCR replicates per bulk sample. The primers were 5ô-labeled with an eight-nucleotide 223 

tag unique to each replicate (with at least five differences between any pair of tags) allowing 224 

the assignment of each sequence to the corresponding sample during sequence analysis. The 225 

PCR mixture was denatured at 95°C for 10 min, followed by 35 cycles of 30 s at 95°C, 30 s at 226 

52°C for COI and Inse01 or 45°C for Euka02 and 1 min at 72°C (1m 30s for COI), and followed 227 

by a final elongation at 72°C for 7 min. Negative PCR controls (ultrapure water, with 12 228 

replicates as well) were analyzed in parallel to the samples to monitor possible contaminations 229 

during the PCR step. 230 

After PCR amplification, PCR products from the same marker were combined in equal 231 

volumes and purified using the MinElute (Qiagen GmbH, Hilden, Germany) purification kit. 232 

Purified amplicons were checked by high resolution capillary electrophoresis (QIAxcel System, 233 

Qiagen GmbH, Hilden, Germany) and sent to Fasteris (Geneva, Switzerland) for library 234 

preparation and sequencing. Libraries were prepared according to the PCR-free MetaFast 235 

protocol (Taberlet et al., 2018; for further details, also see: 236 

https://www.fasteris.com/dna/?q=content/metafast-protocol-amplicon-metagenomic-analysis), 237 

which limits chimera formation. The Inse01 and Euka02 amplicons (three libraries each) were 238 

sequenced on a HiSeq 2500 platform (Illumina, San Diego, CA, USA) with a paired-end 239 

approach (2 × 125 bp), while the COI amplicons (two libraries) were sequenced on a MiSeq 240 

platform (Illumina, San Diego, CA, USA) producing 2 x 250 bp paired-end reads. 241 

 242 

Workflow for metabarcoding data 243 



12 

 Sequences were processed using the OBITools software (Boyer et al., 2016). Each 244 

pair of raw reads was paired end merged with illuminapairedend  to recover the full 245 

amplicon sequences. Pairs of reads that did merge with an alignment score above 40 246 

(equivalent to align 10bp of maximal quality on both read ends) were discarded. For the 247 

Euka02 primer, as the read length did not allow to recover the full amplicon sequences for 248 

important taxa such as Gammaridae, Coleoptera and Trichoptera, pairs of reads whose ends 249 

could not be aligned (score < 40) were concatenated and kept separately for further 250 

processing. Recovered amplicon sequences were then assigned to their respective sample 251 

with ngsfilter  and dereplicated to get MOTUs with obiuniq . MOTUs were then aligned 252 

against dedicated reference sequence databases (Ficetola et al., 2020) for each primer pair 253 

using ecotag . The Euka02 barcodes kept as concatenated sequences were processed 254 

separately and the alignment score was based on combining the alignments obtained for both 255 

ends of the barcode. 256 

 After the taxonomic assignment step, metabarcoding data were subjected to 257 

subsequent steps of preparation and filtering before the ultimate step of I2M2 index calculation 258 

(Fig. 2B). Discordant PCR replicates (i.e. that did not cluster when compared to other technical 259 

replicates of the same bulk sample) were identified using an iterative process. This iterative 260 

process was akin to minimizing the intra-sample distances (between PCR replicates of a given 261 

bulk sample) while maximizing the inter-samples distances. At each step of this ñmin-maxò 262 

process, the algorithm identified which replicates were the most discordant, i.e. the replicates 263 

that were too distant from the other replicates of the same bulk sample, and it removed them 264 

before iterating. The assumption of this process is that PCR replicates from the same sample 265 

should be more similar to one another than to PCR replicates from other samples. To be more 266 

specific, at each iteration all the PCR replicates were projected on a 2D space using a 267 

Correspondence Analysis (implemented in the ade4 R package; Dray & Dufour, 2007) based 268 

on their square root transformed counts. Euclidian distances between all the PCR replicates 269 
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in this 2D space were then computed. Distances were partitioned depending on whether or 270 

not they involved PCR replicates of the same sample or different samples. These two distance 271 

distributions were then compared to pinpoint outlier distances for PCR replicates of the same 272 

sample. PCR replicates responsible for these distances were removed and the remaining PCR 273 

replicates were used again for a new iteration until no PCR replicates had to be removed. 274 

Respectively, we removed 43.4, 7.5 and 9.7% of the replicates for the primer sets COI, Euka02 275 

and Inse01. PCR replicates were thus available for 68.8, 100 and 97.9% of the bulk samples 276 

amplified with COI, Euka02 and Inse01, respectively (mean numbers of available replicates 277 

per bulk sample = 2.3, 3.7 and 3.6, respectively for COI, Euka02 and Inse01). The remaining 278 

PCR replicates were then pooled together, by summing the numbers of reads per MOTU found 279 

across all the replicates, for a given bulk sample. 280 

 Next, MOTUs were filtered based on the best identity percentage (i.e. the percentage 281 

of similarity between the MOTU sequence and the closest one identified in the reference 282 

database; Ficetola et al., 2020), then, after further sample pooling (Fig. 2A), they were filtered 283 

based on their total number of reads (Fig. 2B). For the filtering step based on best identity 284 

values, we tested several thresholds, between 80 to 100%. After this first filtering step, we 285 

standardized the MOTUs data using the reference list of taxa taken into account for the 286 

calculation of the I2M2 index value (norm XP T90-388; AFNOR, 2010). As a result, the reads 287 

were either pooled by genus, sub-family or family level according to the taxa (or even at a 288 

higher taxonomic level; e.g. for Oligochaeta), for the MOTUs which could be aggregated to 289 

the taxonomic level requested by the standard. MOTUs identified at a taxonomic level too high 290 

for being used in the bioevaluation process have been removed from the dataset (e.g. MOTUs 291 

such as Metazoa, Neoptera or Holometabola). Figure S1, available in the Supplementary 292 

Material, shows the remaining total number of reads per PCR replicate at this step of the 293 

process. We also tested how a uniform sequencing/read depth would influence the 294 

performance of the markers, by filtering out MOTUs with read abundance equal to or lower 295 
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than 0.003% per PCR replicate at this step of the process. Preliminary analyses had shown 296 

that this added filtering step has only a negligible effect on the biomonitoring results compared 297 

to the other filtering steps (namely for best identity and minimal number of reads; see the next 298 

paragraph). Therefore, results presented in this study do not include this optional filtering step. 299 

 According to the standard used for the index calculation (XP T90-333; AFNOR, 2009; 300 

Fig. 2A), the numbers of reads per MOTU were further pooled together within each group of 301 

four samples corresponding to the three successive phases of the field sampling protocol (A, 302 

B and C, respectively; Fig. 2A). A table summarizing the main identified MOTUs by each 303 

marker is available in the Supplementary Material (Table S2). Taxa were then filtered 304 

according to their total number of reads in each pooled sample for each marker. We went for 305 

a naive and global approach, and systematically tested several threshold values of minimal 306 

number of reads, ranging from 1 to 100 reads, five reads by five reads (i.e. 1, 5, 10, 15, up to 307 

100). 308 

 As we tested all the possible combinations of threshold values for both filtering steps, 309 

we obtained a total of 441 datasets for each marker, i.e. 21 threshold values for the best 310 

identity percentage multiplied by 21 threshold values for the minimal number of reads. After 311 

this step, read data were transformed either in relative frequencies (RF) or in 312 

presence/absence (PA). 313 

  314 

Marker combinations 315 

 For each mode of data expression (either RF or PA) we tested the individual marker 316 

but also all the different combinations of two (3) or three (1) markers. In order to limit the 317 

number of tested marker combinations over all the possible combinations of tested threshold 318 

values, we first identified the threshold values that could best allow us to maximize the 319 
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correlation (i.e. exhibiting the highest adjusted-R²; see next section) between the results 320 

obtained with both the standard and the bulk-DNA approaches. Thus, we first selected the 321 

three ñbestò threshold values of best identity for each individual marker. Then, we selected the 322 

five best threshold values for the minimal number of reads, based on the datasets already 323 

filtered with the three best identity thresholds previously identified. As a result, we obtained 15 324 

datasets (one per combination of best identity threshold x read minimal number threshold) for 325 

each individual marker, 225 datasets (15 x 15 combinations) for each pair of markers (e.g. 326 

[COI + Euka02]), and 3375 datasets (i.e. 15 x 15 x 15 combinations) for the combination of 327 

three markers ([COI + Euka02 + Inse01]). 328 

When combining data from different markers, a taxon was considered as ñpresentò if it 329 

was present at least in one of the two or three datasets included in the marker combination. 330 

For data coded in RF, for a given taxon, RF values were averaged over all the data provided 331 

by the two or three combined datasets. 332 

  333 

Statistical analyses 334 

 The values of the I2M2 index and its five individual metrics were calculated for all the 335 

available site sampling events, combinations of markers and selected thresholds, using 336 

relative frequencies of reads as a proxy for abundances (i.e. for all the metrics except total 337 

taxonomic richness and ASPT). For data expressed in presence/absence, the abundance was 338 

fixed as equal to one for each identified taxon. The values of the bulk-based index (B-I2M2) 339 

and its metrics were compared to the values provided by the standard approach (ñMorphology-340 

basedò I2M2; M-I2M2 for the index). These values were expressed as Ecological Quality Ratios 341 

(EQR; range [0;1]). Reference values, known as ñBESTò and ñWORSTò and needed for the 342 

expression of all the metric values as EQRs, were based on the revised I2M2 construction 343 

dataset (see next paragraph) for both the standard and the bulk-DNA approaches. We also 344 



16 

calculated the discrimination efficiency (DE; Ofenböck et al., 2004) of the I2M2 index on each 345 

dataset. Here, DE is the relative frequency of IRRs exhibiting I2M2 values lower than the first 346 

quartile of the distribution of the I2M2 values in the LIRRs. 347 

 The I2M2 was updated in 2016 thanks to a new and bigger available dataset (with 348 

10,074 sampling events, versus only 4,132 sampling events in the original dataset used in 349 

Mondy et al., 2012). Based on this new dataset, more robust reference and DE values were 350 

(re)calculated, and combinations of phases used for individual metric calculation were revised 351 

in order to optimize the discrimination efficiency of metrics (see Fig. 2A). In this study we used 352 

this revised version of the I2M2. (ref?) 353 

 Linear regressions were calculated between the two sets of I2M2 index values (or 354 

individual metric values) obtained with the standard and bulk-DNA based approaches. For 355 

each regression we used the adjusted R² as a measure of the variance explained by the model 356 

(Crawley, 2007). The distributions of index values provided by both methods were statistically 357 

compared over all the site sampling events, with Wilcoxon signed rank tests for paired data. 358 

Friedman rank sum tests were used to identify whether or not the tested thresholds for best 359 

identity and minimal number of reads (after having selected the best three thresholds for best 360 

identity) led to significant differences in adjusted R² values over the whole range of tested 361 

values. All statistical analyses were done in R (version 3.6.3; R Core Team, 2020).  362 
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Results 363 

  364 

Taxonomic identification 365 

 One hundred and forty morphotaxa were identified in the 36 site sampling events (Fig. 366 

3). The bulk data filtered with the lowest threshold for best identity (80%), allowed to recover 367 

75, 66 and 57 of the morphotaxa, for the markers COI, Euka02, and Inse01, respectively. 368 

Twenty-eight morphotaxa were independently recovered by all three markers. Forty-one taxa 369 

identified on morphological criteria were not recovered by at least one of the markers. Of these 370 

forty-one taxa, six were not referenced as such in our marker-specific reference databases: 371 

the phylum Nematoda, the family Rhagionidae, and the genera Cyphon, Agriotypus, 372 

Capnioneura and Lasiocephala. Twenty-eight taxa were obtained by metabarcoding but not 373 

based on morphological identification: 12 taxa for COI, 15 taxa for Euka02 and 9 taxa for 374 

Inse01. 375 

 376 

Relative frequencies vs. presence/absence 377 

 We first examined how the mode of data expression (RF or PA) affected the efficiency 378 

of metabarcoding-based bioassessment. Whatever the mode of data expression, we generally 379 

found significant and positive linear relationships between B-I2M2 and M-I2M2 values. For the 380 

primer sets COI and Euka02, the relationship was significantly higher on RF data than on PA 381 

data (Wilcoxon signed rank test for paired data; p < 0.001 for both primer sets; Fig. 4A). For 382 

Inse01, adjusted R² were not significantly different between RF and PA data (Wilcoxon signed 383 

rank test for paired data; p > 0.05). Nevertheless, the primer set Inse01 exhibited the highest 384 

values of adjusted R² with PA data, with a maximum of 0.738. The maximum adjusted R² for 385 

the primer sets COI and Euka02 were respectively 0.524 and 0.671, with RF data. Based on 386 
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these preliminary results, we chose to focus on data expressed in relative frequencies (RF) 387 

for the remaining analyses. 388 

  389 

Threshold selection for markers 390 

 We used adjusted R2 for examining how the selected threshold value for best identity 391 

modified the bioassessment efficiency of each marker. The relationship between the adjusted 392 

R² and the tested thresholds for the best identity greatly varied among markers (Friedman 393 

rank sum tests; p < 0.001 for each primer set; Fig. 5). For COI, the thresholds equal or lower 394 

than 84% of identity provided the best values of adjusted R² (medians > 0.50; Fig. 5A). 395 

Adjusted R² values decreased with increasing identity thresholds from 85 to 100%, albeit with 396 

a small increase of R² for identity comprised between 96 and 99%. For Euka02, the adjusted 397 

R² slowly increased with the threshold values until 96% of identity, with all the medians higher 398 

than 0.61 (Fig. 5B), while quickly decreased (median values close to 0.49) at very high values 399 

of identity (97-100%). For Inse01, the adjusted R² median values globally ranged between 400 

0.58 and 0.62 for thresholds between 80 and 97% of identity. The highest R² values were 401 

observed with identity values of 98-100% (Fig. 5C). Based on these results, we selected the 402 

best identity threshold values of 80, 81 and 82% for COI; 94, 95 and 96% for Euka02; and 98, 403 

99, and 100% for Inse01 (Fig. 5). 404 

 The relationships between the adjusted R² and the tested thresholds for the minimal 405 

number of reads exhibited different patterns of change according to the marker and the 406 

selected best identity threshold (Fig. 6). The adjusted R² varied significantly according to the 407 

tested thresholds for the minimal number of reads (Friedman rank sum tests; p < 0.001 for 408 

each primer set). For COI, adjusted R² was higher than 0.50 for thresholds equal to 5 and 10, 409 

and for thresholds higher than 50 reads, but was lower if the selected minimal number of reads 410 

was equal to 1 or comprised between 15 and 45 (Fig. 6A). For Euka02, adjusted R² increased 411 
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with increasing minimal number of reads until a plateau at about 65 reads (Fig. 6B). For both 412 

markers, the relationships between adjusted R² and thresholds for the minimum number of 413 

reads were similar for all the tested thresholds for best identity. The patterns of response of 414 

Inse01 were similar for the 98 and 99% thresholds for best identity (Fig. 6C), but differed from 415 

that obtained with a threshold of 100% of identity. The highest adjusted R² values were 416 

observed for all the identity thresholds using thresholds comprised between 50 and 70 reads. 417 

Based on these results, the threshold values 5, 60, 65, 70 and 100 for COI; 80, 85, 90, 95 and 418 

100 for Euka02; and, 50, 55, 60, 65 and 70 for Inse01, were respectively selected (Fig. 6). 419 

 420 

Biomonitoring efficiency of the bulk-DNA approach 421 

 After having identified, for each marker, the best mode of data expression (relative 422 

frequencies) and the best ranges of identity threshold and minimal number of reads, we 423 

analyzed the global bioassessment efficiency of each individual marker and each combination 424 

of markers. We compared the values of the B-I2M2, its related metrics and the allocated 425 

ecological quality classes with those provided by the standard approach. We also compared 426 

the discrimination efficiency of the B-I2M2 calculated on each tested combination. 427 

 428 

¶ Biomonitoring efficiency of individual markers 429 

 The marker Euka02 provided the best regression between M-I2M2 and B-I2M2 (Fig. 7A) 430 

with a best adjusted R2 of 0.671 for the combination of thresholds ñ96%:85ò (for 96% of best 431 

identity and a minimum of 85 reads, afterwards abbreviated min.r), among the 15 combinations 432 

of selected thresholds for Euka02. The best adjusted R² were equal to 0.524 and 0.665 for 433 

COI (80%:5 min.r) and Inse01 (100%:70 min.r), respectively and among the 15 combinations 434 

of selected thresholds for each primer set. The I2M2 values differed significantly between 435 
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morphology-based versus bulk-DNA approaches for all three markers (Wilcoxon signed rank 436 

test for paired data; p-values < 0.05; Tab. 1). The ecological quality classes allocated to sites 437 

based on both approaches differed also in many cases: i.e. 5/36, 16/36 and 18/36 times for 438 

Inse01, Euka02 and COI respectively (Tab. 1). Both COI and Euka02 often allocated a worse 439 

ecological status to sites than did the morphology-based approach, while Inse01 tended to 440 

provide a good match between ecological classes assigned with both approaches (Tab. 1). 441 

The discrimination efficiency of the I2M2 index values provided by the bulk-DNA approach with 442 

COI (DE = 0.875; Tab. 1) was higher than that obtained with the I2M2 index values provided 443 

by the standard approach (DEstandard = 0.833), while for the other markers the discrimination 444 

efficiency was poorer (DE = 0.75 for both markers). 445 

 The values of the ASPT and the relative frequency of polyvoltine organisms in the 446 

invertebrate assemblage (Polyvoltinism in Fig. 7) were correctly modelled from bulk-DNA data 447 

for all the markers. Adjusted R² ranged from 0.522 (Euka02) to 0.779 (Inse01) for ASPT, and 448 

between 0.457 (Inse01) and 0.768 (Euka02) for polyvoltinism. The relative frequency of 449 

ovoviviparous organisms (Ovoviviparity in Fig. 7) was correctly modelled by Euka02 and COI, 450 

with adjusted R² equal to 0.398 and 0.358, respectively, but not by Inse01. Richness was 451 

correctly modelled by COI (adj-R² = 0.520), but not by Euka02 (adj-R² < 0) and Inse01. 452 

Whatever the marker, the bulk-DNA approach did not correctly assess the Shannon-Weaver 453 

diversity, with adjusted R² ranging from -0.004 (COI) to 0.046 (Inse01). 454 

 455 

¶ Biomonitoring efficiency of marker combinations 456 

 Combining bulk-DNA information provided by different markers improved the match 457 

between the standard and bulk-DNA based I2M2 values (Fig. 4B & 7B). The best adjusted R² 458 

between M-I2M2 and B-I2M2 increased from 0.671 (Euka02) to 0.717 when we combined all 459 
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markers information (Fig. 4B & 7B). DE values of marker combinations ranged from 0.833 (for 460 

[COI + Inse01]) to 0.958 (for [COI + Euka02] and [COI + Inse01 + Euka02]) (Tab. 1). 461 

 The increased quality of the model was readily explained by an increase in the adjusted 462 

R² values for four out of the five individual metrics included in the I2M2 index, although some 463 

of these increases remained modest (Fig. 7A & 7B). The adjusted R² of total richness and the 464 

relative frequency of ovoviviparous organisms in the assemblage greatly increased from 0.520 465 

(COI) to 0.634 [COI + Inse01], and from 0.398 (Euka02) to 0.610 [COI + Euka02], respectively. 466 

In contrast, the adjusted R² of the Shannon-Weaver index and of the relative frequency of 467 

polyvoltine organisms increased marginally from 0.046 (Inse01) to 0.064 [Inse01+ Euka02] 468 

and from 0.768 (Euka02) to 0.770 [COI + Euka02], respectively. The adjusted R² of the ASPT 469 

index decreased for combinations of primer sets from 0.779 (Inse01) to 0.710 [COI + Inse01]. 470 

 Even if adjusted R² values increased, ecological quality classes allocated to tested 471 

sites still differed for 9/36, 8/36, 5/36 and 9/36 sampling events respectively for [COI + Euka02], 472 

[COI + Inse01], [Inse01 + Euka02] and for the combination of the three markers (Tab. 1). 473 

Globally, the combinations of markers allocated a rather worse ecological status than the 474 

standard approach (Tab. 1). Values differed significantly between M-I2M2 and B-I2M2 for [COI 475 

+ Euka02] and [COI + Inse01] (paired Wilcoxonôs test; both p < 0.01; Tab. 1), but not for 476 

[Inse01 + Euka02] and for the combinations of the three markers (both p > 0.05; Tab. 1).  477 
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Discussion 478 

  479 

Bulk-DNA and biomonitoring 480 

 In this study, our objective was to evaluate the efficiency of bulk-DNA metabarcoding 481 

of benthic macroinvertebrates to assess the ecological status of wadeable streams. We 482 

therefore compared results based on morphological identification of organisms using a 483 

standardized protocol (the I2M2; Mondy et al., 2012) to those provided by different 484 

combinations of metabarcoding markers. We have confirmed the usefulness of bulk-DNA 485 

metabarcoding for invertebrate-based stream bioassessment and have identified several 486 

strategies to maximize the match between metabarcoding and standard approaches. In 487 

addition, B-I2M2 and M-I2M2 values matched better for two out of the three markers when using 488 

the relative number of reads (RF) for each MOTU, instead of their presence/absence only. 489 

Aylagas, Borja, Muxika, and Rodríguez-Ezpeleta (2018) also observed better bioassessment 490 

efficiency when using the number of reads instead of the presence/absence of MOTUs. 491 

Nonetheless, results from Buchner et al. (2019) and Zizka, Geiger, and Leese (2020) have 492 

suggested that macroinvertebrate presence/absence data can lead to similar bioassesment 493 

results when compared to abundance-based data. 494 

 The good similarity observed between B-I2M2 and M-I2M2 could be explained by the 495 

good correlations observed between the values of the individual metrics of the I2M2 obtained 496 

with both bulk-DNA and standard approaches for four out of the five metrics. Several studies 497 

confirmed that bulk data would readily allow to efficiently retrieve metric values initially 498 

calculated on data achieved with a standard approach (Elbrecht et al., 2017; Emilson et al., 499 

2017; Gibson et al., 2015; Serrana et al., 2019). 500 

  501 
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Combining data from multiple markers 502 

 Our results also confirmed that combining data from different markers allows improving 503 

the appraisal of biodiversity based on bulk samples (Clarke et al., 2014; Hajibabaei, Spall, 504 

Shokralla, & van Konynenburg, 2012). Overall, the marker COI (primer set BF1-BR2) exhibited 505 

the best performance in terms of number of recovered taxa, but stream bioassessment based 506 

on COI data alone was the least efficient. Combining metabarcoding data obtained with at 507 

least two different markers has allowed us to increase both the number of taxa recovered with 508 

metabarcoding and the quality of the bioassessment. Adding data obtained with a third marker 509 

increased the number of recovered taxa, but not the quality of the bioassessment. We 510 

therefore suggest that a minimum of two different markers should be used for the 511 

biomonitoring of stream based on the bulk-DNA metabarcoding of benthic macroinvertebrates. 512 

 Moreover, our results have also highlighted that, depending on the type(s) of metrics 513 

included in a biotic index, the choice of the markers should be quite logically also governed by 514 

their ability to recover important indicator taxa (e.g. EPT) in order to minimize the risk of 515 

missing such taxa. For instance, evaluating the ecological status of French streams with the 516 

I2M2 index would need a combination of markers able to recover Gammaridae (and the 517 

generally abundant genus Gammarus). This taxon is indeed highly contributing to the trait-518 

based metrics ñovoviviparityò and ñpolyvoltinismò, and therefore its absence (when filtered out) 519 

would explain why both the COI and Euka02 markers exhibited drops of their R² past certain 520 

best identity thresholds (respectively at 85 and 98%). This observation also confirms the 521 

importance of the threshold selection step (also addressed in the next section). 522 

  523 

On the importance of thresholds 524 
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 We have highlighted the importance of the selected thresholds for the best identity 525 

value and for the minimal (absolute or relative) number of reads when filtering the taxa which 526 

will be considered as present in the sample during the bioinformatics step of the 527 

metabarcoding approach. Slightly different thresholds can lead to far different results in terms 528 

of M-I2M2 and B-I2M2 correlations, at least when using individual markers, confirming the 529 

results observed by Tapolczai et al. (2019) for diatoms. Moreover, our results have shown that 530 

best threshold values were highly different among markers. Therefore, in order to maximize 531 

the robustness of metabarcoding-based biomonitoring indices, we suggest the preliminary 532 

selection of marker-specific thresholds, based ï for instance ï on correlation tests between 533 

metabarcoding data and abiotic information (e.g. metabarcoding-based index values 534 

calculated along a pressure gradient, Tapolczai et al., 2019) or biotic information (e.g. between 535 

metabarcoding- and morphology-based index values, this study). 536 

 537 

Ecological quality class allocation 538 

The B-I2M2 values efficiently discriminate between least impaired and significantly 539 

impaired sites, but misclassifications (i.e. differences in the ecological quality class allocated 540 

by the metabarcoding-based and the morphology-based approaches) were observed. 541 

Comparing both methods, Dowle, Pochon, Banks, Shearer, and Wood (2016) indicated that 542 

such changes in quality class allocation were often due to changes in index values that were 543 

already close to an ecological quality class boundary. In estuarine and coastal sediment, 544 

Aylagas et al. (2018) observed changes in the quality class allocation for 14 of 18 stations, 545 

based on benthic macroinvertebrate communities. They also identified a lower rate of change 546 

for the stations allocated to the ecological quality classes exhibiting the widest range of values. 547 

It should be noted that in our study, the majority of the sampling events (22/36) were performed 548 

in sites of ñhighò ecological quality (based on their M-I2M2 value), which is also the quality class 549 
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exhibiting the largest extent. This ñhighò ecological status of many stream sites within the 550 

database may also have limited the number of misclassifications compared to other studies. 551 

It may as well explain why worse evaluations of the ecological status were mainly observed 552 

when classifying site sampling events based on the metabarcoding approach. 553 

In addition, misclassifications were mainly due to discrepancies between the values of 554 

the I2M2
 metrics calculated with both approaches. Such discrepancies were due to: (i) 555 

differences in the provided taxonomic lists; (ii) differences in the estimated relative 556 

abundances of taxa (i.e. relative numbers of individuals vs. relative numbers of reads); and, 557 

(iii) inadequacy of the ñreferenceò values needed to calculate the EQR (calculations of 558 

Ecological Quality Ratios, as advocated by the WFD, need to normalize metrics values in a 0-559 

1 range, using ñreferenceò values). Potentially promising prospects for improvement will be 560 

discussed in the following sections. 561 

  562 

On individual metrics 563 

 Combining data obtained with at least two different markers has allowed to correctly 564 

model the values of four out of the five metrics of the I2M2. Namely, we observed good results 565 

for the ASPT, the total taxonomic richness, and the relative frequencies of the polyvoltine and 566 

ovoviviparous organisms within the invertebrate assemblage, but not for the Shannon-Weaver 567 

diversity index. Gibson et al. (2015) also observed a lack of significant, positive relationships 568 

between data obtained with standard and bulk-DNA approaches, for Pielouôs evenness and 569 

Simpsonôs dominance indices. In contrast with the Shannon-Weaver index, the ASPT 570 

calculation only needs information on the presence/absence of taxa identified at the family 571 

level (Armitage et al., 1983). It probably explains the better robustness of this metric, and why 572 

ASPT still exhibited good correlation between values calculated applying both approaches, 573 

even if calculated on only 2/3 of the available data on the sampled invertebrate assemblage 574 
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(both the Shannon-Weaver index and the ASPT are calculated on eight sample units over 575 

twelve, corresponding to only two of the three phases; see Fig. 2B and Mondy et al., 2012, for 576 

further details). 577 

 As in previous studies (Hajibabaei et al., 2012; Serrana et al., 2019), morphotaxa not 578 

recovered with metabarcoding were often ñrareò taxa, i.e. taxa with less than 10 individuals 579 

over the whole sampling design (observed for 29 out of the 41 missing taxa). Among the five 580 

individual metrics combined in the I2M2, the Shannon-Weaver index and the relative 581 

frequencies of polyvoltine and ovoviviparous invertebrates within the assemblage are the only 582 

ones taking into account the taxon abundances. Missing the rarest taxa seems to have only a 583 

limited impact on the calculated values of the trait-based metrics, but probably not on those of 584 

the Shannon-Weaver diversity index. 585 

 Metabarcoding also identified taxa absent in the morphotaxa list. Their overall 586 

frequency was moderate (20% of the global faunal list, including both identified morphotaxa 587 

and DNA-based taxa) when compared, for instance, to the results provided by Serrana et al. 588 

(2019), who had observed nine taxa identified only with metabarcoding for a total of 20 taxa. 589 

Such taxa could especially lead to bias in values of metrics closely depending on taxonomic 590 

richness; i.e. total richness and Shannon-Weaver diversity in the I2M2. Nevertheless, in our 591 

study, a non-negligible part of these taxa corresponded to taxa identified at heterogeneous 592 

taxonomic levels among samples; i.e. at the family level in some samples (e.g. Ephemerellidae) 593 

and the genus level (e.g. Ephemerella) in other samples from the same site. This bias could 594 

be partially addressed by standardizing the taxonomic list at the site scale, instead of at the 595 

sample scale as it is currently done in the data preparation step of the I2M2 calculation. 596 

  597 

On reference values and discrimination efficiency 598 
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 For best managing the potential bias in taxonomic identification and abundance 599 

estimation when using the bulk-DNA approach (Hering et al., 2018), stream-type reference 600 

values, ñBESTò and ñWORSTò, could have been specifically redefined for the calculation of 601 

the B-I2M2 index. During preliminary analyses we tested such an approach, but preliminary 602 

results showed that it was not actually pertinent: performances were similar, but we actually 603 

observed more misclassifications in ecological quality class allocation when using 604 

metabarcoding-specific ñBESTò and ñWORSTò reference values. ñBESTò and ñWORSTò 605 

values used routinely for the calculation of the M-I2M2 were indeed defined per stream type 606 

(for ñBESTò values) and on the available national dataset (values currently in use were defined 607 

on a dataset containing more than 10,000 site sampling events), whereas ñBESTò and 608 

ñWORSTò values could only have been defined on our modest bulk dataset. Therefore ñBESTò 609 

and ñWORSTò values defined for metabarcoding data would have been less robust than those 610 

used for the M-I2M2, and would have represented an additional source of discrepancy between 611 

B-I2M2 and M-I2M2 approaches, both in terms of correlation and ecological status assessment. 612 

 Similarly, the I2M2 index is calculated as the arithmetic average of 17 sub-indices (one 613 

per pressure category), each corresponding to the mean of the individual metrics weighed by 614 

their respective DE for the corresponding category of pressure (Mondy et al., 2012). The 615 

discrimination efficiency of individual metrics has been calculated at the national scale. Here, 616 

the sampling design was too small to have the possibility of calculating robust values of DE 617 

specifically allocated to the calculation of bulk-based I2M2 values. Defining such DE values in 618 

the future should also improve the relationship between M-I2M2 and B-I2M2. 619 

 620 

Perspectives and conclusion 621 

 This study supports the bulk metabarcoding approach as a promising method for 622 

stream biomonitoring based on bulk-DNA from benthic macroinvertebrate samples (Aylagas, 623 
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Borja, Rodríguez-Ezpeleta, & Consuegra, 2014; Beentjes et al., 2019; Carew et al. 2018; 624 

Carew, Pettigrove, Metzeling, & Hoffmann, 2013; Elbrecht et al., 2017; Emilson et al., 2017; 625 

Gibson et al., 2014, 2015; Hajibabaei et al., 2011, 2019; Kuntke et al., 2020; Serrana et al., 626 

2019; Zizka et al., 2020). However, more work is needed before implementing bulk-627 

metabarcoding in the routine monitoring of streams. Indeed, we have highlighted a series of 628 

biases leading to the reclassification of several site sampling events in terms of ecological 629 

quality class. Solutions exist for reducing these biases, and we have focused on several of 630 

them in the previous sections. For instance, a reference DNA barcoding database, including 631 

578 different taxa (62% identified at the species level) has been specifically built for this study 632 

(Ficetola et al., 2020), in order to work with a database as complete as possible, as 633 

recommended by several authors (Aylagas et al., 2014; Hering et al., 2018). Several studies 634 

(Gibson et al., 2015; Ji et al., 2013; Mächler et al., 2019; Serrana et al., 2019; Sweeney et al., 635 

2011) have also suggested that new indices could be constructed specifically on bulk-DNA 636 

information for stream bioassessment based on macroinvertebrate assemblages, as already 637 

been done for benthic diatoms (e.g. Vasselon, Domaizon, Rimet, Kahlert, & Bouchez, 2017). 638 

On one hand, even if retrieved MOTUs are not assigned to taxa, MOTUs can still be used to 639 

efficiently discriminate between impaired and reference situations (e.g. Emilson et al., 2017). 640 

However, this approach would need a huge preliminary sampling phase in order to construct 641 

a new index based on a database that would include the majority of the MOTUs that could be 642 

recovered, for instance, for any stream found at the national scale. On the other hand, when 643 

molecular methods will prove to be mature enough, they could be used to obtain species-level 644 

taxonomic lists. Based on these lists, the observed and reference values of taxonomy-based 645 

and trait-based metrics could be refined to further improve the discrimination efficiency of 646 

DNA-based indices. Other promising sources of DNA for stream bioassessment are the 647 

ethanol used for sample/invertebrate preservation (e.g. Hajibabaei et al., 2012; Martins et al., 648 

2020; Zizka, Leese, Peinert, & Geiger, 2019) or even DNA directly extracted from unsorted 649 

samples (Pereira-da-Conceicoa et al., 2019). Both sources would allow to avoid the time-650 
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consuming steps of invertebrate sorting and counting. Supervised machine learning is also 651 

another promising approach, as it could be used to directly model a standard biotic index value 652 

based on metabarcoding data (Cordier, Lanzén, Apothéloz-Perret-Gentil, Stoeck, & 653 

Pawlowski, 2019; Frühe et al., 2020). 654 

 Last, one major challenge for an optimal match between standard and bulk-DNA 655 

results in a stream bioassessment context is the optimization of taxon abundance estimations. 656 

Taxon abundances are taken into account in many invertebrate-based bioassessment 657 

methods (e.g. in all the intercalibrated European methods; Bennet et al., 2011). In this study, 658 

we did not investigate how to better correlate the relative abundances of morphotaxa in 659 

samples with information provided by the relative numbers of sequence reads. However, 660 

several studies have shown that the numbers of reads could be correlated with taxon 661 

abundances or biomasses, albeit frequently with a poor fit (Carew et al., 2013; Deagle, 662 

Thomas, Shaffer, Trites, & Jarman, 2013; Dowle et al., 2016; Elbrecht & Leese, 2015, 2017; 663 

Serrana et al., 2019), strengthening the idea that better estimating the relative abundances of 664 

taxa based on their relative numbers of reads in a bulk sample could improve the modelled 665 

values of a biotic index. 666 

  667 
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Tables 1014 

 1015 

Tab.1 Total abundance and number of reads for all the taxa identified with the morphology- 1016 

and/or bulk-based approaches. Bulk data were filtered with a homogeneous best identity 1017 

threshold of 0.80. 1018 

 1019 
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Tab.1 (continued) 1021 

  1022 
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Tab.1 (continued) 1023 

  1024 
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Tab.1 (continued) 1025 

  1026 
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Tab. 2. Summary of the results corresponding to the best match between morphology-based 1027 

and bulk-DNA based approaches, obtained with each individual primer set and each 1028 

combination of primer sets. Wilcoxon tests and adjusted R² (from linear regressions) are 1029 

applied/calculated between the values of the I2M2 index obtained with morphology-based 1030 

versus bulk-DNA based approaches. The thresholds for best identity and for minimum number 1031 

of reads are respectively provided in brackets for each primer set or combination of primer 1032 

sets. DE = Discrimination Efficiency. 1033 

 1034 

  1035 
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Figures 1036 

 1037 

 1038 

Fig. 1: Location of the sampled sites. Delineations indicate the main French hydro-eco-regions 1039 

(Wasson et al. 2002). The number in the code name of each sampled site gives the information 1040 

about its group membership (from 1 to 6), whereas the letter gives information about its status, 1041 

either a LIRR (ñReferenceò; ñRò) or a IRR, exhibiting either a Moderate ñMò pressure intensity 1042 

or a Strong ñSò pressure intensity (see first section of Material & Methods for further details). 1043 

All three sites found in a group exhibit the same stream type. Further information about the 1044 

sites are available in the Supplementary Material (Table S1). 1045 
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 1047 

Fig. 2: Workflow. Dashed double-arrowed lines indicate comparisons of the results obtained 1048 

with both the morphological-based approach and the bulk DNA one. 1049 

 1050 

  1051 
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 1052 

 1053 

Fig. 3: Boxplots describing the distributions of adjusted R² values derived from linear 1054 

regressions between I2M2 index values calculated on relative abundances (morphology-based 1055 

approach) versus presence/absence (PA) or relative frequencies of reads (RF) for each primer 1056 

set. N = 21 thresholds for best identity x 21 thresholds for minimal number of reads = 441 1057 

values per couple of ñprimer x data typeò. Statistical differences between PA vs RF, for a given 1058 

primer, were investigated with Wilcoxon tests for paired data, with *** if p < 0.001. Each boxplot 1059 
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represents minimum/Q25/median/Q75/maximum values, respectively. Outliers (open circles) 1060 

are outside the 1.5 interquartile range of the corresponding adjusted R2 value distribution. 1061 
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 1063 
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Fig. 4: Boxplots of the values of adjusted R² of linear regression between values of I2M2 based 1064 

on morphology-based data and I2M2 calculated on bulk DNA for each primer set (A = COI, B 1065 

= EUKA02, C = INSE01) and for different thresholds for best identity. Reads were expressed 1066 

as relative frequencies. N = 21 for each boxplot. Each boxplot represents 1067 

minimum/Q25/median /Q75/maximum values, respectively. Outliers (open circles) are outside 1068 

the 1.5 interquartile range of the corresponding adjusted R2 value distribution. In grey, selected 1069 

thresholds for the following analyses. 1070 
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 1072 

Fig. 5: Values of the adjusted R² of linear regressions between I2M2 calculated on morphology-1073 

based data and I2M2 values calculated on bulk DNA-based data for each primer set (reads are 1074 

expressed in relative frequencies) according to different values of threshold for the minimal 1075 

number of reads, and calculated for the three previously selected thresholds for best identity 1076 

(cf. Fig. 4). Arrows indicate the five selected thresholds for minimal number of reads for the 1077 

following analyses.  1078 
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 1079 

Fig. 6: Linear regressions (solid lines) between the values of the I2M2 index (and its associated 1080 

metrics) calculated from the morphology-based versus bulk DNA-based data, for each primer 1081 

set and combinations of primer sets. Results presented here are for the best combination (= 1082 

maximum adjusted R²) in terms of thresholds for best identity and minimum number of reads 1083 

within the range of tested values. All metric values are expressed in Ecological Quality Ratios 1084 

(EQR). Dashed lines (in right graphs) are lines with a slope equals to 1. N = 36 (18 streams x 1085 

2 years). Top-left values are adjusted R².  1086 


