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Abstract 

Introduction: An interaction between metabolic triggers and inherited predisposition underpins 

the development and progression of nonalcoholic Fatty Liver disease (NAFLD) and fatty liver 

disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for 

the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is 

being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with 

lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, 

PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. 

 

Areas covered: The scope of this review is to briefly describe the PNPLA3 gene and protein 

function before discussing therapeutic approaches for fatty liver aiming at this target.  Literature 

review was carried out searching through PubMed and clinicaltrials.gov website and focusing on 

the most recent works and reviews. 

 

Expert opinion: The main therapeutic strategies under development for NAFLD have shown 

variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of 

the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are 
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becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease 

susceptibility. 

 

Keywords: PNPLA3, HSD17B13, Precision medicine, Nonalcoholic fatty liver disease, Liver 
organoids 

 

Article Highlights     

• PNPLA3 exerts a key role in hepatic lipid droplet remodeling 

• PNPLA3 rs738409 C>G variant (p.I148M) accounts for the largest fraction of both non-

alcoholic  and alcoholic fatty liver disease heritability 

• Experimental studies suggested that the accumulation of PNPLA3 I148M induced hepatic 

fat accumulation; the pathological phenotype can be rescued by silencing PNPLA3  

• Due to its importance in diseases onset and progression, PNPLA3 is an attractive target for 

fatty liver disease with a wide array of direct and indirect approaches 

• Several molecules modulating mutated PNPLA3 expression are already being investigated 

in clinical trials, yet further research is required to develop novel precision medicine 

therapeutic approaches 

 

 

 

  



 
 

1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease 

worldwide (affecting ≈25% of population), and is defined by an excess of the amount of fat stored 

in the liver (≥ 5% of weight) unrelated to alcohol intake or secondary causes [1]. NAFLD 

encompasses a wide spectrum of liver pathologies ranging from uncomplicated steatosis to 

nonalcoholic steatohepatitis (NASH) and cirrhosis. Due to  the increasing global prevalence of the 

metabolic triggers related to obesity and type 2 diabetes, NAFLD is expected to become the 

leading cause of liver transplantation and hepatocellular carcinoma (HCC),  in the near future [2, 3, 

4, 5]. Progression to severe disease is usually accompanied by several pathophysiological events 

including metabolic dysregulation, development of lipototoxicity, infiltration of the liver by 

inflammatory cells, and activation of fibrogenesis (so called nonalcoholic steatohepatits - NASH) 

[6]. Moreover, the diagnosis of NAFLD is associated with increased risk of cardiac morbidities and 

extra-hepatic malignancies (e.g. type 2 diabetes mellitus and chronic kidney disease) and thus 

poses a serious threat to the global health. 

Despite the high prevalence of NAFLD, we still have a limited knowledge of the biological 

mechanisms involved in disease progression [7]. Indeed, NAFLD represents a multifactorial disease 

triggered by environmental stressors related to unhealthy lifestyle and diet. These triggers lead to 

increased adiposity, development of insulin resistance and diabetes, and synergize with genetic 

predisposition and epigenetic modifiers to induce liver disease [8]. In the last years it has been 

shown that changes in the gut bacterial microbiome may also contribute to NAFLD pathogenesis 

[9, 10, 11]. The heritability of NAFLD and hepatic fat accumulation is large generally estimated 

between 20 to 70%, depending on the ethnicity, the study design and methodology used to 

investigate it [12]. Among the specific genetic risk variants, the patatin-like phospholipase 

domain–containing 3 (PNPLA3) rs738409 C>G single nucleotide polymorphism (SNP), encoding for 

p.I148M protein variation, has been widely demonstrated to represent the main genetic risk 

variant for hepatic fat accumulation, NAFLD and other forms of fatty liver disease, including 

alcoholic liver disease. At the same time, this variant represents a main determinant of NAFLD 

progression to cirrhosis and HCC [13, 14, 15, 16]. 

Besides genetic variants, other factors are strong modifiers in NAFLD heterogeneity 

including other inherited factors such as gender [17], aging [5]. Indeed, female sex has been 

demonstrated to protect against NAFLD, yet after menopause the risk of developing fibrosis is 

higher than in males, likely due to sex-specific distribution of fat and changes in estrogen levels 



 
 

after menopause. The main environmental triggers of NAFLD are increased adiposity, insulin 

resistance and type 2 diabetes. Obese individual are four times more at risk to develop NAFLD, and 

high BMI predisposes to NASH, fibrosis and HCC. The endocrine activity of enlarged visceral 

adipose tissue favors insulin resistance and the release of inflammatory mediators (e.g. IL-6 and 

TNF-α) that promote steatosis and hyperglycemia [18] [1]. Alterations in the gut permeability and 

bacterial microbiome [10, 11, 19], and various degrees of alcohol consumption has also been 

involved in the pathogenesis of fatty liver [20]. All these factors could result in a different NAFLD 

sub-phenotypes with a different prognosis and response to therapeutic treatments [21]. To 

improve the identification of individuals at high risk of liver disease due to metabolic 

comorbidities, in the last years several researchers have proposed to replace the nomenclature of 

NAFLD with metabolic associated fatty liver disease (MAFLD) [3, 22, 23, 24, 25]. 

In this narrative review, we have summarized the recent findings that point to the impact 

of the inherited PNPLA3 variants predisposing to fatty liver disease on the biological functions of 

the PNPLA3 protein, and the latest data on therapeutic strategies that aim at exploiting these 

discoveries to prevent and treat liver disease. In order to identify the main findings, a literature 

search in PubMed was carried out, selecting studies published since 2008, when the PNPLA3 

variant was first identified as a risk factor for liver disease. Clinical trials evaluating drugs targeting 

PNPLA3 were retrieved from the www.clinicaltrial.gov website.  

 

2. Impact of PNPLA3 gene variation on liver disease  

 Among PNPLA3 variants, rs738409 C>G, resulting in an aminoacidic substitution of 

methionine for isoleucine at position 148 (p.I148M) of the protein, was first identified as a genetic 

risk factor for hepatic fat accumulation and NAFLD at exome-wide level in the general population 

[13], and next with NAFLD-related phenotypes, including NASH [14, 26]. It soon became evident 

that the impact of the p.I148M variant on liver fat translated into a more severe liver disease, first 

on the severity of fibrosis, which is the main determinant of the risk of suffering from complication 

of liver disease [27], including the risk of HCC development [28]. The detrimental impact of the 

p.I148M variant on liver disease was evident not only in NAFLD but in several liver diseases, 

especially those associated with hepatic fat accumulation (fatty liver) [15, 29]. The impact of 

variant carriage is clinically significant, as it was recently shown that in a US population study 

characterized by a high prevalence of dysmetabolism, it increased not only liver-related mortality, 

but translated into increased overall mortality as well [30]. We recently showed that the p.I148M 



 
 

variant accounts for ~16% of the interindividual susceptibility to cirrhosis and ~25% of that to HCC 

in a Northern European population [31]. This figure is an underestimation of the p.I148M variant’s 

impact on global health, as PNPLA3 variation accounts for almost 70% of interethnic variation in 

the susceptibility to fatty liver disease [13, 32]. 

Indeed, other PNPLA3 variants affecting liver disease natural history were identified, 

including rs6006460 G>T p.S453I which has a protective effect or rs2294918 G>A p.E434K that 

reduces PNPLA3 expression [33]. On the other hand, no rare variants predicted to damage PNPLA3 

were enriched in patients with severe phenotypes related to NAFLD, such as children with severe 

NASH or patients progressing to severe fibrosis or HCC [33, 34]. 

Overall, these human genetics data indicate that different PNPLA3 variants may result in 

opposite phenotypes, and in particular the main p.I148M responsible for a large fraction of liver 

disease susceptibility may behave as a gain-of-function. We therefore initially raised the 

hypothesis that PNPLA3 p.I148M may represent a therapeutic target [35]. 

Among the other genetic risk variants for fatty liver disease, variation in HSD17B13 has 

recently been reported to influence the risk of both alcoholic and nonalcoholic liver diseases by 

interacting with PNPLA3 [36, 37]. Indeed, Abul-Husn and colleagues showed that HSD17B13 

rs72613567:TA leading to a loss-of-function, provides a strong protection against steatohepatitis 

in patients with PNPLA3 p.I148M variants, and was linked with reduced PNPLA3 expression [36]. 

Pirola and colleagues, in line with showed by Abul-Husn et al, reported that HSD17B13 

rs72613567:TA plays also a protective role against ballooning degeneration, lobular inflammation 

and liver fibrosis [38], suggesting HSD17B13 as new promising target for NAFLD treatment. 

 

3. PNPLA3 biology and involvement in liver disease pathophysiology 

PNPLA3 was first described as a lipase that hydrolyzes glycerolipids, preferentially acting on 

monounsaturated fatty acids (FAs), and the p.I148M variant hampers its hydrolytic activity 

resulting in a loss of function variant [39]. Moreover, in 2014 Pingitore confirmed that PNPLA3 also 

has a weak acyltranferase activity, and confirmed that p.I148M determines a loss of function of 

both activities [40]. In another proposed model PNPLA3 transfers polyunsaturated fatty acids 

(PUFAs) from diacylglycerol (DAG) to phosphatidylcholines or, alternatively, it acts as a lipase 

hydrolyzing PUFAs from DAG to provide substrates to synthesize PUFA-containing 

phosphatidylcholines. This hypothesis is supported by the fact that homozygosity for the PNPLA3 

p.I148M variant results in intrahepatic accumulation of PUFAs, behaving as loss of function 



 
 

relatively to this specific phenotype since it phenocopies PNPLA3-KO [41], [42]. However, in 

experimental models in mice the p.I148M variant acquired also new biological functions 

(neomorph variant), as it becomes resistant to ubiquitination-dependent degradation [43] leading 

to accumulation of the protein around lipid droplets, entrapping lipids within cells. The mechanism 

is mediated by sequestering ABHD5/CGI-58, an essential cofactor of ATGL/PNPLA2, the main TAG 

lipase in hepatocytes [43, 44].  Along this line, the overall evidence indicates that the p.I148M 

variant behaves as both a loss-of-function (since enzymatic activity is compromised) and gain-of-

new function (neomorph) with negative transactivation activity (since the mutation hampers 

protein degradation causing lipid accumulation) [45]. A model of the possibile mechanisms linking 

the PNPLA3 p.I148M variant with liver damage in hepatocytes is presented in Figure 1. 

 

3.1 Gene expression and cellular localization 

The human PNPLA3 is mainly expressed in retina and in the liver, in hepatic stellate cells 

(HSCs) and hepatocytes, but also in the adipose tissue (adipocytes), and in the kidney (perivascular 

cells) [46]. In hepatocytes, insulin receptor signaling leads to heterodimerization of LXR with RXR, 

activating the transcription factor sterol regulatory element binding protein 1c (SREBP1c) [47, 48], 

which in turn increases the expression of PNPLA3. Moreover, the presence of glucose response 

elements at the PNPLA3 promoter suggests that its expression can be also regulated by the 

transcription factor carbohydrate responsive element-binding protein (ChREBP) [49]. This fine 

tuning of PNPLA3 transcription suggests that may be physiologically involved in accommodating 

increased amount of lipids in a safe form in post-prandial conditions [50]. Whether carriage of the 

p.I148M may confer some specific advantage in individuals without increased adiposity and 

dysmetabolism, thereby accounting for the apparent increase in the prevalence with population 

migrations outside Africa during human evolution [32] remains to be determined.  

Importantly, Helen Hobbs’s lab reported in a series of elegant studies in experimental models in 

mice and in vitro that PNPLA3 p.I148M mutant protein prevents its ubiquitylation at several lysine 

residues avoiding proteasomal degradation, leading to the accumulation of the protein on the 

surface of lipid droplets which does not allow other proteins to metabolize TAG in hepatocytes 

[43, 44]. Yang et al showed that PNPLA3 strongly interacts with ABHD5/CGI-58, with efficiency 

higher than ATGL/PNPLA2, the main lipid droplet TAG lipase, leading to lipid droplet enlargement 

[51]. This hypothesis is in line with the aforementioned human genetic data suggesting that the 



 
 

p.I148M variant behaves as a gain-of-function with negative transactivation activity on other 

lipases in hepatocytes, triggering TAG accumulation in lipid droplets. 

 

4. Targeting PNPLA3 to treat liver disease  

Since the common PNPLA3 p.I148M variant is a key driver of the risk of progressive fatty 

liver disease, and due to the increasing global spread of dysmetabolism as well as of at-risk alcohol 

intake, this represents an appealing target to prevent and treat this condition, reducing the 

burden of liver disease worldwide. This may represent the first precision medicine application 

targeted at a common genetic variant for a non-rare condition. Here we present the latest 

approaches aimed at targeting PNPLA3 at the RNA, protein, and metabolic pathways (such as 

HSD17B13) levels, as summarized in Figure 2. Finally, we have also put the spotlight on new 

preclinical models to study precision medicine approaches targeting PNPLA3. 

 

4.1 RNA interference 

Targeting PNPLA3 (p.I148M) at RNA levels by small hairpin RNAs (shRNAs) or antisense 

oligonucleotides (ASOs) could provide a significant advantage to achieve long-lasting suppression 

of the expression of the risk variant in carriers, possibly also trying to avoid affecting the wild type 

allele in heterozygous individuals. ASOs are a novel therapeutic approach to target the cognate 

mRNA sequences, modulating gene expression or translation of protein in question [52, 53]. The 

efficacy of ASOs can be further improved by targeted tissue delivery via conjugation to a ligand 

specific to selected cell types, but are especially effective for liver expressed genes. For instance, 

triantennary N-acetyl galactosamine GalNAc3 conjugation to ASOs improved hepatocyte uptake 

and therapeutic efficacy by targeting the asialoglycoprotein receptor 1 (ASGR1) on hepatocytes 

[54, 55]. This strategy has already proven successful in experimental models. In 2013, Kumashiro 

et al. already showed a ∼50% reduction of hepatic DAG content in high-fat fed rats after Pnpla3 

knockdown with ASO [56]. With a similar approach but different chemistry, BasuRay and 

colleagues exploited adenoviral vectors bearing PNPLA3-targetting shRNAs to revert steatosis in 

mice fed a high sucrose diet with promising results. Despite the study was only conducted in 

PNPLA3148M/M mice, hepatic TGs levels were reduced after shRNA administration [43]. More 

recently, Banini et al. replicated similar results in a NASH murine model overexpressing p.I148M 

PNPLA3 by rescuing the NASH phenotype via siRNA targeting of Pnpla3 [57]. 



 
 

More recently, Linden et al proposed a new ASO strategy to target Pnpla3 using a 

homozygous p.I148M knock-in model in mice, which were fed steatogenic diets: a high-sucrose 

diet to mimic simple steatosis, and a Westernized diet to induce steatohepatitis and liver fibrosis  

[58].  The authors showed that Pnpla3 silencing caused a significantly reduction of liver steatosis in 

the first model, and of inflammation and fibrosis in male mice fed with a NASH-inducing diet. The 

beneficial impact of Pnpla3 silencing was remarkably larger in mice knock-in for the p.I148M 

variant, but was also observed in wild type mice. Based on these promising results, an ASO 

compound called ION839 (also known as AZD2693), is currently under investigation in a phase 1 

trials (NCT04142424, NCT04483947) in overweight NASH participants homozygous for PNPLA3 

p.I148M variant.  

 Overall, ASOs can be easily administered subcutaneously and directly target mRNA 

molecules producing a quicker and more lasting response than the direct inhibition of protein. This 

approach may reduce the frequency of administration (weekly to once every several months) 

when compared to small molecule inhibitors, which usually require at least daily administrations. 

Moreover, their flexibility in design due to Watson-Crick base recognition, accompanied by 

optimized synthesis procedures and several chemical-modification increasing their stability, safety 

and tissue-specific targeting, have led in the last years to a number of FDA and EMA approval for 

clinical applications ranging from treatment of hypelipidemia, rheumatoid arthritis, psoriasis, 

cancer and Crohn’s disease [59]. 

 Despite ASOs represent a highly promising class of drug for precision medicine, mild-to-

moderate toxicity may still be observed when they are used chronically and at high doses, 

including splenomegaly, lymphoid hyperplasia and diffused multi-organ mononuclear cell 

infiltrates [60, 61]. In addition, GalNac-ASO are engineered to specifically target hepatocytes, 

PNPLA3 is also highly expressed in HSC, where the mutation may facilitate liver disease by 

determining a loss-of-function on the ability to release retinol, which was mimicked by PNPLA3 

silencing. Therefore, widespread PNPLA3 silencing might potentially hamper the beneficial impact 

of  hepatocellular PNPLA3 silencing by facilitating HSC activation. Considering the risk benefit ratio 

seen in preclinical models and initial clinical studies and the high risk of liver related events, 

PNPLA3 silencing with ASOs remain an interesting strategy for precision medicine, worth of further 

studies. 

  

4.2 Small molecule inhibitors 



 
 

Although to date no therapeutic approach directly targeting the PNPLA3 protein has yet 

been developed, because the localization of PNPLA3 on lipid droplets makes it difficult to reach 

the protein via antibodies or small molecule approaches, PNPLA3 degradation could be a viable 

therapeutic intervention.  

In 2019, BasuRay et al proposed a new strategy to accelerate degradation of PNPLA3 via 

heterobifunctional proteolysis-targeting chimera (PROTAC3) system [43]. This mechanism 

improves the affinity for E3 ligase increasing the ubiquitination of PNPLA3 and its recruitment 

towards the proteasome. Despite this is not a viable approach for therapy, other mechanisms to 

force PNPLA3 degradation (such as ubiquitination, proteasomal degradation or autophagy) are 

worthy of further investigations. Another challenge to overcome would be to selectively degrade 

only the mutated protein, while maintaining the functionality of the wild-type counterpart in the 

case of heterozygous carriers, if the mutation has a partial loss-of-function impact on liver disease 

(e.g. on transacylation of phospholipids or in the release of retinol from HSCs). 
 

As previously discussed, PNPLA3 expression is regulated not only by liver fat content, but 

also by glucose and insulin [62] by means of transcription factors that directly bind the PNPLA3 

promoter. Therefore, reduction of PNPLA3 gene expression may also be achieved by targeting 

upstream actors that drive PNPLA3 transcription. Among these, SREBP-1c (sterol regulatory 

element binding protein-1c) is a transcription factor induced by insulin as well as by LXR agonists 

to drive hepatic lipogenesis. So, silencing of hepatic SREBP-1c have potential beneficial effects in 

patients with NAFLD. 

In 2020, Schwartz et al purposefully screened a library of 18 clinical-stage small molecules 

to identify modulators of PNPLA3 expression. Among them, momelotinib, previously identified to 

treat myeloproliferative neoplasm by inhibiting JAK1 and JAK2 [63], emerged as a strong inhibitor 

of PNPLA3 expression in a dose dependent manner in human hepatocytes [64].  Using a series of 

chromatin-based assays, authors showed that momelotinib downregulates PNPLA3 mRNA through 

the inhibition of BMP receptor (ACVR1)-SMAD signaling pathway. Nevertheless, momelotinib and 

JAK2 inhibition in general have side effects, with cough, diarrhea, and nausea being the most 

common [64]. On the other hand, the reduction of PNPLA3 mRNA was also observed in mice 

treated with high-sucrose diet [64], representing a new interesting and rapid therapeutic approach 

for NASH. Considering recent findings [57] linking the PNPLA3 p.I148M with STAT3 pathway 

activation, momelotinib may also reduce inflammation and HSCs activation by blocking JAK1-2-

mediated STAT3-signaling. Further studies are required to corroborate this approach. 



 
 

 

 

4.3 Modulation of PNPLA3-dependent pathways 

 Recently, the rs62305723 and rs72613567 HSD17B13 variants have been shown to 

result in loss-of-function of enzymatic activity [36, 37, 65] and protection against liver disease. 

HSDB17B13 has retinol dehydrogenase (RDH) activity and is expressed on lipid droplets in 

hepatocytes. In keeping , inhibition of HSD17B13 may represent an interesting therapeutic target. 

Indeed, very recent data have been reported on a new first-in-class small molecule, able to target 

HSD17B13 in in vitro  and in vivo models of fatty liver disease, which led to improvement of lipid 

profile and decreasing liver damage [66]. Initial results, still reported in preliminary form, suggest 

that its short term administration is safe, able to achieve profound suppression of hepatic 

HSD17B13 expression, and may lead to amelioration of fatty liver disease [67]. In addition, a phase 

I clinical trial study, based on double-stranded RNAi called ARO-HSD, have already been registered 

(NCT04202354) to evaluate safety, tolerability and pharmacokinetics/pharmacodynamics effects 

in healthy individuals and patients with NASH or suspected NASH. Despite HSD17B13 enzymatic 

activity is not yet fully characterized, it has other lipid substrates, so that long-term effects of 

inhibition are difficult to predict, overall, these initial results sparkle some enthusiasm on the 

possibility to progress to further stages of clinical development of approaches targeting this liver 

disease pathway. 

 

4.4 New preclinical models for testing precision medicine approaches to PNPLA3  

Despite mouse models have been extensively employed to model liver diseases, they do 

not fully recapitulate all the features of human NASH. Hence, testing new therapeutic approaches 

in human cells/tissues may increase the rate of final success, especially when a specific human 

variant is targeted. 

To overcome these limits, human liver chimeric mice were developed to study human drug 

metabolism, excretion, and toxicity, overcoming the differences between human and animals [68, 

69, 70, 71, 72, 73]. Recently, Bissig-Choisat and colleagues established and characterized a 

humanized TIRF (transgene-free, Il2rg-/-, Rag2-/-, Fah-/-) mouse model, able to replicate the 

pathophysiology and histology of human NAFLD when fed with a high fat/sucrose diet for 12 

weeks [74]. These tools have a promising potential to study the response of human hepatocytes to 



 
 

diet-induced NAFLD and to accelerate the development of new therapies improving the 

translation of preclinical drug test. 

In the past few years, another promising in vitro tool, called organoids, has emerged to 

study liver diseases. Usually, experimental models were limited to the use of 2D cultures of 

primary or immortalized cell lines. However, whilst primary cells have a limited lifespan and will 

stop dividing (or senesce) after a certain number of cell divisions, on the other hand there are no 

continuously replicating cell lines that provide normal levels of metabolic activity over a wide 

range of functions. Moreover, 2D culture systems do not recapitulate the complexity and 

heterogeneity of the tissue in vivo.  Organoids allow to overcome all these limits in an ex vivo 

context. They are unique because are a self-organizing 3D system, supported by an extracellular 

matrix, derived from tissue-resident stem/progenitor cells, embryonic stem cells (ESCs) or induced 

pluripotent stem cells (iPSCs) able to mimic and in some cases completely recapitulate the in vivo 

tissue counterpart both at the physiological and architectural levels [75, 76, 77, 78, 79, 80]. 

Accordingly, they have become groundbreaking tools for basic and translational studies to 

recapitulate more closely the human pathophysiology, as well as to develop personalized medicine 

approaches that would not be possible with animal models. In the liver field, Ouchi et al generated 

an iPSC-derived hepatocyte organoid model able to recapitulate the development of NAFLD and 

some aspect of NASH, including lipid accumulation and fibrosis [81]. More recently, Qin’s lab 

proposed a human NAFLD-on-a-chip model combining iPSC-derived organoids with organ-on-

chips, providing a platform for improving organoids’ applications in disease modeling and drug 

testing [80]. Finally, Ramli et al generated a stem cell-derived organoid, showing a surprisingly 

contiguous canaliculi network similar to the in vivo counterpart, providing a promising model of 

intrahepatic cholestatic diseases [82]. As they can be generated starting from human tissues, liver 

organoids represent a complementary approach to animal models for studying different aspects of 

liver diseases and drug-related response, allowing to stratify the analyses for carriage of specific 

genetic risk variants for fatty liver disease and in particular for the PNPLA3 p.I148M. 

 

5. Conclusion 

NAFLD remains a considerable challenge to global public health, because it encompasses a 

wide range of chronic liver disorders including uncomplicated fatty liver (steatosis), NASH, fibrosis 

and may evolve to cirrhosis and HCC [2, 3, 4, 5]. Genome wide studies led to the identification of 

the main common genetic risk variants for NAFLD [13, 14, 26]. Among them, the PNPLA3 p.I148M 



 
 

variant accounts for the largest fraction of variation in liver disease interindividual susceptibility 

[13, 27, 83]. The molecular mechanisms underlying its pathogenicity seem to be related to an 

altered enzymatic activity, resulting in the accumulation of the variant protein and altering lipid 

droplets dynamics and fat accumulation in hepatocytes and altered retinol metabolism and to an 

inflammatory/fibrogenic phenotype in HSCs.  

Concerning possible therapeutic approaches, inhibition of PNPLA3 p.I148M and HSD17B13 

expression by ASO or direct inhibition of HSD17B13 led to promising results in proof-of-principle 

studies, and the first clinical trials have already been registered. Table 1 provides an overview over 

therapeutic studies on the compounds to target PNPLA3 discussed in this review. 

 

6. Expert opinion 

The liver is a central hub for several physiological processes, including the regulation of 

systemic glucose and lipid metabolism, the major source of energy for human body. During the 

last decades, the global diffusion of a lifestyle characterized by increased caloric intake, Western 

diet and physical inactivity led to the increasing prevalence of obesity, type 2 diabetes and NAFLD 

[6]. NAFLD can progress to more worrying conditions such as NASH, cirrhosis and HCC.  Moreover, 

prevalence is steeply rising, jointly with the ongoing obesity and metabolic dysfunction epidemic: 

indeed, NAFLD poses a serious threat to worldwide health. 

The mainstay of NAFLD treatment is weight loss through diet and lifestyle modification, 

while no pharmacological treatment has yet been approved for this condition. Promising 

approaches are directed toward the targeting of excess adiposity and consequently insulin 

resistance such as via GLP-1 agonist (Exenatide, Semaglutide and Liraglutide) [84, 85, 86, 87]. 

Drugs with a direct impact on cholesterol and bile acids metabolism such as statins and FXR 

agonists can reduce liver damage improving fibrosis [88, 89, 90, 91].  However, some of these 

compounds have potentially limiting detrimental side effects, including an unfavorable impact on 

cardiovascular risk profile, affecting their long-term safety. New drug classes are coming, including 

pan-PPAR agonists and TRB-β receptor agonists, which may improve liver damage by improving 

lipid catabolism via oxidation. Finally, as lipotoxicity plays a key role in NAFLD, antioxidants such as 

vitamin E (tocopherol) have shown some beneficial effect its antioxidant properties [84]. Despite 

the recent progresses, exploration of novel therapeutic routes is therefore of paramount 

importance.  



 
 

The advent of next generation studies, WES and GWAS highlighted an initial panel of 

variants associated with severe NAFLD, confirming that genetic factors influence the natural 

course of this condition. Over the years, the causal link between PNPLA3 p.I148M and progressive 

NAFLD has become more and more established. Of note, carriage of the PNPLA3 p.I148M variant 

hampers the response to at least some of the therapeutic options under clinical evaluation (e.g. 

statins and N3-PUFA) [92]. This was shown in a clinical trial (NCT00885313) conducted on 60 

children carrying rs738409 variant, clearly respond to a lesser extent than wild-type patients to 

docosahexaenoic acid  [93].  

On the other hand, PNPLA3 itself represents an appealing therapeutic target for NAFLD and 

fatty liver disease in general, due to its seminal role in disease onset and progression. Based on 

these premises, adopting a precision medicine approach focused on PNPLA3 related pathways can 

be a precious contribution to expand the array of therapeutic options. Recent results obtained in 

preclinical models by targeting PNPLA3 have shown encouraging results, arousing interest among 

researchers.  

Therefore, modulation of the PNPLA3 pathway in carriers of the p.I148M variant may allow 

to prevent and cure various forms of liver disease in the subset at highest risk of progression to 

severe outcomes (Figure 2). Although this approach is currently being pursued for some rare 

genetic disorders, this would be first precision medicine application targeting a common genetic 

risk variant responsible for a common chronic degenerative condition, representing a paradigm 

shift in routine clinical management. Among the novel approaches, ASO and siRNA have gained 

enormous interest to regulate the mRNA translation [94, 95]. Moreover, these compounds could 

be easily modified, both in chemical structure and in ligand conjugation, to increase its stability 

and improving the uptake to disease-associated cells [96]. Indeed, pharmaceutical companies 

started to develop drug using GalNac-conjugated oligonucleotide products to specifically target 

the liver, some of which are currently under investigation in a phase 1 trial to treat patients 

affected NASH. 

Another promising target highly linked to PNPLA3 is HSD17B13, that may also be involved 

in STAT3 signaling, driving inflammation and fibrosis. Interestingly, the HSD17B13 rs72613567 loss 

of function variant reduces p.I148M PNPLA3 levels: thus, ASO targeting HSD17B13 can be 

employed as a precision therapy in p.I148M variant carriers. The implementation of this precision 

medicine approach will require preclinical testing in in vivo/in vitro models that recapitulate 

human genetic variability to understand the molecular mechanisms causing NAFLD and discovery 



 
 

of new potential therapeutic compounds, remain a major challenge. Organoids isolated from 

clinical samples are becoming a robust tool to study human diseases due to their attractive 

features and may therefore help in targeted drug screening hopefully reducing the rate of failure 

in clinical testing.  

Despite PNPLA3 p.I148M variant role as a major NAFLD severity modifier is well 

established, additional studies are needed to characterize the molecular mechanism by which 

PNPLA3 p.I148M leads to liver disease. In particular, it would be key to determine whether the 

detrimental impact of the PNPLA3 is accounted for by the loss-of-function of the enzymatic 

activity, or to a gain-of-new function leading to inhibition of lypolysis, whether the main effect is 

exerted in hepatocytes or encompasses also modulation of HSC function (Figure 1).  

Unfortunately, up to now most studies to understand the molecular mechanisms of PNPLA3 were 

conducted in mouse models, which show profound differences in the regulation of lipid 

metabolism, PNPLA3 expression, and PNPLA3 sequence itself as compared to humans. However, 

these last are limited to mimic the extremely complex systems of the human body. The 

implementation of more complex in vitro systems like organoids may help to define PNPLA3 

molecular function. 

In the next five years, we expect that the mechanism underlying the pathological 

phenotype of the p.I148M variant will be clarified, and the first early phase clinical trials evaluating 

compounds specifically designed to directly or indirectly target PNPLA3 p.I148M will be completed 

granting us insight on whether PNPLA3 is a viable therapeutic target for NAFLD and fatty liver 

diseases. 
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Figure Legend 

 
Figure 1. Schematic representation of mechanism linking  the  PNPLA3 rs738409 p.I148M  

genetic variant  with  fatty  liver disease in hepatocytes. 

In physiological conditions, PNPLA3 is located on lipid droplets and it has hydrolase activity 

towards triglycerides (TAG), and possibly trans-acylation activity from TAG to phospholipids, with 

preferential activity towards unsaturated fatty acids. PNPLA3 p.I148I can be ubiquitinated by E3 

ligases,  leading to its recruitment toward the proteasome and subsequently to its degradation. 

The PNPLA3 p.I148M protein variant results in opposite phenotypes: a loss-of-function of 

triglyceride hydrolase and trans-acylase activity in lipid droplets leading to accumulation of PUFAs 



 
 

in TAG, and reduction of their secretion within VLDLs from hepatocytes; a gain-of function 

(neomorph), as it becomes resistant to ubiquitination-dependent degradation leading to 

accumulation of the protein around lipid droplets. Here PNPLA3 competes with  ATGL/PNPLA2, 

the main TAG lipase in hepatocytes, sequestering its cofactor ABHD5/CGI-58, thereby leading to 

lipid droplet enlargement due to reduced lipolysis. The figure was created with BioRender.com. 

Abbreviations: ATGL, dipose  triglyceride  lipase  (also  known  as  PNPLA2); CGI-58:  comparative  

gene identification-58  (also  known  as  ABHD5); DAG, diacylglycerol; FFA, free  fatty  acids; PC, 

phospatidylcholine; PNPLA3, Patatin Like Phospholipase Domain Containing 3; PUFA, 

polyunsaturated fatty acids; TG, triglycerides; Ub, ubiquituin; VLDL, very low-density lipoprotein. 

 
Figure 2. Schematic representation of potential PNPLA3 therapeutic approaches reviewed in this 

article. 

1) Small hairpin RNAs (shRNAs) or antisense oligonucleotides (ASOs) conjugate with triantennary 

N-acetyl galactosamine (GalNAc3), target ASGR1 receptor on hepatocytes, silencing PNPLA3 

expression. 2) Under high-fat diet, insulin receptor signaling leads to heterodimerization of LXR 

with RXR, activating SREBP-1c, which in turn increases the expression of PNPLA3. Silencing of 

SREBP-1c have potential beneficial effects in patients with NAFLD by reducing the expression of 

PNPLA3. 3) Momelotinib emerged as a strong inhibitor of PNPLA3 expression in human 

hepatocytes, by inhibition of BMP receptor (ACVR1)-SMAD signaling pathway. 4) PROTAC3 system 

improves the affinity for E3 ligase increasing the ubiquitination of PNPLA3 and its recruitment 

towards the proteasome. 5) Inhibition of the activity of HSD17B13 by the new first-in-class small 

molecules or by ASOs, results in the improvement of liver damage. 

Abbreviations: ACVR1, Activin A Receptor Type 1; ASOs, antisense oligonucleotides; ATG7, 

Autophagy Related 7; HSD17B13, Hydroxysteroid 17-Beta Dehydrogenase 13; LXR, liver X receptor; 



 
 

PNPLA3, Patatin Like Phospholipase Domain Containing 3; PROTAC3, PROteolysis TArgeting 

Chimera 3; RXR, retinoid X receptor; shRNAs, short hairpin RNAs; siRNAs, small interfiring RNAs; 

SREBP-1c, sterol regulatory element-binding protein 1. 

  



 
 

Target Compound Action Stage of 
development 

Clinical Trials 
ID  

Reference 

PNPLA3 
(I148M) 

PNPLA3 
knockdown 
with ASO 
molecule 

Reduction 
(∼50%) of DAG 

Preclinical: High-fat 
fed (HFF) rats 

 Kumashiro, 
2013 

PNPLA3 
(I148M) 
 

ASO compound 
called ION839 
(also known as 
AZD2693) 

Reduction of liver 
steatosis, 
inflammation and 
fibrosis in 
preclinical study 

Preclinical: 
Phase 1 trial in 
overweight NASH 
participants with 
fibrosis stage 0 to 3 
and homozygous for 
PNPLA3 I148M 
variant 

NCT04142424 
NCT04483947 Linden, 

2019 
 

PNPLA3  shRNAs TGs levels were 
reduced 

Preclinical: PNPLA3 
148M/M mice 

 BasuRay, 
2019 

PNPLA3 
 

Proteolysis-
targeting 
chimera 
(PROTAC3) 
system 

PNPLA3 
degradation 

Preclinical: PNPLA3 
I148M mice 
Mainly for preclinical 
validation of the 
therapeutic 
approach 
 

 BasuRay, 
2019 

PNPLA3 
promoter 

Transcription 
factors (SREBP-
1) 

Reduction of 
PNPLA3 gene 
expression 
 

Preclinical: Obese 
and diabetic mice 

 Quiao, 
2011 

Signaling 
pathways 
acting 
upstream of 
PNPLA3 
expression 

Momelotinib Reduction of 
PNPLA3 mRNA 

Preclinical: Mice 
treated with high-
sucrose diet 

 Schwartz, 
2020 

HSD17B13 ARO-HSD Reduction of 
HSD17B13 

Preclinical: Phase 1 
trial clinical in 
healthy adult 
volunteers and in 
patients with NASH 
or suspected NASH 

NCT04202354 Gane, 2021 

HSD17B13 Compound A Inhibition of 
HSD17B13 and 
significantly of α-
SMA mRNA level 

Preclinical: Mice and 
treated with choline-
deficient, L-amino 
acid-defined high-fat 
diet 
(CDAHFD) 

 Choi, 2021 
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