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Abstract 

Smart City technologies are criticized as they might exacerbate income inequalities. Four factors are suggested 

for explaining this phenomenon: the uneven diffusion of ICTs, these technologies cannot be afforded by low-

income citizens, Smart Cities could further human capital divides, and the involvement of private actors in the 

implementation of projects. 

These critiques are not based on empirical verification. We test whether smart urban characteristics are 

associated with increases in urban income inequalities, using data on urban smartness and urban income 

inequality for106 European cities. Results show that Smart Cities are associated with lower levels of urban 

income inequality. 
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Introduction 

Smart Cities are on the agenda of many city officials worldwide; they are the object of countless innovative 

projects by leading high-tech companies; and, consequently, they are being studied by scholars in different 

disciplines. The success of this concept goes well beyond the walls of the academia and has attracted large 

funding from public bodies both in urban areas aiming at strengthening their technological platforms (Osborne, 

2017) as well as from governments interested in founding tech-savvy cities from scratch (Sharma, 2019). 

However, the Smart City planning paradigm is also eyed with suspicion considering its alleged role in 

increasing inequalities. For instance, an article in The Guardian entitled “The truth about smart cities: In the 

end, they will destroy democracy” (Poole, 2014) lists several strong arguments against the possibly unequal 

and anti-democratic effects that the pervasive diffusion of personal devices, coupled with the conferment of 

data thereby collected to private companies, may cause. For the sake of our work, a more specific critique 

against the potentially uneven impact of the diffusion of smart technologies in cities is presented in Kharas 

and Remes (2018), who suggest several possible examples of the channels through which income inequality 

may be spurred in Smart Cities, concluding nevertheless that whether this negative dystopia will actually take 

place really depends on the way in which urban smartness will be actually implemented. 

Quantitative research measuring the extent of urban smartness and its implications for economic outcomes is 

scant, making it difficult to understand the relationship between smartness and inequality. Critics of the Smart 

City concept often ground their concerns in claiming that promoting urban smartness means increasing and 

exacerbating urban income inequality, mainly because of the involvement of large information communication 

technology (ICT) corporations providing municipalities with the technical solutions for the functioning of 

Smart City projects (for a general overview see e.g. Shelton et al., 2015; Kitchin et al., 2019  and Lee et al. 

(2020) and Section 2.2 below highlighting in detail the literature examining the negative impact of Smart Cities 

on inequalities). However, aside from anecdotal evidence and general conceptual claims, the link between 

urban smartness and income inequality has not been examined with rigorous empirical work. Given the 

relevance of the concerns voiced by several scholars, and the lack of sound empirical verifications, a gap exists 
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in the literature which we address, taking stock of the theoretical arguments and insights provided in this stream 

of literature. 

This paper thus provides a new understanding of the inequality implications of the Smart City paradigm, by 

answering the following research question: 

RQ Are Smart City characteristics associated with higher levels of urban income inequality? 

In answering this research question, our contribution to the literature is threefold. First, we use a quantitative 

indicator of smart urban features. This allows to assess the degree to which cities truly reach smartness goals 

along the lines of a comprehensive theoretical definition, which takes stock of and builds on previous definition 

and represents an broad view of Smart Cities (Caragliu et al., 2011; see Section 2.2). We also explore whether 

using other definitions used in the literature alters our main message. Second, we link this Smart City indicator 

to income inequality, thus allowing inference on the relative influence of urban smartness on urban income 

inequalities, controlling for other relevant urban features. This makes our results potentially replicable. Third, 

we go beyond simple correlations by means of Instrumental Variables (IV) techniques. 

In order to operationalize the quantitative assessment of urban smartness, we adopt the definition suggested in 

Caragliu et al. (2011), where cities are identified as smart when: “investments in human and social capital and 

traditional (transport) and modern (ICT) communication infrastructure fuel sustainable economic growth and 

a high quality of life, with a wise management of natural resources, through participatory governance”. 

All in all, our empirical results suggest that, contrary to a widely held belief, Smart Cities tend to be 

characterized by lower levels of income inequalities. Results hold both using standard measures of the latter 

(Gini Index) as well with the use of indices capturing the welfare preferences for inequality levels at the 

different layers of the income distribution. 

The paper is organized as follows. In Section 2 we review the main reference literature, grounding our research 

question in extant contributions. Section 3 presents the data base collected for this study and the indicators 

used in the empirical analyses. Section 4 presents the empirical results of our analyses, while Section 5 

concludes with some fundamental message of policy that can be drawn from our findings. 
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Are Smart Cities more unequal? 

Our work draws from three main strands of literature. The first comprises works that examine the determinants 

of income inequality at the national level; for reasons of space limitations, this angle is presented in Technical 

Appendix A.1. The second consists of research focusing on local (urban) determinants of income inequality. 

The third summarizes instead arguments in favor and against the inequality-enhancing role of smart city 

characteristics. 

Income inequalities at the city level 

While robust empirical evidence is available on the Country-level determinants of income inequalities, 

relatively fewer works focus on the regional and urban levels. At the national level, aggregate macroeconomic 

conditions, including the level of development, and structural characteristics, including institutional factors, 

are important correlates of income inequality (see the Technical Appendix for more details). Among the 

relatively scarcer contributions at the local level, a first-hand baseline classification of the extant literature can 

be based on aggregating works depending on whether urban and regional income inequality are considered as 

outcomes or as determinants of economic performance. For reasons of space limitations, we focus here on the 

former, and we leave the latter for a more extensive discussion in the Technical Appendix. 

A recent review discussed in Marchand et al. (2020) provides extensive quantitative evidence on the regional 

and urban determinants of income inequalities, identified in differences in the level of economic development, 

in the precariousness of labor market conditions, in segregation patterns, and in socioeconomic factors. With 

US city-level data, Glaeser et al. (2009) and Florida and Mellander (2016) examine the determinants of income 

inequality. Glaeser et al. (2009) find that urban income inequality is mainly driven by the skill level of workers 

in the city, while Florida and Mellander (2016) show how wage inequality impacts income inequality, along 

with race, poverty and unionization levels. Both these contributions stress the importance of personal 

characteristics, especially those related to the labor market.  These findings are also confirmed for European 

cities, as documented by Lee et al. (2016), who consider wage inequality (which in turn drives income 

inequality) in UK cities and find that one of the main drivers lies in the underlying distribution of skills across 

workers.  
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An additional channel for income inequalities to be related to space-specific characteristics is empirically 

assessed in Lee and Rodríguez-Pose (2013), who identify in higher innovation rates at the local level a potential 

cause for income inequalities to increase, at least in the European case; this evidence is also supported for the 

Canadian case in Breau et al. (2014). 

Silva and Leichenko (2004) show that different US census regions react differently to a higher exposure to 

international trade. Moreover, Korpi (2008) shows that urban income inequality increases with city size, and 

that this relationship is in turn due to labor market diversification, human capital, migration, and demographic 

factors.  

A theoretical contribution systematizing these determinants of inequality at the city level is provided in 

Behrens and Robert-Nicoud (2014) who develop a model that uses natural advantage, agglomeration 

economies and firm selection to explain why larger cities are more unequal than their smaller counterparts. 

Among determinants of income inequality reductions, instead, the evidence strictly follows the classical 

Heckscher–Ohlin framework, suggesting that population movements help minimizing, if not inverting, 

inequality trends (Ayala et al., 2019). Decreasing population movements may reverse such trends: Ganong and 

Shoag (2017) explain the substantial decline in income convergence rates across US states by means of a model 

whereby rising land rent in high-income areas deter low-skilled migrants from in-migrating, thus ultimately 

causing  a slow-down in income convergence. Lastly, Tammaru et al. (2020) show that across EU urban areas 

income inequalities are lower in North Europe, higher in South Europe, whereas in several Eastern European 

Countries inequality has substantially increased over the past two decades. 

Moreover, higher quality of local governance should also be associated, all else being equal, with lower income 

inequalities (Beall et al., 2000). While this finding usually applies also to vast cross-sections of areas with 

different institutions, recent evidence suggests that less developed Countries would benefit less from good 

governance (Jindra and Vaz, 2018); a critique that does not apply to the sample here analyzed, comprising 

EU28 Countries. 

Little evidence has so far been presented on the role of two crucial features in decreasing urban income 

inequality, which instead are considered in the present paper. Our empirical analyses control for urban form 
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and urban smartness (the latter discussed in detail in the following subsection). A lively debate has in fact 

involved urban economists for the past three decades on whether a compact urban form, with tightly-knit 

buildings, and an efficient (public) urban transportation network allowing faster connections between different 

parts of the city, is indeed conducive to greater environmental sustainability (on the issues on smart urban 

growth and compact cities, see e.g. Dielman and Wegener, 2004 and Bibri et al. 2020), and ultimately to 

economic growth. On the one hand, some argue that the market should be left free to decide how to adjust the 

urban form in response to exogenous technological shocks. This is for instance the case of Brueckner and 

Fansler (1983, p. 487), who criticize the “emotionally-charged indictment of sprawl”. On the other hand, 

empirical research has also shown that compact cities also tend to be more efficient, innovative, and productive 

(Hamidi and Zandiatashbar, 2019; Carlino et al., 2007; Camagni et al., 2013). A compact urban form also 

reduces income inequality, by making urban labor markets more closely integrated, thus enhancing job 

opportunities also for the lower layers of the income distribution (Burton, 2000). 

Smart Cities: definitions and relation to income inequalities 

Another branch of the literature that needs to be summarized here is related to the link between income 

inequality and the Smart City paradigm as emerging over the past decade.i In what follows we will suggest 

through which channels smartness can be related to inequalities and identify the distinctive elements of the 

definition of a Smart City we adopt in this paper with respect to other contributions in the literature, so as to 

shed theoretical light on the empirical analyses following thereafter. Before making this step, we will briefly 

summarize the lively debate emerging over the past decade on the very nature of urban smartness. This 

intermediate stage is needed in order to better motivate the choices made in the empirical section of our work. 

According to a recent article, the history of Smart Cities dates back to the 1960s, and finds its roots in the first 

wave of diffusion of early ICTs: “Beginning in the late 1960s and through most of the 1970s, the little-known 

Community Analysis Bureau used computer databases, cluster analysis, and infrared aerial photography to 

gather data, produce reports on neighborhood demographics and housing quality, and help direct resources 

to ward off blight and tackle poverty” (Vallianatos, 2015). 

Over time, several definitions of this concept have emerged, each differing in terms of the main “smart” 

characteristic deemed as the most relevant. While early conceptualizations revolved around ICTs as the main 
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pillar around which a city should build its smart pathway, eventually other key factors have been considered 

as the characterizing feature of Smart Cities. From the “wired city” proposed initially by Dutton et al. (1987), 

other authors have stressed the importance of the users of ICTs and their ability to connect among each other 

and reap the benefits of technology, as in the “intelligent city” (Komninos 2002, 2006 and 2009; Deakin and 

Waer, 2011). Environmental aspects are instead the focus of another stream of definitions revolving around 

the idea of smartness as the ability to invest in technologies and implement policies aimed at increasing urban 

sustainability, following the notion of “resilient cities” proposed initially by Newman et al., 2009. 

More recent contributions shifted the weight towards a more comprehensive approach, aimed at encompassing 

several key features of smartness in comprehensive definitions (Caragliu and Del Bo, 2020). The contributions 

in this strand of literature see Smart Cities as the unique meeting place of ICTs on the one hand, and human 

and social capital, bottom-up governance, and quality of life and sustainability on the other. This approach 

follows the seminal work by Giffinger et al. (2007), and suggests that Smart Cities exist as the result of the 

interplay between both tangible and intangible factors, offering an urban environment more prone to enhance 

the positive effects stemming from the presence of communication infrastructure. This novel characterization 

of Smart Cities moves beyond the focus on a single, leading factor that defines smartness, and offer a 

comprehensive and all-encompassing definition of the main features that define smartness (Batty et al., 2012). 

This approach, in our opinion, offers several advantages. First, it encompasses several drivers of smartness 

that have been identified individually in the literature and in other definitions while not focusing the attention 

only on one. In this sense, the definition used in this paper follows the one provided by Caragliu et al. (2011) 

and merges several different strands of classification of what a Smart City truly is, thus avoiding to narrowly 

focus on just one, or few, of them. Second, it can be related to an urban production function approach, clearly 

distinguishing between inputs and output. Finally, it can be empirically implemented and is amenable of 

statistical measuring and analysis. 

The distinction between ICT-oriented only, or holistic Smart Cities, has also important normative implications; 

in fact, a policy could be legitimately defined as a Smart City-oriented one when, for instance, funding 

broadband diffusion only within the first framework, while the lack of support to context conditions would 
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exclude such policies from belonging to truly smart ones when a more comprehensive definition following the 

Giffinger et al. (2007) and Caragliu et al. (2011) paradigm is adopted. 

While initial critiques against the notion of Smart City focused on the fuzziness of this concept (Hollands, 

2008), the diffusion of successful and clear definitions quickly made this first point less relevant, while leaving 

room for a second generation of criticisms, increasingly dealing with the unequal nature of the benefits 

accruing to Smart Citizens. The microfoundations behind Smart City income inequality effects can be in 

particular be related to four conceptual arguments. 

The first reason for Smart Cities to be potentially associated with higher levels of income inequality is based 

on the uneven diffusion of ICTs in cities, and, in particular, of the skills needed to fully reap the benefits of 

these technologies. While this channel is in principle relevant, there is to date scant evidence in support for 

this concern. Richmond and Triplett (2018) provide weak evidence of the former hypothesis, showing that, on 

the basis of a panel of country data, differential access to ICTs and skill premia seem to cause income inequality 

increases only for specific types of ICTs and conditionally on other local institutional factors. 

Secondly, the conceptual link between smartness and income inequalities at the urban level can be understood 

as a consequence of adopting technologies that cannot be afforded and exploited by low-income citizens, thus 

leading to the worsening of inequalities. Since income inequality has an inherently spatial nature (Ayala et al., 

2019) this prompts us to link this to urban smartness, which is another space-varying factor. In detail, some of 

the Smart solutions might be difficult to access by some segments of the population (mainly identified by the 

lower income segment of the population), thus further widening the gap between the wealthy and the lower-

income population. This potential channel may become even stronger if smartness is identified only by its 

technological component and by the involvement of private actors, as posited by some scholars (Partridge, 

2004). To the best of our knowledge, there is no literature examining this channel empirically. 

Thirdly, investment in Smart Cities could also further the income and human capital divides already affecting 

several developed countries (Glaeser and Berry, 2006), since spatial differences in ICT endowment and skills 

can be so severe that lock-ins can derive. This argument suggests that Smart Cities may be associated with 

higher levels of poverty (Kummitha and Crutzen, 2017). While evidence on this last point is rather scattered, 
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Hollands (2008) does provide qualitative proof that in cities acting as early adopters of Smart City technologies 

such as San Diego and Singapore poverty levels have been on the rise for decades. 

Lastly, within the burgeoning literature on Smart Cities, a set of analyses highlighting the potential risks and 

pitfalls of the concept has emerged, mainly related to the significant involvement of private actors in the 

implementation of policies and projects. As an example, Hollands (2015) suggests that the Smart City concept 

is ultimately a corporate-driven construct, aimed at maximizing profits and returns for the firms providing 

municipalities with the needed ICT technologies and not conducive to welfare improvements for the citizens 

involved in the process. Recently, Lam and Ma (2018) have shown how negative side-effects of the Smart City 

developments are related to information insecurity, personal privacy leakage, information islands, and digital 

divide. 

To sum up, an indirect argument in favor of the role of urban smartness as a factor causing further income 

inequalities is proposed in Vanolo (2014), who argues that the theoretical paradigms underpinning the Smart 

City movement are “powerful devices to activate and rethink specific rationalities in order to justify political 

choices and trigger new economic paradigms—in other words, accumulation regimes that generate new 

businesses and possible capital accumulation” (Vanolo, 2014, pp. 885–886). 

In much of the literature so far summarized, the perverse link between Smart City technologies and income 

inequalities becomes stronger for Smart City projects carried out on new, artificially created cities. In fact, in 

the European context, urban Smart City projects can be, at least in part and alongside local public actors and 

private firms, financed with EU funds (Núñez Ferrer et al., 2013; Caragliu and Del Bo, 2018) and usually refer 

to investments in already existing cities. In other regions, instead, both the conceptual definition and the means 

of financing of Smart Cities might take on different meanings, suggesting that our results should be properly 

framed in the appropriate institutional context. In the North American and Asian context, the relative weight 

of the private actors with respect to public authorities is higher than in the European case (Neirotti et al., 2014), 

while the difference with the Arab region is that Smart City projects more often than in Europe refer to 

greenfield projects of newly established cities (Kitchin, 2015). 

Against many of these arguments, it is important to stress that the definition of Smart Cities adopted in this 

paper follows Caragliu et al. (2011) and other comprehensive approaches highlighted above and thus differs 
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from how some other scholars understand and interpret the Smart City concept, presenting a partial view of 

smartness. In our analysis, we focus on the smart characteristics that define a Smart City, thus going beyond 

the cities’ own definition of their level of smartness (such as in several widely cited Smart City rankings, for 

instance the IESE (University of Navarra’s Business School) Cities in Motion Index; see IESE, 2019) and 

overcoming the limits of considering a city as smart only if it is providing, possibly in partnership with a 

private ICT firm (Allwinkle and Cruickshank, 2011), digital solutions. 

Our approach is instead inspired by an urban production function approach. With a clear distinction between 

inputs and outputs, smartness is an intermediate step towards the goal of smart urban growth. We refer to the 

comprehensive and operational definition provided in Caragliu et al. (2011), where cities are identified as 

smart when: “investments in human and social capital and traditional (transport) and modern (ICT) 

communication infrastructure fuel sustainable economic growth and a high quality of life, with a wise 

management of natural resources, through participatory governance”. 

Thus, while we do acknowledge the importance of the ICT component, we do not believe this is the main 

defining element of smartness. We address this issue in the empirical section by singling out the ICT 

component and using it to measure urban smartness. 

The literature summarized in Section 2.2 hints at many possible rationales for the existence of a negative link 

between urban smartness and income inequality. This proposition will be subject to a rigorous empirical test 

in Section 4. Before we test this hypothesis, Section 3 will describe the main methodological details of our 

analyses. 

Data and indicators 

We now describe the methodological issues needed to translate the research question presented in Section 1 

into an empirically testable model. Data and indicators are classified according to whether they are used as 

explanatory or dependent variables, the type of indicators, the sources of their respective raw data, the periods 

when they are measured, and the formula (if applicable) used to compute their values, in Table 1 below. 
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Typology Indicator Source of raw data 
Period 

measured 
Formula/Methodology 

Dependent 
variable 

Gini Index 
European Value 

Study 
2017 𝐼ீ௜௡௜ =

1

2𝜇(𝐹)
ඵ|𝑥 − 𝑥ᇱ|𝑑𝐹(𝑥) 𝑑𝐹(𝑥′) 

Dependent 
variable 

Generalized 
Entropy class 

Index 

European Value 
Study 

2017 𝐼ீா
ఈ =

1

𝛼ଶ − 𝛼
න൤൤

𝑥

𝜇(𝐹)
൨
ఈ

− 1൨ 𝑑𝐹(𝑥) 

Dependent 
variable 

Atkinson class 
Index 

European Value 
Study 

2017 𝐼஺
ఌ = 1 −

1

𝜇(𝐹)
൤න𝑥ଵିఌ𝑑𝐹(𝑥)൨

ଵ
ଵିఌ

 

Independent 
variable 

Urban 
smartness 

European Value 
Study/EUROSTAT 

2008-2012 See Table 2 

Independent 
variable 

Real GDP EUROSTAT 
Average 

1995-2010 
GDP in constant market prices (base 

year=2010) 

Independent 
variable 

Population 
density 

EUROSTAT 
Average 

1995-2010 
Urban area population/ Area in sq. kms. 

Independent 
variable 

Trust 
European Value 

Study 
2009-2010 

% of respondents "Most people can be trusted" 
to the question "Generally speaking, would you 
say that most people can be trusted or that you 
can’t be too careful in dealing with people?" 

Independent 
variable 

Quality of 
government 

Charron et al. 
(2014) 

2010 Principal Component Analysis 

Independent 
variable 

Urban 
sustainability 

EUROSTAT 2008-2012 Unweighted mean 

Table 1. Data and indicators for the empirical analyses 

Source: Authors’ elaboration 

 

Data cover the closest functional definition of an urban area proper. Within the framework of a lack of a unified 

and comparable set of data covering EU metropolitan areas, EUROSTAT has recently proposed the use of 

European NUTS3 regions (and their combinations) to proxy for functional urban areas (FUAs). FUAs 

comprise “a densely inhabited city and a less densely populated commuting zone whose labour market is highly 

integrated with the city” (EUROSTAT, 2020). When this is not possible, we opt for the territorially closest 

administrative definition. ii  For the sake of our work, a choice of spatial units based on a functional 

classification has many perks, in that the externalities generated by smart urban characteristics do not obey 

administrative boundaries. 

Our three main dependent variables are among the most commonly used indicators of income inequality. 

Following Cowell (2000) and Mac Gregor et al. (2019), we provide a brief sketch of the analytical formulation 

of the three families of indices to measure income inequality.iii 
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First, we consider the Gini index, which is computed as the normalized average absolute difference between 

all pairs of incomes in the underlying population. This is a widely used index, its appeal being due also to its 

graphical interpretation as the area between the Lorenz curve, which provides a representation of the 

distribution of wealth, and the 45° line in the plane where the y-axis is the proportion of income and the x-axis 

is the proportion of the population. 

Defining Xi as the cumulative income of individual i and Yi the cumulative population up to individual i, the 

Gini index can be expressed, in discrete form and based on sorted values as prepared visually for a Lorenz 

curve, as (Eq. 1): 

𝐼ீ௜௡௜ = 1 −෍(𝑋௜ − 𝑋௜ିଵ)(𝑌௜ − 𝑌௜ିଵ)

ே

௜ୀଵ

 
(1.) 

Income inequality data are mostly calculated at the NUTS3 level (2013 classification), whenever information 

on the location of respondents at this level is available in the most recent version of the European Value Study 

(2017).iv When georeferentiation at NUTS3 level is not available, we integrate data with NUTS2 level ones. 

The unit of observation is the household of the survey interviewee.  

The empirical analysis is carried out in   two steps. In the first step, we exploit a Mincerian approach to explain 

individual income levels by controlling for individual characteristics.  The predicted values of this first-stage 

regression are then used to calculate average urban income levels to be used in the second step.v  

The main explanatory variable, which provides for an empirical test of the main research question, is urban 

smartness. We follow the work presented in Caragliu and Del Bo (2015, 2018, 2019) by calculating an 

average city-level indicator of smartness. This is obtained by combining, through an unweighted mean, 

unique indicators for each of the six axes of the definition provided in Caragliu et al. (2011) (human capital; 

social capital; transport infrastructure; ICTs; natural resources; e-government; see Section 2 above). The 

latter are obtained as a Principal Component Analysis (PCA) of indicators for the 4/5 vectors per axis shown 

in Table 2. In other words, PCAs are first performed on each vector measuring the intensity of endowment of 

the six axes, and the resulting first components (by calculation normally distributed, and centered around 

zero) are then averaged out. 
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Data on urban smartness cover an overall sample of 106 EU cities; explanatory vectors include data ranging 

between 2008 and 2012. 

Urban smartness 
axis Raw data 

1. Human capital 

Proportion of population aged 15-64 qualified at tertiary level (ISCED 5-6) living in Urban Audit 
cities - % 

Students in tertiary education (ISCED 5-6) living in Urban Audit cities - number of students per 
,1000 inhabitants 

Proportion of employment in financial intermediation business activities 
Proportion of employment public administration health education 

Number of companies with headquarters in the city quoted on the national stock market 

2. Social capital 

Car thefts per 1,000 pop. 
Burglaries per 1,000 pop. 

Crimes per 1,000 pop. 
Number of elected city representatives 

3. Transport 
infrastructure 

Length of public transport network per inhabitant 
Share of restricted bus lanes from public transport network 

Number of buses (or bus equivalents) operating in the public transport per 1,000 pop 
Number of stops of public transport per 1,000 pop. 

4. ICT infrastructure 

Percentage of families with internet access at home 
Number of local units producing ICT products 

Number of local units producing ICT-related services 
Number of local units producing web content 

5. Natural resources 

Proportion of solid waste arising within the boundary processed by recycling 
Proportion of the area in green space 

Green space (in m2) to which the public has access, per capita 
Annual average concentration of PM10 

Annual average concentration of NO2 

6. E-government 

% of internet users who interacted via internet with the public authorities in the last 12 months 
(Country data) 

% of internet users who sent filled forms to public authorities in the last 12 months (Country 
data) 

Number of administrative forms available for download from official web site 
Number of administrative forms which can be submitted electronically 

Table 2. Indicators for the 6 axes of the Smart City definition 
Source: Caragliu and Del Bo (2015) 

As for other control variables, following the discussion of the literature on determinants of inequality presented 

in Section 2, we include data on urban real GDP, population density, trust, and quality of government. 

Urban real GDP is calculated at the NUTS3 level by deflating nominal GDP levels (averaged out for the period 

1995-2010 in order to smooth business cycles as well as the territorially heterogeneous impact of the 

2007/2008 financial crisis) with national price deflators. Data are expressed in constant 2010 Euros. 

Population density is measured by the ratio of NUTS3 population to NUTS3 area in squared kilometers, again 

averaged out between 1995 and 2010 to smooth medium run demographic trends. 
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-Trust represents a proxy for general social capital effects. This indicator is based on the 1999-2000 edition of 

the European Values Study, and is calculated as the percentage of respondents “Most people can be trusted” 

to the question “Generally speaking, would you say that most people can be trusted or that you can’t be too 

careful in dealing with people?”. 

In the absence of urban data comparable across the whole Europe, Quality of Government is calculated on the 

basis of the 2010 version of the European Quality of Government Index (EQI) described in Charron et al. 

(2014). The EQI represents a composite indicator calculated at NUTS2 level comprising sub-indicators of low 

corruption, rule of law, bureaucratic effectiveness, government voice and accountability, and strength of 

democratic and electoral institutions. Data are collected at NUTS2 level, and the value of each NUTS2 region 

is attributed to the metropolitan (NUTS3) area within each NUTS2 region. 

Lastly, in order to rule out the possibility that urban smartness truly captures only the effect of sustainable 

urban management,vi we calculated a city-specific index of urban sustainability, as an unweighted mean of 

three indicators, measuring respectively cities’ exposure to the risk of poverty, to environmental degradation, 

and to energy inefficiency. These are calculated, respectively, as people at risk of poverty or social exclusion; 

per capita municipal waste; and the number of cooling and heating degree days. All data are collected from 

various EUROSTAT raw sourcesvii. 

Many of the above-mentioned indicators could be affected by serial correlation (Bettencourt et al., 2007), 

mainly driven by the scaling properties underlying most of them. In order to deal with this potential issue, we 

provide (in a separate Technical Appendix, also showing the main descriptive statistics for these indicators, 

Table A.2) additional details on the correlation structure among these factors. While the interested reader is 

referred to the appendix for a full-fledged comment, it is worth mentioning that variables tend to behave 

normally, with symmetric distributions and light tails, except for the income inequality measures, which 

instead reflect a remarkable spatial heterogeneity. 

Our empirical analyses are thus based on the following model (Eq. 2): 

INEQ௖,௧ = 𝛼 + 𝛽smartness௖,௧ିଵ + 𝛽Z௖,௧ିଵ + ε௖,௧ (2.) 



15 

where INEQ is our measure of inequality (calculated with the Gini, entropy, and Atkinson indexes, 

respectively); smartness is a measure of our definition; and Z is a matrix of controls including all variables 

described in Table 1. Indices c and t indicate city c and time t, respectively; and, lastly, ε௖,௧  is an i.i.d. 

disturbance error. 

Eq. (2.) will be estimated by means of Ordinary Least Squares (OLS, Table 3 and Table 4, columns 1-4; 6-9), 

Two Stages Least Squares (2SLS, Table 4, Column 10) and Maximum Likelihood of a Spatial Durbin Model 

(Table 4, column 5). 

Empirical results 

This section presents and discusses the empirical estimates answering the research question proposed in 

Section 1. We proceed as follows. In Section 4.1 we present the baseline model where the dependent variable 

is a Gini Index of income inequality. The assumption behind the use of this indicator is that the citizenship is 

neutral w.r.t. income distribution for different income brackets. Then, in Section 4.2 we deal with identification 

issues first by running a number of additional robustness checks to verify whether our results suffer from 

possible omitted variable bias, and then by resorting to a classical Instrumental Variable Strategy.viii 

Baseline estimates 

Estimates of the baseline model are presented in Table 3. All estimates are based on heteroscedasticity-robust 

standard errors. 

Table 3 is organized as follows. In each column we present a different model, each of which includes an 

additional regressor, in order to highlight possible multicollinearity issues. We start from a baseline regression 

linking urban smartness to income inequality (Column 1), and then add urban GDP (Column 2), replace the 

latter with population density (Column 3), include both GDP and population density (Column 4), add trust 

(Column 5), replace it with Quality of Government (Column 6), and, finally, include both trust and Quality of 

Government (Column 7).
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Dependent variable: Gini index 
 (1) (2) (3) (4) (5) (6) (7) 
Urban smartness -0.00580*** -0.00370** -0.00550*** -0.00384** -0.00333** -0.00278* -0.00263* 
 (-4.29) (-2.40) (-4.03) (-2.49) (-2.10) (-1.75) (-1.67) 
        
Log real GDP  -0.00739**  -0.00618 -0.00242 -0.000321 0.00102 
  (-2.14)  (-1.62) (-0.61) (-0.08) (0.25) 
        
Log population 
density 

  -0.00312* -0.00215 -0.00297 -0.00257 -0.00297* 

   (-1.84) (-1.18) (-1.61) (-1.57) (-1.69) 
        
Trust     -0.0285**  -0.0155 
     (-2.02)  (-0.98) 
        
Quality of 
government 

     -0.000333*** -0.000293** 

      (-3.07) (-2.45) 
        
Constant 0.104*** 0.176*** 0.121*** 0.176*** 0.153*** 0.142*** 0.134*** 
 (52.91) (5.19) (12.79) (5.15) (4.59) (4.23) (3.97) 
Observations 106 106 106 106 106 106 106 
Largest VIF 1 1.27 1.02 1.53 2.17 2.15 2.47 
Adjusted R2 0.128 0.164 0.148 0.169 0.187 0.223 0.222 

Table 3. Baseline model estimates 

Note: t-statistics in parentheses. *: 0.10: significance level. **: 0.05 significance level. ***: 0.01 significance level. 
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The crucial estimate here is the coefficient associated to urban smartness. This turns out to be significantly 

different from zero and negatively associated with income inequalities, with decreasing parameter estimates 

and significance levels as additional controls are also included in the model. The decreasing sign of the 

estimated parameter as additional controls are included indirectly suggests that urban smartness as defined in 

this paper comprises several features making a city more efficient, within the urban smartness paradigm. 

Delving more into the details of the relative magnitude of this parameter, based on our preferred specification 

(Column 3), a 1 per cent increase in urban smartness is associated, all else being equal, to a 0.18 per cent 

decrease in the Gini Index of the average city. Given the distribution of values of this index in the analyzed 

sample, this means that moving from the city of Düsserdolf to the city of Brescia, around the mean of the 

smartness distribution and contiguous in terms of the urban smartness distribution, would cause a decrease of 

the inequality (Gini) index from 0.11 to 0.09. 

The level of development, as summarized by GDP, is negatively associated with income inequality (Column 

2). The same can be said for population density, suggesting a negative association between compact city 

structure and inequality (Column 3). As expected, GDP levels and population density turn out to be mutually 

correlated (Klasen and Nestmann, 2006), as testified by the crowding out effect that the inclusion of both has 

(Column 4) on the significance of their parameter estimates, as well as by the fact that the impact of smartness 

found in model 4 is slightly higher than in the case of model 2, where only GDP is included, but lower than in 

the case of model 3, which controls for density, and not for GDP levels.  

We also find a negative association between social capital, measured by urban trust levels, and income 

inequality, which nevertheless becomes not significantly distinguishable from zero after controlling for the 

local quality of institutions. The latter are instead a strong predictor of lower levels of urban income inequality 

(Column 7), even after controlling for urban trust. These results are in line with the consensus, also in the 

literature focusing on country-level determinants, that structural characteristics and institutional factors are 

strongly and significantly correlated with income inequalities. A city with good institutional quality and high 

levels of interpersonal trust is also a city with lower level of income inequality. 

All in all, using these specifications, we explain roughly 22 per cent of total variance.ix 
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Identification issues 

This last subsection deals with two reasons why the main findings presented in Section 4.1 could be potentially 

biased: 

 Omitted Variable bias; 

 Reverse causality. 

As for the former, one may argue that our results could be driven by the omission of other relevant factors that 

co-vary with our right hand side (RHS) variables, so that both independent and dependent variables in our 

model are simultaneously driven by these missing variables. As instead for the latter, higher scores in urban 

smartness may not be causing a reduction in income inequalities, despite the careful choice of timing for the 

variables included in the model, but rather be due to them, or, alternatively, both could be simultaneously 

caused by other factors. In the absence of randomized experiments, the usual choice is to resort to Instrumental 

Variables (Angrist and Krueger, 2001). 

In order to test the robustness of our results for potential omitted variables bias, Table 4 shows the following 

controls. In Column 1 we show whether our results are affected by the relatively traditional definition of urban 

smartness we adopt, and in particular whether recently successful urban smart services could potentially affect 

the negative relation we identify between urban smartness and income inequality. For this reason, we also 

control for the presence of bike sharing services in each urban area (with a dummy variable, equal to 1 if the 

city offers bike sharing services, and zero otherwise). This variable turns out to be not associated with income 

inequality, while results for the main relationship remain unaffected. 

The second control specifically tackles the issue often raised in the literature and also referred to in Section 2 

above, viz. whether Urban Smartness represents a new urban policy style altogether or if instead it is its ICT 

component that truly drives the effects the applied literature is identifying. This control is shown in Column 2, 

which drops the composite smartness indicator and adds its ICT component only. The negative smartness 

impact is no longer statistically distinguishable from zero if only ICTs are taken into account, providing support 

for the hypothesis that Smart Cities are truly about the interaction between sensors and citizens.



19 

Dependent variable: Gini coefficient 
Model (1.) (2.) (3.) (4.) (5.) (6.) (7.) (8.) (9.) (10.) 
Urban 

smartness 
-0.00285*  -0.00288* -0.00248 -0.00200 -0.00271 -0.00298* -0.00562** -0.00269* -0.0122*** 

(-1.80)  (-1.77) (-1.63) (-1.20) (-1.61) (-1.94) (-2.26) (-1.67) (-4.14) 
Log real 

GDP 
0.000485 -0.000808 0.00124 -0.00176 -0.000942 -0.000269 0.0000500 0.00610 0.00274 0.00702*** 

(0.12) (-0.20) (0.30) (-0.39) (-0.21) (-0.06) (0.01) (1.13) (0.68) (64.67) 
Log 

population 
density 

-0.00278 -0.00239 -0.00313* -0.00243 -0.00125 -0.00217 -0.00273 -0.00329 -0.00260 -0.00273*** 
(-1.42) (-1.38) (-1.81) (-1.42) (-0.59) (-1.13) (-1.57) (-1.25) (-1.54) (-6.25) 

Trust -0.0169 -0.0194 -0.0184 -0.0206 -0.0246 -0.0172 -0.0172 -0.00987 -0.00781 -0.00794 
(-1.04) (-1.13) (-1.14) (-1.30) (-1.34) (-0.99) (-1.07) (-0.49) (-0.46) (-0.42) 

Quality of 
governmen

t 

-
0.000303** 

-
0.000342**

* 

-
0.000309**

* 

-
0.000292** 

-0.000222 -
0.000310** 

-
0.000284** 

-
0.000360** 

-
0.000357**

* 

-0.000180* 

(-2.49) (-2.73) (-2.64) (-2.48) (-1.49) (-2.34) (-2.29) (-2.29) (-2.79) (-1.75) 
Bike 

sharing 
0.00235          
(0.58)          

ICT 
component 

of the 
smartness 
definition 

 0.000121         
 (0.12)         

Number of 
Smart City 
projects by 

IBM 

  0.0110        
  (1.56)        

Log of 
average 
price per 
sqm. of 
average 
quality 

downtown 
apartment 

   0.00560**       
   (2.25)       

Land use: 
share of 

continuous 
urban 
fabric 

     -1.204     
     (-0.26)     
      0.0000048

0 
   

Urban 
sustainabili

ty 

      (1.50)    
          

Urban 
quality of 

life 

       -0.600*   
       (-1.87)   

Prior urban         -0.103  
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GDP 
growth 

        (-1.32)  

Constant 
term 

0.138*** 0.153*** 0.134*** 0.116*** 0.147*** 0.144*** 0.136*** 0.439** 0.114*** 0.0662*** 
(4.12) (4.65) (3.94) (3.51) (4.08) (3.91) (4.03) (2.39) (3.33) (6.70) 

Estimatio
n method 

OLS OLS OLS OLS SDM OLS OLS OLS OLS IV 

λ     -0.264      
     (-0.47)      

ρ     3.137      
     (1.58)      

σ2     0.000301***      
     (7.15)      

Variables 
instrument

ed 

- - - - - -    Urban 
smartness 

Instrument
s 

- - - - - -    Optic fiber 
connectivity 

Number of 
obs. 

104 103 104 104 104 90 104 45 104 104 

R2 0.234 0.203 0.244 0.256 - 0.249 0.243 0.433 0.244 -0.019 
Table 4. Identification issues 

Note: t-statistics in parentheses. *: 0.10: significance level. **: 0.05 significance level. ***: 0.01 significance level. 
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Column 3 verifies instead whether results hold when we also control for the importance of private actors in 

driving Smart City projects. In fact, several critiques of the Smart City project revolve around the 

overwhelming role of private companies in fostering the narrative of the positive role of ICTs in making cities 

more efficient. To this aim we collected information on the cities for which one of the major players in the 

Smart Cities arena, viz. IBM, has Smart City projects undergoing or carried out in the past. Column 3 shows 

that while the parameter associated to IBM projects turns out to be statistically insignificantly associated with 

urban smartness, our main results hold. 

Column 4 shows an additional robustness check aimed at uncovering whether urban smartness is somehow 

reflected in higher urban land rent, or, in other words, if smarter cities tend to be reflected in higher house 

prices, thus engendering a further form of income inequality.x Data for the average price per square meters of 

average quality apartments located in downtowns of the selected urban areas have been collected, and results 

suggest that this may marginally impact the precision of our estimates.xi 

In Column 5 we deal instead with the possible spatial heterogeneity in our estimates. This may be due to the 

network dependence in the diffusion mechanism behind Smart City technologies, as well as to possible spatial 

externalities affecting both the independent and the dependent variables in the model (Corrado and Fingleton, 

2012). In order to address these issues we also provide estimates of a Spatial Durbin specification assuming 

spatial dependence in both the RHS and left hand side (LHS) variables, with the use of a regular inverse 

distance weight matrix. Accounting for spatial heterogeneity does not change the direction of the identified 

correlation, but does cause a significant drop in the associated significance. Lastly, it is worth stressing that 

this robustness test seems not to be suggested by the standard tests for spatial autocorrelation in the residuals, 

that turn out to be never significant. 

Column 6 tests a further hypothesis that land use affects the identified relationship. This may happen because, 

as discussed above, more compact cities could be structurally more efficient and thereby also find it easier to 

handle possible unequal effects of the adoption of smart urban technologies. This test is performed by also 

controlling for the share of continuous urban fabric as captured by the 2012 version of Corine Land Cover. 

This result does not change the direction of the identified relationship, although it does cause a decrease in the 

associated significance level, now barely out of the usual 10 per cent level. 
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Column 7 deals with yet another possible source of potential omitted bias in our estimates, linked to the recent 

success met by many competing definitions of what an efficiently managed city is. Among those, recently 

substantial attention has been drawn by the concept of sustainable cities (Haughton and Hunter, 2004; 

Satterthwaite, 1997). While we agree urban sustainability deserves utmost importance in the context of 

increasing resource limitations and with the aim to guarantee the feasibility of long-run consumption for future 

generations, without hampering the quality of both landscape and environment, we believe again this issue 

only represents an axis in our very definition of urban smartness. 

Moreover, we also perform an additional robustness check by inspecting whether our results are affected by 

the inclusion of the measure of urban sustainability described in Section 3. Column 7 suggests that the inclusion 

of this additional vector does not change the main message of our results: urban smartness is still found to be 

negatively and significantly associated with urban income inequality. It is also worth mentioning that the 

additional indicator of urban smartness is found to be insignificantly associated with urban income inequality, 

even though marginally so (and with a positive sign). 

A further consistency check for possible omitted variable bias is related to verifying whether our findings 

depend on the omission of the quality of life component within our empirical measurement of urban smartness. 

We perform this check by including a city-specific indicator of quality of life, calculated as follows. Following 

Lenzi and Perucca (2020), we exploit the information contained in the Eurobarometer 419 (Quality of Life in 

European Cities 2015), to calculate individual answers (with 40,798 European citizens interviewed) to the 

question “Please tell me whether you strongly agree, somewhat agree, somewhat disagree or strongly disagree 

with the statement ‘I am satisfied to live in [Name of the city]’ ”. The percentage of people answering they 

strongly agree with this statement is first regressed on individual traits (including age, gender, occupation, and 

level of education);xii next, the predicted value of this regression is calculated, in order to obtain a city-specific 

mean value of life satisfaction that is net of the sorting of people who may be satisfied to live in that city for 

their own reasons, or individual characteristics, and not for the objective benefits the city offers in terms of 

quality of life. Altogether we obtain 45 observations overlapping with our database. 

Results shown in Column 8 suggest that, despite the rather substantial reduction in the number of observations 

(down to 45 with the inclusion of the last set of controls calculated on the basis of the Flash Eurobarometer 
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data base), the negative association between urban smartness and urban income inequality is confirmed, and, 

if anything, becomes larger in magnitude while also being characterized by higher significance levels. This is 

also reflected in a higher R2 for this specification, which cannot be compared to other columns, though, again 

because of the lower number of observations. In fact, the reduction in the observations available could be not 

neutral w.r.t. city size: most cities in the Flash Eurobarometer used for this robustness checks tend to be on the 

large end of the size spectrum, and may thus lead us to identify a somewhat more coherent set of cities for this 

particular control. 

Following the argument presented (among many) in Wheeler (2004), one may also argue that the negative 

relationship between urban smartness and income inequality we find could be due to the Smart Cities’ average 

faster economic growth, since the latter is also often found to be associated with lower income inequalities. 

This assumption has been tested in another specification, where, along with the control variables shown in the 

previous specifications, in Table 4, Column 9 we also include the average urban GDP growth rate between 

2008 and 2010 (the two years immediately prior to the years the main control variables in our regressions are 

calculated). Results for the main RHS variables remain largely unaffected, and in particular we find a negative 

and significant association between smartness and income inequality (which shows that this result is not driven 

by prior economic performance). 

Finally, in Column 10 we present results of an Instrumental Variable regression that deals with possible 

endogeneity of Smartness w.r.t. income inequality. Our identification strategy uses a five year time lagged 

(2005) vector of city-specific endowment with optic fiber, which may well have represented a competitive 

advantage for cities in our sample to adopt Smart technologies, without however being associated to income 

disparities in 2017.xiii 

Results confirm that the association between urban smartness is negative and significant at all conventional 

levels, while possible reverse causation can be ruled out on the basis of the IV approach. All standard tests 

(Underidentification, weak identification, and overidentification) are passed at all conventional levels. These 

last findings provide robust evidence that the main results discussed throughout this paper are robust to several 

robustness checks, and that the identified negative association between urban smartness and urban income 

inequality can be interpreted in a causal sense. 
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Conclusions 

The academic and policy debate on the Smart City paradigm has recently produced a stream of studies arguing 

that the technological twist of the prevailing Smart City definitions, approaches, and policies could potentially 

hide severe pitfalls related to this planning approach. In the academic debate, this argument has often been 

revolving around the idea that the adoption of Smart technologies for managing cities would exacerbate income 

inequalities, by favoring layers of the income distribution that are already skilled, high-salary, and thereby 

capable of reaping the benefits of this paradigm. 

However, to date, this proposition has never been empirically tested on a cross section of cities allowing safe 

statistical inference; in fact, so far the discussion mostly revolved around theories and approaches rooted more 

in critical reviews of the Smart City concept, rather than being based on sound empirical evidence. This paper 

fills this gap and proposes a set of empirical analyses suggesting that, in fact, higher levels of urban smartness 

are associated with lower levels of income inequality. Results hold also when controlling for several urban 

characteristics typically associated with income inequality: compact urban form, level of economic 

development, social capital, and institutional quality. Besides, and again contrary to what often argued, higher 

levels of urban smartness are also associated with stronger negative impacts on income inequality as we look 

at stronger welfare preferences against income inequalities in the lower layers of the distribution. 

In order to further strengthen these results, and to rule out possible biases that may affect our estimates, we 

have addressed endogeneity by means of two-stages least squares. This empirical strategy confirms our main 

findings regarding the mitigating effect of smart characteristics on income inequality. 

The answer to the research question of this paper thus seems to be a rather univocal “no”: Smart Cities tend, 

in fact, to be more equitable from an income distribution point of view. This is rather suggestive, in that it 

offers a counterargument to the classical trade-off between efficiency and equity, which has also been 

questioned in prior works (see e.g. Martin, 2008). 

As an avenue for future research, a further empirical verification to be carried out is related to looking at the 

impact of the adoption of Smart Urban technologies on another frequently advocated form of inequality, i.e. 
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the digital divide. In fact, several recent critiques against the Smart City paradigm focused on the fact that only 

the tech-savvy would really benefit from it. 

While not yet being conclusive in this debate, our findings suggest that-once again-critiques against the 

adoption of smart policy approaches and measures need to be tested to avoid that radicalized and judgmental 

opinions prevail on hard facts and sound evidence. 
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