<table>
<thead>
<tr>
<th>Article Type:</th>
<th>Invited Methods Article - JoVE Produced Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Number:</td>
<td>JoVE57919R4</td>
</tr>
<tr>
<td>Full Title:</td>
<td>Porcine model in intra-operative neural monitoring in thyroid surgery</td>
</tr>
<tr>
<td>Keywords:</td>
<td>intraoperative neural monitoring; recurrent laryngeal nerve; external branch of the superior laryngeal nerve; vagus nerve; thyroid surgery; animal study; porcine model.</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Che-Wei Wu  
Kaohsiung Medical University  
Kaohsiung, TAIWAN |
| Corresponding Author's Institution: | Kaohsiung Medical University |
| Corresponding Author E-Mail: | cwwu@kmu.edu.tw |
| Order of Authors:  | Che-Wei Wu  
Tzu-Yen Huang  
Hui-Chun Chen  
Hsiu-Ya Chen  
Tsung-Yi Tsai  
Pi-Ying Chang  
Yi-Chu Lin  
Hsin-Yi Tseng  
Pao-Chu Hun  
Xiaoli Liu  
Hui Sun  
Gregory Randolph  
Gianlorenzo Dionigi  
Feng-Yu Chiang  
I-Cheng Lu |
| Additional Information: | Question | Response |
| Please indicate whether this article will be Standard Access or Open Access. | Standard Access (US$2,400) |
| Please indicate the city, state/province, and country where this article will be filmed. Please do not use abbreviations. | 100TzYou 1st Road, Kaohsiung City 807, Taiwan. |
TITLE
1 Intra-Operative Neural Monitoring of Thyroid Surgery in a Porcine Model

AUTHORS & AFFILIATIONS
1 Che-Wei Wu1,2,3, cwwu@kmu.edu.tw
2 Tzu-Yen Huang2, 1000462@ms.kmu.org.tw
3 Hui-Chun Chen4, s334@ms19.hinet.net
4 Hsiu-Ya Chen5, liga888@yahoo.com.tw
5 Tsung-Yi Tsai2, 1000448@kmuh.org.tw
6 Pi-Ying Chang5, annabelle69@gmail.com
7 Yi-Chu Lin7, reدددust0113@yahoo.com.tw
8 Hsin-Yi Tseng3, sycatlovestar@gmail.com
9 Pao-Chu Hsu5, m850267@kmu.edu.tw
10 Xiaoli Liu7, 13756304608@163.com
11 Hui Sun7, thyroidj@163.com
12 Gregory W. Randolph8, gregory_randolph@meei.harvard.edu
13 Gianlorenzo Dionigi9, gdionigi@unime.it
14 Feng-Yu Chiang2,3, fychiang@kmu.edu.tw
15 I-Cheng Lu5,10,11, u9251112@gmail.com
16很难
17很难
18很难
19很难
20很难
21很难
22很难
23很难
24很难
25很难
26很难
27很难
28很难
29很难
30很难
31很难
32很难
33很难
34很难
35很难
36很难
37很难
38很难
39很难
40很难
41很难
42很难
43很难
44很难

1. Department of Otorhinolaryngology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
2. Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
3. Department of Otorhinolaryngology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
4. Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
5. Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
6. Laboratory Animal Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
7. Department of Thyroid and Parathyroid Surgery, China–Japan Union Hospital and Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin University, Changchun, Jilin, China.
8. Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, U.S.A.
9. Division for Endocrine Surgery, Department of Human Pathology in Adulthood and Child-hood “G. Barresi”, University Hospital G. Martino, University of Messina, Messina, Sicily, Italy
10. Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
This study aims to develop a standard protocol of intra-operative neural monitoring of thyroid surgery in a porcine model. Here, we present a protocol to demonstrate general anesthesia, to compare different types of electrodes, and to investigate the electrophysiological characteristics of the normal and injured recurrent laryngeal nerves.

INTRODUCTION:
Although thyroidectomy is now a commonly performed procedure worldwide, postoperative voice dysfunction is still common. Intraoperative injury to the recurrent laryngeal nerve (RLN) can cause vocal cord paralysis, which interferes with speech and can potentially interfere with breathing. Additionally, injury to the external branch of the superior laryngeal nerve can cause a major voice change by affecting pitch and vocal projection.

Intraoperative neural monitoring (IONM) during thyroid operations has obtained wide popularity as an adjunct technique for mapping and confirming the RLN, the vagus nerve (VN), and the external branch of the superior laryngeal nerve (EBSLN). Because IONM is useful for confirming and elucidating mechanisms of RLN injury and for detecting anatomic variations in the RLN, it can be used to predict vocal cord function after thyroidectomy. Therefore, IONM adds a new functional dynamic in thyroid surgery and empowers surgeons with information that cannot be obtained by direct visualization alone. 

KEYWORDS
Intraoperative neural monitoring; recurrent laryngeal nerve; external branch of the superior laryngeal nerve; vagus nerve; thyroid surgery; animal study; porcine model.
Recently, many prospective studies have used porcine models to optimize the use of IONM technology and to establish reliable strategies for preventing intraoperative RLN injury. Porcine models have also been used to provide practitioners with essential education and training in clinical applications of IONM.

Therefore, the combination of animal models and IONM technology is a valuable tool for studying the pathophysiology of RLN injury. The aim of this article was to demonstrate the use of a porcine model in IONM research. Specifically, the article demonstrates how to induce general anesthesia, perform tracheal intubation, and set up experiments for investigating the electrophysiological characteristics of various RLN injury types.

**PROTOCOL**

The animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Kaohsiung Medical University, Taiwan (protocol no: IACUC-102046, 104063, 105158).

1. **Animal Preparation and Anesthesia**

1.1. Porcine animal model

Note: This study applied the protocol described in the literature to establish a prospective porcine model of IONM.

1.1.1. Use KHAPS Black or Duroc-Landrace pigs (3-4 months old; weighing 18-30 kg).

1.1.2. Ensure that the experimental protocol is consistent with national/international regulations and guidelines for animal experiments, including the 3R principles (replacement, reduction, and refinement). Obtain ethical approval of the experimental protocol from the committee for care and use of experimental animals at the relevant institution.

1.2. Anesthesia induction

1.2.1. Pre-anesthesia preparations

1.2.1.1. Withhold food 8 hours before anesthesia and withhold water 2 hours before anesthesia.

1.2.1.2. Pre-medicate with intramuscular azaperone (4 mg/kg) at 2 hours before anesthesia. Use a 500 mL saline bottle to fabricate a face mask for each piglet. Trim as needed to ensure a secure fit to the snout.

1.2.1.3. Use the weighing function on the operating table to measure the net weight of each piglet (Figure 1A).
1.2.1.4. Maintain body temperature with a circulating water mattress set to 40 °C.

1.2.2. Induce general anesthesia (GA) with 2-4% sevoflurane at a fresh gas flow of 3 L/min via the face mask with the piglet in a prone position. An adequate depth of anesthesia is usually achieved in 3-5 minutes. Confirm the depth of anesthesia by no severe movement to pain due to peripheral venous catheterization.

1.2.3. Identify a superficial vein on the outer side of one ear and sterilize the selected region (about 6 x 6 cm²) with 75% alcohol. For maximum safety, use a 24-gauge peripheral intravenous catheter.

1.2.4. Administer intravenous anesthetic such as propofol (1-2 mg/kg) or thiamylal (5-10 mg/kg) to alleviate noxious stimulation by direct laryngoscopy.

Note: Use of neuromuscular blocking agent (NMBA) is not suggested. In subsequent experiments, NMBA may complicate intubation by depressing spontaneous breathing and may diminish electromyography (EMG) signals. Additionally, sevoflurane inhalation combined with a bolus of propofol or short-acting barbiturates is reportedly sufficient for facilitating tracheal intubation.

1.3. Tracheal intubation (Figure 1B)

1.3.1. Prepare the equipment and materials required for EMG tube intubation: a size #6 EMG endotracheal tube, a face mask for assisted ventilation, two slings to hold the mouth open, one gauze strip to pull the tongue, a blunt tip suction catheter, a veterinary laryngoscope with 20cm straight blades, an elastic bougie, a 20-mL syringe, a stethoscope, and adhesive tape.

1.3.2. Position the piglet in a prone position on the operating table. Align the head and body to ensure clear visualization of the upper airway.

1.3.3. Direct the assistant to apply traction of the upper and lower jaw to maintain an adequate mouth opening and to avoid rotation or overextension of the head. Cover the tongue with gauze and pull the tongue out to optimize the visual field.

1.3.4. Hold the laryngoscope upside down and place it directly in the oral cavity to depress the tongue.

1.3.5. Directly visualize the epiglottis and use the laryngoscope to press the epiglottis downward toward the tongue base.
1.3.6. When the vocal cords are clearly identified, gently advance the elastic bougie into the trachea. Slight rotation of the elastic bougie may be required to overcome resistance. Next, advance the EMG tube at the mouth angle to a depth of 24 cm.

1.3.7. Inflate the EMG tube cuff to a volume no larger than 3 mL. If ventilation by manual bagging reveals no obvious air leakage, in situ deflation of the EMG tube is feasible.

1.3.8. When the EMG tube is placed at the proper depth, confirm the free passage of fresh gas by manual bagging. Further confirm the proper tracheal intubation by end-tidal carbon dioxide (etCO₂) monitoring (capnography) and chest auscultation for early identification of inadvertent esophageal or endobronchial intubation.

Note: Capnography showed both the etCO₂ waveform and the digital value in mmHg. When esophageal intubation occurred, etCO₂ was absent or near zero after 6 breaths. When the EMG tube was in the correct place, the typical etCO₂ waveform and adequate value (usually >30 mmHg) was noted. Furthermore, the breathing sound of a bilateral lung filled is clear and symmetric as determined by chest auscultation.

1.3.9. Use medical tape to fix the EMG tube at the mouth angle. Since the tube usually requires adjustment during IONM experiments, do not fasten the tube to the snout.

1.3.10. Connect the EMG tube to the ventilator. Continuous capnography is mandatory for monitoring the etCO₂ value and curve throughout the experiment.

1.4. Anesthesia maintenance (Figure 1C)

1.4.1. After the EMG tube is fixed, position the piglet on its back with the neck extended (Figure 1C). Maintain general anesthesia with 1-3% sevoflurane in oxygen at 2 L/min.

1.4.2. Ventilate the lungs in volume-control mode at a tidal volume of 8-12 mL/kg, and set the respiratory rate to 12-14 breaths/min.

1.4.3. Begin physiologic monitoring, including capnography, electrocardiography (ECG) and monitoring of oxygenation (SaO₂).

2. Equipment Setting and Animal Operation (Figure 1D)

2.1. Equipment Setup

2.1.1. Connect the channel leads from the EMG tube to the monitoring system.

2.1.2. Set the monitoring system to run 50 ms time window. Set pulsed stimuli to 100 μs and 4 Hz. Set the event capture threshold to 100 μV.
2.2. Surgical procedure

2.2.1. Wear sterile surgical gloves and use povidone iodine with cotton swabs to disinfect the neck surgical site.

2.2.2. Use a transverse collar incision about 10-15 cm in length with a scalpel to expose the neck and the larynx.

2.2.3. Raise the subplatysmal flap 1 cm cranially from the clavicle to the hyoid bone.

2.2.4. Remove the strap muscles and visualize the tracheal rings and nerves. Use monopolar and bipolar electrocautery to assist the surgical dissection and hemostasis.

2.2.5. Localize, identify, and carefully expose the EBSLN, RLN, and VN with a handheld stimulation probe.

2.2.6. Position an automated periodic stimulation (APS) electrode on one side of VN for stimulating during continuous IONM (CIONM). Connect the APS electrode with the monitoring system. Set pulsed stimuli to 1 Hz, 100 µs, and 1 mA.

2.3. At end of experiments, euthanize all piglets by the veterinarian.

3. Electrical Stimulation

Note: To apply the 3R principle in porcine IONM studies, always perform repeatable electrophysiology studies that do not cause nerve injury before performing experiments that may cause nerve injury. This can be used to study the intensity, safety, and cardiopulmonary effects. The IONM equipment can be classified as stimulation equipment or recording equipment (Figure 2A).

3.1. Evaluate the baseline EMG responses of the target nerves, including the EBSLN, RLN, and VN (Figures 2B, 2C).

3.1.1. Start with an initial stimulation current of 0.1-mA current and increase stimulation in 0.1-mA increments until an EMG response is detected and recorded.

3.1.2. Further increase the current until the maximal EMG response is obtained.

3.1.3. Record the baseline amplitude, latency, and waveform of the EMG response.

3.1.4. Define the minimal stimulus level as the lowest current (mA) that clearly evoked EMG activity of >100 µV. Define the maximal stimulus level as the lowest current that evoked the maximal EMG response.
3.2. Evaluate the Safety of electrical stimulation\(^{11,19}

3.2.1. Apply a continuous 1-minute stimulus at the fifth tracheal ring level of the VN or RLN.

3.2.2. Progressively increase the stimulus current from 1 mA to 30 mA.

3.2.3. During VN stimulation, evaluate hemodynamic stability by monitoring of heart rate, ECG, and invasive arterial blood pressure.

3.2.4. Finally, evaluate nerve function integrity by comparing EMG responses proximal to the nerve stimulation site before and after each level of stimulation is applied.

3.3. Effect of anesthetics (muscle relaxants and their reversals)\(^{12,20}\)

Note: Improper use of NMBA is a potential cause of unsuccessful IONM. The proposed animal model was used to compare recovery profiles among different depolarizing NMBA (e.g., succinylcholine) and nondepolarizing NMBA (e.g., rocuronium) at varying doses and to identify the optimal NMBA for use in IONM. The animal model can also be used to evaluate the effectiveness of NMBA reversal drugs (e.g., sugammadex) for rapidly restoring neuromuscular function suppressed by rocuronium.

3.3.1. Perform continuous IONM (C-IONM) to investigate real-time EMG changes in the VN under automated periodic stimulation (APS).

Firstly, apply C-IONM and use the automatically calibrated baseline latencies and amplitudes of EMG as control data.

3.3.2. Administer a bolus injection of tested NMBA (e.g., rocuronium 0.3mg/kg in a volume of 10mg per ml) and observe the real-time EMG changes.

3.3.3. Three minutes after injection of the tested NMBA, perform one injection of sugammadex 2mg/kg in a volume of 100mg/ml the tested reversal drug as a rapid bolus. Record the recovery profile of laryngeal EMG for 20 minutes.

3.4. Stimulation electrodes (Stimulation probes/dissectors) (Figure 3)\(^{17}\)

Note: There are different types of stimulation electrodes that can be used for nerve stimulation during IONM, e.g., monopolar probes (Figure 3A), bipolar probes (Figure 3B), and stimulation dissectors (Figure 3C).

3.4.1. To mimic direct stimulation of nerves during surgery, apply 1mA stimulation to the EBSSLN, RLN, and VN without overlying fascia.

Commented [A1]: How is C-IONM done? Please specify exactly. Much of the later protocol references C-IONM.

Commented [A2R1]: Procedures and settings of C-IONM has been added to 2.2.6.

Commented [A3]: How much is injected? What amount and what volume?

Commented [A4R3]: rocuronium 0.3mg/kg in a volume of 10mg per ml.

Commented [A5]: What stimulation is applied?
3.4.2. To mimic indirect mapping and localizing of the nerve position before visual identification during surgery, apply 1mA stimulation at a 1- or-and 2-mm distance away from the EBSLN, RLN, and VN or nerves at overlying fascia.

3.4.3. Record and compare the EMG responses between different types of stimulation electrodes.

3.5. Recording electrodes (EMG tubes/needle electrodes/pre-gelled skin electrodes)(Figure 4)\textsuperscript{23,24}

3.5.1. Use the animal model to evaluate how rotation or upward/downward displacement of the EMG tube electrode (Figure 4A) affects the stability of the EMG signal. Additionally, use the animal model to compare the EMG responses between different electrode types (e.g., needle electrodes and adhesive pre-gelled electrodes, Figure 4B) and different recording approaches (e.g., transcutaneous/percutaneous and transcartilage approaches, Figures 4C and 4D) in terms of feasibility, stability, and accuracy during IONM.

3.5.2. For a feasibility study, apply a 1-mA stimulus current to bilateral EBSLNs, VNs and RLNs. Record and compare EMG responses evoked by each electrode tested (i.e., EMG tube, transcutaneous, percutaneous, and transcartilage electrodes).

3.5.3. For a stability study, evaluate and compare EMG signal stability in C-IONM under experimentally induced cricoid/tracheal cartilage displacement.

3.5.4. For an accuracy study, evaluate and compare the accuracy of the tested electrodes in C-IONM for identifying EMG signal degradation under RLN injury.

4. RLN injury study (Figure 5)

4.1. In accordance with the 3R principle, perform RLN injury experiments in the porcine model after all repeatable electrophysiology studies are completed. Perform tests of nerve segments from proximal nerve segments to distal nerve segments (i.e., proceed from the caudal part of the RLN to the cranial part of the RLN).

4.2. Use C-IONM to confirm and compare patterns of real-time changes in evoked laryngeal EMG signals during and after acute RLN injuries with different injury mechanisms (e.g., traction, clamping, transection, or thermal injuries) (Figures 5A and 5B). Use C-IONM for continuous real-time display and recordation of EMG changes and sequential recoveries throughout the experiment (Figure 5C).

4.3. Collect injured RLN segments for histopathological analysis of morphological alterations caused by the nerve injury experiments.

4.4. Traction compression/stretch injury

Commented [A6]: What stimulation is applied?
Commented [A7]: 1mA
Commented [A8]: 1mA
Note: Traction compression or stretch injuries are the most common intraoperative RLN injuries. Experimentally induce traction stress and observe the resulting electrophysiological EMG changes and histopathological changes.

4.4.1. Traction compression injury

4.4.1.1. Wrap a thin plastic loop (e.g., a vascular loop 1.3-mm wide) around the RLN and use a force gauge to apply retraction with 50 g of tension [under varying tension [Figure 5A]]. This scheme mimics an RLN trapped against a dense, fibrous band or a crossing artery at the region of Berry’s ligament during medial traction of the thyroid lobe.

4.4.2. Traction stretch injury

4.4.2.1. Wrap the RLN with a wider elastic material (e.g., a 10-mm wide silicone Penrose drain), and use a force gauge to retract the RLN with 50 g of tension [under varying tension]. This scheme mimics an RLN adhered to or encased in the goiter capsule and stretched forward during medial traction.

4.5. Clamping injury and transection injuries

Note: Intraoperative mechanical trauma to the RLN usually results from poor exposure or visual misidentification of the RLN. 

4.5.1. After the traction compression RLN injury experiment, pinch the distal segment of the RLN with hemostatic forceps for one second. This scheme mimics the nerve being inadvertently clamped owing to visual misidentification as a vessel during the operation. Use hemostatic forceps to clamp the RLN under varying force/duration, or use a knife to perform a partial or total transection. Record the accompanying EMG signal change for comparison with further histopathological findings of the nerve specimen.

4.6. Thermal injury

Note: Most intraoperative RLN thermal injuries result from thermal spread when electrocautery devices and various energy-based devices (EBDs) are used to induce hemostasis near the RLN. Like traction injury, thermal injury is rarely visible to the naked eye. Therefore, perform animal IONM experiments to determine the best model for evaluating the pathophysiology of RLN thermal injury and to test the thermal tolerance and the safety of EBDs.

Thermal tolerance study

Critical Temperature Study
Use normal saline (NS) heated to varying temperatures (from 40 to 80°C) to irrigate the exposed RLN in the muscle pocket anterior to the sternocleidomastoid muscle.

In C-IONM, continuously irrigate the RLN exposed in the muscle pocket for 60 s with NS heated to 40°C.

If no EMG event occurs, increase the temperature at a 10°C increase, and repeat the tests in the same RLN until an EMG change is observed. Define the critical temperature (C temperature) as the threshold temperature at which the EMG event occurs.

Thermal Dose Study

Perform a thermal dose study for further comparison of temperature-induced EMG waveform alterations and recovery patterns after exposure to NS heated to varying fixed temperatures (e.g., C temperature, C temperature plus 10°C, etc.) for varying durations.

Continuously monitor all real-time EMG signals for at least 20 minutes after irrigation, and determine whether the EMG waveforms recover.

EBD study

4.6.1. Use C-IONM to register the EMG changes continuously throughout the experiment.

4.6.2. Activation Study: To investigate how Energy-based devices (EBD) can be safely applied for hemostasis and dissection near the RLN during surgery (Figure 5B).

4.6.2.1. Activate the EBD (electrothermal bipolar vessel sealing system, set power at level 2, and the energy discontinues automatically by 2 to 4 seconds) at 5-mm distance away from the RLN.

Perform this test from the proximal to distal segments of the RLN. Measure the distance from the tip of the EBD to the RLN. Generally, test the widest distance (e.g., 5-mm distance between the EBD and the RLN) at the lowest level (e.g., fifth tracheal ring).

4.6.2.2. If EMG signals remain stable after several tests, perform a further test at the narrower distance (e.g., 2-mm, and followed by 1mm distance)

4.6.2.3. If any substantial EMG change occurs after any test the experiment is complete and followed by continuous real-time EMG recording for at least 20 minutes.

4.6.3. Cooling Study: To evaluate the cooling time to determine postactivation optimal EBD cooling parameters.

Perform this study to evaluate cooling time and to evaluate the effectiveness of the muscle-touch cooling maneuver used to confirm safe EBD–RLN contact after prior activation. First, activate the muscle surrounding the EBD for several seconds.

4.6.3.1. Contact the activated EBD on the RLN directly after a 5 second cooling time.
4.6.3.2. If the EMG signals remain stable after three tests, test the shorter cooling time (e.g., 2 seconds, and followed by 1 second)

4.6.2.4. If the EMG remains stable after repeated tests, confirm the safety of the EBD by touching the RLN immediately after activation.

**REPRESENTATIVE RESULTS:**

**Electrophysiology study**

**Baseline EMG data, minimal/ maximal stimulus level, and the stimulus-response curves**

Using a standard monopolar stimulating probe, the obtained minimal stimulation level for VN and RLN stimulation is ranging from 0.1 to 0.3 mA, respectively. In general, the stimulus current correlated positively with the resulting EMG amplitude response. The EMG amplitude plateaued at the maximal stimulation levels of 0.7 mA for VN stimulation, and 0.5 mA for RLN stimulation.

**Electrical stimulation (intensity, safety, and cardiopulmonary effect)**

In the safety study, there is no unwanted effects on EMG signal or hemodynamic stability observed after continuous pulsatile VN and RLN stimulations in the setting of 1 mA to 30 mA. In addition, baseline EMG amplitudes and latencies of the VN or RLN were relatively unchanged after the nerves was stimulated by a high-current. Therefore, it was suggested that an intermittent high stimulus current during IONM was not harmful to the VN or RLN.

**Effects of anesthetics (muscle relaxants and their reversals)**

Experimental comparisons of NMBAs of this animal model showed that different types and doses of muscle relaxants have different natural recovery profile. For example, recovery times for succinylcholine (1 mg/kg) and low-dose rocuronium (0.3 mg/kg) were significantly shorter than that for standard dose rocuronium (0.6 mg/kg). The experiments for NMBAs reversals confirm that sugammadex (reversal of rocuronium) effectively and rapidly restores neuromuscular function suppressed by rocuronium.

**Stimulating electrodes (stimulation probes and dissecting stimulators)**

Typically, IONM is performed with a commercially available ETT-based surface recording electrode system (i.e., a so-called EMG tube). However, a limitation of the clinical use of EMG tubes is the need to maintain constant contact between the electrodes and vocal cords during surgery to obtain a robust EMG signal. False IONM results can result from an EMG tube that is mispositioned during intubation (e.g., due to incorrect insertion depth, incorrect tube size, or rotation of the electrode) or from an EMG tube that is displaced during surgical manipulation or neck retraction (e.g., causing rotation or upward/downward displacement of the electrode).

Experimental comparisons of stimulating electrodes showed that the stimulation probes/dissectors evoked typical EMG waveforms from the EBSLN/RLN/VN with 1 mA current. The stimulating current correlated positively with the resultant EMG amplitude. In monopolar probes and stimulating dissectors, maximum EMG was elicited by <1mA. In bipolar probes, maximum EMG required a higher current. In all groups, evoked EMG amplitudes decreased as the distance from the probe/dissector to the nerve increased. Evoked EMG amplitudes also...
decreased in stimulated nerves that had overlying fascia. Therefore, the animal model confirmed that both stimulation dissectors and conventional probes are effective to evoke EBSLN, RLN, and VN waveforms to monitor real-time nerve function during surgery. Various stimulation probes/ dissectors are now available in IONM system for specific stimulation requirements, surgical monitoring application and the preference of the users.

**Recording electrodes (EMG tubes, needle electrodes, and pre-gelled skin electrodes)**

The feasibility study confirmed that the EMG tube electrodes on the vocalis, the transcutaneous/percutaneous needle electrodes, and the transcutaneous/transcartilage pre-gelled electrodes were effective for recording typical evoked laryngeal EMG waveforms from the VN and RLN under 1 mA stimulation. Figure 6 shows that transcutaneous/transcartilage pre-gelled electrodes generally recorded lower EMG amplitudes compared to EMG tube and needle electrodes.

In the stability study, real-time EMG tracings were compared before and after tracheal displacement was experimentally induced. Figure 7 shows that the change in contact between EMG tube electrodes and vocal folds after tracheal displacement significantly changed the recorded EMG signals. However, tracheal displacement had no apparent effect on electrode contact quality or on EMG signal quality from the transcutaneous or transcartilage electrodes. The accuracy study evaluated the accuracy of real-time signals in reflecting adverse EMG degradation during RLN stress experimentally induced by continuous VN stimulation with the APS electrode. When RLN traction stress was experimentally induced, the EMG tube electrodes on the vocalis muscle and the transcartilage/percutaneous/transcutaneous electrodes recorded similar patterns of progressive degradation in EMG amplitude (Figure 8).

**B. RLN injury study**

**Traction injury**

Typical real-time EMG changes during RLN traction revealed a progressive amplitude decrease combined with a latency increase (the so-called “combined event”). In addition, the EMG signals gradually recovered after release of traction (Figure 9A). The histopathology study showed that morphological changes occurred mostly in outer nerve structures such as the epineurium and perineurium. Structures in the endoneurium remained relatively intact.

**Clamping injury and transection injuries**

All RLNs showed an immediate LOS (within less than 1 s) after acute mechanical injury was experimentally induced. In addition, no gradually EMG recovery can be observed in a short period of time after the injury (Figure 9B). The histopathology study showed that distortion of the epineurium and perineurium was greater in the clamping injury group compared to the traction injury group.

**Thermal injury**

During the thermal injury study, the real-time EMG reveals a combined event, which then rapidly degrades to LOS (Figure 9C). The reaction time before LOS and the severity of electrophysiologic injury may be related to the dose of thermal stress. Studies of EBDs reveal...
that the safe activation distance to the RLN and the cooling time vary by EBD type. For example, the safe activation distances and cooling times are 5 mm and 1 second for monopolar electrocautery (15 watts), 3 mm and 1 second for bipolar electrocautery (30 watts), 2 mm and 3 to 10 seconds for Harmonic scalpel, and 2 mm and 2 to 5 seconds for Ligasure system, respectively. Notably, the Harmonic scalpel should be cooled for more than 10 seconds or cooled by a quick (2 seconds) muscle touch maneuver before it touches the RLN. The Ligasure system should be cooled for more than 2 seconds or cooled by a quick muscle touch maneuver before it touches the RLN. The histopathological examination of the thermal injured nerves showed relatively severe damage to the inner endoneurium with less distortion of the outer nerve structure.

**FIGURE AND TABLE LEGENDS**

**Figure 1.** Preparation and anesthesia of KHAPS Black/ Duroc-Landrace Pigs for IONM research. (A) Net weight of each piglet was measured before anesthesia. (B) An assistant maintained an adequate mouth opening while traction was applied to the upper and lower jaw. A laryngoscope was then used to press the epiglottis downward toward the base of the tongue. When the vocal cords were clearly identified, the elastic bougie was gently advanced into the trachea. The EMG tube was then inserted to a depth of 24 cm at the appropriate mouth angle. (C) The piglet was placed on its back with the neck extended. The channel leads from the recording electrodes were connected to the monitoring system. Physiologic monitoring was performed during the study. (D) The neck and the larynx were exposed for experiments.

**Figure 2.** The multifaceted electronic equipment and principle of the IONM system. (A) The basic equipment included the neural stimulating electrodes (stimulator) and the recording electrodes (connected to the ETT). (B) The stimulating electrodes can be used to determine the location and functional status of the EBSLN, RLN, and VN during IONM. (C) The evoked EMG response is displayed on an LCD screen.

**Figure 3.** The various stimulation electrodes available for use in IONM. (A) monopolar probes (B) bipolar probes, and (C) stimulation probes/dissectors. The selection of stimulation probes/dissectors used for IONM depends on the specific stimulation requirements, the specific application desired and the preference of the surgeon.

**Figure 4.** Various recording electrode types are available for use in IONM. (A) The EMG ETT electrodes include (1a) Trivantage (1b) Contact Reinforced (1c) Standard Reinforced, and (1d) FLEX EMG Tubes; (B) (2)-adhesive pre-gelled electrodes and (3)-needle electrodes. (C and D) The EMG tube is designed to touch the vocal fold through intubation (I), and the adhesive pre-gelled or needle electrodes can be used in transcutaneous (II), percutaneous (III), or transcartilage (IV) approach for EMG recording during IONM.

**Figure 5.** Continuous IONM was performed via APS of the VN (*) to investigate real-time EMG changes in the RLN during (A) traction and (B) thermal injury. (C). Throughout the experiment,
the C-IONM system displayed and continuously recorded the induced EMG changes and sequential recoveries in real time.

**Figure 6.** Comparison of evoked EMG responses between four different types of recording electrodes. The feasibility studies indicated that all electrode types (i.e., EMG tube, transcutaneous, percutaneous, and transcartilage electrodes) accurately recorded typical evoked laryngeal EMG waveforms from the RLN under 1 mA stimulation.

**Figure 7.** Comparison of real-time EMG tracings before and after experimental tracheal displacement. For stability study, tracheal displacement was experimentally induced. Changes in contact between the EMG tube electrodes and vocal folds caused significant variation in recorded EMG signals. (A) Electrodes in the normal position recorded strong EMG signals. (B) Electrodes with slight upward displacement (1 cm) recorded relatively weaker EMG signals. (C) Electrodes with moderate to severe upward displacement (2 cm) showed an EMG LOS.

**Figure 8.** Comparison of real-time EMG tracings during experimental RLN traction injuries between four different types of recording electrodes. The accuracy studies showed that, when RLN traction stress was experimentally induced, all electrode types (i.e., EMG tube, transcutaneous, percutaneous, and transcartilage electrodes) recorded similar patterns of progressively degrading EMG amplitude.

**Figure 9.** Comparison of real-time EMG changes and sequential recoveries after different RLN injury types. (A) In traction injury, the EMG signals gradually degraded under nerve stress and gradually recovered after release of traction. (B) In clamping injury, the EMG signals showed an immediate LOS and no recovery. (C) In thermal injury, the EMG signals revealed a combined event and then rapidly gradually degraded to LOS with no recovery.

**DISCUSSION**

Injury to the RLN and EBSLN remains a significant source of morbidity caused by thyroid surgery. Until recently, nerve injury could only be identified by direct visualization of trauma. The use of IONM now enables further functional identification of the RLN by applying stimulation and recording the contraction of the target muscles. Currently, however, both conventional intermittent and continuous IONM systems have some technical limitations in false-positive and false-negative interpretations. Hence, suitable animal models are necessary to these clinical issues.

Recently, plenty of animal experimental studies have tried to overcome pitfalls of IONM and to investigate new applications. Most of these studies have used medium-sized animals such as canine/dog and porcine/swine/mini-pig. Canine models of the RLN and laryngeal function are well-established and highly mimic human anatomy, size and physiology. The porcine model is the oldest animal applied in RLN research. The first experiments in live pigs performed by Galen in the second century A.D. demonstrated functional alterations in a transected RLN. Currently, the porcine model is most commonly used for IONM research because its anatomy and physiology are very similar to those in humans. Experimental pigs...
have a medium size that enables easy handling and are widely available at a relatively low cost.

This instructional video demonstrates our standard protocols for using the porcine model in IONM research, including protocols for general anesthesia and tracheal intubation. The 3R principle is implemented in the design of experiments for investigating electrophysiological characteristics of RLN injuries. Key issues in the use of the proposed porcine model include (1) EMG parameter characteristics and safety considerations when applying electrical stimulation, (2) the use of muscle relaxants and reversals, (3) stimulating and recording electrodes, and, most importantly (4) models of RLN injuries that cannot be accurately quantified in humans. The protocols were setup to induce different severity and types of RLN injuries. Recorded real-time EMG data were correlated with postoperative vocal cord function and histopathology examinations. Although some data from experimental studies are inapplicable to clinical practice, our porcine model provides a valuable research platform not merely in understanding technology of IONM, but also in guiding future experiments to improve surgical strategies for lesser RLN injuries during thyroid surgery.

ACKNOWLEDGMENTS
This study was supported by grants from Kaohsiung Medical University Hospital, Kaohsiung Medical University (KMUH106-6R49) and from Ministry of Science and Technology (MOST 106-2314-B-037-042-MY2), Taiwan.

DISCLOSURES
The authors have nothing to disclose.

REFERENCES:


<table>
<thead>
<tr>
<th>Name of Material/ Equipment</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticare systems</td>
<td>nGenuity™</td>
</tr>
<tr>
<td>Intraoperative NIM nerve monitoring</td>
<td>Medtronic</td>
</tr>
<tr>
<td>NIM TriVantage® EMG Tube</td>
<td>Medtronic</td>
</tr>
<tr>
<td>NIM Contact® Reinforced EMG Endotrach.</td>
<td>Medtronic</td>
</tr>
<tr>
<td>NIM® Standard Reinforced EMG Endotrach.</td>
<td>Medtronic</td>
</tr>
<tr>
<td>NIM Flex™ EMG Endotracheal Tube</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Standard Prass Flush-Tip Monopolar St.</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Ball-Tip Monopolar Stimulator Probe</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Yingling Flex Tip Monopolar Stimulator</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Prass Bipolar Stimulator Probe</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Concentric Bipolar Stimulator Probe</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Side-by-Side Bipolar Stimulator Probe</td>
<td>Medtronic</td>
</tr>
<tr>
<td>APS™ (Automatic Periodic Stimulation)</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Neotrode® ECG Electrodes</td>
<td>ConMed</td>
</tr>
<tr>
<td>LigaSure Small Jaw</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Catalog Number</td>
<td>Comments/Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>8100E</td>
<td>physiologic monitoring, including capnography, monitor EMG activity from multiple muscles. If there is 6 mm ID, 8.2 mm OD. The NIM-Response® 3.0 monitors EMG activity from multiple muscles. If there is 6 mm ID, 8.2 mm OD. The NIM TriVantage® EMG Tube is 6 mm ID, 8.8 mm OD. The NIM Standard EMG Tube is 6 mm. The NIM Flex EMG Tube monitors vocal cord activity. Tips and Handles. For locating and mapping cranial nerves: Tips and Handles, 1.0 mm/2.3 mm. Featuring a flexible design. The highly flexible single-use Yingling Tip and Handle features a flexible design. The single-use Prass Bipolar Stimulating Probe features a flexible design. The single-use Concentric Bipolar Stimulating Probe features a flexible design. The single-use Side-by-Side Bipolar Stimulating Probe features a flexible design. The APS™ Electrode offers continuous, high-quality recording. The electrode is made of a clear tape material, which is durable and easy to use. The LF1212 Electrode offers continuous, high-quality recording. The Electrode is made of a clear tape material, which is durable and easy to use. A FDA-approved electrothermal bipolar electrode.</td>
</tr>
</tbody>
</table>
Porcine animal model for research of intra-operative neural monitoring in thyroid surgery


Item 1 (check one box): The Author elects to have the Materials be made available (as described at http://www.jove.com/author) via: [X] Standard Access [ ] Open Access

Item 2 (check one box):

[ ] The Author is NOT a United States government employee.
[ ] The Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee.
[ ] The Author is a United States government employee but the Materials were NOT prepared in the course of his or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: “Agreement” means this Article and Video License Agreement; “Article” means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; “Author” means the author who is a signatory to this Agreement; “Collective Work” means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials are in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; “CRC License” means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode; “Derivative Work” means a work based upon the Materials or upon the Materials and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; “Institution” means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; “JoVE” means MyIove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; “Materials” means the Article and / or the Video; “Parties” means the Author and JoVE; “Video” means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.

2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.

3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the “Open Access” box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

612542.6
ARTICLE AND VIDEO LICENSE AGREEMENT

4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution’s website or the Author’s personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE’s copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.

5. Grant of Rights in Video – Standard Access. This Section 5 applies if the “Standard Access” box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.

6. Grant of Rights in Video – Open Access. This Section 6 applies only if the “Open Access” box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 5 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.

7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.

8. Likeness, Privacy, Personality. The Author hereby grants JoVE the right to use the Author’s name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.

9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author’s relevant institutional review board.

10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author’s facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author’s institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have
Porcine animal model for research of intra-operative neural monitoring in thyroid surgery

Che-Wei Wu
Otorhinolaryngology
Kaohsiung Medical University, Kaohsiung, Taiwan

2018-01-28

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney’s fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney’s fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author or the Author’s institution’s facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author’s expense. All indemnifications provided herein shall include JoVE’s attorney’s fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.

13. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE’s successors and assigns. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name: Che-Wei Wu
Department: Otorhinolaryngology
Institution: Kaohsiung Medical University, Kaohsiung, Taiwan
Article Title: Porcine animal model for research of intra-operative neural monitoring in thyroid surgery
Signature: Che-Wei Wu
Date: 2018-01-28

Please submit a signed and dated copy of this license by one of the following three methods:
1) Upload a scanned copy of the document as a pdf on the JoVE submission site;
2) Fax the document to +1.866.381.2236;
3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051
Cover letter

Editor, The Journal of Visualized Experiments

RE: Manuscript ID: JoVE57919R3 titled "Porcine Model in Intra-Operative Neural Monitoring in Thyroid Surgery"

Dear Editors,

Thank you very much for reviewing our article and providing useful advice. We have tried our best to incorporate your comments into the revised manuscript and feel that the changes you suggested make our manuscript clearer and more informative for the readers. All the important changes have been highlighted in the revised manuscript. With these modifications, we look forward to your re-review for possible publication in The Journal of Visualized Experiments.

Sincerely,

I-Cheng Lu, MD, PhD (On behalf of all coauthors)
Department of Anesthesiology, Kaohsiung Medical University, Taiwan
Address: 100 TzYou First Road, Kaohsiung City 807, Taiwan.
Tel: +886-7-3121101 ext.7035; Fax: +886-7-3217874,
E-mail: u9251112@gmail.com

June 12, 2018
The followings will respond to the points raised by the reviewer and the editorial office:

Response to the Editorial

Comments:
1. The language in the manuscript is not publication grade. Please employ professional copy-editing services.

Response: Thank you very much for this important comment. The revised manuscript has been reviewed and edited by a BELS-certified technical editor and native English speaker. We will agree to pay additional charges for further copy-editing service by the journal for the accepted paper, if necessary.

Paul Steve Lugue  
14938 Camden Avenue Suite 39  
San Jose, CA 95124  
Tel: 408 916 1602  
e-mail: steve@panoramixcorp.com

February 22, 2018  
RE: Editing Certification  
Dear Sir/Madam:

I am BELS-certified technical editor and native English speaker. This letter certifies that I edited the following manuscript, including language, grammar, punctuation, spelling, and style.

TITLE  
Porcine model for research in intra-operative neural monitoring in thyroid surgery

AUTHORS & AFFILIATIONS  
Che-Wei Wu¹, Tzu-Yen Huang¹, Hui-Chun Chen¹, Hsiu-Ya Chen², Tsung-Yi Tsai¹, Pi-Ying Chang², Yi-Chu Lin¹, Chiao-I Lin¹, Hsin-Yi Tseng¹, Pao-Chu Hun², Xiaoli Liu³, Hui Sun³, Gregory W. Randolph⁴, Gianlorenzo Dionigi⁵, Feng-Yu Chiang⁶, and I-Cheng Lu²

The content and research findings were not changed in any way, and the authors reviewed the entire manuscript before its final submission. Please do not hesitate to contact me if you require further information.

Sincerely,

Paul Steve Lugue  
Technical Editor
2. Additional details are required in the protocol. Please see the comments in the attached manuscript.

Response:
Thank you very much. The protocol section has been revised accordingly.

3. The highlighting of the protocol is very discontinuous and does not tell a complete story. Please revise and ensure that only 2.75 page of protocol text is highlighted with the spaces and headers included.

Response:
Thank you very much. The highlighted protocol section has been revised as follows:

This study aims to develop a standard protocol of intra-operative neural monitoring of thyroid surgery in a porcine model. Here, we present a protocol to demonstrate general anesthesia, to compare different types of electrodes, and to investigate the electrophysiological characteristics of the normal and injured recurrent laryngeal nerves.

PROTOCOL- The animal experiments were approved by the IACUC of Kaohsiung Medical University, Taiwan.

1. Animal Preparation and Anesthesia
1.1. Porcine animal model
1.1.1. Use KHAPS Black or Duroc-Landrace pigs
1.2. Anesthesia induction
1.2.1. Pre-medicate with intramuscular azaperone (4 mg/kg) at 2 hours before anesthesia.
1.2.2. Induce general anesthesia with 2-4% sevoflurane at a fresh gas flow of 3 L/min via the face mask with the piglet in a prone position.
1.2.3. Identify a superficial vein on the outer side of one ear.
1.2.4. Administer intravenous anesthetic to alleviate noxious stimulation by direct laryngoscopy.
1.3. Tracheal intubation
1.3.1. Prepare the equipment required for EMG tube intubation: a face mask for assisted ventilation, two slings to hold the mouth open, one gauze strip to pull the tongue, a blunt tip suction catheter, a veterinary laryngoscope with straight blades, an elastic bougie, a syringe, a stethoscope, and adhesive tape.
1.3.2. Position the piglet in a prone position on the operating table.
1.3.3. Apply traction of the upper and lower jaw to maintain an adequate mouth opening.
1.3.4. Hold the laryngoscope upside down and place it directly in the oral cavity to depress the tongue.
1.3.5. Use the laryngoscope to press the epiglottis downward toward the tongue base.
1.3.6. When the vocal cords are clearly identified, gently advance the elastic bougie into the trachea. Next, advance the EMG tube at the mouth angle to a depth of 24 cm.
1.3.9 Use medical tape to fix the EMG tube at the mouth angle.
1.3.10. Connect the EMG tube to the ventilator.

1.4. Anesthesia maintenance
1.4.1. Maintain general anesthesia with 1-3% sevoflurane in oxygen at 2 L/min.

2. Equipment Setting and Animal Operation
2.1.1. Connect the channel leads from the EMG tube to the monitoring system.
2.1.2. Set the monitoring system to run 50 ms time window. Set pulsed stimuli to 100 μs and 4 Hz. Set the event capture threshold to 100 μV.
2.2.2. Use a transverse collar incision to expose the neck and the larynx.
2.2.3. Raise the subplatysmal flap.
2.2.4. Remove the strap muscles and visualize the tracheal rings and nerves.
2.2.5. Localize, identify, and carefully expose the EBSLN, RLN, and VN with a handheld stimulation probe.
2.2.6. Position an automated periodic stimulation electrode on one side of VN for continuous IONM.
2.3. At end of experiments, euthanize all piglets by the veterinarian.

3. Electrical Stimulation
3.1. Evaluate the baseline EMG responses of the target nerves.
3.2.3. During VN stimulation, evaluate hemodynamic stability by monitoring of heart rate, ECG, and invasive arterial blood pressure.
3.2.4. Evaluate nerve function integrity by comparing EMG responses proximal to the nerve stimulation site before and after each level of stimulation is applied.
3.3. Effect of anesthetics
3.3.1. Firstly, apply C-IONM and use the automatically calibrated baseline of EMG as control data.
3.3.2. Administer a bolus injection of rocuronium 0.3mg/kg and observe the real-time EMG changes.
3.3.3. Three minutes after injection, perform one injection of sugammadex 2mg/kg. Record the recovery profile of laryngeal EMG for 20 minutes.

3.4. Stimulation electrodes
3.4.1. To mimic direct stimulation of nerves during surgery, apply 1mA stimulation to the EBSLN, RLN, and VN without overlying fascia.
3.4.2. To mimic indirect mapping of the nerve position before visual identification during surgery, apply 1mA stimulation at a 1 and 2-mm distance away from the nerves at overlying fascia.
3.4.3. Record and compare the EMG responses between different types of stimulation electrodes.

3.5. Recording electrodes
3.5.1. Evaluate how rotation or displacement of the EMG tube electrode affects the stability of the EMG signal. Additionally, compare the EMG responses between different electrode types and different recording approaches during IONM.

4. RLN injury study
4.2. Use C-IONM to confirm and compare patterns of real-time changes in evoked laryngeal EMG signals during and after acute RLN injuries with different injury mechanisms
4.4. Traction compression injury
Wrap a vascular loop around the RLN and apply retraction. This scheme mimics an RLN trapped at the region of Berry’s ligament during medial traction.
4.5. Clamping injury
Pinch the distal segment of the RLN with hemostatic forceps for one second. This scheme mimics the nerve being inadvertently clamped owing to visual misidentification as a vessel during the operation.
4.6. Thermal injury
4.6.2. Activation Study - To investigate how Energy-based devices (EBD) can be safely applied for hemostasis and dissection near the RLN during surgery.
4.6.2.1. Activate the EBD at 5-mm distance away from the RLN.
4.6.2.2. If EMG signals remain stable, perform a further test at the narrower distance.
4.6.3. Cooling Study - To evaluate the cooling time to determine postactivation optimal EBD cooling parameters.
4.6.3.1. Contact an activated EBD on the RLN directly after a 5 second cooling time.
4.6.3.2. If the EMG signals remain stable after three tests, test the shorter cooling time.
Summary of the highlighted protocol text for the inclusion in the video:

Porcine Model in Intra-Operative Neural Monitoring in Thyroid Surgery

This study aims to develop a standard protocol of intra-operative neural monitoring of thyroid surgery in a porcine model. Here, we present a protocol to demonstrate general anesthesia, to compare different types of electrodes, and to investigate the electrophysiological characteristics of the normal and injured recurrent laryngeal nerves.

PROTOCOL-The animal experiments were approved by the IACUC of Kaohsiung Medical University, Taiwan.

1. Animal Preparation and Anesthesia
   1.1. Porcine animal model
   1.1.1. Use KHAPS Black or Duroc-Landrace pigs
   1.2. Anesthesia induction
   1.2.1. Pre-medicate with intramuscular azaperone (4 mg/kg) at 2 hours before anesthesia.
   1.2.2. Induce general anesthesia with 2-4% sevoflurane at a fresh gas flow of 3 L/min via the face mask with the piglet in a prone position.
   1.2.3. Identify a superficial vein on the outer side of one ear.
   1.2.4. Administer intravenous anesthetic to alleviate noxious stimulation by direct laryngoscopy.
   1.3. Tracheal intubation
   1.3.1. Prepare the equipment required for EMG tube intubation: a face mask for assisted ventilation, two slings to hold the mouth open, one gauze strip to pull the tongue, a blunt tip suction catheter, a veterinary laryngoscope with straight blades, an elastic bougie, a syringe, a stethoscope, and adhesive tape.
   1.3.2. Position the piglet in a prone position on the operating table.
   1.3.3. apply traction of the upper and lower jaw to maintain an adequate mouth opening.
   1.3.4. Hold the laryngoscope upside down and place it directly in the oral cavity to depress the tongue.
   1.3.5. use the laryngoscope to press the epiglottis downward toward the tongue base.
   1.3.6. When the vocal cords are clearly identified, gently advance the elastic bougie into the trachea. Next, advance the EMG tube at the mouth angle to a depth of 24 cm.
1.3.9 Use medical tape to fix the EMG tube at the mouth angle.
1.3.10. Connect the EMG tube to the ventilator.

1.4. Anesthesia maintenance
1.4.1. Maintain general anesthesia with 1-3% sevoflurane in oxygen at 2 L/min.

2. Equipment Setting and Animal Operation
2.1.1. Connect the channel leads from the EMG tube to the monitoring system.
2.1.2. Set the monitoring system to run 50 ms time window. Set pulsed stimuli to 100 μs and 4 Hz. Set the event capture threshold to 100 μV.
2.2.2. Use a transverse collar incision to expose the neck and the larynx.
2.2.3. Raise the subplatysmal flap.
2.2.4. Remove the strap muscles and visualize the tracheal rings and nerves.
2.2.5. Localize, identify, and carefully expose the EBSLN, RLN, and VN with a handheld stimulation probe.
2.2.6. Position an automated periodic stimulation electrode on one side of VN for continuous IONM.
2.3. At end of experiments, euthanize all piglets by the veterinarian.

3. Electrical Stimulation
3.1. Evaluate the baseline EMG responses of the target nerves.
3.2.3. During VN stimulation, evaluate hemodynamic stability by monitoring of heart rate, ECG, and invasive arterial blood pressure.
3.2.4. Evaluate nerve function integrity by comparing EMG responses proximal to the nerve stimulation site before and after each level of stimulation is applied.
3.3. Effect of anesthetics
3.3.1. Firstly, apply C-IONM and use the automatically calibrated baseline of EMG as control data.
3.3.2. Administer a bolus injection of rocuronium 0.3mg/kg and observe the real-time EMG changes.
3.3.3. Three minutes after injection, perform one injection of sugammadex 2mg/kg. Record the recovery profile of laryngeal EMG for 20 minutes.
3.4. Stimulation electrodes
3.4.1. To mimic direct stimulation of nerves during surgery, apply 1mA stimulation to the EBSLN, RLN, and VN without overlying fascia.
3.4.2. To mimic indirect mapping of the nerve position before visual identification during surgery, apply 1mA stimulation at a 1 and 2-mm distance away from the nerves at overlying fascia.
3.4.3. Record and compare the EMG responses between different types of
stimulation electrodes.

3.5. Recording electrodes

3.5.1. evaluate how rotation or displacement of the EMG tube electrode affects the stability of the EMG signal. Additionally, compare the EMG responses between different electrode types and different recording approaches during IONM.

4. RLN injury study

4.2. Use C-IONM to confirm and compare patterns of real-time changes in evoked laryngeal EMG signals during and after acute RLN injuries with different injury mechanisms.

4.4. Traction compression injury
Wrap a vascular loop around the RLN and apply retraction. This scheme mimics an RLN trapped at the region of Berry's ligament during medial traction.

4.5. Clamping injury
pinch the distal segment of the RLN with hemostatic forceps for one second. This scheme mimics the nerve being inadvertently clamped owing to visual misidentification as a vessel during the operation.

4.6. Thermal injury

4.6.2. Activation Study - To investigate how Energy-based devices (EBD) can be safely applied for hemostasis and dissection near the RLN during surgery.

4.6.2.1. Activate the EBD at 5-mm distance away from the RLN.

4.6.2.2. If EMG signals remain stable, perform a further test at the narrower distance.

4.6.3. Cooling Study- To evaluate the cooling time to determine postactivation optimal EBD cooling parameters.

4.6.3.1. Contact an activated EBD on the RLN directly after a 5 second cooling time.

4.6.3.2. If the EMG signals remain stable after three tests, test the shorter cooling time.