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Abstract—Content-centric networking is emerging as a credi-
ble alternative to host-centric networking, especially in scenarios
of large-scale content distribution and where privacy require-
ments are crucial. Recently, research on content-centric net-
working has focused on security aspects and proposed solutions
aimed to protect the network from attacks targeting the content
delivery protocols. Content-centric networks are based on the
strong assumption of being able to access genuine content from
genuine nodes, which is however unrealistic and could open the
door to disruptive attacks. Network node misbehavior, either due
to poisoning attacks or malfunctioning, can act as a persistent
threat that goes unnoticed and causes dangerous consequences.
In this paper, we propose a novel certification methodology
for content-centric networks that improves transparency and
increases trustworthiness of the network and its nodes. The
proposed approach builds on behavioral analysis and implements
a continuous certification process that collects evidence from
the network nodes and verifies their non-functional properties
using a rule-based inference model. Utility, performance, and
soundness of our approach have been experimentally evaluated
on a simulated Named Data Networking (NDN) network targeting
properties availability, integrity, and non-repudiation.

Index Terms—Content-centric networking; named data net-
working; security; certification;

I. INTRODUCTION

Today, the interest in content-centric networking as a sub-
stitute for the common TCP/IP network stack is gradually
increasing [1]-[5]. This is especially true in scenarios where
in-protocol content distribution and privacy features are of
paramount importance [6]. The research and development
community has made great strides in the implementation
of the content-centric paradigm, concentrating its efforts on
functional aspects and performance [6], [7]. Research on
security aspects instead has mostly focused on specific attacks
[81, [9] and countermeasures [10]-[13] missing the big picture.
Transparency and trustworthiness of content-centric networks
are in fact a major hurdle against its widespread adoption
and can open the door to persistent threats that affect the
network behavior to its foundation. In addition, weaknesses
to poisoning attacks and system malfunctioning can impair
the entire network operation [14], [15].

In this paper we present a certification methodology
for content-centric networks continuously certifying non-
functional properties of network nodes in operation. Our
methodology is based on a set of inference rules mapping

networking behavior to non-functional properties. Inference
rules are evaluated according to measurements on the status
of the network collected from its components. Being able to
certify non-functional properties of the network can support an
effective QoS approach, where network functioning is adapted
to evolving conditions, increasing network trustworthiness and
quality. Our network-level certification approach complements
modern composite applications based on microservices, paving
the way to a new generation of certified compositions tightly
intertwined with networking technologies [4], [5], [16], [17]. It
also increases the attractiveness of content-centric networking
for ISPs or cloud providers interested in offering certified
services.

While our methodology is general enough to cope with any
content-centric network implementation, we focus on Named
Data Networking (NDN) [2]. We then extend NDN with our
certification methodology towards certification-aware NDN
architecture and networking services. As an example of its
utility, let us consider a financial scenario where the integrity
of the transmitted data (e.g., bank transactions) is a critical
requirement. NDN protocol can protect data integrity by
requiring each content to be signed by its producer. The service
application can then rely on this feature, and the consumer
can verify both the integrity and the origin of each received
content. However, its effectiveness strongly depends on the
correct behavior of the network nodes (e.g., the producer and
consumer nodes use a valid public-private key pair for their
communications). Our certification methodology can fill in
this gap supporting continuous and automatic verification of
network-level properties, preventing data breaches at commu-
nication layer.

The contribution of this paper is threefold. We first extend
NDN architecture to support network certification maintaining
compatibility at protocol layer. This is achieved by extending
the reporting capabilities of NDN nodes and adding Certifi-
cation Agents (CAs). We then propose a novel certification
methodology based on inference rules and measurements that
awards certificates proving non-functional properties on NDN
nodes. We finally present an effective implementation of
our methodology within the NDN ecosystem, involving the
certification of multiple security properties.

The remaining of this paper is organized as follows. Sec-
tion II presents our system model. Section III describes



our certification methodology. Section IV presents our the
certification process. Section V experimentally evaluates the
soundness and performance of our approach in a simulated
NDN network. Section VI presents the related work, while
Section VII draws our final remarks.

II. SYSTEM MODEL

Named Data Networking (NDN) is a content-centric net-
work protocol, where consumers and producers communicate
to exchange a given content using interest and data packets.
Interest packets are sent by a content consumer to request a
certain content in the form of a complete name or a prefix.
A content producer receives an interest packet and responds
with a data packet containing the full content name and the
actual data. Every data packet is signed by its producer and
has a freshness period that limits its validity in time. NDN
nodes can either cache data packets and immediately answer a
matching interest request or forward the packet to one or more
adjacent nodes. The main advantage of NDN over traditional
networks is the protocol inherent capability of implementing
a distributed Content Distribution Network (CDN), with each
node acting as a cache for locally popular contents. Moreover,
both interest and data packets do not contain any direct refer-
ence to their consumers or producers, considerably improving
the privacy of the users. NDN nodes communicate through
the Named Data Networking Forwarding Daemon (NFD),
which implements the routing capabilities of the network. NFD
uses three main data structures: i) Content Store (CS), the
cache of the node, storing data packets in memory for further
distribution; ii) Forwarding Information Base (FIB) holding
information about the preferred network interface through
which forwarding of interest packets is most effective; iii)
Pending Interest Table (PIT) keeping record of the forwarded
interests for each network interface, preventing the node to
flood the rest of the network with repeated requests.

In this paper, we extend the NDN architecture to achieve
higher quality and trustworthiness via continuous certification
of non-functional properties. Certification, in fact, increases
trustworthiness by providing verifiable evidence that a specific
property holds for a given system. Figure 1 shows the archi-
tecture and interaction flows of our certification-aware NDN.
It is composed of three main parties whose communications
are denoted with black arrows.

o CAs execute the certification process and collect evidence
about the status of the NDN network nodes. CAs verify
the compliance of the collected evidence to a given non-
functional property and, in case of positive evaluation,
award a certificate to the NDN node. In case of negative
evaluation, an existing certificate can be either updated or
revoked. CAs are add-ons, compared to traditional NDN
architecture, needed for enabling continuous certification
in the operation environment.

e NDN network nodes are servers running NFD processes,
acting as routers for NDN traffic, and exposing services to
the users. These processes are extended to provide CAs
with the evidence at the basis our certification process
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(see Section V-A for details). The network nodes are
securely bound with certificates on a predefined prefix,
allowing other users of the network to verify their non-
functional properties.

e Users interact with NDN certified network nodes to
execute services on a trusted networking layer.

We note that the certification process is usually executed by
a trusted certification authority with the support of accredited
labs. In this paper we adopt the chain of trust described in [18],
where the certification authority delegates the certification
framework (i.e., CAs) to work as accredited lab in operation.
The certification authority remains responsible to model the
activities needed to verify a given non-functional property.
We remark that our extensions towards a certification-aware
NDN are fully compatible with the standard NDN protocol
and implementation. We also note that all network communi-
cations between the monitored nodes and the CAs are natively
implemented, using the NDN protocol.

III. CERTIFICATION METHODOLOGY

Figure 2 shows our certification methodology. The CA
executes two tasks to: i) collect measurements using com-
puting metrics; ii) evaluate inference rules on a target NDN
system. Metrics provide measurements on specific aspects of
the target NDN network. They capture details on the internal
state of a given NDN node in operation. Inference rules are
Boolean expressions based on measurements collected by the
metrics and model specific run-time behaviors of the system.
Measurements, as well as inference rule outcomes, change
over time and constitute the evidence of the certification
process. Evidence is a fundamental part of our certificate
methodology, since it permits to replicate the certification
process, thus improving the trust on it. Inference rules can be
combined with other inference rules to model more complex
behaviors.

In this paper, for simplicity but with no lack of generality,
we consider simple Boolean rules. Among all the inference
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rules, the CA selects the ones needed for supporting the
certification of the given non-functional properties. In case
the rule evaluation supports the non-functional properties, the
certificate is awarded and attached to the corresponding NDN
node. Note that, being evaluated on temporal variant rules,
the certificate itself has a dynamic life cycle [18] and can be
possibly revoked when inference rules are violated in a given
time frame.

Below, we detail all components of our certification method-
ology in Figure 2 (i.e., metrics, inference rules and certificate).

A. Metrics

Metrics are implemented as functions that provide measure-
ments on the status of the NDN system (or a part thereof) at
a given time instant. Metrics are designed with the following
requirements in mind.

o Metrics must produce a simple yet effective measurement
of the system status that can be used to infer non-
functional properties.

o The computational effort must be negligible compared to
the descriptive value.

e Metrics should represent a minimum set of expressive
measures.

o Metrics must show the temporal evolution of the system.

o Metrics must not interfere with the NDN protocol.

o Metrics should be as much as possible scenario and user
independent.

Table I presents a list of metrics for NDN nodes. We
note that, while a larger number of metrics can provide a
more fine-grained and application-tailored representation of
the system, a trade-off with the implementation complexity
must be considered.

Formally, a metric m is a function of time ¢, denoted m(%),
where ¢ can be either a single time instant or a time window
used for the collection of measurements.

Example 1 (Integrity-Related Metrics): Let us consider the
NDN packet integrity mechanism used by NDN producers
to sign data packets. A default content certificate is chosen

TABLE 1

EXAMPLES OF NDN NODE METRICS

Id Metric Description
m1  CS policy name Which CS policy is enabled
mo  Maximum size How many entries can be stored
of the CS in the CS
m3  CS usage How many entries are stored in
the CS
my CS entry statis- Minimum, maximum, mean and

tics

standard deviation of the CS en-
tries memory usage

ms  Interest forward- ~ Which forwarding policy is used
ing policy for each interest packet
me  PIT entries Number of pending interest pack-
ets stored in the PIT
my  Interest packets  Minimum, maximum, mean and
size statistics standard deviation of the incom-
ing interest packets size
ms Data packets size ~ Minimum, maximum, mean and
statistics standard deviation of the outgo-
ing data packets size
mog Interest packets  Minimum, maximum, mean and
components standard deviation of the number
statistics of components in the incoming
interest packets
myo Data packets  Minimum, maximum, mean and
components standard deviation of the number
statistics of components in the outgoing
data packets
m11 Contents certifi- Time interval of validity of the
cates validity stored content certificates
mi2 Default content If and which default content cer-
certificate tificate is set
m13 Node memory The total amount of system mem-
ory of the NFD node
m14 Packets signature  The total amount of valid and

validity statistics

invalid signature contents stored
in CS

from those available as a preset. The public key contained in
a content certificate is shared by the node with the network on
a predefined prefix, enabling any clients to verify the integrity
of the content received by a producer, as well as its identity.

Let us then consider metrics mjy; and mio in Table I
with the scope of measuring the NDN integrity mechanism.
The first metric mq; focuses on content certificate validity,
returning the validity range of each content certificate as
follows:

validity start

min :
mi1 (t) =

maz := validity end

where ¢ is the current time instant. The second metric m12
focuses on the mechanism configuration, returning a set con-
taining the default certificate if any or an empty set otherwise
as follows:

c is set as default certificate

{c}

mio(t) =
12(t) 0 otherwise

where ¢ is the current time instant.



B. Inference rules

An inference rule is defined according to the following
simplified BNF notation. !

(rul

)

) ::= (simple_rule) | (complex_rule)
(simple_rule) ::= (v_expr) (operator)(v_expr)
(complex_rule) ::= NOT (rule) |(rule) (bin_op)(rule)
(v_expr) ::= (m_val) | (v_expr).(attribute) | (constant) |
(m_transform) ((m_sequence)) |
(attribute) ::=min | max | avg | stdDev | ...

(m_transform) ::= minimum | maximum | mean |

std_dev]| ...
(m_sequence) ::= (m_val) |, (m_sequence)
(operator) == < | < |=|#]|>]|>

(bin_op) ::= A |V

Following this definition, inference rules can be simple rules
denoted as c(t) or complex rules denoted as r(t). Complex
rules are defined as a Boolean combination of simple and
complex rules. Inference rules are designed by the certification
authority and used to evaluate behavioral aspects of the system
under certification with the aim of proving support for a given
non-functional property. Table II shows a set of inference
rules. They are built on metrics in Table I and consider §; as
the evaluation time window expressed in seconds. Although
each rule can have a different time window depending on the
specific behavioral aspect to be evaluated, for simplicity, we
assume a shared time window d;.

C. Non-functional property

A non-functional property can be formally defined as fol-
lows.

Definition 1: A property p(t) to be certified is a tuple of the
form <name, f(R)>, where name is taken from a controlled
vocabulary like “Confidentiality” and R is a non-empty set of
inference rules used to evaluate the property on the target NDN
at time ¢. f(R) is a Boolean function (typically a conjunction)
expressed in terms of rules in R.

We note that a certification process can refer to multiple
non-functional properties, and therefore the set of rules to be
evaluated is composed of the union of the two sets of rules
without repetition.

Example 2 (Integrity-Related Constrained Rules): Let us
consider metrics in Example 1 and the inference rules (i.e.,
simple rules) ci13 and ci4 in Table II. c¢;3 verifies whether
all content certificates stored in the NFD node are valid, that
is, the current time is within the minimum and maximum
bounds of each content certificate. It can be formally defined
as follows:

True
False

Y cert € mq1(t), cert.min < ¢ < cert.max

c13(t) :=
13(t) otherwise

'We omitted trivial definitions for (simple_rule), (complex_rule), (m_val)
and (constant).

TABLE Il

EXAMPLES OF INFERENCE RULES BASED ON THE METRICS DEFINED IN
TABLE I CONSIDERING A TIME WINDOW J; AND THE CURRENT TIME
INSTANT ¢ EXPRESSED IN SECONDS.

Rule Expression Description
ci(t) ma(t) ="lru” The CS policy used is Least Recently
Used (LRU)
ca(t)  ma(t) * The maximum size in memory of the
ENTRY_S < CS is lower than 80% for the system
m13(t) * 0.8 memory
ca(t) ma(t) < 10° The size of the CS is smaller than
100000
ca(t) ma(t) < The CS should contain more than 80%
ms3(t) 0.8 of the maximum allowed entries
c5(t)  std_dev(ms([t — The standard deviation in number of CS
4,t])) <5.0 entries is lower than 5.0 for the last 5
iterations
ce(t) ma(t).stdDev < The standard deviation in size of the
5.0 contents stored in the CS is smaller than
5.0
c7(t) ma(t).avg < 20.0 The mean size of contents stored in the
CS is greater than 20.0 bytes
cg(t) V; me(t).t <100  The entries stored in the PIT are less than
100
co(t) m7(t).min > 10 Incoming packets minimum size is
greater than 10 bytes
cio(t) 3.0< The mean number of components in in-
mg(t).avg < 12.0  coming packets names is within 3.0 and
12.0
c11(t) mg(t).min > 10 Outgoing packets minimum size is
greater than 10 bytes
ci2(t) 3.0< The mean number of components in out-
mio(t).avg < going packets names is within 3.0 and
12.0 12.0
c13(t) Veern € ma1(t) : All stored certificates are valid
cert.min <t <
cert.max
c14(t) mia2(t) # None A default certificate is set
c15(t) maya(t).invalid =  All contents stored in the CS have a valid
0 signature
r1(t) ci1(t)Aca(t)Acs(t) The CS configuration is optimal
ro(t) Vy €[t — ¢, t] The CS usage is optimal
ca(t) Nes(t) A
ce(t’) ANer(t)
r3(t) Yy €[t — 0,1 The PIT usage is optimal
cg (t/)
ra(t) Yy €[t — ¢t The NDN node incoming traffic is opti-
co(t') Acio(t') mal
r5(t) Vy €[t — 0,1 The NDN node outgoing traffic is opti-
c11 (t/) AN C12(t/) mal
re(t) Yy €[t — 0¢,t] Certificate status is optimal
c13 (t/)
r7(t) Yy €[t — 0,1 Certificate configuration is optimal
014(15')
rg(t) Yy € [t — 0,1 Cached content signature is optimal
c15 (t/)

c14 verifies whether a content certificate has been set as
the default preset on the target NFD node. It can be formally
defined as follows:

True

mlg(t) 7& @

ci4(t) ==
1a(?) False otherwise

Example 3 (Integrity-Related Composed Rules): Let us
consider Example 2 and rules 7¢ and r7 in Table IL. rg
represents the bounds necessary to consider the status of the
content certificates stored in the node to be optimal, which



TABLE III
EXAMPLES OF NON-FUNCTIONAL PROPERTIES (SEE DEFINITION 1)
CONSIDERING A TIME WINDOW &3 AND THE CURRENT TIME INSTANT ¢
EXPRESSED IN SECONDS.

Property  Property Name  f(R)

p1(t) Availability Vo €t =06, t] ri(t) Ara(t') A
Tg(t/) A 7’4(t/) A r5(t/)

p2(t) Non-repudiation ¥V € [t — 8¢, t] r¢(t") Ar7(¥)

p3(t) Integrity Yy €t =061, re() Arz(t) A

8 (t/)

includes checking that none of them is expired or invalid. r7
checks the configuration of the node by verifying that a default
content certificate has been selected from the ones available.
Rule c;3 returns true if and only if all content certificates stored
in the node are valid at time instant ¢. To measure the stability
of this condition we expand the definition using evaluations
over time ranges. Thus rg can be defined as follows:

True Vyp € [t — &, t] c13(t — 1)
’/’6(t) = 3
False otherwise

Similarly, 7 and rg can be defined by checking respectively
c14 and cy5 over the same time range and is successful if and
only if all the evaluations are positive.

Example 4 (Properties): Let us consider properties non-
repudiation po and integrity ps of the data packets produced
by the NFD node in Table III. Both properties can be formally
described as follows:

pa(t) ==V € [t — i, t] r(t') Are(t)
p3(t) : =V €[t — 6, t] re(t') Arr(t)) Arg(t)

D. Certificate

The certificate is the final outcome of a certification pro-
cess. It is awarded to the NDN nodes in case of successful
evaluation of the set of inference rules related to the given
set of properties. It includes the evidence (i.e., measurements
and inference rule results) and the corresponding timestamp
as follows.

Definition 2: A certtificate C' is a quadruple <P,M¢,Ry¢,t>
where P is a finite set of properties p, Rt is a set of related
inference rules, My is a set of measurements supporting P,
and ¢t is the time instant of the evaluation.

A certificate can be awarded at time ¢ iff V,ep, p(t).f(R) =
true. We note that time instant ¢ is important for certificate life
cycle management. If a certificate already exists, it is updated
every time new evidence is available. In case rule evaluation
is negative, the certificate may move to the revoke state.

IV. CERTIFICATION PROCESS

Our certification process efficiently implements the method-
ology in Section III using a pruning-based approach. When
multiple properties are evaluated, corresponding metrics and
rules are activated and executed only once, even if requested by
multiple rules. This permits to handle complex synchronization
between properties requesting different time frames.

We model the set of all possible inference rules and metrics
as a DAG where:
« each node represents a task;
« if an arch is exiting from a node A and entering in a node
B, we say that the execution of A requires the results of
the execution of B;
« metrics cannot have dependencies, that is, their nodes can
only have incoming arcs;
« rules can depend both on rules or measurements retrieved
by metrics.
Property certification is defined over the DAG and consists
of the following steps.

DAG Pruning. It prunes those nodes in the DAG that are not
required for the evaluation of the given properties. We then
define a function that selects all graph nodes that are relevant
for the evaluation. With r(n) being the set of nodes required
by node n, the selection function s can be defined recursively

as follows:
s(n)={n}u |J s(d)
der(n)

The graph of all the possible computable tasks is reduced to the
union of the sets produced by applying the selection function
to each property. With T being the set of tasks in the graph
and P C T the set of properties we want to validate, we can
compute ’i‘, the minimal set of tasks to evaluate as follows:

T= U s(n)
neP
This solution uses the naive assumption that all the required
tasks output are necessary to complete the task evaluation. A
more efficient implementation can differentiate the selection
based on the content of the task received as input.

Tasks execution. This step executes each task of the pruned
graph, such that all of its requirements have been evaluated
beforehand. Task execution is described using the pseudocode
in Algorithm 1. Algorithm 1 shows how to iterate the pruned
set of tasks to check if all the dependencies have been resolved.
If yes, the evaluation starts; otherwise, the task is set aside
until the next iteration loop. The lack of cycles in the DAG
allows us to assume that each task will eventually have all its
dependencies resolved. We note that when the evaluation of
a rule or a metric fails (e.g., for a network connection error
or missing data), an error is triggered. Depending on the rule
definition, such error may not necessarily cause an abort of
the whole evaluation.

Property evaluation. It collects the outcomes of each task
execution to evaluate the properties. For each property, the CA
checks whether the corresponding rule evaluation is successful.
If all property evaluations return a positive result, the CA
awards the corresponding certificate.

Example 5: Let us consider the evaluation of properties po
and ps, in our previous Example 4, which refers to properties
non-repudiation and integrity, respectively. Figure 3(a) sum-
marizes the dependency relationships between the interested
tasks.



Algorithm 1 Tasks execution
Input: tasks

1: to_execute = tasks

2: while to_execute # () do

3:  for task € to_execute do

4 can_be_executed = true

5: for dep € dependencies(task) do

6: if dep € to_execute then

7 can_be_executed = false

8 break

9: end if

10: end for

11: if can_be_executed then

12: execute(task, dependencies(task))
13: to_execute = to_execute \ {node}
14: end if

15:  end for
16: end while

Algorithm 2 Property evaluation

Input: tasks, properties
1: for task in tasks do

2 if task in properties and not succeeded(task) then

3 return task error

4:  end if

5: end for

6: release_certification()

Our certification process first prunes the certification graph
by selecting only the tasks that are necessary for the evaluation
of the given properties. In this case, the evaluation of the set
T starting from T = {po, ps} is the following:

T = s(p2) U s(p3)
= {p2,p3} Us(rg) Us(ry) Us(rs)
= {p2,p3,76,77,78, 13,14} U
s(c13) U s(era) U s(ers)
= {p2,p3,76,77,78, 13, C14, C15} U
s(m11) U s(mqa) U s(mig)
= {p2,p3,7“6,7‘777”87013,6147015,m11,m12,m14}

We recursively apply function s to the initial set T. At each
application step, we show how the group contains the task as
input and the result of the function s applied to each of its
dependencies. The function stops when we reach a task that
has no dependencies, in this case the metrics my;, mi2 and
m14. Figure 3(b) shows the DAG after the pruning step when
evaluating the properties ps and ps.

It then executes the first non-blocked tasks, that is, the
metrics my1, M1z, and my4. The collected measurements are
stored and made available to the next tasks, that is, rules
c13,c14 and cy5, which are ready to be executed since all
their requirements completed. Rules r¢, 77, and rg describe a
requirement asking consecutive validity of their dependencies

Id Dependencies

C13  Mi1
Clga M2
Cl5 M4

6 c13 in last &; s
r7  c14 in last &; s
s c15 in last &; s
p2  Te ATy in last §; s

ps  re ATy Argin last §; s
()

} Properties o

Inference
rules

@ @ @ }Measures
()

Fig. 3. Table of dependencies (a), Pruned DAG (b)

Pruning
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for at least 2 minutes, meaning that their output will be true iff
all the evaluations of their dependencies in the last 2 minutes
have given a positive result. Depending on the strictness of the
bounds, we can require that all the dependency evaluations
within 2 minutes have produced a positive results or, more
rigorously, that at least two minutes worth of measurements
have been attempted and have generated a positive output. The
same distinction can be done using the number of iterations,
that is, a certain task had only positive results in the last 5
iterations. Similarly, both properties p, and ps require rules
r¢ and 77 to be positively evaluated for 2 minutes, with ps
also requiring rg. Once ps and ps have been executed, all
the tasks in T have been completed and the certification
process can start the collection of the property evaluation
results. If and only if all the properties have returned a
positive output, the CA awards a certificate as output. In
the event of an input/output error during the measures or a
missing dependency in a rule evaluation, the process interrupts
immediately and returns a report of the execution state.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated the soundness and perfor-
mance of our certification approach showing how the mea-
surements collected by our metrics can be used to i) identify a
change in the system state and ii) evaluate inference rules that
permit to issue/confirm a certificate in case of positive evalua-
tion or revoke it, otherwise. We first present our experimental
setup; we then provide a complete certification walkthrough
to show the utility and usability of our approach; we conclude



with a performance evaluation. Interested readers can access
all results at https.://bit.ly/3xPDmiy.

A. Experimental setup

We run our experiments in a controlled and repeatable en-
vironment based on Mini-NDN?2, an extension of the network
virtualization system Mininet®> specific for NDN. Mini-NDN
permits to deploy a set of virtualized NDN nodes on a single
host and to run our software. In particular, to generate realistic
traffic in the network, we used a producer-consumer paradigm
installing the following services on the nodes:

e Producer: a NDN service that listens for interest requests
on a specific prefix and returns a data packet with a
random string of fixed length. Having a unique prefix
for each node, these services can be queried by any
NDN clients in the network. Multiple producers can be
deployed on the same node on different prefixes.

o Consumer: a NDN service that repeatedly requests con-
tent from a specific prefix domain. The rate of the
requests and the used domains can be customized to
better simulate traffic using a list of known content paths,
sampled with a linear or Zipf-like probability distribution.

o CA: an agent running in the target node and supporting
our certification methodology. It checks for updates on
the certificate status every second evaluating relevant
inference rules.

The network topology is a three-node chain, where each
node uses the base NFD configuration, enabling the caching
of unsolicited data and limiting the CS to 300 entries. The
two outer nodes generate network traffic using a two-way,
producer-consumer connection: each node registers a unique
prefix for its producer service, responding to any requests
with a random string of length 20. The same nodes also run
a consumer service, requesting contents from the other node
prefix. The consumer uses a domain of content names obtained
converting the NASA website HTTP Requests data set to the
NDN protocol, released along the application source code, a
Zipf-like distribution with s = 1.2, and a request rate of 5/s.

The default implementation of the NFD process collects
various metrics on its internal status through specific tools
(nfdc and ndnsec) producing either a status report in XML
format or a parseable output. These tools are shipped within
the NFD distribution and do not interfere with the protocol. To
capture our certification measurements, we add new metrics to
the nfdc status report and use ndnsec. These tools are already
deployed within the NFD distribution and we extend them in
a compatibility-preserving manner.

The experiments were executed on a Linux kernel 5.11 zen
machine equipped with Intel i7-8750h, 32GB of RAM and
NVME SSD. They targeted properties p; (i.e., availability),
p2 (i.e., non-repudiation), and ps (i.e., integrity), using the
complete rule set described in Section IV and a certification
time window §; of 120s.

Zhttps://github.com/named-data/mini-ndn
3https://github.com/mininet/mininet
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Fig. 4. Certification of property p; with the more relevant measurements and
inference rules. White and black horizontal bars mean positive or negative
evaluation respectively.

B. Certificate Awarding Process

We simulated a normal and almost constant NDN traffic
to show the certificate awarding process in action. After the
first evaluation time frame, properties p2 and p3 were imme-
diately certified due to the NDN default settings discussed in
Section V-A. In the case of property p;, a longer period of
time was needed to aggregate metrics to evaluate the relevant
inference rules. Figure 4 shows with a two-section chart the
evolution of measurements (i.e., mo, ms and m4 at the top
with a line plot) and rules (r2, cg, ¢5 and c4 at the bottom
with an horizontal bar chart) relevant for property p; (plotted
as well in the bottom bar chart). Figure 4 shows, for each
time instant, the value of the selected measurements (top),
the outcome of each rule/property (bottom), that is, positive
outcome in white or negative outcome in black. We note that,
for clarity, we do not report those measurements and rules that
are always providing a positive outcome. We also note that the
same plot style is used in the remaining of these experiments.

The top line chart of Figure 4 shows the output of metrics
using a logarithmic scale. As expected we can see how the
number of packets stored in the CS gradually grew until the
maximum level, reported by mso, was reached at t=200s. The
metric my4, measuring statistics about the size in memory
of the cached contents, shows how the standard deviation
was slowly descending, until ¢=203s, where it dropped to
approximately 2. This is due to the fact that almost the totality
of the data packets came from the outer node producers. The
bottom horizontal bar chart of Figure 4 shows how the most
significant rules varied during the experiment. Rule ¢4, which
requires the CS to contain at least 80% of its maximum number
of entries, returned a positive output starting from t=147s; cs,
which requires the CS stored contents standard deviation to
be smaller than 5 in the last 5 iterations, was rapidly reached
at t=9s; cg, which requires the stored contents size standard
deviation to be smaller than 5, was reached at t=106s. Rule 75,
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Fig. 5. CAation for property p; in case of cache pollution attack with the
more relevant measurements and inference rules.

which requires all its dependencies to return positive outputs
in the last two minutes, was negative until {=259s. At time
t=370s, p; became valid since all dependencies including 75
were valid. CA finally awarded the certificate to the NDN
node.

C. Certificate Revocation

Let us consider a cache pollution attack where a producer
cooperates with the attacker by replying to any received
requests. The attack was simulated starting an additional pair
producer-consumer in the adjacent nodes using a unique prefix.
The producer returned random strings of five characters, while
the consumer used a linear probability distribution over the
NASA data set and a request rate of 20/s.

The attack was simulated for approximately 10 seconds
with the goal of testing certificate revocation for property
p1. The entire experiment continued until the certificate was
restored for the target node. Figure 5 shows the experiment
results using our two-section chart. The certificate for p; was
awarded from ¢=235s. The attack traffic started at t=250s. The
measurements immediately showed the effect of the attack: the
average of my dropped down to 12.45 at t=261s, while the
standard deviation peaked at 7.77 at t=321s. mg, measuring
the outgoing data packets size statistics, dropped its minimum
to 7 as soon as the attack started. This strong alteration
of the NDN was immediately identified by the certification
within few seconds after the beginning of the attack, and the
corresponding certificate was revoked. The attack ended after
10 seconds and the system slowly recovered, finally being re-
assigned with a certificate for p; at t=624s.

Let us now consider a misconfiguration attack violating
properties po and ps. For the misconfiguration procedure,
we created a new identity, signed its certificate with a past
validity time frame, and set it as default. The system default
identity then used an expired certificate. After 10 seconds we
removed the new certificate, leaving the node without a default
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Fig. 6. Certification revocation for property p2 and p3 in case of misconfig-
uration with the more relevant measurements and inference rules.

certificate. Finally, after 10 more seconds, we reset the default
identity to the initial valid one, and waited for the system to
return to a certified state.

Figure 6 shows the experimental results using our two-
section chart. The certificate for p;, ps, and ps was awarded
at t=234s.

The misconfiguration attack effects were immediately vis-
ible at t=260s, where the rule c;3 was violated due to the
presence of an invalid identity on the NDN node. This also
reflected in the violation of rule rg, and the corresponding
properties po and ps resulting in certificate revocation. After
10 seconds, the invalid default identity was removed, resulting
in rg producing a positive outcome and 77 a negative one.
After 10 more seconds, the original valid identity was set as
default, reverting the r; outcome to a positive one. After 2
more minutes (J; time window) the certificate for properties
po and p3 was restored.

D. Performance evaluation

To measure the performance of our certification approach
we adopted the same simulation settings used in Section V-B
based on normal traffic. We measured the time needed to
obtain the measurements, verify the inference rules and prop-
erties, and issue the corresponding certificates. Figure 7 shows
the execution time of the certification process averaged over 5
simulations varying the properties involved in the certification.
We note that the certification process related to property p;
was more computational intensive than the process needed to
certify po and ps together. This effect is due to the number
of rules involved in p; compared to the rules involved in
p2 and ps. We also note that the computation time linearly
increased across time. This effect is due to the incremental
number of evidence accumulated across time that needs to be
considered for the certification. In general, even with frequent
certification attempts (one per second), in the worst case with
all the three properties and after 500 certificate iterations, the
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Fig. 7. Certification process performance considering different properties and
the scenario in Section V-B

computation effort was lower than 10ms. Furthermore, the
maximum memory usage measured was lower than 150MB.
In specific constrained conditions, by applying a pruning step
after each cycle, we could cap the growth of the log size,
removing old and unused information, thus reducing both
the execution time and the memory usage to values almost
constant during the execution.

VI. RELATED WORK

Existing approaches for NDN evaluation have focused
primarily on identification and mitigation of security at-
tacks [10]-[14]. Yao et al. [10] described a cache pollution
prevention system based on gray prediction models, differ-
entiating between false-locality and locality-disruption attacks
against contents popularity. Salah et al. [11] proposed a mod-
ification of the NDN protocol, permitting to exactly measure
the popularity distribution of any contents in a trusted network.
Karami and Guerrero-Zapata [12] used a similar approach,
adapting an ANFIS neural network to the analysis of cached
contents information.

More recently, research has focused on monitoring of
content-based networks traffic with the scope of evaluating
both networking nodes and protocols [14], [19], [20]. Zhou
et al. [19] described a network-behavior monitoring solution
focused on the identification of congestion. Bialas et al. [20]
summarized the modern network monitoring techniques and its
application for anomaly detection. Nguyen et al. [14] focused
on the monitoring of NDN traffic to identify common attacks
against the network using distributed probes.

In this paper, we proposed a certification methodology with
the scope of improving trustworthiness in NDN. Our ap-
proach can integrate with existing NDN monitoring techniques
to effectively prove non-functional properties. Certification
methodologies have been successfully applied to improve
trustworthiness and transparency in many application context
[18], [21]-[25]. Our certification methodology, similarly to

the service-based ones [21], [24], focused primarily on the
software components and on the verification of security mech-
anism behavior. To the best of our knowledge, our paper is the
first attempt to develop a certification methodology for NDN.

VII. CONCLUSIONS

Trustworthiness and transparency are fundamental to un-
leash the full potential and increase the adoption of content-
centric networks. Current literature has mainly proposed pro-
tocol extensions or monitoring techniques to prevent or mit-
igate specific security attacks. In this paper, we proposed an
evidence-based non-functional property certification method-
ology for NDN networks that can complement existing mon-
itoring techniques increasing the overall network trustworthi-
ness. Our certification process implements a rule-based behav-
ioral analysis grounded on network measurements captured in
operation. The results of our experimental evaluation show
the feasibility of our methodology. We believe this paper can
pave the way to novel QoS-oriented content-centric networks
centered on the non-functional properties of the involved
nodes.
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