Abstract:

Introduction: Bleeding risk assessment is recommended in guidelines for the management of atrial fibrillation (AF). HAS-BLED score was proposed prior to non-vitamin K antagonist oral anticoagulants (NOACs) and has been suggested that the ORBIT score may be superior in predicting bleeds in NOAC users. We aimed to compare the HAS-BLED and ORBIT scores in contemporary AF patients treated with NOACs.

Methods and Results: We analyzed patients enrolled in the ESC-EHRA EORP-AF General Long-Term Registry. HAS-BLED and ORBIT scores were computed based on original schemes. The primary outcome was the occurrence of Major Bleeding (MB). A total of 3018 patients (median age 70; 39.6% females) were included: median [IQR] HAS-BLED and ORBIT scores were 1 [1-2] and 1 [0-2], respectively; 356 (11.8%) patients were at high risk for MB using HAS-BLED (≥3) and 123 (4.1%) using ORBIT (≥4). Overall, 60 (2.0%) MB events were recorded, with an incidence of 1.1 per 100 patient-years.

Both HAS-BLED and ORBIT were associated with outcome, modestly predicting MB (AUC 0.653, 95% CI 0.593-0.714 and AUC 0.601, 95% CI 0.526-0.677, respectively). Calibration plots showed that both scores were poorly calibrated, particularly the ORBIT score, which showed consistent poorer calibration. Time-dependent reclassification analysis showed a trend towards incorrect lower risk reclassification using ORBIT compared to HAS-BLED.

Conclusion: In this real-life contemporary cohort of AF patients treated with NOACs, the ORBIT score did not provide reclassification improvement, showing even poorer calibration compared to HAS-BLED. Our findings do not support the preferential use of
Suggested Reviewers:

Shih-Ann Chen
National Yang-Ming University: National Yang Ming Chiao Tung University
epsachen@ms41.hinet.net

Tze-Fan Chao
National Yang-Ming University: National Yang Ming Chiao Tung University
eyckeyck@gmail.com

Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please confirm that this study complies with the Declaration of Helsinki (see the Instructions to Authors for more information).</td>
<td>Yes</td>
</tr>
<tr>
<td>Please confirm you have approval from all co-authors to submit this manuscript?</td>
<td>Yes</td>
</tr>
<tr>
<td>Confirm that the manuscript has been submitted solely to this journal and is not published, in press, or submitted elsewhere.</td>
<td>Yes</td>
</tr>
<tr>
<td>I confirm that I am the corresponding author for the article I am submitting and that Oxford University Press ("OUP") may retain my email address for the purpose of communicating with me about the article. I agree to update my submission account immediately if my details change. If my article is accepted for publication OUP will contact me using the email address I have used in the online submission registration process. Please note that OUP does not retain copies of rejected articles.</td>
<td>Yes</td>
</tr>
<tr>
<td>Please note: If you are not the Corresponding Author for this article, you confirm that the Corresponding Author has given you permission to submit his/her details on his/her behalf and that he/she agrees that Oxford University Press ("OUP") may retain his/her email address for the purpose of communicating with him/her about the article and he/she will notify OUP immediately if his/her details change. You confirm that you will inform the Corresponding Author that if the article is accepted for publication OUP will contact him/her using the email address you have provided on his/her behalf in the registration process.</td>
<td>Yes</td>
</tr>
<tr>
<td>Please enter the word count of your manuscript.</td>
<td>2717</td>
</tr>
<tr>
<td>Does your article contain previously published illustrations for which copyright is held by another publisher?</td>
<td>No</td>
</tr>
<tr>
<td>EHJ-QCCO follows the guidelines of the International Committee of Medical Journal Editors (ICMJE) and an ICMJE Conflict of Interest form must be submitted for each author at the time of manuscript submission. Forms must be submitted even if there is no conflict of interest. It is the responsibility of the corresponding author to ensure that all authors adhere to this policy prior to submission. Submissions without accompanying forms may be delayed or not be sent for peer review.</td>
<td>Yes, I confirm</td>
</tr>
<tr>
<td>A conflict of interest statement must also be included in the manuscript after any "Acknowledgements" and "Funding" sections and should summarize all aspects of any conflicts of interest included on the ICMJE form. If there is no conflict of interest, authors must include 'Conflict of Interest: none declared' in their manuscript.</td>
<td></td>
</tr>
<tr>
<td>Please confirm that you have all the necessary completed conflict of interest form(s) ready to upload as part of this submission and included a conflict of interest statement in the manuscript.</td>
<td></td>
</tr>
<tr>
<td>Please enter your conflict of interest statement below - please summarize all aspects of any conflicts of interest included on the ICMJE form. If there is no conflict of interest, Please just enter 'Conflict of Interest: none declared'. In addition to this please ensure that you also include this same statement in the main manuscript after any "Acknowledgements" and "Funding" sections.</td>
<td>GB received small speaker’s fees from Medtronic, Boston, Boehringer Ingelheim and Bayer; GYHL has been consultant and speaker for BMS/Pfizer, Boehringer Ingelheim and Daiichi-Sankyo. No fees are directly received personally. All other authors have nothing to declare.</td>
</tr>
</tbody>
</table>
as follow-up to “EHJ-QCCO follows the guidelines of the International Committee of Medical Journal Editors (ICMJE) and an ICMJE Conflict of Interest form must be submitted for each author at the time of manuscript submission. Forms must be submitted even if there is no conflict of interest. It is the responsibility of the corresponding author to ensure that all authors adhere to this policy prior to submission. Submissions without accompanying forms may be delayed or not be sent for peer review.

A conflict of interest statement must also be included in the manuscript after any "Acknowledgements” and "Funding" sections and should summarize all aspects of any conflicts of interest included on the ICMJE form. If there is no conflict of interest, authors must include 'Conflict of Interest: none declared' in their manuscript.

Please confirm that you have all the necessary completed conflict of interest form(s) ready to upload as part of this submission and included a conflict of interest statement in the manuscript.

Does your manuscript require english language editing? No

Please confirm that you have read the journal research data policy (see the Instructions to Authors for more information) and you have included a data availability statement in your article? Yes

Twitter message (Please submit a catchy Twitter message of max. 280 characters, which we would use to promote this submission in the event of acceptance - Max 280 characters).

Other Authors:

Giulio Francesco Romiti
Marco Vitolo
Tatjana S Potpara
REPLY TO REVIEWERS

Reviewer 1

Prediction of major bleeding by HAS-BLED and ORBIT was compared in 3018 patients receiving NOACs in EORP-AF. Both HAS-BLED and ORBIT were modestly predictive of major bleeding, but both scores were poorly calibrated. Time dependent reclassification analysis showed a trend towards incorrect lower risk reclassification using ORBIT compared to HAS-BLED. The authors concluded that the findings do not support the preferential use of ORBIT in NOAC-treated AF patients.

COMMENTS

1. Nicely presented and clinically relevant data
 >>>REPLY: Many thanks for your comments.

 >>>REPLY: We added this (see Page 5, Lines 7-9).

3. Major bleeding defined as “intracranial hemorrhage and major extracranial hemorrhage during follow-up.” What is meant by “major extracranial haemorrhage”?
 >>>REPLY: We added details on definition of major extracranial haemorrhage (see Page 7, Lines 6-8).

4. Only 20 major bleeding events during a mean of about 2 years follow-up. Why so low?
 >>>REPLY: We have commented about this in Discussion section (see Page 12, Lines 16-24). Our data reflect the general low incidence of major bleeding reported in contemporary AF patients’ cohorts. Such a low incidence of major bleeding in contemporary AF patients could probably reflect both the introduction and the implementation of NOACs, as well as the general and overall improvement in AF patients’ management.

 a) How confident are we that major bleeding events were recorded
 >>>REPLY: The absence of a central adjudication of events represents a major limitation to the manuscript, as stated in the Limitations section. Given the important consequences related to the occurrence of a major bleeding we believe that is quite unlikely that a major bleeding would not be reported by a patient. We have discussed this in Limitations section (see Page 15, Lines 17-22).

 b) What was the breakdown of major bleeding events between intracranial and extracranial haemorrhage
 >>>REPLY: We added this information (see Page 9, Lines 15-16).
c) How did the low event rate compromise the ability of this study to show a significant difference between the two risk prediction models

>>>REPLY: Thank you. Compared to the derivation cohorts (e.g., EuroHeart Survey which were from a dataset of a different era, >15 years ago), we found lower rates of bleeding events. Although this may have had an influence in our ability to compare the predictive ability of the two scores, our data emphasises how both these scores may be sub-optimally calibrated in a more modern contemporary NOAC-treated AF cohort like our study (see Page 15, Lines 22-25 and Page 16, Lines 1-3).

5. Please provide mortality/stroke data. What assumptions were made about bleeding in patients who died?

>>>REPLY: We added data on ischemic stroke and all-cause death events (Page 9, Lines 19-20). As reported, the analysis of follow-up was performed according to an intention-to-treat approach. Follow-up was censored at the end of observation or at occurrence of death, whichever occurred first (see Page 7, Lines 11-13).
Comparison of HAS-BLED and ORBIT Bleeding Risk Scores in AF Patients treated with NOACs: A Report from the ESC-EHRA EORP-AF General Long-Term Registry

Marco Proietti1,2,3* MD PhD, Giulio Francesco Romiti4* MD, Marco Vitolo1,5,6 MD, Tatjana S Potpara7,8 MD PhD, Giuseppe Boriani5† MD PhD, Gregory Y.H. Lip1,9† MD; on behalf of ESC-EHRA EORP-AF Long-Term General Registry Investigators10

1Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; 2IRCCS Istituti Clinici Scientifici Maugeri, Milano, Italy; 3Department of Clinical Sciences and Community Health, University of Milan, Italy; 4Department of Translational and Precision Medicine, Sapienza – University of Rome, Italy; 5Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Italy; 6Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy; 7School of Medicine, University of Belgrade, Belgrade, Serbia; 8Intensive Arrhythmia Care, Cardiology Clinic, Clinical Center of Serbia, Belgrade, Serbia; 9Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; 10See Appendix in Supplementary Materials.

*equally contributing authors

†joint senior authors

Corresponding Author

Marco Proietti MD PhD FESC FEHRA

Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri

Via Camaldoli 64, 20138, Milan, Italy

ORCiD: 0000-0003-1452-2478

Tel: +39-2-50725141

Twitter Handle: @MProiettiMD

e-mail: marco.proietti@unimi.it

See Appendix in Supplementary Materials.
ABSTRACT

Introduction: Bleeding risk assessment is recommended in guidelines for the management of atrial fibrillation (AF). HAS-BLED score was proposed prior to non-vitamin K antagonist oral anticoagulants (NOACs) and has been suggested that the ORBIT score may be superior in predicting bleeds in NOAC users. We aimed to compare the HAS-BLED and ORBIT scores in contemporary AF patients treated with NOACs.

Methods and Results: We analyzed patients enrolled in the ESC-EHRA EORP-AF General Long-Term Registry. HAS-BLED and ORBIT scores were computed based on original schemes. The primary outcome was the occurrence of Major Bleeding (MB). A total of 3018 patients (median age 70; 39.6% females) were included:

- Median [IQR] HAS-BLED and ORBIT scores were 1 [1-2] and 1 [0-2], respectively;
- 356 (11.8%) patients were at high risk for MB using HAS-BLED (≥3) and 123 (4.1%) using ORBIT (≥4).
- Overall, 60 (2.0%) MB events were recorded, with an incidence of 1.1 per 100 patient-years.

Both HAS-BLED and ORBIT were associated with outcome, modestly predicting MB (AUC 0.653, 95% CI 0.593-0.714 and AUC 0.601, 95% CI 0.526-0.677, respectively). Calibration plots showed that both scores were poorly calibrated, particularly the ORBIT score, which showed consistent poorer calibration. Time-dependent reclassification analysis showed a trend towards incorrect lower risk reclassification using ORBIT compared to HAS-BLED.

Conclusion: In this real-life contemporary cohort of AF patients treated with NOACs, the ORBIT score did not provide reclassification improvement, showing even poorer calibration compared to HAS-BLED. Our findings do not support the preferential use of ORBIT in NOAC-treated AF patients.
Keywords: atrial fibrillation; bleeding risk; HAS-BLED; ORBIT.
INTRODUCTION

Clinical guidelines on the management of atrial fibrillation (AF) recommend the evaluation of bleeding risk factors, in order to address modifiable risk factors for mitigation, and flag up high bleeding risk patients for early review and follow-up1–3. Furthermore, the assessment of bleeding risk need to be re-evaluated during follow-up visits, since the risk of bleeding need to be considered as dynamic rather than static2,4.

Among the various bleeding risk scores, the HAS-BLED score is currently recommended by most of international guidelines1–3, on the basis of its simplicity, better predictive profile and validation across the patient pathway (untreated, antiplatelets, anticoagulants) compared to the various other bleeding scores5,6. The 2021 UK National Institute for Health and Care Excellence’ (NICE) updated recommendation for clinical management of AF patients7 promoted the use of the ORBIT bleeding risk score to evaluate bleeding risk in patients treated with non-vitamin K antagonist oral anticoagulants (NOACs) due to better calibration compared to other bleeding risk scores (albeit ‘with very low to low quality data’)7.

As the HAS-BLED score was initially proposed in the era prior to NOACs, the aim of the present study was to formally compare the HAS-BLED and ORBIT bleeding risk scores in AF patients actually treated with NOACs in a large prospective real-world cohort of European AF patients.
METHODS

To perform this analysis, we used the dataset from the ‘European Society of Cardiology - European Heart Rhythm Association’ (ESC-EHRA) EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry. The ESC-EHRA EORP AF General Long-Term Registry is a prospective multicentre observational registry held by the ESC and endorsed by the EHRA, with the General Long-Term Registry preceded by the EORP-AF General Pilot Registry\(^8\)-\(^{11}\) and followed by the ESC-EHRA EORP-AF III Registry\(^12\), in the context of the independent observational research from the ESC. The EORP-AF General Long-Term Registry is a prospective, observational, multicentre registry established by ESC in 27 participating countries. The study enrolled 11,096 consecutive patients with AF presenting in 250 cardiology practices, in both in- and outpatient settings. The detailed description of the study design, baseline characteristics and 1-year follow-up results have been provided previously\(^{13,14}\). Briefly, all patients enrolled had AF documented within 12 months before enrolment based on objective electrocardiographic evaluation. All patients were aged ≥18 years and provided written informed consent. Enrolment was undertaken from October 2013 to September 2016, with 1-year and 2-year follow-up. Institutional review board approved the study protocol for each country and subsequently for each enrolling site, and the study was performed according to the EU Note for Guidance on Good Clinical Practice CPMP/ECH/135/95 and the Declaration of Helsinki.

For the purposes of this paper, we included in this analysis all those patients enrolled into the ESC-EHRA EORP-AF General Long-Term Registry which were prescribed with NOACs at baseline and had available data about HAS-BLED and ORBIT.
bleeding scores with available follow-up information about events occurring throughout the follow-up observation.

Thromboembolic risk was defined according to CHA$_2$DS$_2$-VASc score15. Based on the new NICE guidelines7, ‘Low risk’ was defined as a CHA$_2$DS$_2$-VASc score 0 in males and 1 in females; ‘moderate risk’ was defined for a CHA$_2$DS$_2$-VASc 1 in males; ‘high risk’ was defined as CHA$_2$DS$_2$-VASc ≥2. Symptomatic status was defined according to EHRA score16. Chronic AF was defined as long-standing persistent and permanent AF, while non chronic AF was defined as first detected, paroxysmal and persistent AF.

Bleeding Scores

HAS-BLED and ORBIT bleeding scores were both calculated on the basis of the original validated schemes17,18. In EORP-AF, the HAS-BLED score was originally calculated during baseline evaluation automatically by the electronic case report form (eCRF), based on clinical variables and medical interview. ORBIT was calculated retrospectively based on information collected into the final dataset. Clinical variables used to compile both the scores were reported in Supplementary Materials (Table S1). High bleeding risk was defined for a HAS-BLED ≥3 and for an ORBIT ≥417,18, respectively.

Follow-Up and Outcomes

All patients discharged alive after the baseline evaluation entered the follow-up. During follow-up all incident major adverse clinical events were recorded by each investigator and entered the eCRF at 1-year and 2-years follow-up visits. Follow-up was permitted also by telephone interview with the patient or next of kin in the case...
the patients was deceased or unable to perform the interview. More details about
follow-up procedures were already reported elsewhere14.

Major bleeding was considered as the primary study outcome for this analysis. Major
bleeding was defined based on occurrence of intracranial hemorrhage and major
extracranial hemorrhage during follow-up. Major extracranial bleeding was defined
as a bleeding event causing a drop in haemoglobin level >2 g/L, requiring blood
transfusion or hospitalization occurring in any major organ system. Evaluation of
bleeding outcomes was performed by each investigator and not adjudicated
centrally. Follow-up analysis was performed according to an intention-to-treat
approach. Follow-up was censored at the end of observation or at occurrence of
death, whichever occurred first. Additionally, we reported the occurrence of ischemic
stroke and all-cause death.

Statistical Analysis

Continuous variables were expressed as median and interquartile ranges.
Categorical variables were expressed as counts and percentages. Difference in
survival according to risk scores were assessed with Kaplan-Meier curves and Log-
Rank test. Cox proportional hazard analysis were also performed to assess the
occurrence of bleeding events according to both high risk categories and continuous
scores. The Cox model was adjusted for female sex, EHRA score and type of AF.

For each score we also produced ROC curves and calculated the area under the
curve (AUC) and 95% CI for AUC were estimated using the method by De-Long &
De-Long19. Calibration plots were produced calculating the incidence rate (IR) of
bleeding events for each score category in our cohort, and then plotting these IRs against those reported in the derivation cohorts17,18. Reclassification analysis were performed with HAS-BLED as reference; integrated discrimination improvement (IDI), net reclassification improvement (NRI) and the median improvement were calculated with a time-dependent approach, using scores in continuous, and according to the method described by Pencina et al.20, with the survIDINRI package. Decision Curve Analysis was also performed according to previously reported method21. Two-sided p values <0.05 were considered statistically significant. All analyses were performed with SPSS statistical software version 27.0.1 for MacOS and R 4.0.3 for Windows22, using pROC23, rms24, rmda25 and survIDINRI26 packages.
RESULTS

From the overall cohort originally enrolled in EORP-AF, a total of 3,018 patients were included (median [IQR] age 70 [62-77] years; 1196 (39.6%) female). Median [IQR] CHA₂DS₂-VASc score was 3 [2-4], and 2180 (72.2%) were at high thromboembolic risk. Main baseline characteristics are shown in Table 1.

Distribution of bleeding scores are shown in Table 2. The mean (SD) HAS-BLED score was 1.3 (1.0) [median [IQR] score 1 [1-2]], with 356 (11.8%) at high bleeding risk. The mean ORBIT score was 1.0 (1.2) [median [IQR] 1 [0-2]], with 123 (4.1%) at high bleeding risk. Very low bleeding risk was found in 605 (20.0%) using HAS-BLED and in 1495 (49.5%) with the ORBIT score.

Incidence of Major Bleeding

Over a mean (SD) 680.79 (174.32) days of follow-up a total of 20 major bleeding events were reported (9 intracranial bleedings and 51 major extracranial haemorrhages), with an overall incidence of 1.1 per 100 patient-years. Incidence rates according to the bleeding risk scores are reported in Table 2. Major bleeding rates progressively increased according to both continuous HAS-BLED and ORBIT score points (Table 2). We also recorded a total of 54 ischemic stroke events (0.96 per 100 patient-years) and 224 all-cause death events (3.93 per 100 patient-years).

Based on the HAS-BLED score, major bleeding incidence in the low bleeding risk group was 0.92 per 100 patient-years, increasing to 2.26 per 100 patient-years in the high bleeding risk group. For the ORBIT score incidence rate in low bleeding risk group was 0.94 per 100 patient-years, increasing to 4.58 per 100 patient-years in the
high risk group. Kaplan-Meier curves [Figure 1] show that for both scores, the high
bleeding risk category had a greater cumulative bleeding risk than the low risk group.

Risk Scores and Major Bleeding

In the Cox regression analysis (Table 3), both the risk scores were associated with
occurrence of major bleeding as continuous scores in univariate analysis and after
multivariate adjustments. Similarly, the high bleeding risk category was significantly
associated with the occurrence of major bleeding for both scores.

For the HAS-BLED score, those with high baseline bleeding risk (i.e., HAS-BLED ≥3)
had >2-fold increase in risk (Hazard Ratio [HR] 2.26, 95% confidence interval [CI]
1.23-4.15) compared to the low bleeding risk group, after adjustment for female sex,
EHRA score and type of AF (chronic vs. non-chronic). For the ORBIT score, high
baseline bleeding risk (i.e., ORBIT ≥4) had >4-fold increase in risk (HR 4.62, 95% CI
2.25-9.46) compared to ORBIT score <4, after adjustment for female sex, EHRA
score and type of AF.

Of the 1495 patients (49.5%) categorised as ‘very low’ bleeding risk using the ORBIT
score, re-stratifying these patients by HAS-BLED score showed that 63.3% were at
moderate-high bleeding risk. In this subgroup of patients (‘very low’ bleeding risk
using ORBIT score), HAS-BLED score was significantly associated with risk of major
bleeding (HR 1.90, 95% CI 1.26-2.85), after adjustment for female sex, EHRA score,
and type of AF.

Predictive Ability, Reclassification Analysis and Calibration Plots
ROC curve analyses showed that both the scores were able to predict the occurrence of major bleeding events with a moderate ability, with HAS-BLED score reporting a numerically higher AUC (or c-index) value than the ORBIT score (AUCs 0.653, 95% CI 0.593-0.714 and AUC 0.601, 95% CI 0.526-0.677, respectively). Visual inspection of the two ROC curves seems to suggest a superiority in predicting the occurrence of major bleeding for HAS-BLED score than ORBIT score [Figure S1], but this difference was not statistically significant using the De-Long and De-Long test, p=0.216. In the cohort of 1495 (49.5%) patients with very low bleeding risk according to ORBIT score, the HAS-BLED showed a good predictive performance (AUC 0.701, 95% CI 0.614-0.788) [Figure S2].

Reclassification analyses are reported in Table 4. Projecting the risk stratification performance at 1 year of follow-up, no difference was found between the two scores. At 2 years of follow-up while a non-significant trend for lower risk reclassification capacity, in terms of NRI, with loss in median improvement for the ORBIT score compared to the HAS-BLED score. Examination of the DCA curves [Figure S3] did not show any relevant difference in net benefit by using one score or the other.

Results from the model calibration analysis comparing observed major bleeding rates in the EORP-AF registry with reported bleeding rates in the original derivation populations for HAS-BLED and ORBIT scores are shown in Figure 2. The HAS-BLED score showed good calibration for the low-risk score strata, with poor calibration in the higher bleeding risk strata. In comparison, the ORBIT score showed poorer calibration than the HAS-BLED score throughout all risk strata.
DISCUSSION

In this analysis, we found that in NOAC-treated AF patients, the use of the HAS-BLED score identified almost 12% of patients with a high risk of bleeding and 20% of patients with a very low risk of bleeding, while using the ORBIT score only identified 4% of patients at high risk of bleeding and half of the entire cohort was considered at very low risk of bleeding. Second, both the scores were significantly associated with major bleeding and predicted the event with a similarly modest capacity (c-indexes 0.60-0.65), consistent with a general performance of clinical risk scores. In the reclassification analysis, we found only a non-significant trend for poorer reclassification with the ORBIT score, while the analysis of the calibration plots showed that both the scores were not well calibrated in this cohort for the high bleeding risk strata, which was worse for the ORBIT score compared to the HAS-BLED score. These findings do not support the preferential use of ORBIT in NOAC-treated AF patients.

In this contemporary cohort of NOAC-treated AF patients, the incidence of major bleeding was low, consistent with other previous contemporary studies of AF patients management27,28. In an analysis derived from the GARFIELD-AF registry, the overall incidence of major bleeding was 1.31 per 100 patient-years27. In the follow-up of the GLORIA-AF registry phase II, the overall incidence of major bleeding was 0.97 per 100 patient-years28. Such a low incidence of major bleeding in contemporary AF patients could reflect both the introduction and the implementation of NOACs, as well as the general and overall improvement in AF patient management.
In AF management, the assessment of bleeding risk is essential for all the patients, both at baseline and throughout their follow-up1–3. The appropriate and responsible use of bleeding risk scores is really to draw attention to modifiable bleeding risk factors that can be mitigated, and to flag up the high bleeding risk patients for early review and proactive regular follow-up29,30. This strategy has been tested prospectively in the mAFA-II trial, which was a cluster randomised trial where the mAFA intervention (which used the HAS-BLED score to mitigate modifiable bleeding risks and arrange follow-up of high bleeding risk patients) was compared to usual care31. This showed that major bleeding was lower in the intervention arm, compared to usual care; importantly, the use of OAC increased over 12 months in the intervention arm, but declined in the usual care arm31. Overall patients in the intervention arm showed a lower risk of adverse outcomes32. Many bleeding risk scores have been published thus far33, and the HAS-BLED score has been found to be superior or performing equally compared to more complex risk scores or clinical approaches exclusively focused on modifiable bleeding risk factors34–37. Several systematic review and meta-analyses examining the differential ability of the various bleeding risk scores have been published, and all indicate that the HAS-BLED score provided better predictive ability, and expressing the best balance between sensitivity and specificity5,38–40. The ORBIT score was originally derived from a largely anticoagulated cohort from the ‘Outcomes Registry for Better Informed Treatment of Atrial Fibrillation’ (ORBIT-AF) study, with the aim to provide a simpler score with better predictive ability, with good calibration18,41. The published evidence thus far suggests that the ORBIT score does not provide any profound
advantage compared to the HAS-BLED score34,42–44, despite a slightly superior calibration in some studies18,41.

In terms of practical application, the ORBIT score largely focuses on non-modifiable bleeding risk factors, while the HAS-BLED score includes both modifiable and non-modifiable bleeding risk factors, which would have an impact on how patients would be categorised as low or high risk (see Figure 3 for illustrative case, also comparing with 2 other bleeding scores, ATRIA and HEMORRH\textsubscript{2}AGES33). Indeed, categorising a patient as ‘low risk’ usually means ‘no action’ while a ‘high bleeding risk’ alerts from electronic medical records triggers a healthcare professional to action a follow-up plan. This is also reinforced by our exploratory analysis in the present study on the ‘very low risk’ patients according to ORBIT score, in which HAS-BLED was still strongly associated with occurrence of major bleeding, with a good predictive performance. Bleeding risk is also dynamic rather than static, with the risk changing with age and incident comorbidities; hence, the assessment of bleeding risk at each visit can also significantly impact the clinical course of the patients with AF45,46.

In this context, our data reinforce and strengthen previous evidence, showing how even in a contemporary cohort of NOAC treated patients, the ORBIT score categorises a very high proportion of patients in the ‘very low risk’ category, not providing any gain in terms of predictive ability. While the original authors underlined the ability of ORBIT score as to be able to identify the ‘real’ high-risk patients, this is in contrast with the practical use of a bleeding risk score, as discussed above.
The recent update of the NICE clinical guidelines for the management of AF patients recommends the use of ORBIT bleeding score in NOAC treated patients, due to the ‘better calibration with this score’ but ‘with very low to low quality data’.

In the evidence review conducted by NICE (https://www.nice.org.uk/guidance/ng196/evidence/evidence-reviews-april-2021-9081923437) their recommendation was essentially based on four studies: one of which was in the specific setting of patients with a previous stroke and 3 in mixed cohorts taking vitamin K antagonists and NOACs. The NICE guidelines clearly state that there was no difference in terms of predictive ability, showing similar pooled AUCs for the two scores, and no difference in terms of reclassification.

In this context, our data for the high bleeding risk strata also underline the poorer calibration for the ORBIT score in our AF patients taking NOACs.

Limitations

The main limitation of the current study is related to the observational nature of the registry itself. The absence of a central events adjudication with an investigator-based reporting of the adverse outcomes represents another limitation, which entails caution in interpreting the current results. Whilst an underreporting of adverse outcomes can still be possible, given the important consequences of a major bleeding event on patients’ health we believe that is quite unlikely that a major bleeding event would not be reported.

Compared to the derivation cohorts we found lower rates of bleeding events; this may have influenced the comparisons of the predictive ability of the two scores. Also, we show their sub-optimally calibration in this more contemporary NOAC-treated AF cohort, being unsuitable for accurate
bleeding event rate estimation. Instead, bleeding risk scores should appropriately focus on modifiable bleeding risk factors for mitigation, and to flag up the high bleeding risk patients for review (Figure 3).

CONCLUSIONS

In this real-life contemporary cohort of AF treated with NOACs, the ORBIT score did not provide reclassification improvement or better calibration compared to HAS-BLED. Both scores were associated with a risk of MB and were sub-optimally calibrated for those in high bleeding risk strata, particularly poor with the ORBIT score. Also, the use of ORBIT score categorised a great proportion of patients into the very low risk category. Our findings do not support the preferential use of ORBIT score in NOAC-treated AF patients.
SUPPLEMENTARY MATERIALS

Supplementary Methods

Assessment of Bleeding Risk Scores

Figure S1: Bleeding Risk Scores ROC Curves for Major Bleeding Occurrence

Figure S2: HAS-BLED Score ROC Curve in ORBIT Very Low Risk Patients

Figure S3: DCA Curves for Bleeding Risk Scores

APPENDIX: EURObservational Research Programme Atrial Fibrillation (EORP-AF) Long-Term General Registry Committees and Investigators
ACKNOWLEDGEMENTS

EORP Oversight Committee, Executive and Steering Committees (National Coordinators) of the EURObservational Research Programme (EORP) – Atrial Fibrillation General Long-Term (EORP-AF Gen LT) Registry of the European Society of Cardiology (ESC). Data collection was conducted by the EORP department by Patti-Ann McNeill as Project Officer, Viviane Missiamenou as Data Manager. Overall activities were coordinated and supervised by Doctor Aldo P. Maggioni (EORP Scientific Coordinator).

FUNDING

Since the start of EORP, the following companies have supported the programme:

COMPETING INTERESTS

GB received small speaker’s fees from Medtronic, Boston, Boehringer Ingelheim and Bayer; GYHL has been consultant and speaker for BMS/Pfizer, Boehringer Ingelheim and Daiichi-Sankyo. No fees are directly received personally. All other authors have nothing to declare.
AVAILABILITY OF DATA

All relevant data regarding the study are included in the manuscript.
REFERENCES

of Cardiology member countries of atrial fibrillation management: baseline

22. R Core Team. R: A Language and Environment for Statistical Computing.

26. Uno H, Cai T. survIDINRI: IDI and NRI for comparing competing risk prediction models with censored survival data.

34. Proietti M, Senoo K, Lane DA, et al. Major Bleeding in Patients with Non-Valvular Atrial Fibrillation: Impact of Time in Therapeutic Range on

2 42. Senoo K, Proietti M, Lane DA, et al. Evaluation of the HAS-BLED, ATRIA and
4 Epub ahead of print 16 October 2015. DOI: 10.1016/j.amjmed.2015.10.001.

5 43. Senoo K, Lip GYH. Predictive abilities of the HAS-BLED and ORBIT bleeding
6 risk scores in non-warfarin anticoagulated atrial fibrillation patients: An ancillary
7 analysis from the AMADEUS trial. *Int J Cardiol* 2016; 221: 379–382.

8 44. Mori N, Sotomi Y, Hirata A, et al. External Validation of the ORBIT Bleeding
9 Score and the HAS-BLED Score in Nonvalvular Atrial Fibrillation Patients
10 Using Direct Oral Anticoagulants (Asian Data from the DIRECT Registry). *Am
11 J Cardiol* 2019; 124: 1044–1048.

13 Patients with Atrial Fibrillation Treated with Oral Anticoagulants: A Comparison
14 of Baseline, Follow-up and Delta HAS-BLED Scores with an Approach
15 Focused on Modifiable Bleeding Risk Factors. *Thromb Haemost* 2018; 118:
16 768–777.

17 46. Fabritz L, Crijns HJGM, Guasch E, et al. Dynamic risk assessment to improve
18 quality of care in patients with atrial fibrillation: The 7th AFNET/EHRA

20 47. Hilkens NA, Algra A, Greving JP. Predicting major bleeding in ischemic stroke

23 Bleeding Scores in Atrial Fibrillation Patients Using Non-Vitamin K Antagonist

FIGURES LEGENDS

1

2

3 Figure 1: Kaplan-Meier Curves for Bleeding Risk Scores

4 Legend: HAS-BLED) Log-Rank= 9.044, p=0.003; ORBIT) Log-Rank= 22.932, p<0.001.

6

7 Figure 2: Calibration Curves for Bleeding Risk Scores in EORP-AF Cohort

8 Legend: EORP-AF= EURObservational Research Programme in Atrial Fibrillation.

9

10 Figure 3: Illustrative Case for Baseline Bleeding Risk Evaluation in AF Patients

11 Legend: AF= Atrial Fibrillation; BP= Blood Pressure; ESC= European Society of Cardiology; NSAIDs= Non-Steroidal Anti-Inflammatory Drugs; OAC= Oral Anticoagulant.
Table 1: Baseline Characteristics of Patients Included in the Analysis

<table>
<thead>
<tr>
<th>EORP-AF LT General Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 3018</td>
</tr>
<tr>
<td>Age, years median [IQR]</td>
</tr>
<tr>
<td>Female Sex, n (%)</td>
</tr>
<tr>
<td>BMI, kg/m² median [IQR]</td>
</tr>
<tr>
<td>CrCl, mL/min median [IQR]</td>
</tr>
<tr>
<td>SBP, mmHg median [IQR]</td>
</tr>
<tr>
<td>DBP, mmHg median [IQR]</td>
</tr>
<tr>
<td>Chronic AF, n (%)</td>
</tr>
<tr>
<td>Heart Failure, n (%)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
</tr>
<tr>
<td>Diabetes Mellitus, n (%)</td>
</tr>
<tr>
<td>CAD, n (%)</td>
</tr>
<tr>
<td>PAD, n (%)</td>
</tr>
<tr>
<td>Stroke/TIA, n (%)</td>
</tr>
<tr>
<td>Previous Bleeding, n (%)</td>
</tr>
<tr>
<td>Liver Disease, n (%)</td>
</tr>
<tr>
<td>CKD, n (%)</td>
</tr>
<tr>
<td>CHA²DS²-VASc, median [IQR]</td>
</tr>
</tbody>
</table>

Legend: AF= Atrial Fibrillation; BMI= Body Mass Index; CAD= Coronary Artery Disease; CKD= Chronic Kidney Disease; CrCl= Creatinine Clearance; DBP= Diastolic Blood Pressure; EORP-AF= EURObservational Research Programme in Atrial Fibrillation; IQR= Interquartile Range; LT= Long-Term; PAD= Peripheral Artery Disease; SBP= Systolic Blood Pressure; TIA= Transient Ischemic Attack.
Table 2: Bleeding Scores Distribution and Incidence of Major Bleeding

<table>
<thead>
<tr>
<th>HAS-BLED</th>
<th>ORBIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>1.3 (1.0)</td>
</tr>
<tr>
<td>Median [IQR]</td>
<td>1 [1-2]</td>
</tr>
<tr>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>0</td>
<td>605 (20.0)</td>
</tr>
<tr>
<td>1</td>
<td>1199 (39.7)</td>
</tr>
<tr>
<td>2</td>
<td>858 (28.4)</td>
</tr>
<tr>
<td>3</td>
<td>290 (9.6)</td>
</tr>
<tr>
<td>4</td>
<td>59 (2.0)</td>
</tr>
<tr>
<td>5</td>
<td>7 (0.2)</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend: IQR= Interquartile Range; IR= Incidence Rate; MB= Major Bleeding.
Table 3: Association between Bleeding Risk Scores and Risk of Major Bleeding Occurrence

<table>
<thead>
<tr>
<th></th>
<th>Univariate Analysis</th>
<th></th>
<th>Multivariate Analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
</tr>
<tr>
<td>HAS-BLED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Score</td>
<td>1.78</td>
<td>1.41-2.25</td>
<td><0.001</td>
</tr>
<tr>
<td>≥3 (vs. <3)</td>
<td>2.43</td>
<td>1.34-4.42</td>
<td>0.004</td>
</tr>
<tr>
<td>ORBIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Score</td>
<td>1.43</td>
<td>1.21-1.69</td>
<td><0.001</td>
</tr>
<tr>
<td>≥4 (vs. <4)</td>
<td>4.79</td>
<td>2.36-9.73</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Legend: *adjusted for female sex, EHRA score and type of AF; AF= Atrial Fibrillation; CI= Confidence Interval; EHRA= European Heart Rhythm Association; HR= Hazard Ratio.*
Table 4: Reclassification Analysis for Bleeding Risk Scores about Major Bleeding Occurrence

<table>
<thead>
<tr>
<th>ORBIT vs. HAS-BLED</th>
<th>IDI (95% CI)</th>
<th>p</th>
<th>NRI (95% CI)</th>
<th>p</th>
<th>MI (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year FU</td>
<td>-0.001</td>
<td>0.757</td>
<td>-0.069</td>
<td>0.465</td>
<td>-0.002</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(-0.009 / 0.009)</td>
<td></td>
<td>(-0.193 / 0.138)</td>
<td></td>
<td>(-0.004 / 0.002)</td>
<td></td>
</tr>
<tr>
<td>2 years FU</td>
<td>-0.002</td>
<td>0.691</td>
<td>-0.117</td>
<td>0.093</td>
<td>-0.002</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(-0.018 / 0.015)</td>
<td></td>
<td>(-0.301 / 0.018)</td>
<td></td>
<td>(-0.013 / 0.001)</td>
<td></td>
</tr>
</tbody>
</table>

Legend: CI= Confidence Interval; FU= Follow-Up; IDI= Integrated Discrimination Improvement; MI= Median Improvement; NRI= Net Reclassification Index.
Comparison of HAS-BLED and ORBIT Bleeding Risk Scores in AF Patients
treated with NOACs: A Report from the ESC-EHRA EORP-AF General Long-
Term Registry

Marco Proietti¹,²,³* MD PhD, Giulio Francesco Romiti⁴* MD, Marco Vitolo¹,⁵,⁶ MD,
Tatjana S Potpara⁷,⁸ MD PhD, Giuseppe Boriani⁵† MD PhD, Gregory Y.H. Lip¹,⁹† MD;
on behalf of ESC-EHRA EORP-AF Long-Term General Registry Investigators¹⁰

¹Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool
Heart & Chest Hospital, Liverpool, United Kingdom; ²IRCCS Istituti Clinici Scientifici
Maugeri, Milano, Italy; ³Department of Clinical Sciences and Community Health,
University of Milan, Italy; ⁴Department of Translational and Precision Medicine,
Sapienza – University of Rome, Italy; ⁵Cardiology Division, Department of Biomedical,
Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico
di Modena, Italy; ⁶Clinical and Experimental Medicine PhD Program, University of
Modena and Reggio Emilia, Modena, Italy; ⁷School of Medicine, University of
Belgrade, Belgrade, Serbia; ⁸Intensive Arrhythmia Care, Cardiology Clinic, Clinical
Center of Serbia, Belgrade, Serbia; ⁹Department of Clinical Medicine, Aalborg
University, Aalborg, Denmark; ¹⁰See Appendix in Supplementary Materials.

*equally contributing authors
†joint senior authors

Corresponding Author
Marco Proietti MD PhD FESC FEHRA
Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri
Via Camaldoli 64, 20138, Milan, Italy
ORCiD: 0000-0003-1452-2478
Tel: +39-2-50725141
Twitter Handle: @MProiettiMD
e-mail: marco.proietti@unimi.it
ABSTRACT

Introduction: Bleeding risk assessment is recommended in guidelines for the management of atrial fibrillation (AF). HAS-BLED score was proposed prior to non-vitamin K antagonist oral anticoagulants (NOACs) and has been suggested that the ORBIT score may be superior in predicting bleeds in NOAC users. We aimed to compare the HAS-BLED and ORBIT scores in contemporary AF patients treated with NOACs.

Methods and Results: We analyzed patients enrolled in the ESC-EHRA EORP-AF General Long-Term Registry. HAS-BLED and ORBIT scores were computed based on original schemes. The primary outcome was the occurrence of Major Bleeding (MB). A total of 3018 patients (median age 70; 39.6% females) were included: median [IQR] HAS-BLED and ORBIT scores were 1 [1-2] and 1 [0-2], respectively; 356 (11.8%) patients were at high risk for MB using HAS-BLED (≥3) and 123 (4.1%) using ORBIT (≥4). Overall, 60 (2.0%) MB events were recorded, with an incidence of 1.1 per 100 patient-years.

Both HAS-BLED and ORBIT were associated with outcome, modestly predicting MB (AUC 0.653, 95% CI 0.593-0.714 and AUC 0.601, 95% CI 0.526-0.677, respectively). Calibration plots showed that both scores were poorly calibrated, particularly the ORBIT score, which showed consistent poorer calibration. Time-dependent recategorization analysis showed a trend towards incorrect lower risk recategorization using ORBIT compared to HAS-BLED.

Conclusion: In this real-life contemporary cohort of AF patients treated with NOACs, the ORBIT score did not provide recategorization improvement, showing even poorer calibration compared to HAS-BLED. Our findings do not support the preferential use of ORBIT in NOAC-treated AF patients.
Keywords: atrial fibrillation; bleeding risk; HAS-BLED; ORBIT.
INTRODUCTION

Clinical guidelines on the management of atrial fibrillation (AF) recommend the evaluation of bleeding risk factors, in order to address modifiable risk factors for mitigation, and flag up high bleeding risk patients for early review and follow-up\(^1\)–\(^3\). Furthermore, the assessment of bleeding risk need to be re-evaluated during follow-up visits, since the risk of bleeding need to be considered as dynamic rather than static\(^2,4\).

Among the various bleeding risk scores, the HAS-BLED score is currently recommended by most of international guidelines\(^1\)–\(^3\), on the basis of its simplicity, better predictive profile and validation across the patient pathway (untreated, antiplatelets, anticoagulants) compared to the various other bleeding scores\(^5,6\). The 2021 UK National Institute for Health and Care Excellence’ (NICE) updated recommendation for clinical management of AF patients\(^7\) promoted the use of the ORBIT bleeding risk score to evaluate bleeding risk in patients treated with non-vitamin K antagonist oral anticoagulants (NOACs) due to better calibration compared to other bleeding risk scores (albeit ‘with very low to low quality data’)\(^7\).

As the HAS-BLED score was initially proposed in the era prior to NOACs, the aim of the present study was to formally compare the HAS-BLED and ORBIT bleeding risk scores in AF patients actually treated with NOACs in a large prospective real-world cohort of European AF patients.
METHODS

To perform this analysis, we used the dataset from the ‘European Society of Cardiology - European Heart Rhythm Association’ (ESC-EHRA) EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry. The ESC-EHRA EORP AF General Long-Term Registry is a prospective multicentre observational registry held by the ESC and endorsed by the EHRA, with the General Long-Term Registry preceded by the EORP-AF General Pilot Registry and followed by the ESC-EHRA EORP-AF III Registry, in the context of the independent observational research from the ESC. The EORP-AF General Long-Term Registry is a prospective, observational, multicentre registry established by ESC in 27 participating countries. The study enrolled 11,096 consecutive patients with AF presenting in 250 cardiology practices, in both in- and outpatient settings. The detailed description of the study design, baseline characteristics and 1-year follow-up results have been provided previously. Briefly, all patients enrolled had AF documented within 12 months before enrolment based on objective electrocardiographic evaluation. All patients were aged ≥18 years and provided written informed consent. Enrolment was undertaken from October 2013 to September 2016, with 1-year and 2-year follow-up. Institutional review board approved the study protocol for each country and subsequently for each enrolling site, and the study was performed according to the EU Note for Guidance on Good Clinical Practice CPMP/ECH/135/95 and the Declaration of Helsinki.

For the purposes of this paper, we included in this analysis all those patients enrolled into the ESC-EHRA EORP-AF General Long-Term Registry which were prescribed with NOACs at baseline and had available data about HAS-BLED and ORBIT.
bleeding scores with available follow-up information about events occurring throughout the follow-up observation.

Thromboembolic risk was defined according to CHA\textsubscript{2}DS\textsubscript{2}-VASc score15. Based on the new NICE guidelines7, ‘Low risk’ was defined as a CHA\textsubscript{2}DS\textsubscript{2}-VASc score 0 in males and 1 in females; ‘moderate risk’ was defined for a CHA\textsubscript{2}DS\textsubscript{2}-VASc 1 in males; ‘high risk’ was defined as CHA\textsubscript{2}DS\textsubscript{2}-VASc ≥2. Symptomatic status was defined according to EHRA score16. Chronic AF was defined as long-standing persistent and permanent AF, while non chronic AF was defined as first detected, paroxysmal and persistent AF.

Bleeding Scores

HAS-BLED and ORBIT bleeding scores were both calculated on the basis of the original validated schemes17,18. In EORP-AF, the HAS-BLED score was originally calculated during baseline evaluation automatically by the electronic case report form (eCRF), based on clinical variables and medical interview. ORBIT was calculated retrospectively based on information collected into the final dataset. Clinical variables used to compile both the scores were reported in Supplementary Materials (Table S1). High bleeding risk was defined for a HAS-BLED ≥3 and for an ORBIT ≥417,18, respectively.

Follow-Up and Outcomes

All patients discharged alive after the baseline evaluation entered the follow-up. During follow-up all incident major adverse clinical events were recorded by each investigator and entered the eCRF at 1-year and 2-years follow-up visits. Follow-up was permitted also by telephone interview with the patient or next of kin in the case
the patients was deceased or unable to perform the interview. More details about follow-up procedures were already reported elsewhere14.

Major bleeding was considered as the primary study outcome for this analysis. Major bleeding was defined based on occurrence of intracranial hemorrhage and major extracranial hemorrhage during follow-up. Major extracranial bleeding was defined as a bleeding event causing a drop in haemoglobin level >2 g/L, requiring blood transfusion or hospitalization occurring in any major organ system. Evaluation of bleeding outcomes was performed by each investigator and not adjudicated centrally. Follow-up analysis was performed according to an intention-to-treat approach. Follow-up was censored at the end of observation or at occurrence of death, whichever occurred first. Additionally, we reported the occurrence of ischemic stroke and all-cause death.

Statistical Analysis

Continuous variables were expressed as median and interquartile ranges. Categorical variables were expressed as counts and percentages. Difference in survival according to risk scores were assessed with Kaplan-Meier curves and Log-Rank test. Cox proportional hazard analysis were also performed to assess the occurrence of bleeding events according to both high risk categories and continuous scores. The Cox model was adjusted for female sex, EHRA score and type of AF.

For each score we also produced ROC curves and calculated the area under the curve (AUC) and 95% CI for AUC were estimated using the method by De-Long & De-Long19. Calibration plots were produced calculating the incidence rate (IR) of
bleeding events for each score category in our cohort, and then plotting these IRs against those reported in the derivation cohorts17,18.

Reclassification analysis were performed with HAS-BLED as reference; integrated discrimination improvement (IDI), net reclassification improvement (NRI) and the median improvement were calculated with a time-dependent approach, using scores in continuous, and according to the method described by Pencina et al.20, with the survIDINRI package. Decision Curve Analysis was also performed according to previously reported method21. Two-sided p values <0.05 were considered statistically significant. All analyses were performed with SPSS statistical software version 27.0.1 for MacOS and R 4.0.3 for Windows22, using pROC23, rms24, rmda25 and survIDINRI26 packages.
RESULTS

From the overall cohort originally enrolled in EORP-AF, a total of 3,018 patients were included (median [IQR] age 70 [62-77] years; 1196 (39.6%) female). Median [IQR] CHA$_2$DS$_2$-VASc score was 3 [2-4], and 2180 (72.2%) were at high thromboembolic risk. Main baseline characteristics are shown in Table 1.

Distribution of bleeding scores are shown in Table 2. The mean (SD) HAS-BLED score was 1.3 (1.0) [median [IQR] score 1 [1-2]], with 356 (11.8%) at high bleeding risk. The mean ORBIT score was 1.0 (1.2) [median [IQR] 1 [0-2]], with 123 (4.1%) at high bleeding risk. Very low bleeding risk was found in 605 (20.0%) using HAS-BLED and in 1495 (49.5%) with the ORBIT score.

Incidence of Major Bleeding

Over a mean (SD) 680.79 (174.32) days of follow-up a total of 20 major bleeding events were reported (9 intracranial bleedings and 51 major extracranial haemorrhages), with an overall incidence of 1.1 per 100 patient-years. Incidence rates according to the bleeding risk scores are reported in Table 2. Major bleeding rates progressively increased according to both continuous HAS-BLED and ORBIT score points (Table 2). We also recorded a total of 54 ischemic stroke events (0.96 per 100 patient-years) and 224 all-cause death events (3.93 per 100 patient-years).

Based on the HAS-BLED score, major bleeding incidence in the low bleeding risk group was 0.92 per 100 patient-years, increasing to 2.26 per 100 patient-years in the high bleeding risk group. For the ORBIT score incidence rate in low bleeding risk group was 0.94 per 100 patient-years, increasing to 4.58 per 100 patient-years in the
high risk group. Kaplan-Meier curves [Figure 1] show that for both scores, the high bleeding risk category had a greater cumulative bleeding risk than the low risk group.

Risk Scores and Major Bleeding

In the Cox regression analysis (Table 3), both the risk scores were associated with occurrence of major bleeding as continuous scores in univariate analysis and after multivariate adjustments. Similarly, the high bleeding risk category was significantly associated with the occurrence of major bleeding for both scores.

For the HAS-BLED score, those with high baseline bleeding risk (i.e., HAS-BLED ≥3) had >2-fold increase in risk (Hazard Ratio [HR] 2.26, 95% confidence interval [CI] 1.23-4.15) compared to the low bleeding risk group, after adjustment for female sex, EHRA score and type of AF (chronic vs. non-chronic). For the ORBIT score, high baseline bleeding risk (i.e., ORBIT ≥4) had >4-fold increase in risk (HR 4.62, 95% CI 2.25-9.46) compared to ORBIT score <4, after adjustment for female sex, EHRA score and type of AF.

Of the 1495 patients (49.5%) categorised as ‘very low' bleeding risk using the ORBIT score, re-stratifying these patients by HAS-BLED score showed that 63.3% were at moderate-high bleeding risk. In this subgroup of patients (‘very low' bleeding risk using ORBIT score), HAS-BLED score was significantly associated with risk of major bleeding (HR 1.90, 95% CI 1.26-2.85), after adjustment for female sex, EHRA score, and type of AF.

Predictive Ability, Reclassification Analysis and Calibration Plots
ROC curve analyses showed that both the scores were able to predict the occurrence of major bleeding events with a moderate ability, with HAS-BLED score reporting a numerically higher AUC (or c-index) value than the ORBIT score (AUCs 0.653, 95% CI 0.593-0.714 and AUC 0.601, 95% CI 0.526-0.677, respectively). Visual inspection of the two ROC curves seems to suggest a superiority in predicting the occurrence of major bleeding for HAS-BLED score than ORBIT score [Figure S1], but this difference was not statistically significant using the De-Long and De-Long test, p=0.216. In the cohort of 1495 (49.5%) patients with very low bleeding risk according to ORBIT score, the HAS-BLED showed a good predictive performance (AUC 0.701, 95% CI 0.614-0.788) [Figure S2].

Reclassification analyses are reported in Table 4. Projecting the risk stratification performance at 1 year of follow-up, no difference was found between the two scores. At 2 years of follow-up while a non-significant trend for lower risk reclassification capacity, in terms of NRI, with loss in median improvement for the ORBIT score compared to the HAS-BLED score. Examination of the DCA curves [Figure S3] did not show any relevant difference in net benefit by using one score or the other.

Results from the model calibration analysis comparing observed major bleeding rates in the EORP-AF registry with reported bleeding rates in the original derivation populations for HAS-BLED and ORBIT scores are shown in Figure 2. The HAS-BLED score showed good calibration for the low-risk score strata, with poor calibration in the higher bleeding risk strata. In comparison, the ORBIT score showed poorer calibration than the HAS-BLED score throughout all risk strata.
DISCUSSION

In this analysis, we found that in NOAC-treated AF patients, the use of the HAS-BLED score identified almost 12% of patients with a high risk of bleeding and 20% of patients with a very low risk of bleeding, while using the ORBIT score only identified 4% of patients at high risk of bleeding and half of the entire cohort was considered at very low risk of bleeding. Second, both the scores were significantly associated with major bleeding and predicted the event with a similarly modest capacity (c-indexes 0.60-0.65), consistent with a general performance of clinical risk scores. In the reclassification analysis, we found only a non-significant trend for poorer reclassification with the ORBIT score, while the analysis of the calibration plots showed that both the scores were not well calibrated in this cohort for the high bleeding risk strata, which was worse for the ORBIT score compared to the HAS-BLED score. These findings do not support the preferential use of ORBIT in NOAC-treated AF patients.

In this contemporary cohort of NOAC-treated AF patients, the incidence of major bleeding was low, consistent with other previous contemporary studies of AF patients management27,28. In an analysis derived from the GARFIELD-AF registry, the overall incidence of major bleeding was 1.31 per 100 patient-years27. In the follow-up of the GLORIA-AF registry phase II, the overall incidence of major bleeding was 0.97 per 100 patient-years28. Such a low incidence of major bleeding in contemporary AF patients could reflect both the introduction and the implementation of NOACs, as well as the general and overall improvement in AF patient management.
In AF management, the assessment of bleeding risk is essential for all the patients, both at baseline and throughout their follow-up. The appropriate and responsible use of bleeding risk scores is really to draw attention to modifiable bleeding risk factors that can be mitigated, and to flag up the high bleeding risk patients for early review and proactive regular follow-up. This strategy has been tested prospectively in the mAFA-II trial, which was a cluster randomised trial where the mAFA intervention (which used the HAS-BLED score to mitigate modifiable bleeding risks and arrange follow-up of high bleeding risk patients) was compared to usual care. This showed that major bleeding was lower in the intervention arm, compared to usual care; importantly, the use of OAC increased over 12 months in the intervention arm, but declined in the usual care arm. Overall patients in the intervention arm showed a lower risk of adverse outcomes.

Many bleeding risk scores have been published thus far, and the HAS-BLED score has been found to be superior or performing equally compared to more complex risk scores or clinical approaches exclusively focused on modifiable bleeding risk factors. Several systematic review and meta-analyses examining the differential ability of the various bleeding risk scores have been published, and all indicate that the HAS-BLED score provided better predictive ability, and expressing the best balance between sensitivity and specificity. The ORBIT score was originally derived from a largely anticoagulated cohort from the ‘Outcomes Registry for Better Informed Treatment of Atrial Fibrillation’ (ORBIT-AF) study, with the aim to provide a simpler score with better predictive ability, with good calibration. The published evidence thus far suggests that the ORBIT score does not provide any profound
advantage compared to the HAS-BLED score34,42–44, despite a slightly superior calibration in some studies18,41.

In terms of practical application, the ORBIT score largely focuses on non-modifiable bleeding risk factors, while the HAS-BLED score includes both modifiable and non-modifiable bleeding risk factors, which would have an impact on how patients would be categorised as low or high risk (see Figure 3 for illustrative case, also comparing with 2 other bleeding scores, ATRIA and HEMORRH\textsubscript{2}AGES33). Indeed, categorising a patient as ‘low risk’ usually means ‘no action’ while a ‘high bleeding risk’ alerts from electronic medical records triggers a healthcare professional to action a follow-up plan. This is also reinforced by our exploratory analysis in the present study on the ‘very low risk’ patients according to ORBIT score, in which HAS-BLED was still strongly associated with occurrence of major bleeding, with a good predictive performance. Bleeding risk is also dynamic rather than static, with the risk changing with age and incident comorbidities; hence, the assessment of bleeding risk at each visit can also significantly impact the clinical course of the patients with AF45,46.

In this context, our data reinforce and strengthen previous evidence, showing how even in a contemporary cohort of NOAC treated patients, the ORBIT score categorises a very high proportion of patients in the ‘very low risk’ category, not providing any gain in terms of predictive ability. While the original authors underlined the ability of ORBIT score as to be able to identify the ‘real’ high-risk patients, this is in contrast with the practical use of a bleeding risk score, as discussed above.
The recent update of the NICE clinical guidelines for the management of AF patients\(^7\) recommends the use of ORBIT bleeding score in NOAC treated patients, due to the ‘better calibration with this score’ but ‘with very low to low quality data\(^7\). In the evidence review conducted by NICE (https://www.nice.org.uk/guidance/ng196/evidence/evidence-reviews-april-2021-9081923437) their recommendation was essentially based on four studies\(^{18,41,47,48}\). Two were derived from the highly selected cohorts of the NOAC phase III trials\(^{18,41}\), one of which was in the specific setting of patients with a previous stroke\(^{47}\) and 3 in mixed cohorts taking vitamin K antagonists and NOACs \(^{18,41,47}\). The NICE guidelines clearly state that there was no difference in terms of predictive ability, showing similar pooled AUCs for the two scores, and no difference in terms of reclassification. In this context, our data for the high bleeding risk strata also underline the poorer calibration for the ORBIT score in our AF patients taking NOACs.

Limitations

The main limitation of the current study is related to the observational nature of the registry itself. The absence of a central events adjudication with an investigator-based reporting of the adverse outcomes represents another limitation, which entails caution in interpreting the current results. Whilst an underreporting of adverse outcomes can still be possible, given the important consequences of a major bleeding event on patients’ health we believe that is quite unlikely that a major bleeding event would not be reported\(^{49,50}\). Compared to the derivation cohorts we found lower rates of bleeding events; this may have influenced the comparisons of the predictive ability of the two scores. Also, we show their sub-optimally calibration in this more contemporary NOAC-treated AF cohort, being unsuitable for accurate
bleeding event rate estimation. Instead, bleeding risk scores should appropriately
focus on modifiable bleeding risk factors for mitigation, and to flag up the high
bleeding risk patients for review (Figure 3).

CONCLUSIONS
In this real-life contemporary cohort of AF treated with NOACs, the ORBIT score did
not provide reclassification improvement or better calibration compared to HAS-
BLED. Both scores were associated with a risk of MB and were sub-optimally
calibrated for those in high bleeding risk strata, particularly poor with the ORBIT
score. Also, the use of ORBIT score categorised a great proportion of patients into
the very low risk category. Our findings do not support the preferential use of ORBIT
score in NOAC-treated AF patients.
1 SUPPLEMENTARY MATERIALS

2

3 Supplementary Methods

4 Assessment of Bleeding Risk Scores

5

6 Figure S1: Bleeding Risk Scores ROC Curves for Major Bleeding Occurrence

7 Figure S2: HAS-BLED Score ROC Curve in ORBIT Very Low Risk Patients

8 Figure S3: DCA Curves for Bleeding Risk Scores

9

10 APPENDIX: EURObservational Research Programme Atrial Fibrillation (EORP-AF) Long-Term General Registry Committees and Investigators

12
ACKNOWLEDGEMENTS

EORP Oversight Committee, Executive and Steering Committees (National Coordinators) of the EURObservational Research Programme (EORP) – Atrial Fibrillation General Long-Term (EORP-AF Gen LT) Registry of the European Society of Cardiology (ESC). Data collection was conducted by the EORP department by Patti-Ann McNeill as Project Officer, Viviane Missiamenou as Data Manager. Overall activities were coordinated and supervised by Doctor Aldo P. Maggioni (EORP Scientific Coordinator).

FUNDING

COMPETING INTERESTS

GB received small speaker’s fees from Medtronic, Boston, Boehringer Ingelheim and Bayer; GYHL has been consultant and speaker for BMS/Pfizer, Boehringer Ingelheim and Daiichi-Sankyo. No fees are directly received personally. All other authors have nothing to declare.
AVAILABILITY OF DATA

All relevant data regarding the study are included in the manuscript.
REFERENCES

9. R Core Team. R: A Language and Environment for Statistical Computing.

26. Uno H, Cai T. survIDINRI: IDI and NRI for comparing competing risk prediction models with censored survival data.
34. Proietti M, Senoo K, Lane DA, et al. Major Bleeding in Patients with Non-Valvular Atrial Fibrillation: Impact of Time in Therapeutic Range on

FIGURES LEGENDS

Figure 1: Kaplan-Meier Curves for Bleeding Risk Scores
Legend: HAS-BLED) Log-Rank= 9.044, p=0.003; ORBIT) Log-Rank= 22.932, p<0.001.

Figure 2: Calibration Curves for Bleeding Risk Scores in EORP-AF Cohort
Legend: EORP-AF= EURObservational Research Programme in Atrial Fibrillation.

Figure 3: Illustrative Case for Baseline Bleeding Risk Evaluation in AF Patients
Legend: AF= Atrial Fibrillation; BP= Blood Pressure; ESC= European Society of Cardiology; NSAIDs= Non-Steroidal Anti-Inflammatory Drugs; OAC= Oral Anticoagulant.
Table 1: Baseline Characteristics of Patients Included in the Analysis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>EORP-AF LT General Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 3018</td>
<td></td>
</tr>
<tr>
<td>Age, years median [IQR]</td>
<td>70 [62-77]</td>
</tr>
<tr>
<td>Female Sex, n (%)</td>
<td>1196 (39.6)</td>
</tr>
<tr>
<td>BMI, kg/m² median [IQR]</td>
<td>27.8 [25.0-31.5]</td>
</tr>
<tr>
<td>CrCl, mL/min median [IQR]</td>
<td>77.6 [58.3-100.0]</td>
</tr>
<tr>
<td>SBP, mmHg median [IQR]</td>
<td>130 [120-142]</td>
</tr>
<tr>
<td>DBP, mmHg median [IQR]</td>
<td>80 [70-88]</td>
</tr>
<tr>
<td>Chronic AF, n (%)</td>
<td>684 (22.7)</td>
</tr>
<tr>
<td>Heart Failure, n (%)</td>
<td>938 (31.1)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>1809 (59.9)</td>
</tr>
<tr>
<td>Diabetes Mellitus, n (%)</td>
<td>632 (20.9)</td>
</tr>
<tr>
<td>CAD, n (%)</td>
<td>642 (21.3)</td>
</tr>
<tr>
<td>PAD, n (%)</td>
<td>202 (607)</td>
</tr>
<tr>
<td>Stroke/TIA, n (%)</td>
<td>277 (9.2)</td>
</tr>
<tr>
<td>Previous Bleeding, n (%)</td>
<td>159 (5.3)</td>
</tr>
<tr>
<td>Liver Disease, n (%)</td>
<td>49 (1.6)</td>
</tr>
<tr>
<td>CKD, n (%)</td>
<td>209 (10.2)</td>
</tr>
<tr>
<td>CHA²DS²-VASc, median [IQR]</td>
<td>3 [2-4]</td>
</tr>
</tbody>
</table>

Legend: AF= Atrial Fibrillation; BMI= Body Mass Index; CAD= Coronary Artery Disease; CKD= Chronic Kidney Disease; CrCl= Creatinine Clearance; DBP= Diastolic Blood Pressure; EORP-AF= EURObservational Research Programme in Atrial Fibrillation; n iii909k988iii, ' IQR= Interquartile Range; LT= Long-Term; PAD= Peripheral Artery Disease; SBP= Systolic Blood Pressure; TIA= Transient Ischemic Attack.
<table>
<thead>
<tr>
<th></th>
<th>HAS-BLED</th>
<th>ORBIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>1.3 (1.0)</td>
<td>1.0 (1.2)</td>
</tr>
<tr>
<td>Median [IQR]</td>
<td>1 [1-2]</td>
<td>1 [0-2]</td>
</tr>
<tr>
<td>High Bleeding Risk, N (%)</td>
<td>356 (11.8%)</td>
<td>123 (4.1%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N (%)</th>
<th>MB (N, [IR])</th>
<th>N (%)</th>
<th>MB (N, [IR])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>605 (20.0)</td>
<td>2 (0.2)</td>
<td>1495 (49.5)</td>
</tr>
<tr>
<td>1</td>
<td>1199 (39.7)</td>
<td>20 (0.9)</td>
<td>732 (24.3)</td>
</tr>
<tr>
<td>2</td>
<td>858 (28.4)</td>
<td>24 (1.5)</td>
<td>357 (11.8)</td>
</tr>
<tr>
<td>3</td>
<td>290 (9.6)</td>
<td>9 (1.7)</td>
<td>311 (10.3)</td>
</tr>
<tr>
<td>4</td>
<td>59 (2.0)</td>
<td>4 (4.2)</td>
<td>80 (2.7)</td>
</tr>
<tr>
<td>5</td>
<td>7 (0.2)</td>
<td>1 (11.6)</td>
<td>38 (1.3)</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>5 (0.2)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend: IQR= Interquartile Range; IR= Incidence Rate; MB= Major Bleeding.
<table>
<thead>
<tr>
<th></th>
<th>Univariate Analysis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Multivariate Analysis*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAS-BLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Score</td>
<td>1.78</td>
<td>1.41-2.25</td>
<td><0.001</td>
<td>1.74</td>
<td>1.37-2.21</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 (vs. <3)</td>
<td>2.43</td>
<td>1.34-4.42</td>
<td>0.004</td>
<td>2.26</td>
<td>1.23-4.15</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORBIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Score</td>
<td>1.43</td>
<td>1.21-1.69</td>
<td><0.001</td>
<td>1.42</td>
<td>1.20-1.68</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 (vs. <4)</td>
<td>4.79</td>
<td>2.36-9.73</td>
<td><0.001</td>
<td>4.62</td>
<td>2.25-9.46</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: *adjusted for female sex, EHRA score and type of AF; AF= Atrial Fibrillation; CI= Confidence Interval; EHRA= European Heart Rhythm Association; HR= Hazard Ratio.
Table 4: Reclassification Analysis for Bleeding Risk Scores about Major Bleeding Occurrence

<table>
<thead>
<tr>
<th>ORBIT vs. HAS-BLED</th>
<th>IDI (95% CI)</th>
<th>p</th>
<th>NRI (95% CI)</th>
<th>p</th>
<th>MI (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year FU</td>
<td>-0.001</td>
<td>0.757</td>
<td>-0.069</td>
<td>0.465</td>
<td>-0.002</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(-0.009 / 0.009)</td>
<td></td>
<td>(-0.193 / 0.138)</td>
<td></td>
<td>(-0.004 / 0.002)</td>
<td></td>
</tr>
<tr>
<td>2 years FU</td>
<td>-0.002</td>
<td>0.691</td>
<td>-0.117</td>
<td>0.093</td>
<td>-0.002</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(-0.018 / 0.015)</td>
<td></td>
<td>(-0.301 / 0.018)</td>
<td></td>
<td>(-0.013 / 0.001)</td>
<td></td>
</tr>
</tbody>
</table>

Legend: CI= Confidence Interval; FU= Follow-Up; IDI= Integrated Discrimination Improvement; MI= Median Improvement; NRI= Net Reclassification Index.
Bleeding Risk Evaluation in AF Patient and Subsequent Management

Illustrative case
60 years old man with uncontrolled hypertension (BP>180/110mmHg), prior stroke, concomitant use of NSAIDs (ibuprofen for osteoarthritis), abnormal liver function and excess alcohol intake.
Taking Apixaban 5mg bid.

Assess bleeding risk

ORBIT score=0
Low risk

ATRIA score=1
Low risk

HEMORR²HAGES score=4
High risk

HAS-BLED score=5
High risk

Low risk, so ‘no action’?

‘High risk’ HAS-BLED score
- Not a reason to withhold OAC
- Flags up the patient for more regular review and more careful follow-up
- Address the potentially reversible bleeding risk factors
 - In this case, treat the uncontrolled hypertension, reduce/minimize NSAIDs use and alcohol intake

[Recommendations as per 2020 ESC]
Comparison of HAS-BLED and ORBIT Bleeding Risk Scores in AF Patients treated with NOACs: A Report from the ESC-EHRA EORP-AF General Long-Term Registry

Marco Proietti MD PhD, Giulio Francesco Romiti MD, Marco Vitolo MD, Tatjana S Potpara MD PhD, Giuseppe Boriani MD PhD, Gregory YH Lip MD on behalf of ESC-EHRA EORP-AF Long-Term General Registry Investigators

Supplementary Materials
SUPPLEMENTARY METHODS

Assessment of Bleeding Risk Scores

The HAS-BLED score was developed in 2010 to devise a simple and clinically-driven risk score to assess major bleeding risk in AF patients treated with VKA. One point each was allocated for the presence of hypertension, impaired renal or liver function, history of stroke, history of bleeding, labile international normalized ration (INR), elderly (age>65 years), concomitant use of antiplatelet agents or non-steroidal anti-inflammatory drugs and alcohol consumption (more than 8 units a week).

The ORBIT score was developed from the “Outcomes registry for better informed treatment of atrial fibrillation” study cohort, and calculated as follows: 1 point each for Age older than 74, insufficient kidney function (defined as estimated glomerular filtration rate below 60 mg/dL/1.73 m²) and treatment with any antiplatelet drug, while 2 points were assigned to a positive clinical history for bleeding and the presence of anaemia or abnormal haemoglobin (<13 mg/dL for males and <12 mg/dL for females) or reduced haematocrit (<40% for males and <36% for females).
Figure S1: Bleeding Risk Scores ROC Curves for Major Bleeding Occurrence

Legend: ROC = Receiving Operating Characteristics.
Figure S2: HAS-BLED Score ROC Curve in ORBIT Very Low Risk Patients

Legend: ROC = Receiving Operating Characteristics.
Figure S3: DCA Curves for Bleeding Risk Scores

Legend: DCA= Decision Curve Analysis.
APPENDIX

EURObservational Research Programme Atrial Fibrillation (EORP-AF) Long-Term General Registry Committees and Investigators

Steering Committee (National Coordinators): A. Goda, University Hospital Center "Mother Tereza", Tirana, Albania; G. Mairesse, Cliniques du Sud-Luxembourg, Arlon, Belgium; T. Shalganov, National Heart Hospital, Sofia, Bulgaria; L. Antoniades, Nicosia General Hospital, Latsia, Cyprus; M. Taborsky, University Hospital Olomouc, Olomouc, Czech Republic; S. Riahi, Aalborg University Hospital, Aalborg, Denmark; P. Muda, University of Tartu, Tartu, Estonia; I. García Bolao, Navarra Institute for Health Research, Pamplona, Spain; O. Piot, Centre Cardiologique du Nord, Saint-Denis, France; M. Nabauer, Ludwig-Maximilians-University, Munich, Germany; K. Etsadashvili, G. Chapidze Emergency Cardiology Center, Tbilisi, Georgia; EN. Simantirakis, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece; M. Haim, Soroka Medical Center, Beer Sheva, Israel; A. Azhari, J. Najafian, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; M. Santini, San Filippo Neri Hospital, Rome, Italy; E. Mirrakhimov, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan; K. Kulzida, Scientific-Research Institute of Cardiology and Internal Diseases, Almaty, Republic of Kazakhstan; A. Erglis, Pauls Stradins Clinical University Hospital University of Latvia Riga Latvia; L. Poposka, University Clinic of Cardiology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia; MR. Burg, Mater Dei Hospital, Triq Dun Karm Psaila, Malta; H. Crijns, Ö. Erkünner, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; D. Atar, Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway; R. Lenarczyk, Silesian Center for Heart Disease, Zabrze, Poland; M. Martins Oliveira, Hospital Santa Marta, Lisbon, Portugal; D. Shah, Department of Medicine Specialities, University Hospital Geneva, Geneva, Switzerland; G-A. Dan, Coplentina University Hospital, Bucharest, Romania; E. Serdechnaya, Northern State Medical University, Arkhangelsk, Russia; T. Potpara, Cardiology Clinic, Clinical Center of Serbia, Belgrade, Serbia; E. Diker,
<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Name</th>
</tr>
</thead>
</table>
Vacarescu, E. Goanta, M. Mangea, A. Ionac, C. Mornos, D. Cozma, S. Pescariu, RUSSIAN FEDERATION
Arkhangelsk: E. Solodovnicova, I. Soldatova, J. Shutova, L. Tjuleneva, T. Zubova, V. Uskov, Arkhangelsk:
E. Kazakevich, E. Serdechnaya, O. Zavyalova, Saint-Petersburg: T. Novikova, Saint-Petersburg: I. Riabaia,
S. Zhigalov, Saint-Petersburg: E. Drozdova, I. Luchkina, Y. Monogarova, Vladivostok: D. Hegya, L.
Arandjelovic, D. Toncov, M. Milanov, N. Sekularac, Belgrade: M. Zdravkovic, S. Hinic, S. Dimkovic, T.
Acimovic, J. Saric, Belgrade: M. Polovina, T. Potpara, B. Vujisic-Tesic, M. Nedeljkovic, Belgrade: M. Zlatar,
Milosevic, Belgrade: A. Stevanovic, A. Andric, B. Pencic, M. Pavlovic-Kleut, V. Celic, Kragujevac: M.
Pavlovic, M. Petrovic, M. Vuleta, N. Petrovic, S. Simovic, Z. Savovic, S. Milanov, G. Davidovic, V. Iric-
Cupic, Niška Banja: D. Simonovic, M. Stojanovic, S. Stojanovic, V. Mitic, V. Ilic, D. Petrovic, M. Deljanin Ilic,
S. Ilic, V. Stoickov, Pirot: S. Markovic, Šabac: S. Kovacevic. SPAIN Alicante: A. García Fernandez,
Loayssa, M. Ayarra, M. Carpentero, Madrid: I. Roldán Rabadan, Murcia: M. Leal, Murcia: M. Gil Ortega,
Martinez, M. Quintana Giner, Pamplona: G. Ballesteros, M. Palacio, O. Alcalde, I. García-Bolao, San Juan
de Alicante: V. Bertomeu Gonzalez, Santiago de Compostela: F. Otero-Raviña, J. García Seara, J.
Gaziantep: M. Sucu, Görükle-Bursa: O. Akin Serdar, İstanbul: A. Taha Alper, İstanbul: A. Kepez, İstanbul:
Ozcan, Sivas: H. Kaya, M. B. Yilmaz, Trabzon: M. Kutlu, Yüreğir-Adana: M. Demir, UNITED KINGDOM
Barnstaple: C. Gibbs, S. Kaminskiene, M. Bryce, A. Skinner, G. Belcher, J. Hunt, L. Stancombe, B.
Holbrook, C. Peters, S. Tettersell, Birmingham: A. Shantsila, D. Lane, K. Senoo, M. Proietti, K. Russell, P.
Domingos, S. Hussain, J. Partridge, R. Haynes, S. Bahadur, R. Brown, S. McMahon, G. Y H Lip,
Blackburn: J. McDonald, K. Balachandran, R. Singh, S. Garg, H. Desai, K. Davies, W. Goddard, Blackpool:
G. Galasko, I. Rahman, Y. Chua, O. Payne, S. Preston, O. Brennan, L. Pedley, C. Whiteside, C. Dickinson,
J. Brown, K. Jones, L. Benham, R. Brady, Carlisle: L. Buchanan, A. Ashton, H. Crowther, H. Fairlamb, S.
Thornthwaite, C. Relph, A. McSkeane, U. Poulteny, N. Kelsall, P. Rice, T. Wilson, Chertsey: M. Wrigley, R.
Kaba, T. Patel, E. Young, J. Law, Cramlington: C. Runnett, H. Thomas, H. McKie, J. Fuller, S. Pick, Exeter:
Pearson, L. Stephenson, Huddersfield: S. Grant, A. Wilson, C. Hawksworth, I. Alam, M. Robinson, S. Ryan,
Macclesfield: R. Egell, E. Gibson, M. Holland, D. Leonard, Maidstone: B. Mishra, S. Ahmad, H. Randall, J.
Hill, L. Reid, M. George, S. McKinley, L. Brockway, W. Milligan, Manchester: J. Sobolewska, J. Muir, L.
Tuckis, L. Winstanley, P. Jacob, S. Kaye, L. Morby, Nottingham: A. Jan, T. Sewell, Poole: C. Boos, B.
Austin, S. Howe, Redhill: R. Iqbal, N. Gandhi, K. Brophy, P. Mirza, E. Willard, S. Collins, N. Ndlovu, Rhyl:
E. Subkovas, V. Karthikeyan, L. Waggett, A. Wood, A. Bolger, J. Stockport, L. Evans, E. Harman, J.
Starling, L. Williams, V. Saul, Salisbury: M. Sinha, L. Bell, S. Tudgay, S. Kemp, J. Brown, L. Frost,
Shrewsbury: T. Ingram, A. Loughlin, C. Adams, M. Adams, F. Hurford, C. Owen, C. Miller, D. Donaldson,
H. Tivenan, H. Button, South Shields: A. Nasser, O. Jhagra, B. Stidolph, C. Brown, C. Livingstone, M.
Duffy, P. Madgwick, Southampton: P. Roberts, E. Greenwood, L. Fletcher, M. Beveridge, S. Earles,
Rewbury, K. James, K. Roberts, L. Tonks, Torquay: D. Felmeden, W. Taggu, A. Summerhayes, D.
Hughes, J. Sutton, L. Felmeden, Watford: M. Khan, E. Walker, L. Norris, L. O'Donohoe, Weston-super-
Mare: A. Mozid, H. Dymond, H. Lloyd-Jones, G. Saunders, D. Simmons, D. Coles, D. Cotterill, S. Beech, S.
Kidd, Wolverhampton: B. Wrigley, S. Petkar, A. Smallwood, R. Jones, E. Radford, S. Milgate, S. Metherell,
V. Cottam, Yeovil: C. Buckley, A. Broadley, D. Wood, J. Allison, K. Rennie, L. Balian, L. Howard, L.
Pippard, S. Board, T. Pitt-Kerby.
Click here to access/download
Conflict of Interest form (one for each author)
coi_disclosure_form MP.pdf
Click here to access/download
Conflict of Interest form (one for each author)
coi_disclosure_form GFR.pdf
Click here to access/download

Conflict of Interest form (one for each author)

coi_disclosure_form MV.pdf
Click here to access/download

Conflicts of Interest form (one for each author)
coi_disclosure_form TP.pdf
Click here to access/download
Conflict of Interest form (one for each author)
coi_disclosure_form GB.pdf
Click here to access/download
Conflict of Interest form (one for each author)
coi_disclosure_form GL.pdf