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Dear Dr. José C Brito 

I revised my manuscript entitled “Phenology and temperature are the main drivers shaping the 

detection probability of the common wall lizard” following the issue raised by reviewer #1. 

 

I hope that this revised version is now suitable for publication in Amphibia-Reptilia. 

 

Sincerely,  

Mattia Falaschi 

 

 

Associate Editor: This is the second version of the manuscript. Reviewer #1 considers it satisfactory 

and only raises a minor point. Unfortunately, reviewer #2 did not reply as also three more potential 

reviewers. To prevent further delays at this advanced stage of the revision and because in fact this 

is my area of expertise, I have personally reviewed the text to ensure that the minor amendments 

suggested by reviewer #2 were implemented and that was the case point by point. Overall, I 

consider that authors should only justify the criticism about the rainy days. 

 

Response: I thank the associate editor for the effort to provide a fast review process. I modified the 

manuscript following the issue about rainy days raised by reviewer #1. 

 

Reviewer #1: The author revised the manuscript very well following the comments or suggestions 

of the reviewers. I am overall satisfied with the revision and their responses to my review comments. 

However, I still have a concern on the manuscript before it can be considered for publication. 

 

Response: I thank the reviewer for the positive comment. 

 

My main concern is that the author should inform the reader about the lack of sample in rainy days 

(only 3 days). In the whole text the author presents precipitation as a main factor that influences 

detection probability but does not mention that rained only three days during the survey. Although 

the results obtained with precipitation has a biological sense, I think the author should tone down 

his conclusion regarding the precipitation, at least making the readers aware of the lack of sample. 

The results and other previous works supported the negative effect of precipitation in detection 

Response to Reviews



probability in lizards and although the positive effect in detection probability of the cumulative 

precipitation 24h before is an important factor to really take into account, I think the author should 

conclude the precipitation section that it is necessary a higher sample or further studies to be 

comfirmed the interesting results. 

 

Response: I agree with the reviewer’s comment about precipitations during the survey. However, 

for cumulated precipitation in the previous 24 hours, there is more data. While only three surveys 

were carried out during rainfall (2.5 %), 35 % of surveys are associated with values of cumulated 

precipitation during the previous 24 hours > 0. For this reason, I added a sentence explaining the 

lack of data for precipitation during the survey and the reliability of cumulated precipitation in the 

previous 24 hours (lines 226-229). Given the uncertainty about the relationship between 

precipitation during survey and detection probability, I changed the plot in Figure 2b to show the 

relationship between detection and cumulated precipitation and not precipitation during the 

survey. 
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Abstract 15 

 16 

Measuring the abundance of organisms is essential to provide information to ecology 17 

and biodiversity conservation. Hardly ever, the probability of detecting an animal 18 

during a survey is near one. Overlooking this observational process can lead to biased 19 

estimates of population size and vital rates. In this study, through Bayesian modeling, I 20 

evaluated the effects of temperature, precipitation, wind, humidity, and phenology in 21 

determining changes in the detection probability of the common wall lizard, for which 22 

studies on the factors determining detection probability are currently not available. 23 

Additionally, I tested for two possible interactions: date-temperature and date-humidity, 24 

in order to assess if the relationships of these variables with detection probability vary 25 

through the sampling season. Detection probability was highest earlier in the season 26 

(April) and between 24 and 28 degrees. Rainfall during the survey showed a negative 27 

effect on detection probability. In contrast, cumulative precipitation in the 24 hours 28 

before the survey showed a positive relationship, indicating that lizards are easier to 29 

detect in surveys after rainy days. Furthermore, date and temperature showed a positive 30 

interaction, indicating that the relationship between detectability and temperature 31 

changed over the sampling season. Date and humidity showed a negative interaction: 32 

late in the sampling season, detectability was higher with lower humidity, however, this 33 

relationship was not found in the early season. Future studies can consider multiple sites 34 

to evaluate the extent of variation in the drivers of detection probability and to assess 35 

the factors related to abundance. 36 

 37 

Keywords 38 
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Detection probability, N-mixture models, northern Italy, Podarcis muralis. 39 

 40 

Introduction 41 

 42 

Measuring the abundance of organisms is essential to provide information to ecology 43 

and biodiversity conservation. While simple counts of population size can be easy to 44 

obtain, the probability of detecting an individual during a survey is usually less than 45 

one. Imperfect detection can be the results of different factors acting jointly, such as 46 

environmental conditions, observer skill, or species traits (Mazerolle et al., 2007; 47 

Kellner and Swihart, 2014). Not including this observational process into models can 48 

lead to biased estimates of population size, vital rates such as survival probability, and 49 

of relationships with covariates driving these parameters (Kéry and Schaub, 2012). 50 

Since the early 2000s, there has been a considerable increase in methods able to include 51 

detection probability into models and in their use (MacKenzie et al., 2003; Royle, 2004; 52 

Manenti et al., 2020). However, many studies still do not consider imperfect detection, 53 

even if this pattern can vary across taxa (Kellner and Swihart, 2014).  54 

Species with a cryptic behavior or a cryptic color pattern can be particularly hard 55 

to detect, and this is the case for many reptiles (Mazerolle et al., 2007; Ficetola et al., 56 

2018, 2021). Many factors can influence the probability of seeing an individual during a 57 

survey. These factors can be either site-specific, such as the vegetation type, survey-58 

specific, such as weather conditions during the survey, or may depend on individual 59 

heterogeneity, such as life-stage or sex. For instance, the activity of ectothermic 60 

vertebrates can be strongly influenced by abiotic factors such as temperature, humidity, 61 

and precipitation (Daltry et al., 1998; Sun et al., 2001). Another factor that can affect 62 
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activity patterns is phenology. Many species are more active and easier to detect during 63 

the breeding season, reducing activity in other periods of the year (Braña, 1991; 64 

Zamora-Camacho et al., 2013). If few surveys are available to assess the status of a 65 

species in a certain area, it is best to carry out those surveys when the probability of 66 

finding the target species is highest. For this reason, knowing the factors that influence 67 

species’ detection probability is crucial to optimize the monitoring of both rare and 68 

common species. 69 

In this study, I focused on the common wall lizard Podarcis muralis, a lacertid 70 

lizard distributed in central and southern Europe (Sillero et al., 2014). Many aspects of 71 

the ecology and ethology of this species have been intensively studied, including its 72 

polymorphism, aggressive behavior, hematology, and demography (Gracceva et al., 73 

2008; Scali et al., 2016, 2019; Pérez i de Lanuza and Carretero, 2018; Sacchi et al., 74 

2020). However, so far, no study has ever focused on the factors related to detection 75 

probability in this species, even if it is a widespread and common reptile. For this 76 

reason, I estimated the relative effect of several candidate drivers of detection 77 

probability in the common wall lizard. By performing a large number of surveys at a 78 

site in northern Italy, I evaluated the effects of temperature, precipitation, wind, and 79 

humidity in determining changes in detection probability. Additionally, I considered the 80 

effect of the date of the survey to consider the phenology. Furthermore, I tested for two 81 

possible interactions: between date and temperature, and between date and humidity, in 82 

order to assess if the relationship between these two variables and detectability varied 83 

over the sampling season.  84 

 85 

Material and methods 86 
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 87 

Study area and sampling 88 

 89 

The study was carried out in Cardano al Campo, Lombardy, northern Italy, coordinates: 90 

45.6367N, 8.7710E. The study site is a residential area composed of roads, houses, 91 

private gardens, and meadows (Fig. S1). Walking around the streets, it is easy to spot 92 

the common wall lizard, a small lacertid lizard with a maximum snout-length of ~75 93 

mm (Biaggini et al., 2011), mating, hunting, or basking onto the walls. I performed 94 

repeated counts of lizards within this area by walking along a pre-defined path of ~1.1 95 

km in length (Fig. S1). The path was walked at a slow speed (between 2 and 3 km/h) to 96 

allow a careful inspection of both sides of the roads. A total of 117 surveys were 97 

performed between 12 April and 6 October 2020, a period covering the peak of activity 98 

of this species (Biaggini et al., 2011). On some days, I carried out two surveys, while in 99 

others, no survey was carried out. The average frequency of surveys was one every 1.5 100 

days (Appendix S1). The time of the survey ranged between 08:01 and 20:00 daylight 101 

savings time. To respect the assumption of population closure (Royle, 2004), newly 102 

hatched individuals (total length 5-6 cm; Biaggini et al., 2011) were excluded from the 103 

analyses.  104 

 105 

Environmental data 106 

 107 

Environmental data were gathered from a weather station of the regional agency for the 108 

protection of the environment 109 

(https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-dati-misurati.aspx). The 110 

https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-dati-misurati.aspx
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station is located near the study site (station coordinates: 45.61924N, 8.75697E) and 111 

registers weather data every 10 minutes. Temperature and precipitation are two crucial 112 

variables shaping reptiles’ activity (Zamora-Camacho et al., 2013; Cunningham et al., 113 

2016). Additionally, humidity and wind can be important determinants of activity 114 

patterns (Daltry et al., 1998; Sun et al., 2001). Hence, for each survey, I extracted values 115 

of mean temperature, mean humidity, mean wind speed, and cumulative precipitation. 116 

As the duration of a survey was 25-30 min, weather data values were averaged across 117 

the 30 min timespan corresponding to the time when each survey was carried out. 118 

Additionally, I calculated the cumulative precipitation in the 24 hours before the survey 119 

to test for a possible effect of rainfall on the activity of the following day. 120 

 121 

Statistical analyses 122 

 123 

N-mixture models can reliably estimate population abundance and detection probability 124 

of vertebrates (Ficetola et al., 2018). However, estimating values of abundance and 125 

detection probability is not possible with data from a single site. Nevertheless, it is still 126 

possible to estimate the relationships between covariates and detection probability and 127 

also to compare the relative importance of these covariates. For this reason, in order to 128 

estimate the effect of abiotic factors on detection probability, I used a binomial 129 

generalized linear model in a Bayesian framework, specifically written for this analysis 130 

(Appendix S1). The following covariates of detectability were included in the model: 131 

average temperature during the survey (both quadratic and linear terms), average 132 

humidity during the survey, average wind speed during the survey, cumulative 133 

precipitation during the survey, cumulative precipitation in the 24 hours before the 134 
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survey; additionally, I included the date, expressed as Julian day, to consider the effect 135 

of phenology, and two interactions: date-temperature and date-humidity. Before running 136 

the model, I log-transformed precipitation and wind variables to reduce skewness, and 137 

then scaled all independent variables of detection with mean of 0 and a standard 138 

deviation of 1 (Sokal and Rohlf, 2012). Correlations among independent variables were 139 

weak (|r| < 0.57), hence I decided to keep all the predictors in the model. The priors of 140 

regression coefficients of the variables related to detection probability were uniform, 141 

ranging from -10 to 10. The model was run with three chains and for 20000 iterations 142 

for each chain, discarding the first 10000 iterations as a burn-in. The distribution of 143 

posteriors was sampled with a thinning of 10, resulting in 1000 samples for each chain. 144 

Parameter convergence was checked both visually and by looking at the Rhat value, 145 

which was <1.01 for all parameters. Analyses were run in the R environment (R Core 146 

Team, 2018) using the package R2jags (Su and Yajima, 2015). A script of the model 147 

and data used to run the analyses are available in Appendix S1. 148 

 149 

Results 150 

 151 

Over the 117 surveys, the number of detected lizards ranged from 0 to 49 (Fig. S2). 152 

Julian day showed a negative relationship with average detection probability (Fig. 1), 153 

indicating that lizards were easier to detect earlier in the sampling season (Fig. 2a). 154 

Detection probability showed a quadratic relationship with temperature (Fig. 1). On 155 

average, the highest detection probability was observed at 25.6°C. The effect of 156 

precipitation showed a bimodal pattern. Rainfall during the survey showed a negative 157 

relationship with detection probability (Fig.1; Fig. 2b), while rainfall in the 24 hours 158 
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before the survey showed an average positive relationship (Fig. 1). This indicates that 159 

lizards are less detectable during rains but easier to detect after rainy days. Humidity 160 

showed a negative relationship with detection probability, indicating that detection 161 

probability was lower during surveys with higher relative humidity (Fig. 1). The 162 

average effect of wind was close to zero, with 95% CIs widely overlapping zero, 163 

indicating no effect of wind on detection probability (Fig. 1). The quadratic effect of 164 

temperature showed an interaction with Julian day, indicating that the temperature at 165 

which detection probability was the highest varied over the sampling season (Fig. 1). 166 

For instance, in the early season (mid-April), detection probability was highest at 167 

24.3°C (Fig. 2c), while later in the season (beginning of August), detection probability 168 

was highest at 27.6°C (Fig. 2d). On the contrary, Julian day showed a negative 169 

interaction with humidity: the negative relationship between humidity and detection 170 

probability was not present in the early season (Fig. 2e and 2f). 171 

 172 

Discussion 173 

 174 

Despite being a very common and widespread species, so far, no study assessed the 175 

factors driving the detection probability of the common wall lizard. In this study, 176 

through Bayesian N-mixture modeling, I showed that the most influential drivers of the 177 

detection probability of this species are temperature and phenology, followed by 178 

precipitation and humidity. Temperature showed a quadratic relationship with detection 179 

probability, indicating that the activity of the common wall lizard is highest between 25 180 

and 28 degrees, decreasing at lower or higher temperatures (Fig. 2c and 2d). Previous 181 

studies found the body temperature of active common wall lizards around 34°C (Avery, 182 



9 
 

1978; Braña, 1991). This is not in contrast with the results of this study, since the 183 

common wall lizard shows an active thermoregulatory behavior, allowing individuals to 184 

reach body temperatures higher than the air temperature (Braña, 1991). Obtaining 185 

information about the environmental temperatures which maximize the probability of 186 

detecting individuals gives useful, practical information to plan the monitoring of this 187 

species. 188 

 The date of the survey (Julian day) showed a strong negative relationship with 189 

detection probability (Fig. 2a). This indicates that, even after accounting for the effect of 190 

temperature, phenology plays a significant role in shaping the activity patterns of the 191 

common wall lizard. This species usually breeds between March and June (Biaggini et 192 

al., 2011), which can explain the higher detectability earlier in the season. However, this 193 

relationship might change across life stages or based on other individual characters. For 194 

instance study on aggressive behavior showed a contrasting effect of phenology based 195 

on lizard color morph (Coladonato et al., 2020). The picture is further complicated by 196 

the interaction between date and temperature (Fig. 2c, 2d). Many studies found a shift in 197 

body temperature of reptiles over the sampling season (Castilla, Van Damme, and 198 

Bauwens, 1999). However, interactions are often not considered in models with 199 

detection probability, either because including additional variables is data-demanding or 200 

because it produces model convergence issues. Additionally, through the usage of 201 

cosinor models, previous studies showed a strong effect of circadian rhythm on 202 

hematological variables and protein secretion in this species (Mangiacotti et al., 2019; 203 

Sacchi et al., 2020). Implementing cosinor models into N-mixture/occupancy models 204 

could be the focus of future research and can potentially improve the precision of 205 

estimates of the factors related to detection probability. 206 
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 Humidity can significantly influence reptiles’ activity because of physiological 207 

constraints or because it can be related to other biotic factors, such as prey availability 208 

(Sun et al., 2001; Bulova, 2002). For example, some species can prefer higher humidity 209 

to avoid the risk of dehydration (Daltry et al., 1998), while others might prefer lower 210 

humidity to optimize the heat gain (Sun et al., 2001; Spence-Bailey et al., 2010). Here 211 

we showed that adult common wall lizards are more detectable when humidity is low 212 

(Fig. 2f). However, this relationship might change among sexes or with age (Sannolo, 213 

Barroso, and Carretero, 2018; Sannolo et al., 2020). For instance, smaller individuals 214 

might prefer higher humidity to avoid the risk of dehydration due to a higher 215 

surface/volume ratio (Sannolo, Barroso, and Carretero, 2018). Further studies are 216 

needed to assess if there is intraspecific variation in the factors driving detection 217 

probability. Moreover, the presence of a negative interaction between date and humidity 218 

suggested that the negative relationship between humidity and detection probability 219 

appears only in the late season (Fig. 2e, 2f). A possible explanation is that the 220 

preference for low humidity values is overrun by the advantages of being more active 221 

during breedings in the early season. 222 

 Precipitation can be a key factor influencing the activity of ectotherms (Rozen-223 

Rechels et al., 2019). Rainfall during the survey showed a negative relationship with 224 

detection probability (Fig. 1 and 2b), in agreement with the known ecology of the 225 

species (Avery, 1978). However, it has to be remarked that only three surveys (2.5 % of 226 

total surveys) were performed during rains (Appendix S1). Contrary to rainfall during 227 

the survey, a higher proportion of surveys (35 %) showed precipitation in the previous 228 

24 hours. Interestingly, cumulative precipitation in the 24 hours before the survey 229 

showed a positive relationship with detection probability (Fig. 1). This suggests that 230 
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after rainy days, the activity of this species is enhanced, perhaps to regain the time spent 231 

inactive or because invertebrate prey is more abundant after rains (Williams, 1951).  232 

 In this study, I assessed the effect of abiotic factors on the detection probability 233 

of the common wall lizard. Performing a large number of surveys at the same study site 234 

allowed me to identify temperature and phenology as the most influential drivers of 235 

detection probability, followed by precipitation and humidity. Knowing the factors that 236 

affect the probability of detecting an individual of a given species is of primary 237 

importance to avoid bias in population size and vital rates estimates (Kéry and Schaub, 238 

2012). Since with a single site, it is not possible to estimate values of abundance and 239 

detection probability, future studies can apply this sampling method to multiple sites. 240 

Previous capture-mark-recapture studies showed that demographic parameters of the 241 

common wall lizard can vary widely at different sites (Gracceva et al., 2008). 242 

Performing counts at multiple sites would allow us to estimate population abundance 243 

and to evaluate how microhabitat or landscape characteristics can influence it.  244 
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Figure captions: 350 

 351 

Figure 1 Density plots of the posterior distribution for the variables related to detection 352 

probability. Thick vertical lines represent the average estimated effect for each variable, 353 

outer lines represent the 95% credible interval and shaded areas represent the 80% 354 

credible interval. The superscript “2” indicates a quadratic relationship.  355 

 356 

Figure 2 Relationship between detection probability and some of the most influential 357 

variables. In each plot, the thick colored line represents the average predicted 358 

relationship, while the thin grey lines represent 3000 samples of the posterior 359 

distribution (1000 for each chain). a) Relationship between detection probability and 360 

Julian day; b) Relationship between detection probability and cumulated precipitation 361 

during the 24 before the survey; The interaction between Julian day and temperature is 362 

showed in c and d. c) Relationship between detection probability and temperature 363 

during the survey, with Julian day fixed at 102 (mid-April); d) Relationship between 364 

detection probability and temperature during the survey, with Julian day fixed at 214 365 

(beginning of August). The interaction between Julian day and humidity is showed in e 366 

and f. e) Relationship between detection probability and humidity during the survey, 367 

with Julian day fixed at 138 (mid-May); d) Relationship between detection probability 368 

and humidity during the survey, with Julian day fixed at 214 (beginning of August). 369 

 370 
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