

Switchable Oxidative Reactions of *N*-allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Diels–Alder Reaction

Sabrina Giofrè, Manfred Keller, Leonardo Lo Presti, Egle M. Beccalli,* and Letizia Molteni

ABSTRACT: The Pd(II)-catalyzed reaction of *N*-allyl-2-aminophenols in the presence of $PhI(OCOR)_2$ as the oxidant resulted in an alkoxyacyloxylation process, with the formation of functionalized dihydro-1,4-benzoxazines. The reaction performed in the absence of palladium catalyst switched to an intramolecular Diels–Alder reaction (IMDA) pathway, which was the result of an oxidative dearomatization of the 2-aminophenol, nucleophilic addition, and Diels–Alder reaction cascade, highlighting the role of the oxidant as both a nucleophilic donor and an oxidizing agent.

he construction of functionalized heteropolycyclic I molecules in one step, with the advantage to avoid isolation of intermediates is an attractive goal compared to traditional stepwise synthesis.¹ Moreover, the formation of several bonds combined in one pot complies with the concept of green chemistry in terms of timesaving and due to the reduced waste production.² The interest of a domino processes may be increased by using transition metal catalysis;³ in particular, the use of palladium(II) catalyst in oxidative conditions offers the possibility to use unactivated substrates as the unsaturated systems.⁴ In this case, in addition to the catalyst and the solvent, the oxidant may also have a crucial role in the outcome of the reaction. The synthetic strategies for the construction of oxygen-containing heterocycles applying the palladium(II)-catalyzed reactions through the formation of the intramolecular C–O bond, starting from alcohols, phenols, or carboxylic acids, are known in the literature,⁵ while the domino processes are less explored as the alkoxyacyloxylation.⁶

Continuing our studies on the C–O bond formation exploiting Pd-catalyzed intramolecular reactions in oxidative conditions,⁷ we set out to study the reactivity of phenols bearing an unsaturated pendant, to investigate the regioselectivity and the stereoselectivity in the cyclization step. Different regioselective pathways are dependent on the *exo-* or *endo-*cyclization processes arising from the length and rigidity of the linking alkyl chain. Moreover, the choice of a substrate that is easily oxidizable, such as a phenol, in oxidative conditions, represented a challenge due to the different possible pathways that the reaction can follow.

In particular, in the present study the reported oxidative reactions allowed the construction of two different heteropolycyclic systems starting from the same substrates but mildly tuning the reaction conditions (Scheme 1.1). In both cases, the

Scheme 1. (1) Switchable Oxidative Reaction of N-Allyl-2aminophenols and (2) Natural Products and Bioactive Compounds Containing the Dihydro-1,4-benzoxazine and Tricyclic Frameworks

Received: July 30, 2021 Published: September 27, 2021

© 2021 The Authors. Published by American Chemical Society reported processes showed easy synthetic pathways to achieve important building blocks for bioactive compounds and natural products endowed with cytotoxic activity as cluvenone and gambogic acid (Scheme 1.2).⁸

The study started using *N*-allyl-*N*-tosyl 2-aminophenol **1a** as a substrate to test different reaction conditions. The use of $Pd(OAc)_2$ in the presence of PIDA as oxidant in CH_3CN as solvent at room temperature (RT) afforded dihydro-1,4-benzoxazine **3** as the result of the alkoxyacetoxylation process (Table 1, entry 1).

 Table 1. Alkoxyacyloxylation Reaction on N-Allyl-N-Ts-2aminophenol 1a

"Reaction conditions: 10 mol % $Pd(OAc)_2$, 1.2 equiv of **2a** or **2b** in CH₃CN at RT. ^bReaction conditions: 10 mol % $Pd(OAc)_2$, 1.2 equiv of **2c** in CH₃CN at RT. ^cReaction conditions: 10 mol % $Pd(OAc)_2$, 1.2 equiv of **2c** in DCM at 40 °C.

The product was obtained with complete regioselectivity through a 6-exo-trig cyclization but in low yield. Different solvents, as DCM and THF, did not improve the yields (entries 2 and 3). With the purpose to increase yields, different functionalized hypervalent iodine reagents 2 were synthesized, due to the greater reactivity shown in the literature in alkene addition reaction⁹ or C-H functionalization reaction.¹⁰ Indeed, employing oxidizing agent 2a (entry 4) and 2b (entry 5), instead of the commercially available PIDA, the alkoxyacyloxylation reaction afforded compounds 3aa and 3ab, in 82 and 86% yield, respectively, in acetonitrile as solvent. The products obtained as a difunctionalization of the double bond showed the involvement of the oxidant agents also as nucleophilic donor (see the Supporting Information). Afterward, hypervalent amino acid type 2c was prepared and used in the same reaction. In this case, the acetonitrile was not compatible with the solubility of 2c and resulted in no reaction (entry 6). Performing the reaction in DCM as solvent at 40 $^{\circ}$ C, desired product **3ac** was instead achieved in good yield (62%),

even if as an inseparable mixture of the two diastereoisomers (entry 7). The best reaction conditions were then applied to different substrates with similar good results in term of yields: *N*-Boc-derivative **1b** gave dihydro-1,4-benzoxazine **3ba**, substituted 2-amino phenols **3c**-**e** afforded the cyclized products (**3cb**-**eb**) in very good yields, 3-amino- β -naphthol **3f** gave the product of alkoxyacyloxylation **3fb**, and 2-aminobenzyl alcohol **4a** afforded tetrahydro-1,4-benzoxazepine **4aa** (Scheme 2).

Regarding the stereocontrol of the cyclization step, few examples are reported in the literature on the difunctionalization of alkenes involving the C–O bond formation.¹¹ Conversely, good enantioselectivity was reported in the aminoacetoxylation process by the crucial use of the pyridine-oxazoline (Pyox) ligands with a sterically bulky group at the C-6 position of the pyridine.¹² Starting our investigations with the reported reaction conditions, 10 mol % $Pd(OAc)_2$ PIDA in DCM (0.6 M) and ligand L1,^{12a} the alkoxyacetoxylated product was not even achieved (entry 1, Table 2). Also, the replacement with the more reactive PhI(mcba)₂ did not afford the expected results (entries 2 and 3, Table 2). Only when we employed acetonitrile as solvent (entry 4) was expected ester derivative 3aa achieved in excellent yield but with a very low enantiomeric excess. The explanation of this behavior may depend on the acetonitrile properties, through the interaction of the nitrile with the palladium species affecting the formation of the Pd-ligand complex.¹³ In order to improve the stereoselectivity, the reaction of 1a was performed at -20 °C, with better stereoselectivity but low yield (entry 5). Using a mixture 1:5 of CH₃CN/toluene as solvent, in the presence of L2, no product 3aa was formed but a different compound 5aa was observed (entry 6, Table 2). Replacing ligands L1 and L2 with commonly used ligand L3, product 3aa was barely achieved, and compound 5aa was the major product (entry 7). Similar results were obtained with N-oxide ligand L4 (entry 8), known to be able to combine with Lewis acids to catalyze asymmetric difunctionalization of alkenes.¹⁴ Remarkably, the use of LS ligand afforded compound 5aa as the exclusive product (entry 9). The analytical and spectroscopic data revealed the structure of 5aa as a tricyclic product, confirmed by X-ray diffraction analysis.

The use of not suitable Pd(II)-ligands favored a reaction promoted exclusively by the hypervalent iodine. Indeed, under

Table 2. Investigations on the Stereoselective Pd-Catalyzed Alkoxyacyloxylation of N-Allyl-N-Ts-2-aminophenol 1a

()	Тs .N `ОН 1а	10 mol% Pd(OAc) ₂ 12 mol% L* 1.2 eq PhI(mcba) ₂ 2a solvent, <i>T</i> (° C)		CI + + 0- 5aa					
$\label{eq:horizontal_state} \fbox{\begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $									
entry	lig	solvent	T(°C)	3aa (%)	5aa (%)				
1 ^{<i>a</i>}	L1	DCM	RT						
2	L1	DCM	RT						
3	L2	DCM	0 °C						
4	L2	CH ₃ CN	0 °C	59% er 55:45					
5	L2	CH ₃ CN	−20 °C	23% er 65:35					
6	L2	CH ₃ CN/CH ₃ Ph 1:5	0 °C	traces	29%				
7	L3	CH ₃ CN	RT	15%	49%				
8	L4	CH ₃ CN	RT	10%	43%				
9	L5	CH ₃ CN	RT		64%				
10	Ь	CH ₃ CN	40 °C		71%				

"In the presence of PIDA instead of PhI(mcba)₂. ^bIn the absence of Pd.

the conditions of Table 2, entries 7–9, compound Saa was achieved as major or exclusive product. Thus, the explanation could rely on the inability of ligands L3-L5 to keep the electrophilicity of Pd(II), kidnapping the palladium and promoting a hypervalent iodine-based reaction.¹⁵ In fact, repeating the reaction in the absence of palladium and in the presence only of hypervalent iodine 2b, compound Saa was obtained as the exclusive product with 71% yields (entry 10, Table 2). Thus, the mechanism suggested for the formation of functionalized tricyclic system Saa is reported in Scheme 3.

Scheme 3. Proposed Mechanism for the Formation of Compound 5aa

The first step includes an oxidation/dearomatization of the 2aminophenol induced by the coordination of the iodine to the phenolic oxygen with the formation of *ortho*-quinone form **B**. The subsequent attack of the nucleophile gives intermediate **D**, followed by the intramolecular Diels–Alder reaction involving the allyl substituent, affording the tricyclic system. The process is fully diastereoselective with the formation of only one diastereoisomer. The good result still achieved the formation of product **5aa** in the presence of Pd-catalyst and **L5** (entry 9, Table 2), may be also due to the stabilization of the quinone intermediate **C**, mediated by the Pd-ligand complex, according to a mechanism proposed by Sigman¹⁶ (Scheme 3).

In the last years, the intramolecular Diels–Alder reactions in combination with other reactions have been fully investigated in domino/tandem processes,¹⁷ but to the best of our knowledge, no use of oxidant agent as nucleophile was reported. Thus, we described a mild procedure for the achievement of different functionalized tricyclic structures, simply varying the hypervalent iodine species (Scheme 1.1b). The results are reported in Table 3. By using the hypervalent

Table 3. Scope of the Intramolecular Diels-Alder Reaction

Мо	dification nucleophile		NIS				
1	$R^1 = H; R^2 = Ts$	1a	Nu = OCOMe	5ad (23%)			
2	$R^1 = H; R^2 = Ts$	1a	$Nu = OCOm-Cl-(C_6H_4)$	5aa (71%)			
3ª	R ¹ = H; R ² = Ts	1a	Nu = OCOMe	5ad (19%)			
			OCOm-Cl-(C ₆ H ₄)	5aa (35%)			
4	$R^1 = H; R^2 = Ts$	1a	$Nu = OCOo-F-(C_6H_4)$	5ab (67%)			
5	R ¹ = H; R ² = Ts	1a	Nu =	5ac (58%)			
6 ^b	$R^1 = H; R^2 = Ts$	1a	Nu = $3^{N} N_{N}$	5ae (63%)			
			\bigtriangledown				
Modification N-protecting group							
7	R ¹ = H; R ² = Boc	1b	/	(-%)			
8	$R^1 = H; R^2 = COCF_3$	1 i	/	(-%)			
9	R ¹ = H; R ² = (-)menthyl-CO	1j	NCO-(-)-menthyl	5ja (46%)			
			OCOAr O Ar = m-Cl-(C-H_i)				
Substitutions on the aromatic ring							
10	R ¹ = 4-Me; R ² = Ts	1c	/	(-%)			
11	R ¹ = 5-Me; R ² = Ts	1d	NTS	5da (52%)			
			$Ar = m - CI - (C_6H_4)$				
12	R ¹ = 4-OMe; R ² = Ts	1e	/	(-%)			
13	R ¹ = 4,5-(CH) _{4;} R ² = Ts	1f	/	(-%)			
14	$R^1 = 5-CI; R^2 = Ts$	1g	NTs OCOAr	5ga (57%)			
			$CI \longrightarrow O$ Ar = m-CI-(C ₆ H ₄)				

^{*a*}PhI(OAc)₂ (1.5 equiv) and *m*-chlorobenzoic acid (1.5 equiv) were used instead of PhI(mcba)₂. ^{*b*}PhI(OAc)₂ (2 equiv) and benzimidazole (1.5 equiv) were used.

iodine agents, 2a-c, corresponding α -amino-functionalized tricycles 5aa-ac were obtained in good yields (entries 2-5). When a good nucleophile was employed, such as the benzimidazole, the reaction could be carried out by using PhI(OAc)₂ and 1.2 equiv of benzimidazole in CH₃CN (entry 6). Hence, the reaction was applied on N-allyl-2-aminophenol bearing different N-protecting groups, **1b**,**i**,**j**, and on different substituted substrates, **1c**-**g**. While the Boc-derivative (**1b**) was degraded and the trifluoroacetic-group (**1i**) was not reactive, amide **1j** gave good results. Regarding the substitution on the ring, only *para*-substitution at the amino group was tolerated, affording products **5da** and **5ga** with 52 and 57% yields, respectively. In order to check the need to prefunction-

alize the hypervalent iodine, a control reaction was carried out in the presence of PIDA and *m*-chlorobenzoic acid as an external nucleophile (entry 3, Table 3). The achievement of a mixture of both functionalized systems, with the *m*chlorobenzoate and the acetoxy group, respectively, confirmed the need to preinstalled the nucleophile of interest into the iodine(III).

In conclusion, we described a useful reactivity of *N*-allyl-2aminophenols under Pd-catalysis in oxidative conditions, by the use of uncommon hypervalent iodines. By tuning the reaction conditions, it was possible to switch between the two processes, the intra/interdifunctionalization of the double bond resulting in the methylacyloxylated dihydro-1,4-benzoxazines and the functionalized tricyclic system achieved through dearomatization of the substrate and intramolecular Diels– Alder reaction (IMDA).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c02539.

Experimental procedures, compound characterization data including copies of $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra (PDF)

Accession Codes

CCDC 2078893 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Egle M. Beccalli – DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, 20133 Milano, Italy; o orcid.org/0000-0002-1189-2572; Email: egle.beccalli@unimi.it

Authors

- Sabrina Giofrè DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, 20133 Milano, Italy
- Manfred Keller Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
- Leonardo Lo Presti Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; orcid.org/ 0000-0001-6361-477X
- Letizia Molteni DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, 20133 Milano, Italy

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c02539

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Università degli Studi di Milano for financial support.

REFERENCES

(1) (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Cascade Reactions in Total Synthesis. *Angew. Chem., Int. Ed.* **2006**, *45*, 7134– 7186. (b) Balme, G.; Bouyssi, D.; Monteiro, N. Palladium-mediated Cascade or Multicomponent Reactions: A New Route to Carbo- and Heterocyclic Compounds. *Pure Appl. Chem.* **2006**, *78*, 231–239. (c) Pellissier, H. Stereocontrolled Domino Reactions. *Chem. Rev.* **2013**, *113*, 442–524. (d) Broggini, G.; Borelli, T.; Giofré, S.; Mazza, A. Intramolecular Oxidative Palladium-Catalyzed Amination Involving Double C–H Functionalization of Unactivated Olefins. *Synthesis* **2017**, *49* (13), 2803–2818. (e) Yin, G.; Mu, X.; Liu, G. Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center. *Acc. Chem. Res.* **2016**, *49* (11), 2413–2423.

(2) (a) Dunn, P. J. The importance of Green Chemistry in Process Research and Development. *Chem. Soc. Rev.* 2012, 41, 1452–1461.
(b) Tucker, J. L. Green Chemistry, a Pharmaceutical Perspective. *Org. Process Res. Dev.* 2006, 10, 315–319.

(3) (a) Vlaar, T.; Ruijter, E.; Orru, R. V. A. Recent Advances in Palladium-Catalyzed Cascade Cyclizations. *Adv. Synth. Catal.* 2011, 353, 809–841. (b) Clavier, H.; Pellissier, H. Recent Developments in Enantioselective Metal-Catalyzed Domino Reactions. *Adv. Synth. Catal.* 2012, 354, 3347–3403. (c) Choury, M.; Basilio Lopes, A.; Blond, G.; Gulea, M. Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. *Molecules* 2020, 25, 3147.

(4) (a) Christodoulou, M. S.; Giofrè, S.; Broggini, G.; Mazza, A.; Sala, R.; Beccalli, E. M. Divergent Palladium- and Platinum-Catalyzed Intramolecular Hydroamination/Hydroarylation of O-Propargyl-2aminophenols. Eur. J. Org. Chem. 2018, 2018 (44), 6176-6184. (b) Foschi, F.; Loro, C.; Sala, R.; Oble, J.; Lo Presti, L.; Beccalli, E. M.; Poli, G.; Broggini, G. Intramolecular Aminoazidation of Unactivated Terminal Alkenes by Palladium-Catalyzed Reactions with Hydrogen Peroxide as the Oxidant. Org. Lett. 2020, 22, 1402-1406. (c) Broggini, G.; Beccalli, E. M.; Borelli, T.; Brusa, F.; Gazzola, S.; Mazza, A. Intra-Intermolecular Palladium-Catalyzed Domino Reactions of Glycine Allylamides for the Synthesis of Diversely Functionalized Piperazinones. Eur. J. Org. Chem. 2015, 2015, 4261-4268. (d) Giofrè, S.; Beccalli, E. M.; Foschi, F.; La Rosa, C.; Lo Presti, L.; Christodoulou, M. S. Chemo- and Regioselective Palladium(II)-Catalyzed Aminoarylation of N-Allylureas Providing 4-Arylmethyl Imidazolidinones. Synthesis 2019, 51, 3462-3470.

(5) (a) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective C-H Activation/C-O Bond Formation: Synthesis of Chiral Benzofuranones. J. Am. Chem. Soc. 2013, 135, 1236-1239. (b) Wei, Y.; Yoshikai, N. Oxidative Cyclization of 2-Arylphenols to Dibenzofurans under Pd(II)/Peroxybenzoate Catalysis. Org. Lett. 2011, 13, 5504-5507. (c) Fujino, D.; Hayashi, S.; Yorimitsu, H.; Oshima, K. Palladium-catalysed arylative cyclisation of N-allylacetamides with aryl halides yielding benzyl-substituted oxazolines. Chem. Commun. 2009, 5754-5756. (d) Rodriguez, A.; Moran, W. J. Palladium-Catalyzed Three-Component Coupling Reactions: 1,1-Difunctionalization of Activated Alkenes. Eur. J. Org. Chem. 2009, 2009, 1313-1316.

(6) For a related intermolecular reaction, see (a) Li, Y.; Song, Y. D.; Dong, V. M. Palladium-Catalyzed Olefin Dioxygenation. J. Am. Chem. Soc. 2008, 130, 2962–2964. (b) Neufeldt, S. R.; Sanford, M. S. Asymmetric Chiral Ligand-Directed Alkene Dioxygenation. Org. Lett. 2013, 15, 46–49. For a related intramolecular reaction, see (c) Zhang, Y.; Sigman, M. S. Palladium(II)-Catalyzed Enantioselective Aerobic Dialkoxylation of 2-Propenyl Phenols: A Pronounced Effect of Copper Additives on Enantioselectivity. J. Am. Chem. Soc. 2007, 129, 3076–3077. (d) Manick, A. D.; Duret, G.; Tran, D. N.; Berhal, F.; Prestat, G. Synthesis of 1,4-benzodiazepinones and 1,4benzoxazepinones via palladium-catalyzed amino and oxyacetoxylation. Org. Chem. Front. 2014, 1, 1058–1061. (f) Takenaka, K.; Dhage, Y. D.; Sasai, H. Enantioselective Pd(II)–Pd(IV) catalysis utilizing a SPRIX ligand: efficient construction of chiral 3-oxy-tetrahydrofurans. Chem. Commun. 2013, 49, 11224–11226. (g) Feng, Y.; Yang, C.; Deng, Q.; Xiong, R.; Zhang, X.; Xiong, Y. Synthesis of Antitricyclic Morpholine Derivatives through Iodine(III)-Mediated Intramolecular Umpolung Cycloaddition of Olefins. J. Org. Chem. 2020, 85 (6), 4500–4506.

(7) (a) Gazzola, S.; Beccalli, E. M.; Borelli, T.; Castellano, C.; Diamante, D.; Broggini, G. Selective 7-endo-Cyclization of 3-Aza-5alkenols through Oxidative Pd(II)-Catalyzed Olefin Oxyarylation. *Synlett* **2018**, *29*, 503–508. (b) Broggini, G.; Beccalli, E. M.; Borsini, E.; Fasana, A.; Zecchi, G. Intramolecular Oxidative Pd(II)-Catalyzed Alkoxylation of 3-Aza-5-alkenols with O₂ as Sole Oxidant: Mild Conditions for the Synthesis of 1,4-Oxazine Derivatives. *Synlett* **2011**, *2*, 227–230.

(8) (a) Touzeau, F.; Arrault, A.; Guillaumet, G.; Scalbert, E.; Pfeiffer, B.; Rettori, M.-C.; Renard, P.; Mérour, J.-Y. Synthesis and Biological Evaluation of New 2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine Derivatives. *J. Med. Chem.* **2003**, *46* (10), 1962–1979. (b) Zhang, X.; Li, X.; Sun, H.; Jiang, Z.; Tao, L.; Gao, Y.; Guo, Q.; You, Q. Synthesis and evaluation of novel aza-caged Garcinia xanthones. *Org. Biomol. Chem.* **2012**, *10*, 3288–3299.

(9) Muniz, K.; Garcia, B.; Martinez, C.; Piccinelli, A. Dioxoiodane Compounds as Versatile Sources for Iodine(I) Chemistry. *Chem. -Eur. J.* **201**7, 23, 1539–1545.

(10) Muniz, K.; Martinez, C. An Iodine-Catalyzed Hofmann–Löffler Reaction. Angew. Chem., Int. Ed. 2015, 54, 8287–8291.

(11) (a) Hu, N.; Li, K.; Wang, Z.; Tang, W. Synthesis of Chiral 1,4-Benzodioxanes and Chromans by Enantioselective Palladium-Catalyzed Alkene Aryloxyarylation Reactions. Angew. Chem., Int. Ed. 2016, 55, 5044-5048. (b) Jensen, K. H.; Pathak, T. P.; Zhang, Y.; Sigman, M. S. Palladium-Catalyzed Enantioselective Addition of Two Distinct Nucleophiles across Alkenes Capable of Quinone Methide Formation. J. Am. Chem. Soc. 2009, 131, 17074-17075. (c) Wen, K.; Wu, Z.; Huang, B.; Ling, Z.; Gridnev, I. D.; Zhang, W. Solvent-Controlled Pd(II)-Catalyzed Aerobic Chemoselective Intermolecular 1,2-Aminooxygenation and 1,2-Oxyamination of Conjugated Dienes for the Synthesis of Functionalized 1,4-Benzoxazines. Org. Lett. 2018, 20 (6), 1608-1612. (d) Shen, H.-S.; Wu, Y.-F.; Zhang, Y.; Fan, L.-F.; Han, Z.-Y.; Gong, L.-Z. Palladium-Catalyzed Asymmetric Aminohydroxylation of 1,3-Dienes. Angew. Chem., Int. Ed. 2018, 57, 2372-2376. (e) Dong, K.; Jin, X.-L.; Chen, S.; Wu, L.-Z.; Liu, Q. Controllable Synthesis of 2- and 3-Aryl-benzomorpholines from 2-Aminophenols and 4-Vinylphenols. Chem. Commun. 2020, 56, 7941-7944.

(12) (a) Qi, X.; Chen, C.; Hou, C.; Fu, L.; Chen, P.; Liu, G. Enantioselective Pd(II)-Catalyzed Intramolecular Oxidative 6-endo Aminoacetoxylation of Unactivated Alkenes. *J. Am. Chem. Soc.* **2018**, 140, 7415–7419. (b) Tian, B.; Chen, P.; Leng, X.; Liu, G. Palladium-catalysed enantioselective diacetoxylation of terminal alkenes. *Nature Catalysis* **2021**, *4*, 172–179.

(13) (a) Wendt, O. F.; Kaiser, N.-F. K.; Elding, L. I. Acetonitrile and Propionitrile Exchange at Palladium(II) and Platinum(II). *J. Chem. Soc., Dalton Trans.* **1997**, 4733–4738. (b) Reeves, E. K.; Bauman, O. R.; Mitchem, G. B.; Neufeldt, S. R. Solvent Effects on the Selectivity of Palladium-Catalyzed Suzuki-Miyaura Couplings. *Isr. J. Chem.* **2020**, *60*, 406–409. (c) Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M. Solvent effects in palladium catalysed cross-coupling reactions. *Green Chem.* **2019**, *21*, 2164–2213.

(14) For a reaction involving the difunctionalization of alkenes, see (a) Cai, Y.; Liu, X.; Jiang, J.; Chen, W.; Lin, L.; Feng, X. Catalytic Asymmetric Chloroamination Reaction of $\alpha_i\beta$ -Unsaturated γ -Keto Esters and Chalcones. J. Am. Chem. Soc. **2011**, 133, 5636–5639. (b) Huang, S.-X.; Ding, K. Asymmetric Bromoamination of Chalcones with a Privileged N,N-Dioxide/Scandium(III) Catalyst. Angew. Chem., Int. Ed. **2011**, 50, 7734–7736. For a reaction involving the phenol oxidation, see (c) Wang, M.; Meng, X.; Hu, C.; Su, Z. Selectivity Control in Inverse Electron Demand Diels–Alder Reaction of o-Quinone Methides Catalyzed by Chiral N,N-Dioxide–Sc(III) Complex. *Molecular Catalysis* **2020**, *498*, 111242. (d) Bai, S.; Liu, X.; Wang, Z.; Cao, W.; Lin, L.; Feng, X. Catalytic Asymmetric Friedel–Crafts Reaction of Activated Phenols and 4-Oxo-4-arylbutenoates. *Adv. Synth. Catal.* **2012**, *354*, 2096–2100. (e) Zhang, J.; Lin, L.; He, C.; Xiong, Q.; Liu, X.; Feng, X. A chiral scandium-complex-catalyzed asymmetric inverse-electron-demand oxa-Diels–Alder reaction of o-quinone methides with fulvenes. *Chem. Commun.* **2018**, *54*, 74–77.

(15) (a) Chen, Y. K.; Peddinti, R. K.; Liao, C.-C. Diastereoselective intramolecular Diels-Alder reactions of masked o-benzoquinones: a short entry to highly functionalized tricyclic [m.2.2.0] ring systems. *Chem. Commun.* **2001**, 1340–1341. (b) Lin, K. C.; Shen, Y. L.; Rao, N. S. K.; Liao, C.-C. A Short Synthesis of (±)-Halenaquinone. *J. Org. Chem.* **2002**, 67, 8157–8165.

(16) (a) Race, N. J.; Schwalm, C. S.; Nakamuro, T.; Sigman, M. S. Palladium-Catalyzed Enantioselective Intermolecular Coupling of Phenols and Allylic Alcohols. *J. Am. Chem. Soc.* **2016**, *138*, 15881–15884.

(17) (a) Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Masked ortho-Benzoquinones. *Asian J. Org. Chem.* 2017, *6*, 945–966. (b) Sun, W.; Li, G.; Hong, L.; Wang, R. Asymmetric dearomatization of phenols. *Org. Biomol. Chem.* 2016, *14*, 2164–2176. (c) Nair, V.; Menon, R. S.; Biju, A. T.; Abhilash, K. G. 1,2-Benzoquinones in Diels–Alder Reactions, Dipolar Cycloadditions, Nucleophilic Additions, Multicomponent Reactions and More. *Chem. Soc. Rev.* 2012, *41*, 1050–1059. (i) Yang, B.; Gao, S. Recent Advances in the Application of Diels–Alder Reactions Involving o-Quinodimethanes, Azao-quinone Methides and o-Quinone Methides in Natural Product Total Synthesis. *Chem. Soc. Rev.* 2018, *47*, 7926–7953.