Title

Recombinant Factors for Periodontal Intrabony Defects: A Systematic Review and Network Meta-Analysis of Preclinical Studies

Authors:

Shahnawaz Khitmatgar2,3,4,*, Saurav Panda1,2,*, Mohit Das1, Heber Arbildo-Vega4,5, Massimo Del Fabbro2,6

#Both the authors have equal contribution

Affiliation:

1 Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India – 751003
2 Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
3 Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences, Department of Oral Biology and Genomic Studies, Mangalore, India.
4 Department of General Dentistry, Dentistry School, Universidad San Martín de Porres, Chiclayo 14012, Peru
5 Department of General Dentistry, Dentistry School, Universidad Particular de Chiclayo, Chiclayo 14012, Peru
6 IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.

Corresponding Author:

Professor Massimo Del Fabbro
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
Email: massimo.delfabbro@unimi.it
Abstract

The use of bioactive agents combined with osteoconductive scaffolds for the regeneration of periodontal intrabony defects has been the subject of intensive research in the past 20 years. Most studies reported that such agents, used in different concentrations, doses and combined with various scaffolds, might promote periodontal tissue regeneration, but evidence for the most effective combination of such agents is lacking. The objective of this study was to rank the different combinations of recombinant human-derived growth and differentiation factors with/without scaffold biomaterial in the treatment of periodontal intrabony defects, through network meta-analysis of pre-clinical studies. The systematic review and network meta-analysis protocol was registered on the PROSPERO Systematic Review database with reference number: CRD42021213673. Relevant published articles were obtained after searching five electronic databases. A specific search strategy was followed by using keywords related to intrabony defects, regenerative materials, scaffolds and recombinant factors, and animal studies. All pre-clinical studies used for periodontal regeneration were included. The primary outcomes were: regeneration of junctional epithelium (mm), new cementum, connective tissue attachment, percentage of new bone formation (%), bone area (mm²), bone volume density (g/cm³) and bone height (mm) data was extracted. The analysis was carried out using network meta-analysis methods, i.e. illustrating network plots, contribution plots, predictive and confidence interval plot, surface under the cumulative ranking (SUCRA), multidimensional scale ranking and net funnel plots using STATA IC statistical software. An SYRCLE's tool for assessing risk of bias was used for reporting risk of bias among individual studies. A total of N=24 for qualitative and N=21 studies for quantitative analysis published till 2020 were included. The cumulative total number of animals included in the control and test groups were N=162 and N=339, respectively. The duration of the study was between 3 and 102 weeks. rhBMP-2 ranked higher in SUCRA as the agent associated with the best performance for bone volume density. rhGDF-5/TCP ranked best in the bone area (mm²), rhPDGF-BB/Equine ranked best in bone height (mm), rhBMP-2 ranked best in the percentage of new bone fill, rhBMP-2/ACS ranked best in new cementum formation, and rhGDF-5/b-TCP/PLGA ranked best in connective tissue attachment and junctional epithelium. There were no adverse effects identified in the literature that could affect the different outcomes for regeneration in intrabony defects. Various recombinant factors are effective in promoting the regeneration of both soft and hard tissue supporting structures of the periodontium. However, when considering different outcomes, different agents, associated or not with biomaterials, ranked best. Keeping into account the limited transferability of results from animal studies to the clinical setting, the choice of the most appropriate formulation of bioactive agents may depend on clinical needs and purpose.

Key Words

rhPDGF; recombinant human growth factor; Network Meta-analysis; Systematic review; Biomaterial; Bioactive agents; Scaffold; bone regeneration; intrabony defects; Periodontal regeneration
Introduction

One of the most important factors for periodontal regeneration is the mechanical stabilisation of blood clot (1,2). Effective stabilisation of blood clot would facilitate all the steps of the healing process, optimising the interaction among the various factors involved in the healing process. Although conventional flap techniques in many cases may be effective in reducing the existing periodontal defect, the introduction of bioactive agents and biomaterials in the last decades represented a breakthrough to enhance periodontal regeneration, especially in the most severe cases (3). Several natural or synthetic materials like enamel matrix proteins (EMD), collagen membranes and, more recently, recombinant human (rh) growth and differentiation factors such as platelet-derived growth factor (PDGF), Insulin growth factor-1 (IGF-1), Transforming growth factor-β (TGF-β), and bone morphogenetic protein-2 (BMP-2), have been used over the years. Many experimental studies proved the efficacy of such bioactive agents in tackling the challenges of most types of periodontal defects, by promoting periodontal healing, especially when combined with osteoconductive scaffolds (4,5). However, these factors have been used in different concentrations, doses and combined with different scaffolds, which makes difficult to understand if there is some combination that works better than others do.

Darby & Morris (2013) and Khoshkam et al (2015) aimed to conduct meta-analysis on rh factors for periodontal regeneration and intrabony defects, respectively (6,7). Conventional pairwise meta-analysis may determine the efficacy/effectiveness of any given bioactive agents against control, but no hierarchy of such agents can be determined, in the absence of direct comparison. Network meta-analyses (NMA) may address this limitation, allowing to establishing a ranking of different treatments, based on both direct and indirect comparisons. Therefore, pairwise meta-analysis and network meta-analysis serve different purposes (8,9). NMA would provide directions for future preclinical studies by helping researchers by providing an updated information and minimizing cost incurred while conducting such researches. Currently, there are no published NMAs on rh factors in combination with scaffolding biomaterial and bioactive agents, attempting to demonstrate the most effective combination for periodontal regeneration procedures. Therefore, our aim was to systematically search for published pre-clinical studies that investigated the effect of recombinant human growth and differentiating factors with/without scaffolding biomaterials for the regeneration of periodontal intrabony defects, and perform a comprehensive network meta-analysis to determine the best combination for periodontal regeneration.

Methods

We followed the guidance from the PRISMA (Preferred Reporting Items of Systematic Reviews and Network Meta-Analyses) Checklist to report this systematic review (10) and SYRCLE guidelines were followed to report the risk of bias (ROB) (11). The Network Meta-analysis protocol was registered on the PROSPERO database with registration number: CRD42021213673.
Review Question

What is the effect of recombinant human-derived growth and differentiating factors and other bioactive agents with/without scaffold biomaterial in the treatment of intrabony defects in terms of parameters related to periodontal regeneration?

Inclusion Criteria

The PICOS question was used to determine the population, intervention, comparator, outcomes and study design in our review.

Population (P)

All animal models that included experimental intrabony defects and have used recombinant human-derived growth and differentiating factors and bioactive agents with/without scaffold biomaterial were included in the analysis.

Intervention/exposure (I)

Recombinant human-derived growth and differentiating factors and bioactive agents with/without scaffold biomaterial were used for regenerative treatment of experimental intrabony periodontal defects.

Comparators/Control (C)

The same intervention without bioactive agents.

Outcome Measures (O)

The outcome measures like bone area (mm2), Bone density, Bone Height (mm), Connective tissue attachment, new cementum formation and junctional epithelium with mean and SD or mean and SD differences will be extracted. Histological and histomorphometric data of new bone formation (%) (mean values, SD) will be included. The studies which reported only median, ranges, relative changes or no SD values and 95% confidence interval were excluded from the analysis.

Study design (S)

Pre-clinical studies in which intrabony defects have been created, with any follow-up duration were included in the review. The in vitro studies, laboratory studies, and all clinical studies like experimental and observational studies, were excluded from the review.

Other limitations applied

Further specific inclusion criteria were:

1. The defect in the animal model consisted of a horizontal bone defect involving tooth from the bottom to the fornix of the furcation.

2. Notches on the internal root surfaces created at the level of the reduced bone.
Search strategy

The strategy for screening included articles was illustrated in prisma flow chart (Figure 1). MEDLINE, EMBASE, Web of Science, Scopus, Cochrane Central Library were searched from their inception to till date. A range of text words and indexed terms related to "intrabony defects" "growth factors" "Recombinant" "Bioactive agents" and "Animal studies" "Preclinical Studies" were searched. The search strategy includes ((((((intra-bony defect) OR (intrabony defect)) OR (intrabony defects)) OR (periodontal defect)) OR (intraosseous defects)) AND (((((((((recombinant human platelet-derived growth factor) OR (rhpdgf)) OR (PDGF)) OR (rhPDGF)) OR (recombinant human fibroblast growth factor)) OR (rhFGF)) OR (insulin growth factor)) OR (IGF)) OR (Vascular endothelial growth factor)) OR (VEGF)) OR (recombinant human growth/differentiation factor)) OR (GDF)) OR (Recombinant human bone)))) AND (((((((((Cats) OR (cats)) OR (feline cats)) OR (feline)) OR (((((Dogs) OR (dog)) OR (dogs)) OR (canine)) OR (canines))) OR (((Guinea Pigs) OR (guinea pig)) OR (guinea pigs))) OR ((((((Mice) OR (mice)) OR (mouse model)) OR (mouse)) OR (mus)) OR (murine)))) OR (((((Primates) OR (non-human primate)) OR (non-human primates)) OR ((((((((Rabbits) OR (rabbit)) OR (rabbit)) OR (lagomorpha)) OR (Rats)) OR (rat)) OR (rats)) OR (rodent)) OR (rodents)))) OR (((((Sheep) OR (sheep)) OR (ovis)) OR (ovine))) OR (((((Swine) OR (swine)) OR (pig)) OR (pigs)) OR (porcine))). The reference lists of studies meeting the inclusion criteria were searched to identify additional relevant studies. Two researchers (SK, SP) screened references for eligibility independently. Study authors were contacted to obtain relevant missing data if necessary.

The published articles retrieved using the search strategy and those included from the additional sources were screened independently by two review authors to identify studies that potentially meet the inclusion criteria. The full text of selected studies was retrieved and independently assessed by eligible members of the review. Any disagreement between the two authors was discussed with the third author/reviewer. A standardised PRISMA flow chart was used to summarise the selection process.

Data extraction

Extracted data include year, author, study id, type of animal model used, number and type of animals, number of defects, number of osseous walls, defect depth, healing, period, healing type, and histologic results. The histological outcome measures that determine the success and failure in treating intrabony defect included: long junctional epithelium (LJE), epithelium down growth covering the tooth treated surface, connective tissue attachment, new cementum with inserting collagen fibres on the treated root surface but not in contact with opposing new bone, connective tissue adhesion, connective tissue contact with the root without apparent cementum formation, regeneration new cementum, new inserting fibres, new bone composing a new PL structure, osseous repair, a new bone filling opposite tooth surface leading to defect filling. Histomorphometric data included new cementum (NC), new bone (NB) formation and collagen fibres (CF). In addition, linear measurements (in mm) of the junctional epithelium (JE) on the tooth surface
was presented as a percentage of defect depth resolution. Missing data were requested from to study authors.

The studies selected for full analysis underwent extraction of the following data;

1. Junctional Epithelium
2. New Cementum formation
3. Bone Area (mm2)
4. Bone Volume Density (g/cm3)
5. Bone Height (mm)
6. Connective Tissue attachment levels
7. Amount of bone fill (%) after surgery (Histology, Histomorphometric or Radiographic)

Risk of bias (ROB) / quality assessment

SYRCLE guidelines were followed to report the risk of bias (ROB). The ROB was assessed by two independent reviewers, and the discrepancies will be resolved by discussion and in consultation with a third reviewer. The studies were graded under high, uncertain or low risk, based on subjective bias such as randomisation and blinding, outcome measures, statistical methods, experimental animals used, experimental procedures and results.

Data Synthesis

For pairwise meta-analysis, the overall effect size was estimated using STATA 16.1 version. A generic inverse variance random-effects model was used to pool the mean difference (MD) with a 95% confidence interval (CI) on continuous outcomes. It is anticipated that the units of the outcome measures used across studies may not be consistent, and therefore it is likely that the effects were to be reported as standardised mean differences (SMD) rather than MD. A random-effects model was used as it incorporates heterogeneity both within and between studies (Higgin and Green, 2011). E.g. heterogeneity between studies' follow-up length was accounted for by the use of a random-effects model. An overall effect size with 0.2-0.5 was regarded as small, 0.5-0.8 as moderate and more than 0.8 as large (Cohen, 1988). In the case of missing or incomplete data, we contacted study authors to obtain the required data.

Network Meta-analysis

The data suitable for NMA were used to generate a network geometry plot, where nodes indicate the number of subjects involved in specific intervention and edges represents the direct comparison between pairs of treatment. The contribution plot helps in identifying the large and small contribution of evidence in a network. A significant inconsistency formed in direct and indirect loops and suggesting
that they do not differ significantly was reported by inconsistency plot. It is essential to know the results of future clinical studies and expected to lie. Therefore, a predictive and confidence interval plot was generated. The surface under the cumulative ranking curves (SUCRA) expresses the percentage of effectiveness/safety each treatment has compared to an 'ideal' treatment always ranked first without uncertainty (Salanti, 2011). Also, the mean rank, which is the mean of the distribution of the ranking probabilities, was reported. The multidimensional ranking was used to rank the materials based on their dissimilarity between the two treatments. Net funnel plots are most commonly used to report publication bias that helps in assessing small study effects. The grading of direct, indirect and network evidence was based on A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis (12).

Heterogeneity

Heterogeneity between study was assessed using the I^2 statistic, which describes the percentage of variation across studies that is due to heterogeneity rather than chance. Rules of thumb for interpretation of this statistic suggest that $I^2 >30\%$ equates to moderate heterogeneity, $I^2 >50\%$ equates to substantial heterogeneity, and $I^2 >75\%$ equates to considerable heterogeneity (Higgin and Green, 2011). For all I^2 values about 50%, we investigated sources of heterogeneity.

Results

A total of 24 pre-clinical studies were included for qualitative analysis. These include Lee et.al 2020 (22); Bae et.al 2018 (17); Ogawa et.al 2016 (18); Bizenjima et.al 2014 (19); Du bing et.al 2014 (20); Park JC et.al 2012 (23); Lee et.al 2012 (24); Leknes et.al 2012 (25); Nevins et.al 2012 (26); Oortgiesen et.al 2012 (27); Emerton et.al 2011 (28); Min et.al 2011 (29); Markapoulou et.al 2011 (30); Irokowa et.al 2010 (31); Kwon et.al 2010 (32); Lee et.al 2010 (33); Shirakata et.al 2010 (34); Oi et.al 2009 (35); Qahash et.al 2007 (36); Blumenthal et.al 2002 (37); Choi et.al 2002 (38); Giannobile et.al 1998 (39); Giannobile et.al 1996 (40); Giannobile et.al 1994 (41) (Figure 2). In the control group, a total of n=157 defects were assessed, and in the test group n=352 defects were assessed. The majority of the studies were funded (i.e. n=19). The duration of studies was between 3 and 102 weeks. The mean intrabony defect size for the control and test group was 4.81±0.86mm and 4.64±0.26mm, respectively. A majority of studies included beagle dogs intrabony defect models (n=128) (Figure 2). The outcomes that determined the successful hard and soft tissue regeneration were junctional epithelium, new cementum, percentage of new bone fill, a bone area in mm2, bone volume density, bone height in mm, connective tissue formation. The inconsistency plot was not possible, as there were no loops formed between the interventions.

Junctional Epithelium

The network geometry plot illustrates the network of interventions in junction epithelium outcomes using nodes and edges (Suppl. Fig.1). The evidence of direct contribution was by all the interventions (100%) and indirect contribution equally by all interventions (50%). The evidence flow from the entire network was 16.7% from all the interventions (Suppl. Fig.2). The risk of bias among interventions between Con Vs bFGF was low, and Con Vs rhGDF-5/b-TCP was high. All other interventions were found to be a
moderate risk of bias (Suppl. Fig.3). rhBMP-2/CaSO4, bFGF, rhGDF-5/b-TCP and rhGDF-5+b-TCP/PLGA would perform best in future clinical studies as demonstrated in predictive interval plot (Suppl. Fig.4). rhGDF-5+b-TCP/PLGA was ranked higher in SUCRA ranking (Figure 2) and found to be the most dissimilar material as illustrated in multidimensional scale ranking (MDS) (Suppl. Fig.5). The net funnel plots illustrating the publication bias for JE outcome (Suppl. Fig.6).

Connective Tissue Attachment

The most common comparison was between Con Vs IGF-1, as illustrated in the network geometry plot (Suppl. Fig.7). The contribution plot and the ROB for each comparison were illustrated in Suppl.Fig.8 and 9. Osteogenic protein-1, IGF-1, rhBMP-2/ACS, rhBMP-2/CaSO4 predicted to perform better in future in clinical studies (Suppl. Fig.10). rhGDF-5+b-TCP/PLGA was ranked higher in SUCRA ranking and projected as the best material in bone regeneration in intrabony bone defects (Figure 5). b-FGF was ranked higher in the MDS plot as being the most dissimilar material in connective tissue attachment (Suppl. Fig.11).

New Cementum

The most common comparison was between Con Vs rhBMP-2, Con Vs rhGDF-5 and Con Vs rhGDF-5+b-TCP/PLGA (Suppl. Fig.12). The risk of bias was moderate between Con Vs rhGDF-5 and Con Vs rhGDF-5+b-TCP/PLGA and high risk of bias for Con Vs rhBMP-2 (Suppl. Fig.14). The contribution of evidence flow was equally distributed among each intervention (Suppl. Fig.13). rhBMP-2/ACS, rhBMP-2/CaSO4, rhGDF-5/b-TCP, and rhGDF-5+b-TCP/PLGA would be likely to perform better in future clinical studies as illustrated in predictive interval plot (Suppl. Fig.15). rhBMP-2/ACS was ranked higher in SUCRA ranking, followed by rhGDF-5/b-TCP (Figure 5). rhGDF-5+b-TCP/PLGA was the least dissimilar material, and rhBMP-2/CaSO4 was ranked higher than most dissimilar material in new cementum regeneration in MDS ranking (Suppl. Fig.16).

Percentage of New Bone Fill

The network plot as illustrated in Suppl.Fig.17. rhBMP-2 was ranked higher in SUCRA ranking (Figure 4), and rhBMP-2 was most likely to perform better in future clinical studies as illustrated in predictive interval plot followed by larger particle size rhPDGF-BB, β-TCP/FGF-2 and rhBMP-2+bdECM (Suppl. Fig.18). VEGF+nHA+coral and rhBMP-2/ACS was the most dissimilar material and ranked highest in MDS ranking (Suppl. Fig.19).

Bone Area (mm²)

The most common comparator was between Con Vs rhGDF-5, Con Vs rhBMP-2/ACS and Osteogenic protein-1 (Suppl. Fig.20). The contribution plot was illustrated in Suppl.Fig.21 and all rh factors equally contributed towards direct, indirect and mixed evidence. The ROB was illustrated in Supple.Fig.22. rhGDF-5/TCP recombinant factors were most likely to perform better in future clinical studies and ranked higher in performance in the amount of area in bone regeneration in the treatment of intrabony defects (Suppl. Fig.23). rhBMP-2/ACS was found to be the most dissimilar material as illustrated in MDS ranking (Suppl. Fig.24).
Bone Volume density (g/cm³)

The network geometry plot as illustrated in Suppl.Fig.25. The contribution plot as illustrated in Suppl.Fig.26 and ROB in Suppl.Fig.27. PCL/b-TCP/bdECM/BMP was the highest-ranked recombinant bioactive bone regenerative agent under SUCRA ranking (Figure 4). Since there were not many studies that demonstrated bone volume density, it was not possible to predict which rh factor would perform better in future clinical studies (Suppl.Fig.28). PCL/b-TCP/bdECM/BMP ranked higher in MDS ranking, suggestive of the most dissimilar rh factor among the other agents (Suppl. Fig.29).

Bone Height (mm)

The network geometry plot illustrates Con Vs PDGF-bb/IGF-1, and IGF-1 was the most common comparison. rhPDGF-BB/Equine was ranked higher in SUCRA ranking and more likely to perform better in future clinical studies. IGF-1 and rhPDGF-BB/b-TCP was the most dissimilar material as illustrated in multidimensional scale ranking (Suppl.Fig.30).

Sycryl Assessment Risk of Bias of Individual studies

Lee et al.2020; Du Bing et al.2014; Park JC et al.2012; Markapoulou et al.2011; Shirakata et al.2010; Oi et al.2009; Qahash et al.2007; Choi et al.2002 were found to be a high risk of bias and N=7 studies found to be moderate risk and remaining studies categorised into the low risk of bias (Figure 3).

Discussion

Growth factors (GF’s) are naturally occurring soluble substance in humans that are heterogeneous polypeptides and have pleiotropism, redundant property. GF’s act on receptors and have the ability to proliferate, heal wounds and cellular differentiation in a biological environment. There are different classes of growth factors, which are based on tissue of origin. For example, fibroblast growth factor (FGF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), insulin derived growth factor (IDGF), platelet-derived growth factors (PDGF), to name a few. Several different types of delivery models have been tested for PDGF in periodontal models. Some of them include recombinant human-derived growth (rhPDGF). These are mitogenic, chemotactic and has an effect on periodontal tissue regeneration. This has been used in combination with various bioactive agents with/without scaffolds in the regeneration of periodontal fibres, cementum, alveolar bone, perivascular cells and endothelial cells with no evidence of fibrosis (17-19). The injury to periodontal supporting structures causes increased expression of PDGF receptors and thought, to increase the regenerative ability of rhPDGF (20).

Since there is a number of combinations of rh growth and differentiation factors used in studies that were applied for regeneration of bone in intrabony defects, it is difficult to know which is the most effective rh factors in different outcomes. Network meta-analysis has bridged this gap by comparing multiple different treatments simultaneously in a single analysis by combining the mixed, direct and indirect evidence from the randomised controlled clinical trials (RCT’s) (42). Our results from this analysis have found that rhBMP-2 in bone volume density (BV/TV), rhGDF-5/TCP in the bone area (mm2) (BA), rhPDGF-BB/Equine in bone height (mm), rhBMP-2 in the percentage of bone fill, rhBMP-2/ACS in new cementum, rhGDF-5+b-TCP/PLGA in connective tissue attachment (CT) and rhGDF-
5+b-TCP/PLGA in the junctional epithelium (JE) were the most effective agents in the regeneration of supporting structures. When we look at the results of the SUCRA ranking, rhGDF-5+b-TCP/PLGA was effective in soft tissue (CT and JE) regeneration, and rhBMP-2 is effective was hard tissue regeneration (BA and BV) (Figure 4&5).

One of the main objectives for conducting pre-clinical studies before human studies were to identify and pick the most effective bioactive agents and biomaterial. Hence prevent attrition rates, adverse events and be cost-effective in clinical studies. Due to unpredictability about the behaviour of material or biologic, the accidental selection of poorly characterised biologics and biomaterial is higher. From our present review, we found around twenty-four pre-clinical studies. Similarly, we have found twelve clinical studies which looked at the regenerative potential of rh factors in the treatment of intrabony defects. From both types of studies, it is clear that rh factors accelerate the regenerative potential of cells in the periodontium. Due to variations in the type of rh factors and combinations, different rh factors have ranked best in varying clinical outcomes. Having said that, rhGDF-5+β-TCP/PLGA and rhPDGF-BB+β-TCP most frequently ranked best in performance in respective pre-clinical and clinical studies.

It is commonly observed in pre-clinical studies that reproducibility is low because of a high prevalence of bias and suboptimal research practices. The majority of the times, it is observed that the pre-clinical studies are too small, which results in false negative and false positive observations. In our review, eight studies were at high risk of bias and seven were rated as the moderate risk of bias (Figure 3). These questions were translating pre-clinical evidence into clinical practices. However, if we look at the animal models, the majority of studies was carried on the most effective animal model for periodontal regeneration, i.e. beagle dogs (21). This is also suggestive that the results of rh factors being effective in the regeneration of periodontal supporting structures could be translated into clinical practice. To decide which rh factors should be used, we need more evidence from clinical studies with significant power.

A different formulation was used in the literature and those include; 20µg/ml of rhGDF-5/b-TCP; 188 mg/defect (high dose) of rhGDF-5; 37 mg/defect (medium) rhGDF-5; 18 mg/defect (Low) of rhGDF-5; 0.75mg/g of IGF-1; 2.5mg/g of PDGF-BB; 7.5mg/g of PDGF-BB/IGF-1; 1.0 and 2.0 of rhGDF-5/g bTCP; 200µg and 500 µg of rhBMP-2 of rhBMP-2. Since the formulations where highly heterogeneous it was not feasible to conduct pair-wise meta-analysis.

Quality of Evidence

The results of our study found that recombinant factors were effective in treating intrabony defects. Twenty-four pre-clinical studies were included and judged at moderate and high risk of bias. It was challenging, however, to grade the evidence for effectiveness due to diverse groups of rhGFs formulations used in each individual study. Therefore, well-designed pre-clinical studies with randomisation and blinding are needed to provide recommendations on the most effective rhGFs for periodontal intrabony defects regeneration.

We concluded that rhGDF-5+b-TCP/PLGA was effective in soft tissue (CT and JE) regeneration, and rhBMP-2 is effective for hard tissue regeneration (BA and BV) and ranked highest in performance, as
demonstrated in the SUCRA ranking. These rhGFs are more likely to perform better in future clinical studies. Although we have estimated rankings and performance of rhGFs in combination with bioactive agents and scaffolds, we do not have enough evidence to recommend a specific rhGF for different outcomes in treating intrabony defects. Therefore, well-designed pre-clinical studies with a minimum of three groups, which include control and two different rhGF’s along with bioactive agents and scaffolds, would provide clinicians with more information for considering bioactive agents in their clinical practice.

Conclusion

Various recombinant factors are effective in promoting the regeneration of both soft and hard tissue supporting structures of the periodontium. Results from animal studies are extremely valuable to understanding the effectiveness and the mechanisms of action of the agents that could be used in the treatment of human diseases, but a limited transferability to the clinical setting still exists. The present NMA showed that when considering different outcomes related to periodontal regeneration, different factors, associated or not with biomaterials, ranked best. Therefore, the choice of the most appropriate combination and formulation of bioactive agents and scaffolds for periodontal regeneration may depend on clinical needs and purpose.

Conflict of Interests

None

Acknowledgement

None

Authors contribution

Sourav Panda has contributed to conception, design, data acquisition and interpretation, drafted and critically revised the manuscript. Shahnawaz Khijmatgar has contributed to conception, design, data acquisition and interpretation, performed all statistical analyses, drafted and critically revised the manuscript. Mohit Das has contributed to conception, design, and critically revised the manuscript. Herber Isaac Arbildo-Vega has contributed to conception, design, and critically revised the manuscript. Massimo Del Fabbro has contributed to conception, design, data acquisition and interpretation, drafted and critically revised the manuscript. All authors discussed the results and contributed to the final manuscript and all of the authors gave their final approval and agree to be accountable for all aspects of the work.

Support of Funds/Sponsor

None
References

Figures

Figure 1: PRISMA Flow Chart
Figure 2: Characteristics table for included studies
Figure 3: Risk of Bias for individual studies
Figure 4: Surface Under the Cumulative Ranking (SUCRA) for different outcomes in bone regeneration in intrabony bone defects.
Figure 5: Surface Under the Cumulative Ranking (SUCRA) for different outcomes in periodontal tissue regeneration in intrabony bone defects.
Figure 1: PRISMA Flow Chart
<table>
<thead>
<tr>
<th>SI.No</th>
<th>Author</th>
<th>Country</th>
<th>Sponsor/Funding</th>
<th>Bioactive agent</th>
<th>Biomaterial Scaffold</th>
<th>Total (N) included</th>
<th>Total Assessed (n)</th>
<th>Control (n)</th>
<th>Control Assessed (n)</th>
<th>Test (n)</th>
<th>Test Assessed (n)</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lee et al 2020</td>
<td>China</td>
<td>SNUDH Research Fund</td>
<td>rhBMP-2</td>
<td>Bilayer collagen matrix</td>
<td>18 beagle dogs</td>
<td>18</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Bae et al 2018</td>
<td>Korea</td>
<td>National Research Foundation Korea</td>
<td>rhBMP-2 (3µg)</td>
<td>Isolated extracellular matrix (sdf)</td>
<td>28 Sprague-Dawley rats</td>
<td>28</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>21</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Ogawa et al 2016</td>
<td>Japan</td>
<td>SNUDH Research Fund</td>
<td>rhGFP-2</td>
<td>NR</td>
<td>25 Male Wistar rats (split mouth)</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Bojanjka et al 2014</td>
<td>Japan</td>
<td>SNUDH Research Fund</td>
<td>rhGFP-2</td>
<td>nano-b-TCP/collagen scaffold</td>
<td>4 Female Beagle Dogs</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Du Bing et al 2014</td>
<td>China</td>
<td>Guangdong Provincial stomatological Hospital</td>
<td>VEGF</td>
<td>HA</td>
<td>2 Beagle dogs (split mouth)</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Park et al 2012</td>
<td>Korea</td>
<td>Sci Technology GmbH</td>
<td>rhGDF-5</td>
<td>PLGA membrane</td>
<td>10 male Beagle dogs (split mouth)</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Lee et al 2012</td>
<td>Korea</td>
<td>National Research Foundation Korea</td>
<td>rhGDF-5</td>
<td>β-TCP</td>
<td>9 young adult beagle dogs</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Leknes et al 2012</td>
<td>Norway</td>
<td>Nobel Biocare AB, Gothenborg, Sweden</td>
<td>rhGDF-5</td>
<td>None</td>
<td>12 mongrel dogs</td>
<td>24</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>18</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Nenno et al 2012</td>
<td>USA</td>
<td>Osteohealth, Shirley, New York</td>
<td>rhPDGF-BB</td>
<td>β-TCP</td>
<td>9</td>
<td>36</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Ongente et al 2012</td>
<td>Netherlands</td>
<td>Dutch Technology FoundationSTW</td>
<td>rhBMP-2, rhGFP-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Emerton et al 2011</td>
<td>USA</td>
<td>Medtronic, Inc</td>
<td>rhGDF-5</td>
<td></td>
<td>32</td>
<td>32</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>24</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Min et al 2011</td>
<td>Korea</td>
<td>Sci Technology GmbH</td>
<td>rhGDF-5</td>
<td>PLGA membrane</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Markoupolou et al 2011</td>
<td>Greece</td>
<td>Self funded</td>
<td>rhTGF-β-1</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>Iroko et al 2010</td>
<td>Japan</td>
<td>Self funded</td>
<td>PDGF-BB</td>
<td></td>
<td>36</td>
<td>36</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Kaeo et al 2010</td>
<td>USA</td>
<td>Sci Technology GmbH, Maribor, Germany.</td>
<td>rhGDF-5</td>
<td>β-TCP</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>Lee et al 2010</td>
<td>Korea</td>
<td>Sci Technology GmbH,Martinsried, Germany.</td>
<td>rhGDF-5</td>
<td>β-TCP</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Shinakata et al 2010</td>
<td>Japan</td>
<td>Ministry of Education,Science, Sports and Culture, Japan</td>
<td>rhGDF, PDGF</td>
<td>β-TCP</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>Oh et al 2009</td>
<td>Japan</td>
<td>Self funded</td>
<td>FGF-2</td>
<td></td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>Qahanas et al 2007</td>
<td>USA</td>
<td>University of Minnesota School of Dentistry</td>
<td>rh BMP-2</td>
<td>PTFE membrane</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>Blumenthal et al 2002</td>
<td>USA</td>
<td>Genetics Institute/Wyeth-Ayerst Research, Cambridge, Massachusetts</td>
<td>rhBMP-2</td>
<td>Collagen membrane</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>Blumenthal et al 2002</td>
<td>Korea</td>
<td>Self funded</td>
<td>rhBMP-2</td>
<td>Collagen membrane</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>Giannobile et al 1998</td>
<td>USA</td>
<td>CreativeBioMolecules, Inc.</td>
<td>rhPDGF-BB</td>
<td>Collagen membrane</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>Giannobile et al 1996</td>
<td>USA</td>
<td>Institute of Molecular Biology, Inc.</td>
<td>rhPDGF-BB</td>
<td>Collagen membrane</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>Giannobile et al 1994</td>
<td>USA</td>
<td>Institute of Molecular Biology, Inc.</td>
<td>rhPDGF-BB/IGF-1</td>
<td>Collagen membrane</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Characteristics table for included studies
Figure 3: SYRCLE’s tool for assessing risk of bias for individual studies

<table>
<thead>
<tr>
<th>St.No</th>
<th>Publication Year</th>
<th>Author</th>
<th>Randomization</th>
<th>Allocation Bias</th>
<th>Performance Bias</th>
<th>Blinding</th>
<th>Attrition Bias</th>
<th>Selective reporting bias</th>
<th>Overall Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2020</td>
<td>Lee et al</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>2</td>
<td>2018</td>
<td>Bae et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>Du Bing et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>High</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>4</td>
<td>2012</td>
<td>Park JC et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>5</td>
<td>2012</td>
<td>Lee et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>Laknes et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>7</td>
<td>2012</td>
<td>Nekvasil et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>8</td>
<td>2011</td>
<td>Emeron et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>9</td>
<td>2011</td>
<td>Mm et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>2011</td>
<td>Markopoulos et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>High</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>11</td>
<td>2010</td>
<td>Ikawa et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>12</td>
<td>2010</td>
<td>Kwon et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>13</td>
<td>2010</td>
<td>Lee et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Moderate</td>
</tr>
<tr>
<td>14</td>
<td>2010</td>
<td>Shirakawa et al</td>
<td>Yes</td>
<td>Unclear</td>
<td>Low</td>
<td>Yes</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>15</td>
<td>2009</td>
<td>O et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>16</td>
<td>2007</td>
<td>Qahash et al</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>17</td>
<td>2002</td>
<td>Blommark et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>18</td>
<td>2002</td>
<td>Choi et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>19</td>
<td>1998</td>
<td>Giannobile et al</td>
<td>Yes</td>
<td>Low</td>
<td>Unclear</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>20</td>
<td>1996</td>
<td>Giannobile et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>21</td>
<td>1994</td>
<td>Giannobile et al</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
Figure 4: Surface Under the Cumulative Ranking (SUCRA) for different outcomes in bone regeneration in intrabony bone defects.
Figure 5: Surface Under the Cumulative Ranking (SUCRA) for different outcomes in periodontal tissue regeneration in intrabony bone defects.