
Atmospheric Pollution Research
 

A multi-year source apportionment of PM2.5 at multiple sites in the southern Po
 

Valley (Italy)
--Manuscript Draft--

 
Manuscript Number: APR-D-21-00190R1

Article Type: Research Paper

Keywords: PM2.5;  Po Valley;  source apportionment;  Positive Matrix Factorization;  Back-
trajectories

Corresponding Author: Fabiana Scotto, master's degree
Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Italy
ITALY

First Author: Fabiana Scotto, master's degree

Order of Authors: Fabiana Scotto, master's degree

Dimitri Bacco

Stefano Lasagni

Arianna Trentini

Vanes Poluzzi

Roberta Vecchi

Abstract: A source apportionment study was carried out at four sites in the southern Po Valley,
one of the most polluted regions in Europe. PM2.5 daily samples were collected from
April 2013 to October 2017 at one rural site (San Pietro Capofiume, Bologna) and three
urban background locations (cities of Bologna, Parma, Rimini) representative of
different geographical area types across the region. A Positive Matrix Factorization
(PMF) was performed and six major PM2.5 sources were identified: traffic with dust
resuspension, biomass burning, oil combustion/ship emission, mix anthropogenic (not
found at the rural site), ammonium nitrate and ammonium sulfate with organics.
Factors related to secondary components explain almost 50% or even more of the
PM2.5 total mass in all seasons. Traffic and biomass burning were confirmed as the
most relevant primary contributors to PM2.5. A not negligible contribution of biomass
burning resulted in Rimini during the summer, suggesting other possible sources of
wood combustion, such as cooking or open burning of agricultural pruning. Agriculture
is not singled out as a PMF factor, but a rough estimate based on ammonium
concentrations and ammonia data from emission inventory indicates a contribution
from this source of about 10% of PM2.5 mass, resulting the single productive activity
with the highest impact on PM2.5 at the investigated sites. For two factors an important
extra-regional contribution resulted from back trajectory analysis: oil combustion/ship
emission is related to long-range transport of air masses overpassing the
Mediterranean sea and concentration-weighted trajectory showed a provenience of
secondary sulfate from Eastern Europe.

Suggested Reviewers: Adriana Pietrodangelo
adriana.pietrodangelo@iia.cnr.it
expertise in atmospheric aerosol characterisation and source apportionment

Willy Maenhaut
willy.maenhaut@ugent.be
expertise in atmospheric aerosol characterisation and source apportionment

Evangelia Diapouli
ldiapouli@ipta.demokritos.gr
expertise in atmospheric aerosol characterisation and source apportionment

Dennis Mooibroek
dennis.mooibroek@rivm.nl
expertise in atmospheric aerosol characterisation and source apportionment

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Jan Hovorka
jan.hovorka@natur.cuni.cz
expertise in atmospheric aerosol characterisation and source apportionment

Opposed Reviewers:

Response to Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Source apportionment in Po Valley was performed using a Positive Matrix Factorization 

Chemical profiles of identified factors resulted very similar at the 4 sites 

Secondary component accounts for about half of total PM2.5 at urban sites 

Back-trajectories analysis and polar plots explored local or long range contributions 

Oil combustion and ammonium sulfate factors highlighted an extra-border provenience 

 

Highlights



Graphical Abstract Click here to access/download;Graphical Abstract;Scotto et al. Graphical abstract.jpg

https://www.editorialmanager.com/apr/download.aspx?id=84798&guid=9e332661-c83b-4bbb-8fbb-051e672c49dc&scheme=1
https://www.editorialmanager.com/apr/download.aspx?id=84798&guid=9e332661-c83b-4bbb-8fbb-051e672c49dc&scheme=1


1 
 

A multi-year source apportionment of PM2.5 at multiple sites in the southern Po 1 

Valley (Italy) 2 

 3 

Fabiana Scottoa, Dimitri Baccoa, Stefano Lasagnib, Arianna Trentinia, Vanes Poluzzia, Roberta 4 

Vecchic 5 

aRegional Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy. 6 

Largo Caduti del Lavoro, 6 - 40122 – Bologna, Italy 7 

bEuropean Training Foundation, viale Settimio Severo, 10133 - Torino, Italy 8 

cDepartment of Physics, Università degli Studi di Milano and INFN-Milan, via Celoria, 16, 20133 9 

- Milan (Italy) 10 

 11 

Fabiana Scotto e-mail: fscotto@arpae.it 12 

Dimitri Bacco e-mail: dbacco@arpae.it 13 

Stefano Lasagni e-mail: stefano.lasagni@etf.europa.eu 14 

Arianna Trentini e-mail: atrentini@arpae.it 15 

Vanes Poluzzi e-mail: vpoluzzi@arpae.it 16 

Roberta Vecchi e-mail: roberta.vecchi@unimi.it 17 

 18 

Corresponding author: Fabiana Scotto, phone number: +390515281254; +393494514209 19 

 20 

Abstract 21 

A source apportionment study was carried out at four sites in Emilia-Romagna region, southern Po Valley, 22 

one of the most critical regions in Europe in terms of atmospheric pollution. PM2.5 daily samples were 23 

collected during 4 years from April 2013 to October 2017 at one rural site (San Pietro Capofiume) and three 24 

urban background locations in the cities of Bologna, Rimini, Parma which show different features and are 25 

located in the, central, coastal and inner part of the investigated region. Samples were analyzed to achieve 26 

a complete chemical characterization (carbon fractions, ions, and elements). A source apportionment 27 

analysis by Positive Matrix Factorization (PMF) was performed and six PM2.5 factors were identified at all 28 

sites but the rural one (where 5 out of 6 of them were detected); the factors were associated to traffic with 29 

dust resuspension, biomass burning, oil combustion/ship emission, mix anthropogenic (not found at the 30 

rural site), ammonium nitrate and ammonium sulfate with organics. Chemical profiles of factors were very 31 
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similar among all the 4 sites, indicating that main pollution sources are basically the same at the 4 sites, 32 

while some differences emerged with regard to source contributions. Factors related to secondary 33 

components seem to explain almost 50% or even more of PM2.5 mass concentration in all seasons. Traffic 34 

and biomass burning are the most relevant contributors to PM2.5 in terms of primary components. A not 35 

negligible contribution of biomass burning results in Rimini during the summer, suggesting other possible 36 

sources of wood combustion, such as cooking or open burning of agricultural pruning bonfires. Agriculture 37 

is not singled out as a PMF factor, but a rough estimate based on ammonium concentrations and ammonia 38 

data from emission inventory indicates a contribution from this source of about 10% of PM2.5 mass, thus 39 

resulting the single productive activity with the highest impact on PM2.5 at the investigated sites. Back 40 

trajectory analysis points at the relevant extra-regional contributions to two factors; indeed, oil 41 

combustion/ship emission is related to long-range transport of air masses overpassing the Mediterranean 42 

sea and secondary sulfate from Eastern Europe countries occasionally impacts on the Po Valley.  43 

Keywords: PM2.5, Po Valley, Source apportionment, Positive Matrix Factorization, Back-trajectories. 44 

  45 
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1. Introduction 46 

The Po Valley, Northern Italy, is a highly polluted region (EEA, 2019), due to both relevant anthropogenic 47 

emissions from industrial, agricultural, and transport sectors and poor atmospheric dispersion conditions. 48 

Therefore, this region is a pollution hotspot even at rural locations and not only in urban and industrial 49 

settlements (Gilardoni et al., 2020). It is noteworthy that Italy has been recently (November 2020) ordered 50 

to pay pecuniary penalties from the Court of Justice of the European Union, for having "persistently and 51 

systematically" breached EU rules against fine particulate matter (PM) air pollution and the Po Valley was 52 

explicitly mentioned among the zones where daily limit values have been exceeded from 2008 (EU, 53 

Judgment of the court. 2020). With around 16 million inhabitants and a 46 x 103 km2-wide floodplain/hilly 54 

territory, the Po Valley is a densely inhabited and anthropized area so that as a whole it can be considered 55 

an extended megacity (WMO/IGAC, 2012). In addition, the valley is surrounded from mountain chains on 56 

the south side (Apennines) and on the west and north side (Alps): this favors air stagnation promoted by 57 

shallow mixing layer height and low winds (Deserti et al., 2001; Vecchi et al., 2019) and prevents pollutants 58 

dispersion promoting also the formation of secondary compounds. Wintertime thermal inversions and 59 

widespread fog events are frequent, leading to the buildup of particulate matter (PM) concentrations 60 

(Perrino et al., 2014; Caserini et al., 2017, Brege et al., 2018, Gilardoni et al., 2020; Masiol et al. 2020; and 61 

references therein). Although over the past decade the regional authorities in the Po valley have 62 

implemented air quality plans, PM levels did not drop below the EU limits. In order to improve air quality 63 

and comply with Directive 2008/50/EC and the European strategy ‘Clean Air for Europe’, in 2017 the 64 

PREPAIR LIFE Integrated project (LIFE 15 IPE IT 013) was undertaken with the goal of planning common 65 

actions in the Po Valley regions and in Slovenia (Raffaelli et al., 2020). 66 

Particulate matter causes health effects being linked to allergy, cardiovascular and respiratory symptoms 67 

(Nozza et al., 2021 and references therein), low neonatal birth weight (Han et al., 2018) and life-expectancy 68 

reduction (Pope et al., 2009). Furthermore, PM damages the environment in many ways: it interacts with 69 

clouds affecting climate (IPCC. 2013), decreases atmospheric visibility (Bӓumer et al., 2008; Vecchi et al., 70 

2018); can interfere with the Earth’s radiation budget (Fountoukis et al., 2020); causes ecosystems 71 

acidification (Narita et al., 2019) and threatens cultural heritage (Nava et al., 2010).  72 

The present source apportionment study is based on PM2.5 data series collected during 4 years at four 73 

sites in the southern Po Valley; to our knowledge no other source apportionment study in the Po Valley has 74 

been carried out with such long continuous time series at multiple sites. Receptor models constitute a 75 

complementary approach to studies based on emission inventories and transport models. In particular, 76 

Positive Matrix Factorization (PMF) was here applied as it is a well-known and widely used approach (Belis 77 

et al., 2020); it provides estimates of source contributions together with their chemical profiles at a 78 

receptor site using the measured PM chemical composition as input data(Paatero and Tapper, 1994).  79 
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Identifying the sources of particulate matter facilitates understanding the mechanisms of formation and 80 

transformation of PM, in order to be able to support politicians in building effective PM abatement 81 

strategies and to check the effectiveness of undertaken measures. It also allows distinguishing between 82 

anthropogenic and natural sources, as well as between primary sources and secondary components. 83 

Secondary components like sulfates and nitrates play a fundamental role in fine PM mass concentrations, 84 

especially in the Po Valley (Thunis et al., 2021) and are of major importance for the realization of effective 85 

abatement measures. Recently (Giannadaki et al., 2018; and references therein) has pointed at the 86 

fundamental role of agriculture and livestock activities worldwide, thus also in Europe and in the Po Valley. 87 

These activities are mainly responsible for ammonia emissions (NH3); it reacts with other gaseous 88 

precursors such as SO2 and NOx and forms ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3), 89 

the main secondary inorganic aerosol (SIA) components in PM. The relevance impact of these components 90 

was proved in this study too. PMF results were further examined in order to understand the differences or 91 

similarities among sources contribution and profiles among the sites; between urban sites and the rural one 92 

and among urban sites representative of dissimilar territorial conditions (see Section 2.1). The role of wind 93 

speed and direction and back trajectories was investigated in order to understand pollutant transports 94 

from extra-regional sources (Diémoz et. al., 2019). Last but not least, results of this source apportionment 95 

study have been already used by Ottone (2020) in order to investigate the risk of adverse birth outcomes. 96 

2. Materials and Methods 97 

2.1 Sampling sites characteristics 98 

Samples were collected at four monitoring stations with different characteristics (Fig. 1): one rural 99 

background site (San Pietro Capofiume - SPC) and three urban background sites in the central (Bologna - 100 

BO), coastal (Rimini - RN), and inner (Parma - PR) part of the Emilia-Romagna region. The monitoring sites 101 

have been described in detail in a previous paper (Ricciardelli et al. 2017). Briefly, Bologna is a metropolitan 102 

city with about 400000 inhabitants, largely impacted by agricultural and industrial activities and located at 103 

the crossroads of major motorways and railway national lines. Parma has about 200000 inhabitants; 104 

located half way between Bologna and Milan, it is impacted by both industrial and agricultural activities 105 

located in the Po Valley. Rimini has about 150000 inhabitants and overlooks the Adriatic coast, which is a 106 

peculiar area, both because of its meteorological features and the anthropogenic pressure due to tourism. 107 

During the period of this study, the overall average number of tourists present in the summer months June 108 

- August exceeded 11 million (Emilia-Romagna region statistics). San Pietro Capofiume is a rural site located 109 

30 km north-east of Bologna, in the middle of the countryside, far from major primary sources and thus 110 

very interesting for atmospheric studies (see e.g. Decesari et al., 2014; Wolf et al., 2015; Sandrini et al., 111 

2016; Paglione et al., 2020; Gilardoni et al, 2020). 112 
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Sites were chosen in order to represent the different types of geographical and meteo-climatic areas across 113 

the region (Bonafè et al., 2011). The spatial distribution of these stations provides an exposure assessment 114 

of nearly half of the regional population; indeed, epidemiological studies exploiting the Supersito project 115 

results were also carried out (Ottone et al., 2020, Ranzi et al., 2016).  116 

 117 

Fig.1 - Map of the sampling sites area. 118 

 119 

2.2 Sampling methods and chemical analyses 120 

The datasets here analyzed refer to the periods 1 April 2013 – 31 March 2015 and 15 October 2015 – 14 121 

October 2017. Sampling was carried out continuously on a daily basis at all sites; 10 samples per month 122 

were devoted to chemical analyses in PR, RN and SPC and 27 samples per month in BO. Therefore, the final 123 

datasets comprised about 1200 samples for BO and 400-450 samples for the other three sites. During the 124 

time period April 2013 - October 2017, the largest available time series for every site was kept as input to 125 

the receptor model; opposite, the comparison among sites was carried out selecting only data in common.  126 

Daily PM2.5 were collected with samplers equipped with parallel sampling lines (SWAM, FAI Instruments, 127 

Rome, Italy operated at a flow-rate of 38.3 L min-1 according to UNI EN 12341:2014) using quartz fiber 128 

filters (Whatman® QM-A filters, diameter: 47 mm). On these samples – after suitable chemical 129 

pretreatment - major ions (by Ion Chromatography), levoglucosan (by High Performance Liquid 130 

Chromatography Mass Spectrometry), and elements (by Inductively Coupled Plasma Mass Spectrometry) 131 

were assessed. Samples devoted to carbonaceous component analyses were collected using a low-volume 132 

PM2.5 sampler (Skypost PM, TCR-TECORA Instruments, Milan, Italy) operated at a flow-rate of 38.3 L min-1 133 

during the warm months (from April to October) and 16.6 L min-1 (using a suitable inlet) during the cold 134 

season in order to reduce filter overloading (Costa et al., 2016). Quartz fiber filters (PALL Tissu Quartz 2500 135 

QAO-UP 2500) were pre-baked for 5 h at 800° C in order to eliminate any absorbed organic material. 136 

EC/OC/TC concentrations were retrieved by thermo-optical transmission analysis using EUSAAR2 thermal 137 

protocol (Cavalli et al., 2010).  138 

Daily PM2.5 mass concentration was retrieved by β-ray attenuation operated in SWAM Dual channel and 139 

SWAM Monochannel instruments (FAI Instruments, Rome, Italy). 140 

Details about instruments, sampling and analytical procedures are reported in previous papers (Costa et al., 141 

2016; Ricciardelli et al., 2017; Ottone et al., 2020). 142 

Detection of levoglucosan started from 2015 and it was achieved by formation of anhydrosugar acetate 143 

adducts [M+CH3COO]- in the negative electrospray mode using an electrospray ionization source (ESI) 144 

(Engling et al., 2006). 145 
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Details on QA/QC procedures have been reported elsewhere (Ricciardelli et al. 2017, Costa et al., 2016). 146 

Briefly, every day a four points linear calibration curve is processed at the beginning of the sequence and 147 

each 20 samples for IC, HPLC-MS and ICP-MS analysis. Instrumental blanks of the analytical system and a 148 

standard solution are analyzed and the results reported in process control charts (i.e. Shewhart control 149 

charts, UNI ISO 7870-2:2014) to check instrument performance over time. Daily standard control solution is 150 

measured every 10 samples to check the efficiency of the calibration curve with a ±10% tolerance from the 151 

expected concentration. Furthermore, ICP-MS calibration curves are checked with 2 certified standards 152 

(NIST SRM 2583 and NIES CRM n°8).  153 

EC/OC analysis performances are checked by instrument internal standard (methane) and a sucrose 154 

standard solution, according to UNI EN 16909 (Costa et al., 2016; Panteliadis et al., 2015). 155 

Elements detection limits were calculated as three times the standard deviation of the blank because the 156 

average values of the black were directly subtracted to the measures, according to UNI EN 14902. 157 

Detection limit values of levoglucosan, EC, OC and ions were calculated as three time the standard 158 

deviation of the blank and it was added to the average value of the blank, which was not subtracted to the 159 

samples in this case, according to aforementioned regulations (and to UNI EN 16913 for ions). 160 

Meteorological data for all the investigated sites were provided by Hydro-Meteo-Climate Service of the 161 

Regional Agency for the Prevention, Environment and Energy of Emilia-Romagna. 162 

 163 

 164 

2.3 Data pre-treatment and receptor modeling procedure 165 

Receptor models are widely used to identify the sources that mainly impact a site and to retrieve time 166 

series of source contributions. Among various receptor modeling approaches, Positive Matrix Factorization 167 

(PMF) is a factorial decomposition technique based on a weighted least square fit approach: it uses 168 

uncertainty values to weigh the concentration data and imposes non-negativity constraints on chemical 169 

profiles and contributions of identified factors in order to limit the space of the possible solutions. Detailed 170 

information on the PMF methodology can be found elsewhere (e.g. Paatero and Tapper, 1994; Paatero et 171 

al., 2014). Similar to other receptor models approaches, PMF aims at solving the mass conservation 172 

equation between the measured species concentrations and source emissions as a linear combination of p 173 

factors, as follows: 𝑥𝑖𝑗 = (∑ 𝑔𝑖𝑝 × 𝑓𝑝𝑗𝑝 ) + 𝑒𝑖𝑗  174 

where xij represents the measured data for species j in sample i; gip represents the PM mass contribution of 175 

factor (source) p in the sample i, fpj represents the fraction of species j in the PM ascribed to factor p; and eij 176 

is the residual of each sample and species obtained by the difference between the fitted and the observed 177 

value. In matrix form, G and F matrices have to be determined in the equation X=G·F+E, where X is the 178 

known matrix of measured concentrations; G is the matrix of source contributions; F is the matrix of factors 179 
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composition (source profiles) and E is the residual matrix. Goal of the PMF is determining non-negative G 180 

and F matrices that minimize the Q-function, which represents the sum of the squares of the residuals 181 

between observed and predicted values, inversely weighted to the uncertainty estimates.  182 

In this work, EPA-PMF 5.0 (US EPA, 2014) was applied to each dataset in order to single out PM2.5 sources. 183 

Chemical species used in this study are summarized in Table 1. Generally, it is recommended to neglect 184 

species with more than 50% of values below detection limit (BDL) unless these are source tracer or if they 185 

present a reasonable signal-to-noise ratio (Belis et al. 2019); therefore, in this study Al, Ba, Br-, Ca2+, Ca, Cr, 186 

K, Mg, Mg2+, Na+, and PO4
3- were excluded. Despite the high number of BDL, we kept some species such as 187 

La because of its importance as marker for crustal material, given the lack of other typical tracers such as Si; 188 

Cl- as it is a marker of sea spray (Calzolai et al., 2015) and also a component in biomass burning aerosol 189 

(Venturini et al., 2014; Hovorka et al. 2015); Ni which is, together with V, a known tracer for heavy oil 190 

combustion and ship emissions (see e.g. Becagli et al., 2012; Viana et al. 2014). Finally, Cl-, Ni, Zn, and La 191 

were classified as weak variables in all datasets, Fe was set as weak only for data related to SPC site.  192 

As a consequence of the data reduction described above, a poor characterization of crustal component 193 

resulted as typical tracers such as Ca, Al, Mg, and Si were excluded and only La was kept. Anyway, in our 194 

previous paper (Ricciardelli et al., 2017), crustal fraction in PM2.5 samples was estimated due to the 195 

availability of such tracers and it accounted on average for 1.0 µg m-3, corresponding to 3% of PM2.5 at the 196 

urban background site of BO during winter 2012/2013. Based on these results, we can assume that 197 

generally crustal material is not a relevant component of PM2.5 mass (few percents) in the investigated 198 

area. 199 

Input uncertainties to PMF were estimated following Zabalza et al. (2006) for chemical species; PM2.5 200 

uncertainty was set equal to 2.5 µg/m3, on the basis of previous intercomparisons between paired 201 

samplers. 202 

BDL values were provided by the analytical laboratory and used when concentrations were below the 203 

detection limit (Belis et al. 2019). Detailed information about uncertainties, treatment of missing values and 204 

exclusion of outliers is available in the Supplementary Material. 205 

 206 

Table 1 – PM2.5 mass and chemical components concentrations at the investigated sites. Mean and 207 

standard deviation (to be interpreted as concentration variability) are expressed in µg/m3. The number of 208 

available data is also reported. DL stands for detection limit and N.A. for not available.  209 
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 210 

Solutions with 3 to 12 factors were explored and the more robust base-case solution presented 6 factors 211 

for BO, PR and RN sites, and 5 factors for SPC. The 7-factor solution (or six-factor for SPC), presented 212 

exactly the same sources as the 6-factor one with the addition of a factor with a unique element and no 213 

characteristic time pattern. As the origin of this seventh factor was not clear, the 6-factor solution (5-factor 214 

for SPC) was considered the most robust one showing a clear physical meaning. Solutions with fewer 215 

factors, on the other hand, mixed more sources in the same factor. 216 

Positive Matrix Factorization analyses were performed with different settings in terms of categorization of 217 

variables, exclusion or inclusion of species with high number of BDL values or low signal to noise ratio, 218 

treatment of outliers, and extra-modelling uncertainty (see e.g. PMF manual for definitions, US-EPA, 2014). 219 

PMF results obtained with rotational tools for multiple values of fpeak (in the range -1.5 – 1.5) as well as 220 

the imposition of constraints were also systematically explored (50 pseudorandom initializations were run 221 

in each test) thus refining the base-case solution obtained at each site. A number of criteria were applied to 222 

each dataset in order to evaluate different solutions, including the assessment of realistic source profiles, 223 

statistical fitting of the model, check of the stability of solutions over 200 runs, analysis of scaled residuals, 224 

inspection of G-space plots (Paatero et al., 2005), and bootstrap and displacement error estimation. The 225 

Q/Qexp ratio was monitored with increasing number of factors, as a large decrease indicates an enhanced 226 

explanatory power of the fitting model, while a small drop suggests little improvement ascribed to added 227 

factors (Crilley et al., 2017; Belis et al., 2019). The key criterion applied was based on extracting chemical 228 

# 

data>=D

L

#   

data<D

L

mean
Standard 

deviation

# 

data>=D

L

#   

data<D

L

mean
Standard 

deviation

# 

data>=D

L

#   

data<DL
mean

Standard 

deviation

# 

data>=D

L

#   

data<DL
mean

Standard 

deviation

PM2.5 1313 23 21 17 496 17 27 21 453 41 21 19 474 21 18 13

OC 1284 4 4.75 3.28 494 2 4.55 3.01 490 0 5.34 4.48 485 0 4.58 3.59

EC 1324 0 1.31 0.89 486 10 1.13 0.90 488 3 1.28 0.91 484 1 0.83 0.69

Levoglucosan* 627 60 0.235 0.305 274 24 0.231 0.301 285 13 0.378 0.452 215 42 0.204 0.287

Na+ 134 1196 0.073 0.075 48 456 0.077 0.049 158 340 0.125 0.122 48 437 0.078 0.174

NH4
+ 1322 5 2.236 2.241 502 2 2.875 2.674 493 5 2.233 2.394 485 0 2.249 2.008

K+ 1024 304 0.135 0.174 405 99 0.162 0.176 416 82 0.200 0.218 385 100 0.148 0.169

Mg2+ 80 1248 0.010 0.015 38 466 0.012 0.013 85 413 0.018 0.021 40 445 0.010 0.011

Ca2+ 204 1124 0.103 0.076 159 345 0.202 0.149 82 416 0.128 0.093 81 404 0.134 0.137

Cl- 566 762 0.162 0.230 245 257 0.194 0.252 270 228 0.228 0.282 193 292 0.131 0.165

Br- 3 1327 0.000 0.003 0 502 N.A. N.A. 1 497 0.000 0.002 0 485 N.A: N.A.

NO3
- 1263 67 4.253 6.944 496 6 6.232 8.186 461 37 4.402 7.223 473 12 4.485 6.345

SO4
2- 1328 2 2.171 1.406 500 2 2.392 1.504 497 1 2.234 1.427 484 1 2.102 1.377

PO4
3- 187 1143 0.075 0.178 51 451 0.050 0.175 46 452 0.045 0.098 54 431 0.059 0.135

Al 138 1172 0.02410 0.04465 25 479 0.02811 0.04518 36 462 0.01880 0.04464 39 441 0.02087 0.04128

As 1317 13 0.00045 0.00045 503 1 0.00046 0.00040 490 8 0.00035 0.00029 483 2 0.00046 0.00042

Cr 145 1152 -0.00006 0.00256 69 434 -0.00012 0.00344 49 440 0.00085 0.00713 43 408 -0.00012 0.00414

Fe 953 357 0.09596 0.07722 405 99 0.08638 0.06348 376 122 0.07725 0.07545 289 191 0.06468 0.15215

Mn 1053 277 0.00270 0.00205 457 47 0.00323 0.00205 422 76 0.00267 0.00214 397 88 0.00234 0.00191

Ni 407 903 0.00119 0.00135 161 343 0.00124 0.00124 141 357 0.00122 0.00176 138 342 0.00182 0.00431

V 1321 9 0.00092 0.00099 500 4 0.00087 0.00090 492 6 0.00115 0.00104 478 7 0.00098 0.00106

Zn 718 579 0.01607 0.01432 280 223 0.01652 0.01608 233 265 0.01333 0.01253 227 251 0.01405 0.01415

Cd 1285 26 0.00015 0.00026 488 16 0.00012 0.00011 486 12 0.00015 0.00024 470 10 0.00013 0.00014

Pb 1307 3 0.00420 0.00544 504 0 0.00386 0.00341 497 1 0.00357 0.00399 479 1 0.00348 0.00296

Sn 1249 81 0.00136 0.00136 436 68 0.00119 0.00097 439 59 0.00087 0.00077 420 65 0.00095 0.00100

Sb 1139 171 0.00094 0.00644 423 81 0.00053 0.00053 376 122 0.00051 0.00041 390 90 0.00058 0.00056

Ba 79 1218 0.00293 0.00773 25 479 0.00279 0.01111 29 469 0.00280 0.00669 22 458 0.00348 0.01878

Ca 5 1325 -0.02 0.41 2 502 0.00 0.42 0 498 N.A. N.A. 1 484 -0.04 0.35

K 425 885 0.15 0.24 160 344 0.15 0.23 208 290 0.21 0.32 189 291 0.15 0.22

Mg 7 1323 0.00 0.12 2 502 0.00 0.14 1 497 -0.01 0.09 7 478 0.00 0.12

La 832 498 0.000041 0.000045 374 130 0.000059 0.000065 283 215 0.000031 0.000028 234 251 0.000032 0.000036
* Data available only on the two-year period 2015-2107

Bologna (BO) Parma (PR) Rimini (RN) San Pietro Capofiume (SPC)
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profiles and temporal variation of source contributions with physical meaning and with a high degree of 229 

specificity (e.g. secondary aerosol components like sulfates and nitrates differentiated from primary 230 

aerosol contributions). In the final solution retrieved at all sites, chemical components were reproduced 231 

fairly well by the model (correlation coefficient R2 > 0.7) and only in a minor number of cases input 232 

variables were poorly modelled (R2 < 0.5) due to many BDL values and/or the presence of isolated peaks; by 233 

performing multiple PMF runs excluding and including these species, results were not substantially 234 

different so that all variables were kept. Details on fitting parameters of PMF solutions are reported in 235 

Supplementary Material (Table S1) 236 

Random and rotational uncertainty in PMF solutions was investigated by Bootstrap resample, Displace 237 

Error Estimation (DISP) and Bootstrap Error Estimation and Bootstrap Displacement Error Estimation (BS-238 

DISP) (Paatero et al, 2014). Uncertainties on average PM2.5 mass apportionment to each factor were 239 

calculated as interval between 5th and 95th percentile of bootstrap displacement error estimation (100 240 

bootstrap resamples) and are reported in Supplementary Material (Table S2 – S5). 241 

Statistical analysis was performed using RStudio (RStudio Team, 2020) with R.3.6.0 (R Core Team, 2013).  242 

 243 

2.4 Back-trajectories analysis 244 

Back-trajectories were used to analyze the potential source regions of PMF factors for which an important 245 

extra-regional contribution resulted from the polar plots. Hybrid Single Particle Lagrangian Integrated 246 

Trajectory (HYSPLIT) was used to derive 72 hours back-trajectories at each station; the latter were 247 

computed at 00, 06, 12 and 18 UTC every day during the studied period (March 2013 - October 2017) at the 248 

height of 500 m and 100 m above ground level (a.g.l.) (see section 3.2 for details about the choice of these 249 

2 different heights). The HYSPLIT model - developed by the National Oceanic and Atmospheric 250 

Administration (NOAA) Air Resources Laboratory (ARL) - is one of the most widely used models for 251 

atmospheric trajectory calculations. The meteorological data input used for running the HYSPLIT model are 252 

the reanalysis files, with a 2.5-degree latitude-longitude global grid. Such a coarse resolution was the best 253 

compromise available at the time we started the back-trajectories calculation; although being too large to 254 

resolve mesoscale sub-synoptic processes, it is still suitable for our purposes, since we are interested in a 255 

large-scale flow pattern.  256 

Single back-trajectories were analyzed for each site (Fig. S1), and Potential Source Contribution Function 257 

(PSCF) and Concentration-Weighted Trajectory (CWT) methods were employed (Fig. 5 and Fig.S2) . In order 258 

to achieve a more statistically robust result about the source regions, trajectories computed at the four 259 

sites were combined together with the PSCF and CWT analysis. 260 
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The PSCF value for a given grid cell (i, j) is defined as PSCFij=Wij*Mij/Nij, where Mij represents the number of 261 

model trajectory endpoints within the same grid cell (i,j) that correspond to days exceeding a specific 262 

threshold (here the 90th percentile) for the factor; Nij is the total number of model trajectory endpoints 263 

within the grid cell (i, j); Wij is an arbitrary weight function to reduce the effect of small Nij values.  264 

The concentration weighted trajectory (CWT) is a method weighting pollutant concentration using the air 265 

mass residence time in each cell (Stohl, 1996). In this method, each grid cell is assigned a concentration 266 

which is the average of concentrations associated to trajectories crossing that grid cell, as described by the 267 

following equation: 𝐶𝑊𝑇𝑖𝑗 = 𝑊𝑖𝑗
1

∑ 𝜏𝑖𝑗𝑙
𝑀
𝑙=1

∑ 𝐶𝑙𝜏𝑖𝑗𝑙
𝑀
𝑙=1 , where CWTij is CWT value for the grid cell (i, j); M is 268 

the total number of trajectories; i is the index of the specific trajectory; Cl is the factor contribution related 269 

to the corresponding trajectory l; ijl is the residence time in the ijth grid cell for the trajectory i. In summary, 270 

CWT method shows factor concentration gradients across potential origin areas thus helping to identify the 271 

relative importance of potential sources. 272 

The Openair package (Carslaw and Ropkins, 2012) was used for the back-trajectories analysis. 273 

 274 

3 Results  275 

3.1 Factors resolved by PMF model 276 

The final PMF solution was optimized at each site selecting rotated and constrained solutions as 277 

summarized in Table S1 (Supplementary Material). As already mentioned, at all urban background sites the 278 

same 6 factors were singled out and tentatively associated to the following sources: Traffic with dust 279 

resuspension; Biomass burning; Oil combustion/ship emission; Mix anthropogenic; Secondary Nitrate; 280 

Secondary Sulfate and Organics. Apart from the “mix anthropogenic” factor which is missing at the SPC 281 

rural background site, the other 5 are the same as those identified at the urban background sites. It is 282 

noteworthy that PMF analysis did not single out a marine aerosol factor at the coastal site of RN; indeed, 283 

Na+ and Cl- present a large percentage of BDL values thus preventing the identification of this source. 284 

Although it might seem an oddity, previous receptor model studies in the Eastern part of the Po Valley have 285 

detected a sea-salt factor only in PM10 (see e.g. Bologna: Tositti et al., 2014 Venice area: Masiol et al., 286 

2012); and generally not in PM2.5 (see e.g. Rimini: Venturini et al., 2014; Treviso: Squizzato et al., 2017; 287 

Venice area: Masiol et al., 2014; Masiol et al., 2020). This does not exclude that there may be sporadic 288 

contributions from marine air masses but in general the contribution of this source to PM2.5 mass can be 289 

considered negligible.  290 

Factors chemical profiles (Fig. 2) are very similar at all sites – especially when looking at trace species - and 291 

time series show correlations that vary according to the degree of the local nature of the factor. Similarities 292 
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between chemical profiles of PMF factors have been quantitatively defined by Pearson correlation 293 

coefficients and Standardized Identity Distance (SID) calculated according to Belis et al. (2015) and reported 294 

in Supplementary Material (Table S6 – S7), together with correlation between time series (Table S8). The 295 

comparison between the “traffic with resuspended dust” singled out by PMF at the rural site SPC vs. all the 296 

urban background sites shows the lowest correlation, for both chemical profiles and time series; indeed, at 297 

the rural site a possible anthropogenic mix contribution that is not individually resolved might be present, 298 

as reported in section 3.1.1. Details are discussed further in Sections 3.1.1.-3.1.6.  299 

PM2.5 average source apportionment for the whole investigated period is reported in Fig. 3 and seasonal 300 

averages are reported in table 2. In this paper, the “warm period” comprises the period from 15 May to 14 301 

September and the “cold season” is defined as the period from 1 November to 31 March; this selection was 302 

performed analyzing meteorological parameters and the PM2.5 chemical composition over the 4 years at 303 

the 4 sites. 304 

 305 

 306 

Fig. 2 - Source profiles of factors identified by the PMF analysis at the 4 sites. 307 

 308 

Fig. 3 – Source apportionment for the period 2013-2017 at the 4 sites. 309 

 310 

Table 2  311 

Seasonal apportionment in µg/m3 and in percentage at the 4 sites. In order to ensure better comparability 312 

among the sites, the averages were calculated only on samples available at all 4 sites during the 4-years 313 

period of investigation. Results are quite similar when they are calculated on the whole time series 314 

available for each site (see tables S2-S5 for a comparison with overall average).  315 

 316 
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 317 

 318 

3.1.1 Traffic with dust resuspension 319 

The factor profile is characterized by chemical species typical of both exhaust (mainly EC and OC) and non-320 

exhaust emissions, such as clutch, brake and tire wear abrasion (e.g. Fe, Mn, Ni, Sb, Sn, Zn) or road dust 321 

resuspension (e.g. La, Fe, Mn) (Viana et al., 2008; Pant and Harrison, 2013; Amato et al., 2016; Charron et 322 

al., 2019). At SPC rural site the chemical profile of this factor shows contributions from Cd, Pb, and As as 323 

well as a relevant presence of Sn and Sb while at the urban background sites these elements are found in 324 

the mix-anthropogenic factor profile. Therefore, this factor at the rural site probably represents a medium-325 

range air mass transport from urban areas, generally including emissions from anthropogenic activities such 326 

as vehicular traffic, service and production activities with the first one being the most relevant. 327 

Traffic with dust resuspension is the major PM2.5 source during the warm season accounting for about 10% 328 

- 20% of the PM2.5 mass with the sites of PR and BO showing the largest absolute and relative contributions. 329 

An expection is RN where biomass burning accounts for about 20% of PM2.5 also during the warm season, 330 

as described in Section 3.1.2. This factor is not characterized by a strong seasonality (see Table 2); indeed, 331 

the PMF solution shows a decrease in traffic absolute contribution during warm season because of the 332 

better atmospheric dilution although its relative share increases due to the lower impact of other factors 333 

such as biomass burning and secondary nitrate. It is interesting that in RN during warm season this factor 334 

shows the greatest increase in relative terms and the least decrease in terms of absolute concentration in 335 

µg/m3; this city is heavily impacted by tourists in summertime and recorded the presence of about 13 and a 336 

half million tourists during the warm season from May to September in the years 2013-2017 (Emilia-337 

Romagna region statistics). 338 

Traffic with 

dust 

resuspension

Biomass 

burning

Oil 

combustion

Mix 

anthropogenic

Ammonium 

nitrate

Ammonium 

sulfate and 

organics

BO 4.0 (20.2%) 3.5 (17.9%) 1.0 (5.1%) 1.1 (5.7%) 5.8 (29.3%) 4.3 (21.7%)

PR 4.9 (19.5%) 4.3 (17.1%) 1.1 (4.3%) 1.4 (5.7%) 8.9 (35.3%) 4.6 (18.1%)

RN 2.0 (11%) 5.7 (31.1%) 0.6 (3.1%) 1.5 (8.2%) 4.8 (25.8%) 3.9 (20.9%)

SPC 1.9 (11.4%) 3.8 (23.5%) 0.5 (3.1%) 4.3 (26.4%) 5.8 (35.7%)

BO 2.9 (28%) 0.9 (9%) 1.0 (9.9%) 0.6 (6%) 0.1 (0.7%) 4.8 (46.4%)

PR 4.1 (30.5%) 1.1 (8.1%) 1.3 (9.8%) 0.7 (5.1%) 0.2 (1.5%) 6.0 (45%)

RN 1.9 (19.7%) 1.9 (19.9%) 0.6 (6.7%) 0.8 (8.7%) 0.3 (3.1%) 4.0 (42%)

SPC 1.5 (15.3%) 0.8 (7.6%) 0.5 (5.2%) 0.6 (5.5%) 6.6 (66.3%)

BO 4.8 (18.2%) 5.8 (21.9%) 1.0 (3.9%) 1.4 (5.2%) 9.7 (36.7%) 3.8 (14.2%)

PR 5.4 (16.4%) 7.2 (22%) 1.0 (3.1%) 1.8 (5.6%) 13.8 (42.2%) 3.6 (10.8%)

RN 2.1 (8.3%) 9.2 (36.4%) 0.5 (2%) 1.9 (7.6%) 7.9 (31.3%) 3.6 (14.4%)

SPC 2.1 (9.6%) 6.4 (30.3%) 0.5 (2.4%) 7.0 (32.6%) 5.3 (25.1%)

Warm period

Cold period

Overall average (4 years)
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At all 4 sites a decrease in traffic source contribution is observed during the weekend and the decrease is 339 

even larger when considering only holidays; this effect was also confirmed by Mann Whitney test (Mann 340 

and Whitney, 1947) indicating statistically significant decrease when comparing Sundays and feast days at 341 

all 4 sites (from 24% in SPC to 42% in BO).  342 

The traffic factor is the one with the lowest correlation among the sites (correlation coefficient r varying 343 

between 0.44 and 0.64), revealing its local character. As already mentioned, the rural site SPC presents the 344 

lowest correlation coefficients for both time series and chemical profiles (see Table S6 – S8 in the 345 

Supplementary Material).  346 

Polar plots of the factor named traffic with resuspended dust (see Fig. 4 and Fig. S3 in the Supplementary 347 

Material) evidence a clear local origin for traffic with prevalent direction pointing at the presence of 348 

trafficked roads. Figure 4 shows the polar plots (average over all seasons) positioned on the road map. At 349 

SPC polar plots suggest a provenience from West (i.e. from the highway about 13 km away) pointing to a 350 

more aged traffic aerosol, consistent with the rural character of this site. At PR the origin seems almost 351 

exclusively local, consistent with the location of the sampling site in a park in the city center. At BO there is 352 

a notable local origin and the polar plots also indicate a predominant origin from East, probably at the ring 353 

road and the E45 and A13 motorways. In RN, in addition to the indication of a local origin, a provenance 354 

from North can be observed pointing at the state road which is very busy and fairly close to the site (about 355 

600 m). To exclude possible long-range contributions, back trajectories analysis was also performed. 356 

 357 

Fig. 4 – Polare plots for Traffic and resuspended dust at the 4 sites. 358 

 359 

3.1.2 Biomass burning (BB) 360 

The chemical profile is characterized by the presence of K+, Cl-, EC, and OC, and some elements (Zn, Cd, As, 361 

and Pb) which do not impact on PM2.5 mass very much but are relevant for their possible effects on human 362 

health (Bell et al., 2014; Pun et al., 2014; Basagaña et al., 2015). K+ is often considered a tracer for biomass 363 

burning in many studies (Larsen et al. 2012; Pachon et al. 2013; Venturini et al., 2014; Zhu et al., 2017; 364 

Ikemori et al., 2021) and Cl- was also found to be typically emitted by wood combustion, although less 365 

frequently (AIRUSE Project, 2014; Venturini et al., 2014; Hovorka et al. 2015). It is noteworthy that 366 

potassium chloride in a previous study performed in 2011-2012 (Venturini et al., 2014) was found to be a 367 

tracer of biomass burning at a marine location (Riccione) nearby the RN site. Literature works 368 

(Narodoslawsky and Obernberger 1996; Anttila et al. 2008; Gu et al. 2011; Hansen et al. 2001; Hovorka et 369 

al. 2015) reported the presence of elements such as Pb, Cd, Zn, and As in the BB profile.  370 

BB represents an important source of particulate matter: at all sites it explains most of PM2.5 mass during 371 

cold season and it is detected during warm season too. Depending on the site, it accounts for 15% - 30% 372 

(Fig. 3) of PM2.5 mass on a yearly basis; 20% - 35% in the cold season and 10% - 20% during warm season 373 
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(see Table 2). Lower contributions were typically observed in PR and BO while biomass burning in RN gave 374 

the highest absolute and relative contributions. Levoglucosan data were not included in this PMF analysis 375 

because available only from 15 October 2015. However, levoglucosan concentrations were used in data 376 

post-processing to verify results correctness. Correlation between biomass burning PMF factor and 377 

levoglucosan concentrations resulted in fairly good agreement with Pearson correlation coefficients of 0.79 378 

for BO, 0.87 for PR, 0.89 for RN and 0.91 for SPC.  379 

The relevance of BB in RN is confirmed by the levoglucosan average concentration which, during the period 380 

October 2015-October 2017, is 1.4 times higher than at the other sites (the same calculation performed on 381 

the biomass burning contribution from PMF gives a factor 1.5). Looking at the K+ to levoglucosan ratio, an 382 

indication about the possible contribution of K+ with a crustal origin in RN can be retrieved; however, this 383 

ratio is smaller in RN than at the other sites so that an overestimation of biomass burning at the site of RN 384 

can be excluded. 385 

The significant impact on BB at RN during summer was confirmed by an ad-hoc study carried out in 2018 386 

with 2 intensive campaigns (in summertime and wintertime) not published yet. Results suggested that the 387 

relevance of this source at RN site is likely connected to agriculture and cooking activities as already 388 

reported for other areas in the literature; indeed, it is normal practice that crop straw is burned in fields 389 

after harvest (Cao et al., 2006; McCarty, 2009; Singh et al., 2014). Farmland straw burning has been 390 

recognized as the main source of local air pollution in China, and has become the focus of public attention 391 

in both summer and autumn (Xie et al., 2016). About cooking combustion, Alves et al. (2012) in a European 392 

study estimated that around 10% of the OC mass in the urban areas originates from cooking emissions. 393 

Vicente et al. (2018) experimentally quantified and characterized the gaseous and particulate matter 394 

(PM2.5) emissions from charcoal combustion in a typical brick barbecue grill and they found that particle 395 

emissions were of the same order of magnitude as those from traditional residential wood burning 396 

appliances. As PM chemical composition from these sources is quite similar, it is not possible the 397 

disentanglement of emissions from charcoal and from other biomass combustion sources. 398 

From polar plots analysis (Fig. S4) biomass burning seems to be a very local factor at all sites and in all 399 

seasons and especially in winter when the PM2.5 shares attributable to this factor are very high. It is 400 

interesting to note that the site of RN shows a clear local origin in cold and warm seasons. According to this 401 

analysis the highest levels of biomass burning in this site cannot be ascribed to transported aerosols.  402 

 403 

3.1.3  Oil combustion/ship emission 404 

Sulfate, V, and Ni are commonly reported in literature as tracers for oil combustion or ship emission 405 

(Mazzei et al. 2008; Becagli et al., 2012; Pey et al. 2013; Bove et al., 2014; Viana et al. 2014; Gregoris 2021). 406 

Therefore, the PMF factor with the chemical profile characterized by such components may be related to 407 

emissions from power plants, refineries and ships as well. High correlations among the factor temporal 408 
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contributions at the four sites (r ranging from 0.71 to 0.89 between all pairs of sites, decreasing with 409 

distance, Table S8 in the Supplementary Material) suggest a long range transport of air masses impacted by 410 

naval traffic. This is also confirmed by the meteorological analysis (see Section 3.2) showing the 411 

provenience of air mass from Mediterranean Sea in the days before peaks in factor contribution (see Fig. 412 

5a). Sometimes high contributions are registered in concomitance with a Saharan dust event (identified 413 

through back-trajectories analysis indicating that air mass originated from North African regions) which 414 

could explain the presence of crustal elements such as Fe and La in the chemical profile.  415 

The presence of SO4
2- is common in PMF factors related to marine aerosol (Calzolai et al., 2015; Becagli et 416 

al., 2017) and – more generally – to aged aerosol (Belis et al., 2013) or air masses which experienced a long-417 

range transport; indeed, residence time of sulfate in atmosphere is estimated between 3 and 9 days 418 

(Seinfeld and Pandis, 2016). A study based on five years of data collected in Lampedusa - an island in the 419 

center of the Mediterranean sea in southern Italy (Becagli et al., 2012) - reported that in the Central 420 

Mediterranean sea several SO2 sources (anthropogenic, marine biogenic, crustal, volcanic) contribute to 421 

non-sea salt sulfate detected in aerosol samples.  422 

In addition, the factor shows a marked seasonality with higher absolute and relative contributions during 423 

the warm months, in agreement to the evidence of autumn-winter minima and spring-summer maximum 424 

in the desert dust transport events at Mt. Cimone (Duchi et al., 2016) and reflecting the enhanced vertical 425 

transport of air masses from the lower troposphere and planetary boundary layer during the warm season 426 

(Marinoni et al., 2008; Carbone et al., 2014). Higher planetary boundary layer during the warm season plays 427 

an important role, by favoring the circulation of air masses at low altitude and therefore the transport of air 428 

masses coming from the sea. In addition to favorable weather conditions for atmospheric transport, during 429 

summer months in the Mediterranean sea both the number of passenger vessels and small vessels is the 430 

largest, probably for the increased recreational travel (Jalkanen et al., 2016).Therefore, it seems plausible 431 

to relate this factor to air masses which travelled over the Mediterranean basin and were enriched with 432 

ship emissions. Polar plots (Fig. S5) confirm a long-range transport and suggest that this factor is related to 433 

air masses coming mainly from the Tyrrhenian and Adriatic seas as observed during strong winds events. 434 

This is evident during warm seasons, when contributions to PM2.5 are higher. Since this is a factor related to 435 

long-range air mass transport, a more detailed analysis of the origin of the air masses was carried out (see 436 

Section. 3.2).  437 

This factor accounts for up to 5 % of PM2.5 mass as an annual average and up to 10% during the warm 438 

season.  439 

 440 

3.1.4 Mix anthropogenic  441 

This factor probably includes production and service activities which have not a well-defined chemical 442 

fingerprint, but are related to quite different profiles associated to a variety of anthropogenic sources with 443 
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specific characteristics. In Emilia-Romagna the production sector comprises small and medium-sized 444 

industries spread throughout the territory. In the three provinces considered in this study there are energy 445 

plants, food industries, mechanical factories (including packaging) and ceramic industries. In each of the 3 446 

provinces there is a municipal waste incinerator.  447 

The chemical profile of this factor is mainly characterized by the presence of trace elements (As, Zn, Cd, Pb, 448 

Ni, Mn, Sb, Sn). These trace elements are mostly associated to PM industrial emissions as reported in many 449 

receptor modeling studies (Taiwo et al., 2014, Pernigotti et al., 2016). EEA (2012) reported that industrial 450 

processes (Industrial Processes, Energy use in industry and Energy Production and distribution) make a 451 

significant contribution to the total EU-27 emissions of heavy metals (65% Pb, 56% Cd). In published source 452 

apportionment studies, elements like Zn, Pb, As, Mn, and Cd were found in chemical profile of “industrial 453 

activities” factor (Thomaidis et al., 2003; Reche et al., 2012; Pey et al., 2013); As, Pb, and Zn in “ceramic 454 

industry” factor (Pandolfi et al., 2008; Sánchez de la Campa et al., 2010); Zn, Cd and Pb were also suggested 455 

as incinerator emission markers (Gratz and Keeler, 2011; Venturini et al, 2013; Lucarelli et al., 2019). In 456 

receptor modelling studies, chemical profiles of industrial emissions is very diverse depending on many 457 

factors such as the type of industry and the emission control measures in place in industrial plants. The 458 

choice and availability of industrial emission tracers in receptor models affects the ability to discriminate 459 

among specific source emissions. It is also noteworthy that industrial emissions are often characterized by 460 

huge peaks lasting only few hours (see e.g. Taiwo et al., 2014); thus, without high time resolved data the 461 

identification of the specific contribution can be hard to detect (see e.g. Forello at al., 2019 and 2020). The 462 

reported contribution of industry to PM mass is highly variable too, even when source apportionment 463 

studies are carried out at industrial sites (see e.g. Taiwo et al., 2014). In our study, this factor accounts for 464 

5-10% of PM2.5 mass at all urban sites as annual average. As already mentioned, it is not identified as a 465 

separate factor at the rural site where a possible contribution of anthropogenic activities is included in the 466 

traffic factor (with traffic component dominating), that explains about 10% of PM2.5 mass. This mix-467 

anthropogenic factor is not characterized by a distinct seasonality in relative terms although higher 468 

absolute contributions are typically observed during the cold season when poor dispersion conditions 469 

frequently occur. 470 

Polar plots (Fig. S6) point at a local origin at all sites and in both cold and warm seasons; this observation is 471 

consistent with the fact that it is not identified by PMF at the rural site of SPC.  472 

 473 

3.1.5 Ammonium Nitrate 474 

Ammonium and nitrate are dominant species in this factor profile suggesting the presence of ammonium 475 

nitrate salt (Gu et al. 2011; Amato et al. 2016; Farao et al. 2014; Masiol et al. 2017); it is interesting to note 476 

that 90-100% of the nitrate detected in the samples is accounted for in this factor. The contribution is 477 

almost negligible in summer (5% at maximum) and accounts for 30-40% of PM2.5 during cold season at all 478 
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sites thus pointing at the relevant role of ammonium nitrate in the Po Valley during wintertime as already 479 

reported e.g. by Vecchi et al. (2018). 480 

Strong seasonality of this factor is typical and it is due to meteorological conditions, because high 481 

temperatures maintain ammonium nitrate in gas phase (Seinfeld and Pandis, 2016) and possible sampling 482 

artifacts can promote ammonium nitrate losses from the filters (Vecchi et al., 2009a). During winter nitrate 483 

contributions at the rural site are lower than at other sites while during summer the opposite situation 484 

occurs. In summertime 2012, during a field campaign at SPC, Sandrini et al. (2016) observed ammonium 485 

nitrate formation during nighttime with concentrations on average 5 times higher at the rural site than in 486 

BO and concluded that lower average temperatures and higher average relative humidity recorded during 487 

the night in SPC with respect to BO probably played an important role. 488 

Temporal patterns of PMF contributions show very high correlations among sites (r between 0.84 and 0.90) 489 

highlighting once again the homogeneity of this component at the regional scale. 490 

In the chemical profile, small contributions due to OC, K+, and Cl- suggest that this factor has also a 491 

connection with biomass burning emissions which are also characterized by the same seasonal pattern. 492 

Recently, Forello et al. (2020) reported a similar chemical profile related to a factor mixing nitrate and aged 493 

aerosols.  494 

Also ammonium nitrate polar plots (Fig. S7) evidence a clear local origin, especially during the cold season, 495 

when it accounts for more than 30% of PM2.5 mass (during warm season its contribution is minimal).  496 

 497 

3.1.6 Ammonium Sulfate and Organics 498 

This factor is characterized by the presence of organic aerosol and secondary inorganic ions like ammonium 499 

and sulfate, probably in the form ammonium sulfate or bi-sulfate (Andriani et al. 2011; Gu et al. 2011; Bove 500 

et al. 2014; Masiol et al. 2017). In the same factor not negligible shares of As (about 20%), known as 501 

charcoal combustion tracer (Larsen et al., 2008), have been also observed.  502 

This factor accounts for about 64-99% of the sulfate detected in the samples; it explains 20% of PM2.5 503 

annual average mass at urban sites and about 35% at the rural site of SPC. This factor presents a high 504 

correlation among the sites (Pearson correlation coefficient varying from 0.67 and 0.82). During the warm 505 

season, when the photochemical activity is stronger (Amato et al., 2009), absolute values are slightly higher 506 

while percent contributions are consistently higher and vary from about 40% in RN to about 65% in SPC. 507 

The occurrence of high sulfate concentrations in the Po Valley was observed in previous works (Vecchi et 508 

al., 2009b; Squizzato et al., 2012; Canepari et al., 2014) and it was explained by air masses transport from 509 

Eastern Europe, where sulfur-rich fuels are still in use (while this is not the case in Italy). During wintertime, 510 

the occurrence of low mixing layer heights and foggy days with high relative humidity likely promote the 511 

formation of sulfate through heterogeneous phase chemical reactions. 512 
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Sulfate is commonly referred to be a continental background component deriving from long range air 513 

masses transport such as marine traffic or coal-fired power plants located in Eastern Europe (Hamed et al., 514 

2007); indeed, SO2 – i.e. the sulfate precursor - tends to spread homogeneously because of its thermal 515 

stability and its relatively long life time in the atmosphere (Seinfeld and Pandis, 2016). The presence of As in 516 

the profile suggests coal-fired power plants as potential source.  517 

For the ammonium sulfate and organics, it is interesting to observe the non-local origin of this factor (Fig. 518 

S8) , with a provenance from the East, during the cold season. A more detailed analysis was carried out to 519 

investigate the long-range provenience of this factor (see Section 3.2).  520 

 521 

3.1.7 Comparison of source contribution observed in previously published work for the same region 522 

Previous source apportionment studies on PM2.5 carried out in the Po Valley (Amato et al., 2016; Farao et 523 

al., 2014; Larsen et al., 2012; Masiol et al., 2020; Squizzato et al., 2017; Tositti et al., 2014; Venturini et al., 524 

2014) found the same factors as those reported in this study, although sometimes differently aggregated 525 

(as in the case of secondary aerosol components that can be found in a single factor) or disaggregated (as in 526 

the case of traffic and crustal material that here are combined into a single factor). The relevance of the 527 

secondary component is confirmed by all studies and the overall contribution of nitrate and sulfate to PM2.5 528 

mass concentration varies from about 50% (Amato et al., 2016) up to 75% (Larsen et al., 2012). Thunis et al. 529 

(2020) reported that in the Po Valley the relative contribution of secondary inorganic PM2.5 component 530 

ranges between 40 and 50%, and is quite homogeneously distributed over the entire area. Traffic and BB 531 

factors are the first two anthropogenic factors at the various investigated sites, with alternating importance 532 

depending on the study. A factor characterized by V and Ni was also found by Masiol et al. (2020); in Amato 533 

et al.(2016) and Farao et al. (2014) a factor including V, Ni, and sulfate was discussed. Other factors of 534 

anthropogenic origin are sporadically reported in some studies e.g. Amato et al. (2016), Farao et al. (2014), 535 

and Squizzato et al. (2017) reported about a generic industry factor, while Venturini et al. (2014) found a 536 

factor associated with natural gas home appliances. Regarding factors of natural origin, the crustal factor is 537 

sometimes found as a separate factor (Amato et al., 2016; Masiol et al., 2020) accounting for about 5% to 538 

PM2..5, sometimes together with the non-exhaust component (Squizzato et al., 2017) or with other 539 

components (Larsen et al., 2012; Farao et al., 2014).  540 

 541 

3.2 Back-trajectories analysis 542 

In order to better understand aerosol transport processes, for the non-local factors we analyzed back-543 

trajectories retrieved by Hysplit model. Polar plots in fact use local wind speed and direction data and are 544 

more suitable for detecting the influence of potential local sources (Carslaw et al., 2006; Carslaw and 545 

Beevers, 2013), while PSCF and CWT consider long range air mass transports (Cheng,2015; Kim, 2020).  546 
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Back-trajectories analysis was carried out to better understand the oil combustion/ship emission (Fig. 5a) 547 

and the ammonium sulfate and organics (Fig. 5b) PMF factors, for which the polar plots have suggested an 548 

extra-regional contribution. We also investigated the traffic factor (Fig. 5c) because polar plots highlighted 549 

also a provenance from distinct directions at the different investigated sites although a local origin was 550 

evident. This was attributed to roads near to the sampling site (max 13 km for the rural site) but the 551 

possibility of aerosol transport from longer distance was also checked. In addition, an analysis of the back 552 

trajectories was carried out for PM2.5 total mass (Fig. 5d). 553 

Concentration weighted trajectory (CWT) approach has been applied to investigate the origins of 554 

ammonium sulfate and organics PMF factor, traffic with resuspended dust PMF factor and total PM2.5 mass. 555 

As reported in Section 2.4, for each cell this method provides a weighted concentration obtained by 556 

averaging sample concentrations associated to trajectories which crossed that grid cell. In this way, the 557 

CWT method shows concentration gradients across potential source areas. A different approach was used 558 

for oil combustion/ship emission factor. Time series contributions due to oil combustion/ship emission are 559 

characterized by few huge peaks which occur mainly during spring or summer. For this reason, days with 560 

contributions over the 90th percentile were analyzed with Potential Source Contribution Function (PSCF). 561 

Back trajectories were calculated at a height of 500 m a.g.l. (above ground level) for this analysis, because 562 

the days with concentrations <90th percentile of this factor are almost all in the warm season with higher 563 

planetary boundary layer (PBL). For CTW analysis, since this elaboration considers every day of the year, 564 

back trajectories were calculated at a height of 100 m a.g.l., according to Sogacheva et al. (2007) who 565 

calculated the back-trajectories at SPC site too. 566 

In the vast majority of cases when oil combustion/ship emission factor contributions exceeded 90th 567 

percentile, air masses overpassed Mediterranean Sea in the previous days (Fig. S1). In addition, PSCF 568 

analysis showed a significant probability of high levels occurrence in the investigated area in the following 569 

72 hours (Fig. 5a). These observations underline that the impact of naval traffic in this factor is remarkable. 570 

CWT analysis for secondary sulfate and organics points to Eastern Europe provenance; similar findings for 571 

the Po Valley were already reported e.g. by Bernardoni et al. (2011), Canepari et al. (2014) and Masiol et al. 572 

(2020). 573 

There is no evidence of an extra-regional origin for the traffic factor, apart from some cells in the south east 574 

Mediterranean which are also evident in the analysis on PM2.5 mass concentrations and hardly can be 575 

related to the traffic factor. 576 

PM2.5 mass concentration origin seems to be originated partly from the same area as the ammonium 577 

sulfate factor. It is also highlighted the south east Mediterranean area, where the oil combustion/ship 578 

emission factor was observed too. However, it is unlikely that the latter is responsible for high levels of 579 

PM2.5, given its low contributions in terms of mass concentrations. A possible interpretation for these cells 580 

located in the south east of the Mediterranean might be given considering wintertime cases (Fig. S2) when 581 
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air masses have crossed these cells during synoptic scale weather conditions related to local atmospheric 582 

conditions favouring stagnation (Finardi and Pellegrini, 2004). This is only a possible interpretation that can 583 

be further verified and investigated; higher spatial resolution of the input meteorological files will also be 584 

necessary for a more accurate analysis. 585 

 586 

Fig. 5 – (a) Seasonal Potential Source Contribution Function (PSCF) for Oil combustion/ship emission 587 

calculated on 90th percentile, over 72 hours. The PSCF value in a cell is the number of high (≥ 90th 588 

percentile) concentration values divided by the total number of trajectory points in the cell. 72 hours long 589 

back trajectories are calculated at the 4 sites at 500 m a.g.l. between 01/04/2013 and 14/10/2017 at 0:00, 590 

6:00, 12:00 and 18:00  591 

Concentration-Weighted Trajectory (CWT) method applied on Secondary sulfate and organics (b) daily 592 

concentrations, on Traffic with resuspended dust (c), and on PM2.5 mass (d). Each grid cell is assigned an 593 

average of concentrations associated to trajectories crossing that grid cell. 72 hours long back trajectories 594 

are calculated at the 4 sites at 100 m a.g.l. between 01/04/2013 and 14/10/2017 at 0:00, 6:00, 12:00 and 595 

18:00.  596 

 597 

4 Discussion 598 

This study showed the similarity and peculiarities of 4 sites representative of different areas of southern Po 599 

Valley (Fig. 1). The similarity is certainly given by the fact that main pollution sources – as also identified by 600 

PMF - are the same at the 4 sites and their chemical profile is largely comparable. Excluding SPC, they are 601 

all urban background sites chosen to maximize the representativeness of population exposure to 602 

particulate matter and to avoid locations strongly impacted by local sources. PMF results (Table 2) showed 603 

that at BO and PR source contributions to PM2.5 from different factors were very similar; opposite, PM2.5 in 604 

RN resulted largely accounted for by biomass burning emissions in both cold and warm season thus 605 

pointing at the role of cooking and agricultural activities in addition to residential heating. As concerns SPC, 606 

contributions from the different sources were typical of a rural background site. 607 

As for local sources of primary origin, traffic gave the most relevant contribution in BO and PR urban areas 608 

as annual average; opposite, biomass burning contribution was higher than traffic one in RN and, as 609 

expected, at the rural site SPC. During wintertime, biomass burning accounted for the largest part of PM2.5 610 

mass at all sites; wintertime is also when daily limits imposed on PM10 concentration (50 µg/m3 for not 611 

more than 35 days in solar year, Directive 2008/50/CE) are more often exceeded in the investigated area. 612 

However, biomass burning contribution does not become null even during the warm season although a 613 

huge decrease in its contribution can be observed (see Table 2). This result suggests that, in addition to 614 

domestic heating, wood burning cooking and open burning of agricultural pruning bonfires are not 615 

negligible sources of biomass burning, especially during warm season. The non-ideal combustion mode 616 
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typical of wood combustion activities mentioned above and the lack of abatement systems likely lead to an 617 

increase in emissions. More than the other locations considered in this study, RN is an important tourist 618 

destination with many pizzerias and restaurants with wood ovens and large campsites with areas dedicated 619 

to grilling; in addition, the habit of disposing of agricultural pruning with large open-air bonfires is quite 620 

common in this area. These motivations can explain the significant contribution of biomass burning (20%) 621 

in RN during summertime. 622 

An increasing number of studies are highlighting the effects of wood burning on human health. A 623 

systematic review of health effects from air pollution (http://bit.ly/WHO_EU2013) concluded that there are 624 

no reasons to consider particulate matter deriving from biomass burning less toxic than particulate matter 625 

from other sources. A recent study (Corsini et al., 2017; Marabini et al., 2017) performed in Northern Italy 626 

on ultrafine particles evidenced both pro-inflammatory and genotoxic effects due to biomass burning 627 

aerosols; literature studies (see e.g. Corsini et al., 2019; and references therein) all over the world also 628 

report about health effects due to biomass burning emissions. Pollution from domestic heating with solid 629 

fuel has caused about 1 million DALYs (“Disability-Adjusted Life Years” = Years of Life Lost + Years Lived with 630 

Disability) in Europe in 2010 (Economic Commission for Europe, 2014). Exposure to PM2.5 from bush fires 631 

has been associated with out-of-hospital cardiac arrest (Dennekamp et al., 2015; Haikerwal, 2015). 632 

These results suggest to take into account the opportunity to monitor and regulate summertime biomass 633 

combustion activities as they were detected as non-negligible sources of PM2.5 with possible health effects. 634 

Monitoring such activities is not straightforward as they are characterized by variable and episodic 635 

emissions and assessing them in a reliable way with traditional methods (emission inventory, fixed-site 636 

monitoring stations and even passive samplers or mobile stations) is not easy. In agricultural countries, 637 

however, new techniques have been successfully used for fire detection, such as satellite remote sensing 638 

(Schreuder M. and Mavko M., 2010; Verma et al., 2019, Temudo et al., 2020) and low-cost sensor operated 639 

on commercial drones (Vreeland et al., 2018). 640 

An industrial factor is not singled out clearly but it is included in a generic "mix anthropogenic" source and 641 

has less relevance compared to the aforementioned factors, not exceeding 10% of the PM2.5 mass as 642 

primary contribution. This is in line with what emerged in previous European studies (Belis et al., 2013, 643 

Giardullo, 2016) but it is in contrast with the general perception of the Italian population, who often 644 

considers industry the first polluting factor (Giardullo, 2016). 645 

The long-range factor associated to oil combustion/ship emissions was quite unexpected, especially 646 

because the impact was not only observed at the coastal site but also in the inner part of the region. 647 

Further extensive investigations are still needed to definitively clarify if these are emissions due to ships or 648 

refinery plants or a mix of both. The contribution due to this factor is on average similar to the 649 

anthropogenic mix one, accounting for a few percents (on average less than 5%) of PM2.5 mass. It is 650 
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detected mainly during the warm season, therefore, it does not give a significant contribution to 651 

exceedances of the PM2.5 EU target value (25 μg/m3); nevertheless, V and Ni which characterize the 652 

chemical profile of this factor could threaten human health (Bell et al., 2014; Pun et al., 2014; Basagaña et 653 

al., 2015) despite they are not relevant in terms of PM2.5 mass. This factor accounts for 30-45 % of the total 654 

Ni (element subject to regulatory limits, according to Directive 2004/107/CE, UE, 2004b) detected at the 655 

investigated sites (32% in PR, 37% in BO, 44% in SPC and 45% in RN). 656 

This study confirms also the role of secondary aerosol components, which account for about half of PM2.5 657 

mass at urban sites and for about two thirds of the mass concentration at the rural one, showing a marked 658 

seasonal trend with ammonium sulfate dominating in the warm season and ammonium nitrate being the 659 

most abundant component during the cold season. The Po Valley is one of the large hot-spots for ammonia 660 

emissions in Europe (e.g. EAA, 2012; Carozzi et al., 2013; Van Damme et al., 2018) so that nitrates and 661 

sulfates are typically in the form of ammonium nitrate and ammonium sulfate. As expected, the relative 662 

contribution from secondary aerosols at the rural site of SPC (about 60%) is higher than at urban sites 663 

(about 45%-55%) due to the minor influence of primary contributions. It is noteworthy that the relative 664 

contribution of secondary inorganic aerosol detected in the Po Valley – especially in rural locations - is 665 

typically higher than the median values found on European sites and comparable only to concentrations 666 

observed in the Netherlands (Belis et al., 2013); indeed, the wintertime weather conditions of the Po Valley 667 

favor accumulation and condensation processes which promote ammonium nitrate formation from 668 

gaseous precursors such as nitrogen oxides and ammonia (Perrone et al., 2012; Stanier et al., 2012; 669 

Ricciardelli et al., 2017). According to the regional emissions inventory (Emilia-Romagna region, 2017), NOx 670 

is originated almost exclusively from combustion processes, mainly related to transport and to a lesser 671 

extent to production activities, heating, and agricultural machinery while ammonia is originated for more 672 

than 98% by agricultural and livestock activities.  673 

Considering that NH4
+ originates from NH3 in atmosphere, it can be roughly estimated that also 98% of the 674 

ammonium detected in PM2.5 samples derives from agricultural and livestock activities; therefore, in our 675 

study an amount estimated in 2.4 µg/m3 of ammonium originates from these emissions, i.e. about 11% of 676 

the average PM2.5 mass. This quantity is roughly calculated but it is probably an underestimation of the real 677 

impact of agriculture in the investigated area, because it takes into account only ammonia and does not 678 

consider other emissions related to agricultural and livestock activities, such as those related to combustion 679 

or resuspension induced by agricultural machinery and to the use of pesticides, and field burning of 680 

agricultural wastes (these ones accounted for in the biomass burning factor, in our study). 681 

The impact of pollution attributable to agriculture and livestock is commonly underestimated by the 682 

population. From the Prepair survey (Marongiu et al., 2019), emerges that in Emilia-Romagna only one out 683 

of four respondents considers agricultural and livestock as activities which impact much or very much on air 684 

pollution, while domestic heating, transport, and industry are considered to give a huge contribution by 685 

Marongiu
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more than half to around two thirds of respondents. Giardullo (2016) reported that there is a big difference 686 

between the PM10 imputable to this factor and the one perceived by the Italian population. Currently, 687 

recent studies agree on the impact of agricultural emissions on health and environment worldwide. 688 

Literature works (e.g. Bessagnet et al., 2014; Giannadaki et al., 2018; and references therein) highlighted 689 

the high contribution of NH3 and in general emissions linked to agriculture in fine aerosol formation and 690 

levels. Lelieved et al. (2015) estimated that in eastern Europe, Russia, USA, and East Asia agricultural 691 

emissions are responsible for the largest relative contribution to PM2.5 and on mortality linked to outdoor 692 

air pollution in 2010. Giannadaki et al. (2018) estimated for Italy a reduction of 75% in mortality 693 

attributable to PM2.5 and relative cost range, in a scenario where agricultural emissions are eliminated. 694 

Pozzer et al. (2017) reported that reducing by 50% the agricultural emissions of NH3, a reduction of PM2.5 695 

equal to 2.4 μg/m3 could be obtained in the Po Valley region. Lovarelli et al. (2020), by discussing the role of 696 

agriculture and livestock activities in Po Valley during Covid-19 quarantine, pointed at the need for lowering 697 

agricultural NH3 emissions to improve the air quality and underlined the importance of a combined role of 698 

all productive sectors in abating PM2.5. The impact of agriculture and intensive livestock farms definitely 699 

claim for further investigation in the Po Valley where these activities have a great economic importance 700 

(Banca d’Italia, 2018). 701 

 As confirmed by the sulfate–to-ammonium diagnostic ratio found in the secondary sulfate PMF factor, 702 

sulfate is almost exclusively present as ammonium sulfate, produced by photochemistry and 703 

heterogeneous phase reactions from SO2 gaseous precursor. According to available emissions inventory, 704 

almost all SO2 in Po Valley can be ascribed to production activities (80%); SO2 concentrations recorded in 705 

Emilia-Romagna in the period 2013-2017 were extremely low, almost always lower than the limit of 706 

quantification (14 μg /m3) (Arpae, 2018). As already discussed in Section 3.2, transport of air masses 707 

enriched in sulfate from Eastern Europe countries to the Po Valley were clearly identified in this work and 708 

also reported in literature (Hamed et al., 2007; Bernardoni et al., 2011; Canepari et al., 2014, Masiol et al. 709 

2020); it is thus of interest to assess how much of the secondary sulfate is of local origin and therefore its 710 

abatement can be carried out through local policies and how much of it is of extra-border origin and cannot 711 

be decreased with actions taken at regional or national level. 712 

More complex is the attribution of the organic component which can derive from many sources; anyway, as 713 

described in Section 3.1.5, an important signal of an aged biomass burning is clearly identified by PMF at 714 

almost all sites; indications about the relevance of biomass burning in the secondary organic aerosol 715 

production has been reported in recent studies (e.g. Gilardoni et al., 2016; Forello et al., 2020; Paglione et 716 

al., 2020). 717 

Last but not least, a consideration about the epidemiological aspects is appropriate due to the huge 718 

population living in the Po Valley. There is a growing body of epidemiologic research on source-specific 719 



24 
 

associations of PM2.5 on a variety of health outcomes; results from this study have been already used by 720 

Ottone (2020) who showed a statistically significant association between the risk of preterm birth and 3 721 

factors identified by PMF, i.e. traffic, oil combustion/ship emission and secondary sulfate and organics. 722 

Secondary sulfates and organics and oil combustion/ship emission account for a significant part of PM2.5 723 

mass (both as absolute and relative contribution) especially during the warm season; also traffic relative 724 

contribution is larger in the warm season. These findings are consistent with previous studies that have 725 

shown a stronger effect of particulate matter on health during the warm season compared to the cold one 726 

(Nawrot et al., 2007; Stafoggia et al., 2008; Samoli et al., 2013) although the mechanisms underneath call 727 

for further investigations. 728 

 729 

5 Conclusions 730 

This paper reports about results retrieved by a source apportionment analysis over a period of four years, 731 

at four sites in the Emilia-Romagna region considered representatives of different areas of southern Po 732 

Valley. As far as we know, this is the first multi-site study with such a temporal covering performed in the 733 

well-known European pollution hot-spot located in northern Italy.  734 

Results about major sources impacting on the investigated area highlight the need for structural 735 

coordinated interventions throughout the entire basin. In order to further decrease the background 736 

concentrations of air pollution, coordinated and large-scale actions are needed. The relevance of secondary 737 

aerosols in PM2.5 mass concentration strongly suggests that unfavorable climatic conditions which promote 738 

air mass stagnation and pollution build-up make it difficult to lower concentration values. Therefore, to 739 

achieve significant pollution reduction in this area huge efforts in emission abatement are needed, more 740 

than those required in other Italian and European regions. Expensive and demanding interventions must be 741 

targeted as much as possible through a coordinated effort played by all the regions located in the Po Valley. 742 

This study confirms traffic and biomass burning as the most relevant contributors to PM2.5 in terms of 743 

primary components. Noteworthy is the not negligible contribution of biomass burning in RN during 744 

summer suggesting that other possible sources of wood combustion, such as open burning of agricultural 745 

pruning bonfires and cooking play a role in PM2.5 concentrations. Indeed, these activities are characterized 746 

by a not ideal combustion process and do not have abatement systems, therefore they can be significant 747 

PM2.5 sources. These emissions deserve further study and new monitoring techniques following examples 748 

reported in recent literature works.  749 

Agricultural and livestock activities were not singled out by PMF analysis (mainly due to the lack of specific 750 

source tracers) but a rough estimate based on ammonium concentrations and ammonia data from 751 

emission inventory indicates a contribution from this source of at least 10% to which the exhaust off-road 752 

vehicles emissions and pruning burnings (accounted for in the biomass burning factor) must be added. 753 
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Agriculture and livestock seem to be therefore the productive activity with the highest impact on PM2.5 at 754 

the investigated sites. This is in agreement with the known literature and with the recently growing number 755 

of studies on these productive activities and it is not unexpected due to paramount importance that these 756 

activities have in Po Valley. 757 

Specific industrial emissions were not identified by PMF although at urban sites a generic factor defined as 758 

anthropogenic mix accounted for 5 - 10% of PM2.5 mass. 759 

Lastly, PMF analysis shows a minor but clear contribution from heavy oils combustion/ship emissions, 760 

which is related to long-range transport of air masses overpassing Mediterranean and whose possible 761 

impact on health must be further investigated. With regard to the cross-border contribution, we also 762 

emphasize the relevance of the secondary sulfate coming from Eastern Europe countries. This specific 763 

contribution has not been quantified but clearly emerges from the back-trajectories analysis. 764 
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