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Abstract

Soap films at equilibrium are modeled, rather than as surfaces, as regions of small
total volume through the introduction of a capillarity problem with a homotopic
spanning condition. This point of view introduces a length scale in the classical
Plateau’s problem, which is in turn recovered in the vanishing volume limit.
This approximation of area minimizing hypersurfaces leads to an energy based
selection principle for Plateau’s problem, points at physical features of soap films
that are unaccessible by simply looking at minimal surfaces, and opens several
challenging questions. © 2021 Wiley Periodicals LLC.
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0 Explanatory Note
The present paper amends and replaces “Plateau’s Problem as a Singular Limit

of Capillarity Problems” by the same authors, which was published online in Comm.
Pure Appl. Math. in 2020 with DOI 10.1002/cpa.21951; see [39]. The revision does
not contain any major changes with respect to the previous version: in particular,
all main results stated in [39] remain valid. The amendment is, nonetheless, neces-
sary due to the presence of a technical error in the proof of [39, lemma 2.5] (con-
struction of cup competitors). The present paper features a revised version of that
lemma; see Lemma 2.5 below, with a correct proof. While the main changes only
pertain to the actual construction of cup competitors, a few other minor changes
were needed in the rest of the paper at places where cup competitors (and other
competitors derived from them, such as exterior cup competitors and slab competi-
tors) are used. This justifies the publication of a revised version of the entire paper
in place of a corrigendum. For the interested reader, further comments on the tech-
nical complications in the construction of cup competitors that led to the mistake
in [39] and the need for this revision can be found in Remark 2.6 and Figure 2.1(a,
b).

1 Introduction
1.1 Overview

The theory of minimal surfaces with prescribed boundary data provides the basic
model for soap films hanging from a wire frame: given an .n � 1/-dimensional
surface � � RnC1 without boundary, one seeks n-dimensional surfaces M such
that

(1.1) HM D 0; @M D �;

where HM is the mean curvature of M (and n D 2 in the physical case). A limita-
tion of (1.1) as a physical model is that, in general, (1.1) may be nonuniquely solv-
able, including unstable (and thus, not related to observable soap films) solutions.
Area minimization can be used to construct stable (and thus, physical) solutions,
providing a strong motivation for the study of Plateau’s problem; see [9]. Here
we are concerned with a more elementary physical limitation of (1.1), namely, the
absence of a length scale: if M solves (1.1) for � , then tM solves (1.1) for t� , no
matter how large t > 0 is.

Following [44], we introduce a length scale in the modeling of soap films by
thinking of them as regions E � RnC1 with small volume jEj D ". At equilib-
rium, the isotropic pressure at a point y interior to the liquid but immediately close
to its boundary @E is

(1.2) p.y/ D p0 C � EH@E .y/ � �E .y/
where p0 is the atmospheric pressure, � is the surface tension, �E the outer unit
normal to E, and EH@E the mean curvature vector of @E; at the same time, for any

https://doi.org/10.1002/cpa.21951
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FIGURE 1.1. Minimizers of the capillarity problem in the unusual con-
tainer � consisting of the complement of a �-neighborhood I�.�/ of a
curve � (depicted in light gray). The shape of E is drastically differ-
ent depending on whether or not a homotopic spanning condition is pre-
scribed: (a) without a C-spanning condition, we observe tiny droplets sit-
ting near points of maximal mean curvature of @�; (b) with a C-spanning
condition, small rounds droplets will not be admissible, and a different
region of the energy landscape is explored; minimizers are now expected
to stretch out and look like soap films.

two points y; ´ inside the film we have

(1.3) p.y/ � p.´/ D �g.´ � y/ � enC1
where � is the density of the fluid, g is the gravity of Earth, and enC1 is the vertical
direction. In the absence of gravity, (1.2) and (1.3) imply that HE D EH@E � �E is
constant along @E. A heuristic analysis shows that if @E is representable locally
by the two graphs fx � .h.x/=2/�M .x/ W x 2 M g defined by a positive function
h over an ideal midsurface M , then HM should be small, but nonzero (even in the
absence of gravity); see [44, sec. 2]. As it is well-known, one cannot prescribe
nonvanishing mean curvature with arbitrarily large boundary data; see, e.g., [21,
29]. Hence this point of view can potentially capture physical features of soap
films that are not accessible by modeling them as minimal surfaces.

The goal of this paper is starting the analysis of the variational problem playing
for (1.2) and (1.3) the role that Plateau’s problem plays for (1.1). The new aspect
is not in the energy minimized, but in the boundary conditions under which the
minimization occurs. Indeed, the equivalence between the constancy of HE and
the balance equations (1.2) and (1.3) leads us to work in the classical framework
of Gauss’ capillarity model for liquid droplets in a container. Given an open set
� � RnC1 (the container), the surface tension energy1 of a droplet occupying the
open region E � � is given by

�Hn.� \ @E/
where Hn denotes n-dimensional Hausdorff measure (surface area if n D 2, length
if n D 1). In the case of soap films hanging from a wire frame � , we choose the

1 For simplicity, we are setting to zero the adhesion coefficient with the container; see, e.g., [26].
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FIGURE 1.2. The variational problem (1.5) with � given by two parallel
circles centered on the same axis at a mutual distance smaller than their
common radius. Different choices of C lead to different minimizers S in
`: (a) if C is generated by the loops 
1 and 
2, then S is the area minimiz-
ing catenoid; (b) if we add to C the homotopy class of 
3, then S is the
singular area minimizing catenoid, consisting of two catenoidal necks,
meeting at equal angles along a circle of Y -points bounding a “float-
ing” disk. Such singular catenoid cannot be approximated in energy by
smooth surfaces: hence the choice of casting ` in a class of nonsmooth
surfaces.

complement of the “solid wire” I�.�/ as our container �; i.e., we set

� D RnC1 n I�.�/
where I� denotes the closed �-neighborhood of a set. The minimization of Hn.�\
@E/ among open sets E � � with jEj D " leads indeed to finding minimizers
whose boundaries have constant mean curvature. However, these boundaries will
not resemble soap films at all, but will rather consist of small “droplets” sitting
at points of maximal curvature for I�.�/; see Figure 1.1 and [4, 22, 43] for more
information.

To observe soap films rather than droplets, we must require that @E stretches
out to span I�.�/. To this end, we exploit a beautiful idea introduced by Harrison
and Pugh in [32] as slightly generalized in [13]. The idea is fixing a spanning
class, i.e., a homotopically closed2 family C of smooth embeddings of S1 into
� D RnC1 n I�.�/, and to say3 that a relatively closed set S � � is C-spanning
I�.�/ if

(1.4) S \ 
 ¤ ¿ 8
 2 C:
Given a choice of C, we have a corresponding version of Plateau’s problem

(1.5) ` D inf
�
Hn.S/ W S is relatively closed in �, and S is C-spanning I�.�/

	
as illustrated in Figure 1.2. The variational problem  ."/ studied here is thus a

2 By this we mean that if 
0; 
1 are smooth embeddings of S1 into �, 
0 2 C, and there exists a
continuous map f W �0; 1� � S1 ! � with f .t; �/ D 
t for t D 0; 1, then 
1 2 C.

3 Notice that, in stating condition (1.4), the symbol 
 denotes the subset 
.S1/ � �. We are
following here the same convention set in [13].
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reformulation of ` as a capillarity problem with a homotopic spanning condition,
namely:

 ."/ D inf
�
Hn.� \ @E/ W E � �; jEj D ";� \ @E is C � spanningI�.�/

	
for " > 0. We now give informal statements of our main results (e.g., we make no
mention of singular sets or comment on reduced versus topological boundaries);
see Section 1.2 for the formal ones.

Existence of generalized minimizers and Euler-Lagrange equations (Theorem
1.4 and Theorem 1.6)

There always exists a generalized minimizer .K;E/ for  ."/: that is, there
exists a set K � �, relatively closed in � and C-spanning I�.�/, and there exists
an open set E � � with � \ @E � K and jEj D ", such that

 ."/ D F.K;E/ D 2Hn.K n @E/CHn.� \ @E/:
Moreover, .K;E/ minimizes F with respect to all its diffeomorphic images: in
particular, � \ @E has constant mean curvature � 2 R and K n @E has zero mean
curvature.

Convergence to the Plateau’s problem (Theorem 1.9)
We always have  ."/ ! 2` when " ! 0C, and if .Kj ; Ej / are generalized

minimizers for  ."j / with "j ! 0C, then, up to extracting subsequences, we can
find a minimizer S for ` with

2

ˆ
Kj n@Ej

' C
ˆ
@Ej

' ! 2

ˆ
S

' 8' 2 C 0
c .�/

as j ! 1; in other words, generalized minimizers in  ."j / with "j ! 0C

converge as Radon measures to minimizers in the Harrison-Pugh formulation of
Plateau’s problem.

Example 1.1 (Volume and thickness in the noncollapsed case). Let � consists of
two points at distance r in the plane, or of an .n � 1/-sphere of radius r in RnC1.
For " small enough,  ."/ should admit a unique generalized minimizer .K;E/,
consisting of two almost flat spherical caps meeting orthogonally along the torus
I�.�/ (so that K D @E and collapsing does not occur); see Figure 1.3(a). In
general, we expect that when all the minimizers S in ` are smooth, then generalized
minimizers in  ."/ are not collapsed, and, for small ", K D @E is a two-sided
approximation of S , with HE D  0."/! 0 and

(1.6)  ."/ D 2`C C "2 C o."2/ as "! 0C

for a positive C . This insight is consistent with the idea (see [44]) that almost
minimal surfaces arise in studying soap films with a thickness. In particular, vol-
ume and thickness will be directly related in terms of the geometry of � . Sending
" ! 0C with � fixed or, equivalently, considering t� for large t at " fixed, will
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E

FIGURE 1.3. (a) If � consists of two points, then the minimizer is not
collapsed, and is bounded by two very flat circular arcs; (b) when � con-
sists of the vertexes of an equilateral triangle, the generalized minimizer
is indeed collapsed. The three segments defining K n @E are depicted in
bold, and E is a negatively curved curvilinear triangle nested around the
singular point of the unique minimizer of `.

make the thickness decrease until it reaches a threshold below which we do not ex-
pect soap films to be stable. A critical thickness can definitely be identified with the
characteristic length scale of the molecules of surfactant, below which the model
stops making sense. But depending on temperatures, actual soap films with even
larger thicknesses should burst out due to the increased probability of fluctuations
towards unstable configurations.

Example 1.2 (Volume and thickness in the collapsed case). At small volumes, and
in the presence of singularities in the minimizers of `, collapsing is energetically
convenient, and allows  ."/ to approximate 2` from below. If � � R2 consists
of the three vertexes of an equilateral triangle, for small � the unique minimizer
of ` consists of a Y -configuration. For small ", we expect generalized minimizers
.K;E/ of  ."/ to be collapsed; see Figure 1.3(b): there, E is a curvilinear triangle
made up of three circular arcs whose length is O.

p
"/, and whose (negative) curva-

ture is O.1=
p
"/. The thickness of an actual soap film in this configuration should

thus be considerably larger near the singularity than along the collapsed region,
and the volume and the thickness of the film are somehow independent geometric
quantities. This suggests, in the presence of singularities, the need for introducing
a second length scale in the model. A possibility is replacing the sharp interface
energy Hn.� \ @E/ with a diffused interface energy, like the Allen-Cahn energy

E�.u/ D �

ˆ
�

jruj2 C 1

�

ˆ
�

W.u/; � > 0;

for a double-well potential with fW D 0g D f�1; 1g. We expect fu > 0g to (ap-
proximately) coincide with the union of a curvilinear triangle of area " with three
stripes having the collapsed segments as their midsections, and of width �jlog �j;
cf. with [19].
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FIGURE 1.4. (a) and (b): A four-points configuration � with a choice
of C such that ` admits two minimizers, one with and one without sin-
gularities; (c) and (d): a six-points configuration � with a choice of C
such that ` admits many minimizers, possibly with a variable number of
singularities; here we have depicted two of them, including the one with
four singular points that is selected by the  ."/ problems.

Example 1.3 (Capillarity as a selection principle for Plateau’s problem). The fol-
lowing statement holds (as a heuristic principle): Generalized minimizers of  ."/
converge to those minimizers of Plateau’s problem (1.5) with larger singular set,
and when no singular minimizers are present, they select those whose second fun-
damental form has maximal L2-norm. Since the second part of this selection prin-
ciple is justified by standard second variation arguments, we illustrate the first part
only. In Figure 1.4, � is either given by four or by six points that are suitably spaced
so that ` has different minimizers. As " ! 0C,  ."/ selects those `-minimizers
with singularities over the ones without singularities; and when more minimizers
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with singularities are present, it selects the ones with the largest number of sin-
gularities. Indeed, the approximation of a smooth minimizer in ` will require an
energy cost larger than 2`. At the same time, each time a singularity is present,
minimizers of  ."/ can save length in the approximation, thus paying less than 2`
in energy, and the more the singularities, the bigger the gain. To check this claim,
pick N singularities, and denote by "i the volume placed near the i th singularity
and by ri the radius of the three circular arcs enclosing "i . Each wetted singularity
has area c1r2i , while the total relaxed energy of the approximating configuration is
F D 2`�c2

PN
iD1 ri . Minimizing under the constraint " D c1

PN
iD1 r

2
i , we must

take ri D
p
"=Nc1, thus finding

 ."/ D 2` � c2
s
"Nmax

c1

if Nmax is the maximal number of singularities available among minimizers of `.
This example suggests that (in every dimension) in the presence of singular mini-
mizers of `, one should have

(1.7)  0."/! �1 as "! 0C:

This is of course markedly different from what we expect to be the situation when `
has only smooth minimizers; see (1.6). We finally notice that a selection principle
for the capillarity model (without homotopic spanning conditions) via its Allen-
Cahn approximation has been recently obtained by Leoni and Murray; see [40,41].

1.2 Statements of the results
We now give a more technical introduction to our paper, with precise statements,

more bibliographical references, and comments on the proofs.

Plateau’s problem with homotopic spanning
We fix a compact set W � RnC1 (the “wire frame”) and denote the region

accessible by the soap film as

� D RnC1 nW:
The typical case we have in mind is W D I�.�/, as discussed in Section 1.1, but
this is not necessary. We fix a spanning class C, that is, a nonempty family of
smooth embeddings of S1 into � which is closed by homotopy in �. We assume
that W and C are such that the Plateau’s problem defined by C

(1.8) ` D inf
�
Hn.S/ W S 2 S

	
is such that ` <1.4 Here, for the sake of brevity, we have introduced

S D fS � � W S is relatively closed in � and S is C-spanning W g:
4 The condition ` <1 clearly implies that no 
 2 C is homotopic to a constant map.
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As proved in [13, 32], if ` < 1, then there exists a compact, Hn-rectifiable set S
such that Hn.S/ D `; see also [10,12,15,18,23,24,28,31,33–35] for related exis-
tence results. In addition, S minimizes Hn with respect to Lipschitz perturbations
of the identity localized in �, so that: (i) S is a classical minimal surface outside
of an Hn-negligible, relatively closed set in � by [1]; (ii) if n D 1, S consists of
finitely many segments, possibly meeting in three equal angles at singular Y -points
in �; (iii) if n D 2, S satisfies Plateau’s laws by [48]: namely, S is locally diffeo-
morphic either to a plane or to a cone Y D T 1 � R, or to a cone T 2, where T n

is the cone over the origin defined by the .n � 1/-dimensional faces of a regular
tetrahedron in RnC1. The validity of Plateau’s laws in this context makes (1.8)
more suitable when one is motivated by physical considerations: indeed, minimiz-
ers of the codimension one Plateau’s problem in the class of rectifiable currents
are necessarily smooth if n � 6. Although smoothness is desirable for geometric
applications, it creates an a priori limitation when studying actual soap films; see
also [10, 13, 32].

The capillarity problem and the relaxed energy
Next, we give a precise formulation of the capillarity problem  ."/ at volume

" > 0, which is defined as

(1.9)  ."/ D inffHn.� \ @E/ W E 2 E , jEj D ", � \ @E is C-spanning W g:
Here we have introduced the family of sets

(1.10) E D fE � � W E is an open set and @E is Hn-rectifiableg:
If E 2 E , then @E is Hn-finite and covered by countably many Lipschitz images
of Rn into RnC1. Thus, E is of finite perimeter in � by a classical result of
Federer, and its (distributional) perimeter P.EIU/ in an open set U � � is equal
to Hn.U \@�E/, where @�E is the reduced boundary ofE (notice that, in general,
P.EIU/ � Hn.U \ @E/). The relaxed energy F is defined by on every pair
.K;E/ in the family K given by

K D �
.K;E/ WE � � is open with � \ cl.@�E/ D � \ @E � K

K 2 S and K is Hn-rectifiable in �
	
:

By the requirement K 2 S, K is C-spanning W , while � \ @E, which is always
a subset of K, may not be C-spanning W ; we expect this when collapsing occurs;
see Figure 1.3.

Assumptions on�
We make two main geometric assumptions on W and C. First, in constructing a

system of volume-fixing variations for a given minimizing sequence of  ."/ (see
Step 2 of the proof of Theorem 1.4 in Section 3) we shall assume that

(1.11) 9 �0 > 0 such that, for every � < �0, RnC1 n I� .W / is connected:
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This is compatible with the idea that, in the physical case n D 2, W represents a
“solid wire”. Second, to verify the finiteness of  ."/ (see Step 1 in the proof of
Theorem 1.4), we require that

9�0 > 0 and a minimizer S in ` s.t. 
 n I�0.S/ ¤ ¿ for every 
 2 C:(1.12)

This is clearly a generic situation, which (thanks to the convex hull property of
stationary varifolds) is implied, for example, by the much more stringent condition
that 
 n Z ¤ ¿ for every 
 2 C where Z is the closed convex hull of W . Finally,
we shall also assume that “@� D @W is smooth”: by this we mean that locally
near each x 2 @�, � can be described as the epigraph of a smooth function of
n-variables.

Existence of minimizers and Euler-Lagrange equations
Our first main result is the existence of generalized minimizers of  ."/.

THEOREM 1.4 (Existence of generalized minimizers). Let ` <1, @W be smooth
and let (1.11) and (1.12) hold. If fEj gj is a minimizing sequence for  ."/, then
there exists a pair .K;E/ 2 K with jEj D " such that, up to possibly extracting
subsequences, and up to possible modifications of eachEj outside a large ball con-
taining W (with both operations resulting in defining a new minimizing sequence
for  ."/, still denoted by fEj gj ), we have that

Ej ! E in L1.�/

Hn x .� \ @Ej / �
* �Hn xK as Radon measures in �

(1.13)

as j !1, where � W K ! R is an upper-semicontinuous function with

(1.14) � D 2Hn-a.e. on K n @�E; � D 1 on � \ @�E:
Moreover,  ."/ D F.K;E/ and, for a suitable constant C ,

 ."/ � 2`C C"n=.nC1/:

Remark 1.5. Whenever .K;E/ 2 K is such that jEj D ", F.K;E/ D  ."/, and
there exists a minimizing sequence fEj gj for  ."/ that converges to .K;E/ as in
(1.13), we say that .K;E/ is a generalized minimizer of  ."/. We say that .K;E/
is collapsed if K n @E ¤ ¿. If .K;E/ is not collapsed, then E is a (standard)
minimizer of  ."/.

Next, we derive the Euler-Lagrange equations for a generalized minimizer and
apply Allard’s theorem.

THEOREM 1.6 (Euler-Lagrange equation for generalized minimizers). Let ` <1,
@W be smooth, and let (1.11) and (1.12) hold. If .K;E/ is a generalized minimizer
of  ."/ and f W �! � is a diffeomorphism such that jf .E/j D jEj, then

(1.15) F.K;E/ � F.f .K/; f .E//:
In particular,
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(i) there exists � 2 R such that

(1.16) �

ˆ
@�E

X � �E dHn D
ˆ
@�E

divK X dHn C 2

ˆ
Kn@�E

divK X dHn

for every X 2 C 1
c .RnC1IRnC1/ with X � �� D 0 on @�, where divK

denotes the tangential divergence along K;
(ii) there exists � � K, closed and with empty interior in K, such that K n�

is a smooth hypersurface, K n .� [ @E/ is a smooth embedded minimal
hypersurface, Hn.�n@E/ D 0,�\.@E n@�E/ � � has empty interior in
K, and�\ @�E is a smooth embedded hypersurface with constant scalar
(w.r.t. �E ) mean curvature �.

Remark 1.7. Although we do not pursue this point here, we mention that we would
expect .K;E/ to be a proper minimizer of F among pairs .K 0; E 0/ 2 K with
jE 0j D " (and not just when K 0 D f .K/ for a diffeomorphism f , as proved in
(1.15)). To show this we would need to approximate in energy a generic .K 0; E 0/

by competitors fFj gj for  ."/. The natural ansatz for this approximation would
be taking Fj D U�j .K

0 [E 0/ n I�j .K 0 \E 0/ for �j ! 0C, where U� denotes the
open �-neighborhood of a set. The convergence of this approximation is delicate,
and can be made to work by elaborating on the ideas contained in [2, 49] at least
for .K 0; E 0/ in certain subclasses of K.

Remark 1.8. Theorem 1.6 points at two interesting free boundary problems. The
first problem concerns the size and properties of @E n @�E, which is the transition
region between constant and zero mean curvature; similar free boundary problems
(on graphs rather than on unconstrained surfaces) have been considered, e.g., in
[6–8]. The second problem concerns the wetted region @� \ @E, which could
either be Hn-negligible or not; recall Figure 1.3: in the former case, @� \ @E
should be .n � 1/-dimensional, while in the latter case @� \ @E should be a set
of finite perimeter inside @�, and Young’s law �� � �E D 0 should hold at generic
boundary points of @� \ @E relative to @�; see, for example, [16, 17].

1.3 Convergence towards Plateau’s problem
The next theorem establishes the nature of Plateau’s problem ` as the singular

limit of the capillarity problems  ."/ as "! 0C.

THEOREM 1.9 (Plateau’s problem as a singular limit of capillarity problems). If
` <1, @W is smooth, and (1.11) and (1.12) hold, then  is lower-semicontinuous
on .0;1/ and

(1.17) lim
"!0C

 ."/ D 2`:

In addition, if f.Kh; Eh/gh is a sequence of generalized minimizers of  ."h/ for
"h ! 0C as h!1, then there exists a minimizer S in ` such that, up to extracting
subsequences and as h!1,

(1.18) Hn x .� \ @�Eh/C 2Hn x .Kh n @�Eh/
�
* 2Hn xS
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S

Br.x/

.a/ .b/

A

FIGURE 1.5. (a) The cup competitor of a set S in Br .x/ relative to
an Hn-maximal connected component A of @Br .x/ n S ; (b) the cone
competitor of S in Br .x/.

as Radon measures in �.

Remark 1.10. The behavior of  ."/� 2` as "! 0C is expected to depend heavily
on whether minimizers of ` have or do not have singularities, as noticed in (1.6) and
(1.7). In particular, we expect  0."/ ! 0C only in special situations: when this
happens, we have a vanishing mean curvature approximation of Plateau’s problem
that is related to Rellich’s conjecture; see, e.g., [5].

Remark 1.11. The Hausdorff convergence of Kh to S is not immediate (nor is the
convergence in the varifolds sense). Given (1.18), Hausdorff convergence would
follow from an area lower bound on Kh. In turn, this could be deduced (thanks to
area monotonicity) from a uniform Lp-bound, for some p > n, on the mean cur-
vature vectors EHVh of the integer varifolds Vh supported on Kh, with multiplicity
2 onKh n @�Eh, and multiplicity 1 on @�Eh. Notice however that, by (1.16), if �h
is the Lagrange multiplier of .Kh; Eh/, then EHVh D �h �Eh

1@�Eh
, so that, even

when n D 1, the only uniform Lp-bound that can hold is the one with p D 1; see
Example 1.2.

Proofs
We approach Theorem 1.4 with the method introduced in [13] to solve (1.8),

which is now briefly summarized. The idea in [13] is to consider a minimizing
sequence fSj gj for `, which (up to extracting subsequences) immediately leads
to a sequence of Radon measures �j D Hn xSj

�
* � as Radon measures in �,

with S D spt� C-spanning W . By comparing Sj with its cup competitors S 0j (see
Figure 1.5(a)), and then letting j ! 1, it is shown that �.Br.x// � �0.n/r

n for
every x 2 spt�; by comparing Sj with its cone competitors S 0j , and then letting
j ! 1, it is proved that r�n �.Br.x// is increasing in r . By Preiss’ theorem
[11,46] it follows that� D � Hn xS and that S is Hn-rectifiable. Finally, spherical
isoperimetry and a geometric argument imply that � � 1 Hn-a.e. on S , which in
turn suffices to conclude that S is a minimizer in ` since, by lower semicontinuity,
Hn.S/ � �.�/ � lim infj �j .�/ D `, and because S is in the competition class
of `.
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Adapting this approach to a minimizing sequence fEj gj for  ."/ requires the
introduction of new ideas. First, cup and cone competitors for fEj gj have to be
defined as boundaries, a feature that requires taking into consideration two kinds
of cup competitors, and that also leads to other difficulties. Second, local vari-
ations need to be compensated by volume-fixing variations, which must be uni-
form along the elements of the minimizing sequence. At this stage, we can prove
that �j D Hn x .� \ @Ej / �

* � D � Hn xK for an Hn-rectifiable setK that is C-
spanningW . The same argument as in [13] shows that � � 1, and the lower bound
� � 2Hn-a.e. on K n @�E requires a further elaboration which takes into account
that we are considering the convergence of boundaries. We cannot conclude that
F.K;E/ D  ."/ just by lower semicontinuity because clearly .K;E/ is not in the
competition class of  ."/. We thus improve lower semicontinuity by some non-
concentration estimates: at infinity, at the boundary, and by folding againstK. The
latter are the most interesting ones, and they require a careful comparison argument
based on the introduction of a third kind of competitors, called slab competitors.
The construction of the various competitors is discussed in Section 2, while the
proof of Theorem 1.4 is contained in Section 3. Slab competitors are also used in
the delicate proof of (1.15), whose starting point are some ideas originating in [14],
as further developed in [13] when addressing the formulation of Plateau’s problem
for David’s sliding minimizers; see Section 4. Finally, in Section 5 we prove The-
orem 1.9: the main difficulty, explained there in more detail, is that, at vanishing
volume, we have no nontrivial local limit sets to be used for constructing uniform
volume-fixing variations.

Structure of generalized minimizers
Theorem 1.4, Theorem 1.6, and Theorem 1.9 lay the foundations to study the

properties of generalized minimizers of  ."/. The most intriguing questions are
concerned with the relations between the properties of minimizers in Plateau’s
problem `, like the presence or the absence of singularities, and the properties
of minimizers in  ."/ at small ": collapsing versus noncollapsing and the sign of
�, limiting behavior of � as "! 0C, dimensionality of the wetted part of the wire,
etc. This is of course a very large set of problems, which will require further in-
vestigations. In the companion paper [37], we start this kind of study by proving
that collapsed minimizers have nonpositive Lagrange multipliers, deduce from this
property that they satisfy the convex hull property, and lay the ground for the forth-
coming paper [38], where we further investigate the regularity of the collapsed set
K n @�E.

2 Cone, cup, and slab competitors, nucleation, and collapsing
Section 2.1 contains the notation and terminology used in the paper. Section 2.2

collects some basic properties of C-spanning sets. Sections 2.3, 2.4 and 2.5 deal
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with cup, slab, and cone competitors. Section 2.6 contains the nucleation lemma
for volume-fixing variations, and Section 2.7 concerns density lower bounds for
collapsing sequences of sets of finite perimeter.

2.1 Notation and terminology
We denote by jAj and Hs.A/ the Lebesgue and the s-dimensional Hausdorff

measures ofA � RnC1, by I�.A/ andU�.A/ the closed and open �-neighborhoods
of A, and by Br.x/ the open ball of center at x and radius r . We work in the
framework of [3, 42, 47]. Given k 2 N, 1 � k � n, a Borel set M � RnC1

is countably Hk-rectifiable if it is covered by countably many Lipschitz images
of Rk; it is (locally) Hk-rectifiable if, in addition, M is (locally) Hk-finite. If
M is locally Hk-rectifiable, then for Hk-a.e. x 2 M there exists a unique k-plane
TxM such that, as r ! 0C, Hk x .M � x/=r �

* Hk xTxM as Radon measures in
RnC1; TxM is called the approximate tangent plane to M at x. Given a Lipschitz
map f W RnC1 ! RnC1, we denote by JMf its tangential Jacobian along M , so
that if f is smooth and f .x/ D xC t X.x/Co.t/ in C 1 as t ! 0C, then JMf D
1 C t divM X C o.t/ where divM X is the tangential divergence of X along M ;
moreover, M has distributional mean curvature vector EH 2 L1loc.U IHk xM/ in
U open, ifˆ

M

divM X dHk D
ˆ
M

X � EH dHk 8X 2 C1
c .U IRnC1/I

see [47, secs. 8 and 9]. A Borel set E � RnC1 has finite perimeter if there exists
an RnC1-valued Radon measure on RnC1, denoted by �E , such that h�E ; Xi D´
E divX whenever X 2 C 1

c .RnC1IRnC1/ and P.EIRnC1/ D j�E j.RnC1/ <

1. The set of points x 2 RnC1 such that
�E .Br.x//

j�E j.Br.x// ! �E .x/ 2 Sn as r ! 0C

is denoted by @�E and called the reduced boundary @�E of E. Then �E D
�EHn x @�E, @�E is Hn-rectifiable in RnC1, and Tx@�E D �E .x/

? for every
x 2 @�E. The set E.t/ of points of density t 2 �0; 1� of E is given by those
x 2 RnC1 with jE \Br.x/j=jBr.x/j ! t as r ! 0C, and (see, e.g., [42, theorem
16.2]),

(2.1) f@�E;E.0/; E.1/g is a partition of RnC1 modulo Hn:

Federer’s criterion [25, 4.5.11] states that if the essential boundary @eE D RnC1 n
.E.0/[E.1// is Hn-finite, thenE is of finite perimeter in RnC1. IfE is open, then
@eE � @E: hence, if E 2 E and Hn.@�/ <1, then E is of finite perimeter.

2.2 Some preliminary results
In the following, W is a compact set, C a spanning class for W , and � D

RnC1 nW .
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LEMMA 2.1. If fKj gj are relatively closed sets in � such that each Kj is C-
spanning W and Hn xKj

�
* � as Radon measures in �, then K D � \ spt� is

C-spanning W .

PROOF. See [13, step 2, proof of theorem 4]. �

LEMMA 2.2. Let K be relatively closed in � and let Br.x/ b �. Then K is
C-spanning W if and only if, whenever 
 2 C is such that 
 \ K n Br.x/ D ¿,
then there exists a connected component of 
 \ cl.Br.x// that is diffeomorphic
to an interval, and whose endpoints belong to distinct connected components of
cl.Br.x// nK, as well as to distinct components of @Br.x/ nK.

PROOF. This is [13, lemma 10]. �

LEMMA 2.3. If K is C-spanning W , Br.x/ b �, and f W RnC1 ! RnC1 is a
bi-Lipschitz map with ff ¤ idg b Br.x/ and f .Br.x// � Br.x/, then f .K/ is
C-spanning W .

PROOF. By f .K/ n Br.x/ D K n Br.x/, if f .K/ is not C-spanning W , then
there exists 
 2 C with 
 \ K n Br.x/ D ¿ such that 
 \ f .K/ D ¿. Hence,
the curve z
 WD f �1 � 
 is a continuous embedding of S1 in �, homotopic to 

in �, and such that z
 \ K D ¿. Since z
 and W are compact and K is closed, z

has positive distance from K [ W , and by smoothing out z
 we define a smooth
embedding y
 of S1 into �, disjoint from K, and homotopic to z
 (and therefore to

 ) in �, a contradiction. �

LEMMA 2.4. If @� is smooth, then there exists r0 > 0 with the following property.
If x 2 @�, � � �0, f W cl.�/ ! cl.�0/ D f .cl.�// is a homeomorphism with
f .@�/ D @�0, ff ¤ idg b Br0.x/, and f .Br0.x/ \ cl.�// D Br0.x/ \ cl.�0/,
and if K is C-spanning W , then K 0 D f .K \��/ is relatively closed in � and is
C-spanning W , where �� D f �1.�/.

PROOF.
Step 1. We show that, for K relatively closed in � and Br0.x/ as in the state-

ment, K is C-spanning W if and only if, whenever 
 2 C is such that 
 \ K n
Br0.x/ D ¿, then there exists a connected component of 
 \ cl.Br0.x//, diffeo-
morphic to an interval, and whose endpoints belong to distinct connected compo-
nents of � \ cl.Br0.x// nK.

We only prove the “only if” part. First of all, we notice that 
 cannot be con-
tained in � \ Br0.x/, because r0 can be chosen small enough to ensure that
� \ Br0.x/ is simply connected, and because ` < 1 implies that no element
of C is homotopic to a constant. Arguing as in [13, step two, proof of lemma
10], we can assume that 
 and @Br0.x/ intersect transversally, so that there exist
finitely many disjoint Ii D �ai ; bi � � S1 such that 
 \ cl.Br0.x// D

S
i 
.Ii /

with 
 \ @Br0.x/ D
S

if
.ai /; 
.bi /g and 
 \ Br0.x/ D
S

i 
..ai ; bi //. As-
sume by contradiction that for each i there exists a connected component Ai of
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� \ cl.Br0.x// n K such that 
.ai /; 
.bi / 2 Ai . If r0 is small enough, then
cl.�\Br0.x// is diffeomorphic to cl.B1.0/\fx1 > 0g/ through a diffeomorphism
mapping Br0.x/ \ @� into B1.0/ \ fx1 D 0g. Using this fact and the connected-
ness of each Ai , we define smooth embeddings �i W Ii ! Ai with �i .ai / D 
.ai /,
�i .bi / D 
.bi /, and �i homotopic in � \ Br0.x/ to the restriction of 
 to Ii .
Moreover, this can be done with �i .Ii / \ �j .Ij / D ¿. The new embedding x
 of
S1 obtained by replacing 
 with �i on Ii is thus homotopic to 
 in � and such that
x
 \K D ¿, a contradiction.

Step 2. SinceK \�� is relatively closed in��,K 0 D f .K \��/ is relatively
closed in� D f .��/. ShouldK 0 not be C-spanningW , given thatK 0 nBr0.x/ D
K n Br0.x/, we could find 
 2 C with 
 \K n Br0.x/ D ¿ and 
 \K 0 D ¿. By
Step 1, there would be a connected component � of 
 \ cl.Br0.x//, diffeomorphic
to an interval, and such that: (i) the endpoints p and q of � (which lie on @Br0.x/)
belong to distinct connected components of � \ cl.Br0.x// n K; and (ii) p and
q belong to the same connected component of � \ cl.Br0.x// n K 0. Since f is
a homeomorphism, f .p/ D p, and f .q/ D q, by (i) we would find that p and q
belong to distinct connected components of

f
�
� \ cl.Br0.x// nK

� D �0 \ cl.Br0.x// n f .K/;
while, by (ii), there would be an arc connecting p and q in � \ cl.Br0.x// n K 0,
where

� \ cl.Br0.x// nK 0 D � \ cl.Br0.x// n f .K \��/

D � \ cl.Br0.x// n f .K/ � �0 \ cl.Br0.x// n f .K/
and hence p and q would belong to a same component of�0\ cl.Br0.x// nf .K/.

�

2.3 Cup competitors
Given E 2 E , Br.x/ b � and a connected component A of @Br.x/ n @E, cup

competitors are used to compare Hn.Br.x/ \ @E/ with Hn.@Br.x/ n A/. The
construction is more involved than in the case of Plateau’s problem considered
in [13] as we need to construct cup competitors as boundaries, and we have to
argue differently depending on whether A \E D ¿ or A � E.

LEMMA 2.5 (Cup competitors). Let E 2 E be such that�\ @E is C-spanningW ,
let x 2 �, 0 < r < dist.x; @�/, and let A be a connected component of @Br.x/ n
@E. Assume that @E \ @Br.x/ is Hn�1-rectifiable. Then, for every � 2 .0; r=2/
there exists a set F D F� 2 E so that � \ @F is C-spanning W , and

@F n cl.Br.x// D @E n cl.Br.x//;(2.2)

lim
�!0C

Hn
�
.@Br.x/ \ @F /� .@Br.x/ n A/

� D 0;(2.3)
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E

.c/

A

E

A

Br.x/

.a/

.b/

Br.x/

A

E

S U�.S/

F Y

Y

F

F

Y

�

FIGURE 2.1. Cup competitors when: (a) A \ E D ¿ and S D ¿;
(b) A\E D ¿ and S ¤ ¿; (c) A � E. Picture (b) really pertains to the
case n � 2, in which the component A in the picture is not necessarily
disconnected by the presence of S . In the situation of picture (b) the
set F defined by (2.9) may fail to intersect a test curve 
 which was
intersecting with � \ @E only at points in S .

lim sup
�!0C

Hn.� \ @F / � Hn
�
� \ @E n Br.x/

�C 2Hn.@Br.x/ n A/:(2.4)

Moreover,
(i) If A \E D ¿, then

lim sup
�!0C

Hn.Br.x/ \ @F / � Hn
�
@Br.x/ n

�
A [ .E \ @Br/

��I(2.5)

(ii) If A � E, then

lim sup
�!0C

Hn.Br.x/ \ @F / � Hn
�
E \ @Br.x/ n A

�
:(2.6)

Remark 2.6. Before proceeding with the proof of the lemma, let us first provide
some additional details on the construction of the competitors F D F�, which, as
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anticipated, is different depending on whether A \ E D ¿ or A � E. In what
follows, given Y � @Br.x/, we set

N�.Y / D
�
y � t �Br .x/.y/ W y 2 Y; t 2 .0; �/

	
; 0 < � < r:

Case A \E D ¿. In this case, we define

(2.7) Y D @Br.x/ n
�

cl.E \ @Br.x// [ cl.A/
�
;

and then we further distinguish two scenarios, depending on whether the set

(2.8) S D @E \ cl.A/ n �cl.E \ @Br.x// [ cl.Y /�

is empty or not. When S D ¿ the cup competitor defined by E and A is given by

(2.9) F D �
E n cl.Br.x//

� [ N�.Y /I
see Figure 2.1-(a) and Step 1 of the proof. When S ¤ ¿ (see Figure 2.1-(b)), if
we define F as in (2.9), then � \ @F may fail to be C-spanning W ; we thus need
to modify (2.9), and to this end, denoting by dS the distance function from S and
by U�.S/ D @Br.x/ \ fdS .y/ < �g, we set

(2.10) F D �
E n cl.Br.x//

�[ N�.Z/; Z D Y [ �U�.S/ n cl.E \ @Br.x//
�I

see, again, Figure 2.1-(b). This situation, discussed in detail in Step 2 of the proof,
is made more delicate since we can prove that the sets defined in (2.10) are well-
behaved in the limit as � ! 0C only along a suitable sequence �k # 0C. For this
reason, we will actually define F� as in (2.10) only when � D �k , and then extend
the definition by setting F� D F�k for all � 2 .�kC1; �k/ (so that, for the sake of
homogenity, (2.4) can be stated as an �! 0C-limit in all three cases).

Case A \ E D ¿. Finally, when A � E the cup competitor defined by E and
A is given by

(2.11) F D �
E [ Br.x/

� n cl
�
N�.Y /

�
; Y D .E \ @Br.x// n cl.A/I

see Figure 2.1-(c). We treat this case in Step 3 of the proof.

PROOF.
Step 1. We assume that A \ E D ¿ and, after defining Y as in (2.7) and S as

in (2.8), we suppose first that

(2.12) S D ¿:

We then define F by (2.9). For the sake of brevity we set Br D Br.x/. We claim
that (2.2) holds, and that we have

Br \ @F D Br \ @N�.Y /;(2.13)
Y � @F \ @Br ;(2.14)

E \ @Br � @F \ @Br ;(2.15)
@Br n cl.A/ � @F \ @Br ;(2.16)
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@E \ @Br � @F \ @Br ;(2.17)
A, E \ @Br , Y are open and disjoint in @Br ,(2.18)

@F \ @Br � @Br n A;(2.19)
@Br n cl.E/ � A [ Y;(2.20)

cl.Y / n Y � @Br \ @E;(2.21)
cl.A/ n A � @Br \ @E;(2.22)

cl.E \ @Br/ n .E \ @Br/ D @Br \ @E:(2.23)

Indeed, (2.2) and (2.13) follow from F \ Br D N�.Y / \ Br and F n cl.Br/ D
E n cl.Br/. To prove (2.14): Y � cl.N�.Y // gives Y � cl.F /, and F \ @Br D ¿

implies Y \F D ¿. To prove (2.15): E\@Br � cl.Encl.Br//, so thatE\@Br �
cl.F /, while F \ @Br D ¿ gives .E \ @Br/ \ F D ¿. (2.18) is obvious, and
(2.16) follows from (2.14) and (2.15). (2.17) is then an immediate consequence of
(2.14), (2.15), (2.16), and the condition in (2.12). To prove (2.19): A is open in
@Br n @E and A \ E D ¿, thus A \ cl.E/ D ¿; moreover, A \ cl.Y / D ¿ by
(2.18), hence

@F \ @Br � cl.F / \ @Br � cl.E/ [ � cl.N�.Y // \ @Br0
� D cl.E/ [ cl.Y /;

and we deduce (2.19). To prove (2.20): if y 2 @Br n cl.E/, then y belongs to
one of the open connected components of @Br n @E, so it is either y 2 A, or
y 2 @Br n cl.A/ � Y . To prove (2.21): by (2.18) we have A \ cl.Y / D ¿, so that
by (2.20)

cl.Y / n Y � @Br n .A [ Y / � @Br \ cl.E/;

and we conclude by .E \ @Br/ \ cl.Y / D ¿ (again, thanks to (2.18)). Finally,
(2.22) and the inclusion “�” in (2.23) are obvious, while the other inclusion in
(2.23) follows from (2.12). Having proved the claim, we complete the proof. By
definition, F � � is open. We show that � \ @F is C-spanning W . Given 
 2 C,
if 
\@E ncl.Br/ ¤ ¿, then 
\@F ¤ ¿ by (2.2); if instead 
\@E ncl.Br/ D ¿,
then necessarily 
\@E\cl.Br/ ¤ ¿. Now, if 
\@E\@Br ¤ ¿ then 
\@F ¤ ¿

by (2.17); otherwise we actually have 
 \ @E nBr D ¿, and thus, by Lemma 2.2,

 intersects two distinct connect components of @Br n @E, and at least one of them
is contained in @F \ @Br : indeed, @F \ @Br contains @Br n cl.A/ by (2.16), where
cl.A/ is disjoint from all the connected components of @Br n @E that are different
from A.

Now, we prove (2.3), (2.4), and (2.5). First notice that (2.16), (2.19), (2.22), and
Hn.@Br \ @E/ D 0 imply that

@F \ @Br D @Br n A modulo Hn;(2.24)
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which in turn implies (2.3). Next, we claim that

(2.25)

Hn.� \ @F / � Hn
�
� \ @E n Br

�CHn.E \ @Br/
C �

2C C.n/�
�
Hn
�
@Br n

�
A [ .E \ @Br/

��
C C.n/�Hn�1

�
@E \ @Br

�
:

To prove the claim, first by Hn.@E \ @Br/ D 0, (2.2), and (2.19), we have

Hn.� \ @F / D Hn.� \ @E n Br/CHn.cl.Br/ \ @F /
� Hn.� \ @E n Br/CHn.@Br n A/CHn.Br \ @F /:(2.26)

If g.y; t/ D y � t�Br
.y/, then by (2.13)

Br \ @F D Br \ @N�.Y / D g.Y; �/ [ g
�
.cl.Y / n Y / � �0; ���;

so that (2.21), the Hn�1-rectifiability of @E \ @Br , and the area formula give us

Hn.Br \ @F / � .1C C.n/ �/Hn.Y /C C.n/ �Hn�1.@E \ @Br/:(2.27)

By Hn.@E \ @Br/ D 0, (2.22), and (2.23) we have

(2.28) Hn.Y / D Hn
�
@Br n

�
A [ .E \ @Br/

��
;

so that (2.26), (2.27), and (2.28) imply (2.25). Letting � ! 0C in (2.25) we find
(2.4), and doing the same in (2.27) and (2.28), we deduce (2.5).

Step 2. In the case A \ E D ¿, we now allow for the set S defined in (2.8) to
be nonempty. In this case, if F is defined as in (2.9) then the inclusion (2.17) is
not true in general, and � \ @F may fail to be C-spanning W . We then modify
the construction as detailed in Remark 2.6, defining F as in (2.10). We notice that
F � � is open, and that (2.2) holds true, since once again F ncl.Br/ D Encl.Br/.
Moreover, we have

Br \ @F D Br \ @N�.Z/;(2.29)
Z � @F \ @Br ;(2.30)

E \ @Br � @F \ @Br ;(2.31)
@Br n cl.A/ � @F \ @Br ;(2.32)
@E \ @Br � @F \ @Br ;(2.33)

A, E \ @Br , Y are open and disjoint in @Br ,(2.34)
@F \ @Br � �@Br n A� [ �@Br \ fdS � �g�;(2.35)

@Br n cl.E/ � A [ Y;(2.36)
cl.Y / n Y � @Br \ @E;(2.37)
cl.A/ n A � @Br \ @E;(2.38)

cl.E \ @Br/ n .E \ @Br/ � @Br \ @E:(2.39)

The proofs of (2.29), (2.30), (2.31), and (2.32) are identical to the proofs of the
corresponding statements in Step 1 with Z replacing Y ; (2.33) then follows from
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(2.30), (2.31), and (2.32), since S � U�.S/ n cl.E \ @Br/ � Z; (2.34) is obvious.
To prove (2.35): as in Step 1, A \ cl.E/ D ¿ and A \ cl.Y / D ¿ by (2.34), and

@F \ @Br � cl.F / \ @Br � cl.E/ [ �cl.N�.Z// \ @Br
�

� cl.E/ [ cl.Y / [ cl.U�.S//;

so that (2.35) follows from the fact that cl.U�.S// � @Br \ fdS � �g. Next, we
notice that (2.36), (2.37), (2.38), and (2.39) are shown analogously to Step 1 (with
the identity in (2.23) which becomes an inclusion in (2.39) due to S possibly being
not empty). With the above at our disposal, we proceed now to verify the claims
of the lemma. First, the proof that � \ @F is C-spanning W follows verbatim the
argument from Step 1. Next, (2.32), (2.35), (2.38), and Hn.@E \ @Br/ D 0 imply
that

(2.40) Hn..@F \ @Br/� .@Br n A// � Hn.@Br \ fdS � �g/:
In particular, since Hn�1.S/ <1, it holds that

(2.41) lim
�!0C

Hn..@F \ @Br/� .@Br n A// D 0;

that is, (2.3). Next, we proceed with estimating Hn.� \ @F /. We first notice that,
by (2.2) and Hn.@E \ @Br/ D 0,

Hn.� \ @F / D Hn.� \ @E n Br/CHn.cl.Br/ \ @F /
� Hn.� \ @E n Br/CHn.@F \ @Br/CHn.Br \ @F /:(2.42)

Setting, as in Step 1, g.y; t/ D y � t �Br
.y/, we then have from (2.29) that

(2.43) Br \ @F D Br \ @N�.Z/ D g.Z; �/ [ g..cl.Z/ nZ/ � �0; ��/:
By the area formula, we can easily estimate

(2.44)

Hn.g.Z; �//

� .1C C.n/�/Hn.Z/

� .1C C.n/�/
�
Hn.Y /CHn.@Br \ fdS < �g/

�
� .1C C.n/�/

�
Hn.@Br n .A [ .E \ @Br///CHn.@Br \ fdS < �g/

�
:

On the other hand, it holds that

(2.45) cl.Z/ nZ � �cl.Y / n .Y /� [ �cl. yU/ n yU �;
where yU D U�.S/ n cl.E \ @Br/. Since cl. yU/ � cl.U�.S// n .E \ @Br/, (2.39)
implies that

(2.46) cl. yU/ n yU � .@Br \ fdS D �g/ [ .@Br \ @E/;
and thus (2.37) yields

(2.47)
Hn.g..cl.Z/ nZ/ � �0; ��//

� C.n/��Hn�1.@Br \ @E/CHn�1.@Br \ fdS D �g/�:



22 D. KING, F. MAGGI, AND S. STUVARD

By applying the coarea formula to dS , it holds for every 0 < � < r=2 that

(2.48)
ˆ �

0

Hn�1.@Br \ fdS D �g/ d� D Hn.@Br \ fdS � �g/ <1;

and thus there exists a decreasing sequence f�kg1kD1 with limk!1 �k D 0 such
that @Br \ fdS D �kg is Hn�1-rectifiable and

(2.49) lim
k!1

�k Hn�1.@Br \ fdS D �kg/ D 0:

If Fk is the sequence of cup competitors defined by (2.10) in correspondence with
the choice � D �k , we then have from (2.43), (2.45), (2.37), and (2.46) that�\@Fk
is Hn-rectifiable, and from (2.42), (2.41), (2.44), (2.47), and (2.49) that

lim sup
k!1

Hn.Br \ @Fk/ � Hn
�
@Br n .A [ .E \ @Br//

�
;(2.50)

lim sup
k!1

Hn.� \ @Fk/ � Hn.� \ @E n Br/C 2Hn.@Br n A/:(2.51)

Defining F� D F�k for all � 2 .�kC1; �k/ then allows us to conclude both (2.4)
and (2.5).

Step 3. We now assume that A � E, and define F by (2.11), that is,

(2.52) F D �
E [ Br

� n cl
�
N�.Y /

�
; Y D .E \ @Br/ n cl.A/:

We claim that (2.2) holds, as well as

Y � @F \ @Br ;(2.53)
@Br nE � @F \ @Br ;(2.54)

@Br n cl.A/ � @F \ @Br ;(2.55)
Br \ @F � Br \ @N�.Y /;(2.56)

A; @Br n cl.E/; Y are open and disjoint in @Br ;(2.57)
@F \ @Br � @Br n A;(2.58)
cl.A/ n A � @Br \ @E;(2.59)
cl.Y / n Y � @Br \ @E:(2.60)

First, F n cl.Br/ D E n cl.Br/ implies (2.2). To prove (2.53): since E is open we
have E \ @Br � cl.E n cl.Br// D cl.F n cl.Br// (by (2.52)), thus Y � cl.F /;
we conclude as Y \ F D ¿. As F \ @Br � E \ @Br , to prove (2.54) we just
need to show that @Br nE � cl.F /: since cl.U / n cl.V / � cl.U n cl.V // for every
U; V � RnC1, by @Br \ cl.N�.Y // � cl.E/:

@Br n cl.E/ � cl.Br/ n cl.N�.Y // � cl
�
Br n cl.N�.Y /

� � cl.F /;
.@Br \ @E/ n cl.N�.Y // � cl.E/ n cl.N�.Y // � cl.E n cl.N�.Y /// � cl.F /;
@Br \ @E \ cl.N�.Y // � @E \ cl.Y / � @F;
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where the last inclusion follows by (2.53). Next, (2.55) follows by (2.53), (2.54),
and

@Br n cl.A/ D �.E \ @Br/ n cl.A/� [ �@Br n .E [ cl.A//� � Y [ .@Br nE/:
To prove (2.56): setting V c D RnC1 n V , by Br \ F D Br \ cl.N�.Y //

c we find
Br \ @F D Br \ @�cl.N�.Y //

c�, where, as a general fact on open set U � RnC1,
we have

@�cl.U /c� D cl.cl.U /c/ n cl.U /c D cl.U / \ cl.cl.U /c/; cl.cl.U /c/ � U c ;

and thus @�cl.U /c� � @U . Next, (2.57) is obvious, and implies A \ cl.Y / D ¿

where cl.Y / D cl.N�.Y // \ @Br , so that A \ @Br � E \ @Br n cl.N�.Y // D
F \ @Br , and (2.58) follows. To prove (2.59), just notice that A � E and A is a
connected component of @Br n@E. To prove (2.60): trivially, cl.Y /nY � cl.Y / �
@Br \ cl.E/, while by definition of Y and by cl.Y / \ A D ¿

E \ .cl.Y / n Y / D �
cl.Y / \ .E \ @Br/

� n Y D cl.Y / \ .E \ @Br/ \ cl.A/
D .E \ @Br/ \ cl.Y / \ @A � E \ .cl.A/ n A/ D ¿;

thanks to (2.59). We have completed the claim. Next, by (2.55), (2.58), (2.59),
and by Hn.@Br \ @E/ D 0, we deduce (2.24) and thus (2.3), while � \ @F is
C-spanning W thanks to (2.2), Lemma 2.2, (2.55), and (2.54). Finally,

Hn.� \ @F / � Hn
�
@E n Br

�CHn.@Br nE/
C�2C C.n/ �

�
Hn.E \ @Br n A/C C.n/ �Hn�1

�
@E \ @Br

�
:(2.61)

Indeed, by Hn.@E \ @Br/ D 0, (2.2), and (2.58),

Hn.� \ @F / � Hn.@E n Br/CHn.@F \ cl.Br//

� Hn.@E n Br/CHn.@Br n A/CHn.Br \ @F /
� Hn.@E n Br/CHn.@Br nE/
CHn..E \ @Br/ n A/CHn.Br \ @F /I

(2.62)

by (2.56), (2.60), the Hn�1-rectifiability of @E \ @Br , and the area formula

Hn.Br \ @F / � Hn.Br \ @N�.Y //

� .1C C.n/ �/Hn.Y /C C.n/ �Hn�1.@E \ @Br/;
(2.63)

while (2.59) and Hn.@Br \ @E/ D 0 give

Hn.Y / D Hn
�
.E \ @Br/ n cl.A

�
/ D Hn

�
.E \ @Br/ n A

�
:

We thus deduce (2.61). As �! 0C in (2.61) and in (2.63) we get (2.4) and (2.6).
�

In the following lemma we introduce the notion of exterior cup competitor. We
set

M�.Y / D
�
y C t �B.y/ W y 2 Y; t 2 .0; �/

	
; � > 0;

whenever B is an open ball and Y � @B .
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M�.U�.S//

BR.0/

A

FEW

S

M�.Y /

FIGURE 2.2. An exterior cup competitor. Notice that, for S to be
nonempty and nondisconnecting A, it must be n � 2.

LEMMA 2.7 (Exterior cup competitor). Let E 2 E be such that �\ @E is C-span-
ningW , letR > 0 be such thatW b BR.0/ and @E\@BR.0/ is Hn�1-rectifiable,
and let A be a connected component of @BR.0/ n @E such that A \ E D ¿. For
every � 2 .0; 1/ there exists a set F D F� 2 E such that �\ @F is C-spanning W
and

(2.64) lim sup
�!0C

Hn.� \ @F / � Hn
�
� \ BR.0/ \ @E/C 2Hn.@BR.0/ n A/:

PROOF. The proof consists of a minor modification of Step 1 and Step 2 in the
proof of Lemma 2.5. Precisely, the exterior cup competitor defined by E and A is
given by

(2.65) F D �
E \ BR.0/

� [ M�.Z/;

where

Z D Y [ �U�.S/ n cl.E \ @BR.0//
�
;

Y D @BR.0/ n
�
cl.E \ @BR.0// [ cl.A/

�
;

U�.S/ D @BR.0/ \ fdS < �g;
S D @E \ cl.A/ n � cl.E \ @BR.0// [ cl.Y /

�I
see Figure 2.2. If 
 2 C is such that 
 \ @E \ cl.BR.0// D ¿, then an adaptation
of Step 1 in the proof of Lemma 2.4 shows that there exists a connected component
of 
 n BR.0/ which is diffeomorphic to an interval, and whose endpoints belong
to distinct connected components of .RnC1 n BR.0// n @E. Using this fact, and
since @F \ BR.0/ D @E \ BR.0/, we just need to show that @BR.0/ \ @F con-
tains @BR.0/ \ @E as well as @BR.0/ n cl.A/ in order to show that � \ @F is
C-spanning W . This is done by repeating with minor variations the considerations
contained in step two of the proof of Lemma 2.5. The proof of (2.64) is obtained
in a similar way, and the details are omitted. �
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2.4 Slab competitors
Bi-Lipschitz deformations of cup competitors can be used to generate new com-

petitors thanks to Lemma 2.3. We will crucially use this remark to replace balls
with “slabs” (see Figures 3.2, 3.3, and 3.4) and obtain sharp area concentration es-
timates in step five of the proof of Theorem 1.4, as well as in the proof of Theorem
1.6; see, e.g., (4.7). Given � 2 .0; 1/, x 2 RnC1, r > 0, and � 2 Sn, we set

S �
�;r.x/ D

�
y 2 Br.x/ W j.y � x/ � �j < � r

	
;

and we claim the existence of a bi-Lipschitz map � W RnC1 ! RnC1 with

f� ¤ idg b B2 r.x/; �
�
B2 r.x/

� D B2 r.x/;

�
�
@S �

�;t .x/
� D @Bt .x/ 8t 2 .0; r/;

and such that Lip � and Lip ��1 depend only on n and � . Indeed, assuming
without loss of generality that x D 0, there is a convex, degree-1 positively homo-
geneous function ' W RnC1 ! �0;1/ such that S��;t .0/ D f' < tg for every t > 0.
Taking �r W �0;1/! �0;1/ smooth, decreasing, and such that � D 1 on �0; 4r=3�
and � D 0 on �5r=3;1/, we set

�.x/ D �r.jxj/ '.x/jxj x C .1 � �r.jxj// x:
Noticing that � is a smooth interpolation between linear maps on each half-line
ftx W t � 0g, and observing that the slopes of these linear maps change in a
Lipschitz way with respect to the angular variable, one sees that� has the required
properties.

LEMMA 2.8 (Slab competitors). Let E 2 E be such that�\@E is C-spanningW ,
and letB2r.x/ b �, � 2 Sn, � 2 .0; 1/with @S �

�;r.x/\@E Hn�1-rectifiable. LetA
be an open connected component of @S �

�;r.x/ n @E. Then for every � 2 .0; r=2/,
there exists F 2 E such that � \ @F is C-spanning W ,

F n cl.S �
�;r.x// D E n cl.S �

�;r.x//;(2.66)

lim
�!0C

Hn
�
.@F \ @S �

�;r.x//� .@S
�
�;r.x/ n A/

� D 0;(2.67)

and such that if A \E D ¿, then

(2.68) lim sup
�!0C

Hn.S��;r.x/ \ @F / � C.n; �/Hn
�
@S��;r.x/ n .A [E/

�I
while, if A � E, then

lim sup
�!0C

Hn
�
S �
�;r.x/ \ @F

� � C.n; �/Hn
�
E \ @S �

�;r.x/ n A
�
:(2.69)

PROOF. Let us set for brevity Sr D S �
�;r.x/ and Br D Br.x/. By Lemma

2.3, �.E/ 2 E and � \ @�.E/ is C-spanning W . Since � is an homeomorphism
between @Sr and @Br , �.A/ is an open connected component of @Br n @�.E/.
Depending on whether A \ E D ¿ or A � E, and thus, respectively, depending
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on whether �.A/ \ �.E/ D ¿ or �.A/ \ �.E/ ¤ ¿, we consider the cup
competitor G defined by �.E/ and �.A/, so that

G D �
�.E/ n cl.Br/

� [ N�.Z/; Z D Y [ �U�.S/ n cl.�.E/ \ @Br/
�
;

where

Y D @Br n
�

cl.�.E/ \ @Br/ [ cl.�.A//
�
; U�.S/ D @Br \ fdS < �g;

with
S D @�.E/ \ cl.�.A// n �cl.�.E/ \ @Br/ [ cl.Y /�;

if A \E D ¿, see (2.10), and

G D �
�.E/ [ Br

� n cl
�
N�.Y /

�
; Y D �

�.E/ \ @Br
� n cl.�.A//;

if A � E, see (2.11). Finally, we set F D ��1.G/. SinceG 2 E and�\@G is C-
spanningW , by Lemma 2.3 we find that F 2 E and that�\ @F is C-spanningW .
By construction G n cl.Br/ D �.E/ n cl.Br/, so that (2.66) follows by

F n cl.Sr/ D ��1
�
G n cl.Br/

� D ��1
�
�.E/ n cl.Br/

� D E n cl.Sr/ :

By (2.3), Hn..@Br \ @G/� .@Br n�.A/// ! 0 as � ! 0C, which gives (2.67)
by the area formula. Finally, (2.68) and (2.69) are deduced by the area formula,
(2.5) and (2.6). �

2.5 Cone competitors
As is customary in the analysis of area minimization problems, we want to com-

pare Hn.Br.x/ \ @E/ with Hn.Br.x/ \ @F /, where F is the cone spanned by
E \ @Br.x/ over x,

(2.70) F D �
E n cl.Br.x//

� [ �.1 � t /x C ty W y 2 E \ @Br.x/t 2 .0; 1�
	
:

Following the terminology of [13], given K 2 S, the cone competitor K 0 of K in
Br.x/ is similarly defined as

K 0 D .K n Br.x// [
�
.1 � t /x C ty W y 2 K \ @Br.x/t 2 �0; 1�

	
and is indeed C-spanning W (since K was). However, for some values of r , @F \
Br.x/ may be strictly smaller than the cone competitor K 0 defined by the choice
K D � \ @E in Br.x/, and thus it may fail to be C-spanning; see Figure 2.3. By
Sard’s lemma, ifE has smooth boundary in�, this issue can be avoided as, for a.e.
r , @E, and @Br intersect transversally, and thus @E \ @Br.x/ is the boundary of
E \ @Br.x/ relative to @Br.x/; but working with smooth boundary leads to other
difficulties when constructing cup competitors. We thus approximate F (as defined
in (2.70)) in energy by means of diffeomorphic images of E.

LEMMA 2.9 (Cone competitors). LetE 2 E be such that�\@E is C-spanningW ,
and let B D Br.x/ b � be such that E \ @Br.x/ is Hn-rectifiable, @E \ @Br.x/
is Hn�1-rectifiable, and r is a Lebesgue point of the maps t 7! Hn.E \ @Bt .x//
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E B F

x

FIGURE 2.3. In this picture, the cone competitor F defined by E \ @Br

as in (2.70) may fail to be C-spanning W . Notice that the dashed lines
are part of the cone competitor K 0 defined by K D � \ @E in Br .x/,
which is indeed strictly larger than � \ @F .

and t 7! Hn�1.@E \ @Bt .x//. Then for each � 2 .0; r=2/ there exists F 2 E such
that F�E � Br.x/, � \ @F is C-spanning W , and

lim sup
�!0C

Hn.� \ @F / � Hn.@E n Br.x//C r

n
Hn�1.@E \ @Br.x//;(2.71)

lim inf
�!0C

jF j � jE n Br.x/j C r

nC 1
Hn.E \ @Br.x//:(2.72)

PROOF. Let x D 0, r D 1, Br D Br.0/, and define a bi-Lipschitz map f� by
f�.0/ D 0 and f�.x/ D u�.jxj/yx if x ¤ 0, where yx D x=jxj and u� W R !
�0;1/ is given by

(2.73) u�.t/ WD

8�<
�:

maxf0; �tg for t � 1 � �,
�.1 � �/C t�.1��/

�
.1 � �.1 � �// for t 2 �1 � �; 1�,

t for t � 1.

so that u�.t/ � t for t � 0. Clearly, ff� ¤ idg � B1 and f�.B1/ � B1. The
open set F D f�.E/ is such that � \ @F D f�.� \ @E/, so that � \ @F is Hn-
rectifiable and, by Lemma 2.3, C-spanning W . Thanks to the area formula, (2.71)
will follow by showing

(2.74) lim sup
�!0C

ˆ
B1\@E

J @Ef� dHn � 1

n
Hn�1.@E \ @B1/:

Trivially, the integral over B1�� \ @E is bounded by C.n/�nHn.� \ @E/. The
integral over B1 n B1�� is treated as in [13, step two, theorem 7]; by the coarea
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formula, ˆ
.B1nB1��/\@E

J @Ef� dHn

D
ˆ 1

1��
dt

ˆ
@Bt\@E\fj�E �yxj<1g

J @Ef�p
1 � .�E � yx/2

dHn�1

C
ˆ
.B1nB1��/\@E\fj�E �yxjD1g

J @Ef� dHn

(2.75)

where �E .x/ 2 Tx.@E/ \ Sn at Hn-a.e. x 2 @E. By

(2.76) rf�.x/ D u�.jxj/
jxj Id C

�
u0�.jxj/ �

u�.jxj/
jxj

�
yx 
 yx;

if j�E .x/ � yxj D 1, then J @Ef� D .u�.jxj/=jxj/n � 1. Since

(2.77) lim
�!0C

Hn.@E \ .B1 n B1��// D 0;

the second term on the right-hand side of (2.75) converges to 0 as �! 0C. As for
the first term, by (2.76), we have, as explained later on,

(2.78) J @Ef�.x/ � 1C
q
1 � .�E .x/ � yx/2 u0�.jxj/

�
u�.jxj/
jxj

�n�1
for Hn-a.e. x 2 @E. The term corresponding to 1 in (2.78) converges to 0 as
�! 0C by (2.77). At the same time,

lim sup
�!0C

����
ˆ 1

1��

�
Hn�1.@E \ @Bt / �Hn�1.@E \ @B1/

�
u0�

�
u�

t

�n�1
dt

���� D 0

since t D 1 is a Lebesgue point of t 7! Hn�1.@Bt \ @E/, and since u0�.t/ � 1=�

and .u�.t/=t/ � 1 for t � 0. Finally,
ˆ 1

1��
u0�

�
u�

t

�n�1
dt � 1

.1 � �/n�1
u�.1/

n � u�.1 � �/n
n

D 1

.1 � �/n�1
1 � �n.1 � �/n

n
! 1

n

as � ! 0C, thus completing the proof of (2.71). The proof of (2.72) follows an
analogous argument. The goal is to show that

(2.79) lim inf
�!0C

ˆ
E\B1

Jf� dx � 1

nC 1
Hn.E \ @B1/;

and by the coarea formula and (2.76) it is immediate to see thatˆ
E\B1

Jf� dx �
ˆ 1

1��
u0�.t/

�
u�.t/

t

�n
Hn.E \ @Bt /dt:
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The estimate in (2.79) then readily follows using that t D 1 is a Lebesgue point for
the map t 7! Hn.E \ @Bt /, together withˆ 1

1��
u0�.t/

�
u�.t/

t

�n
dt � 1 � �nC1.1 � �/nC1

nC 1
! 1

nC 1
as �! 0C:

We finally explain how to deduce (2.78) from (2.76). For x 2 @�E, let f�igniD1
be an orthonormal basis of Tx@�E such that f�ign�1iD1 � x?. In this way, we can
take

�n D yx � .yx � �E .x//�E .x/p
1 � .yx � �E .x//2

and therefore compute by (2.76) that

r@Ef�.x/��i � D u�.jxj/
jxj �i 8i D 1; : : : ; n � 1;

r@Ef�.x/��n� D u0�.jxj/
q
1 � .yx � �E /2 yx � u�.jxj/

jxj .yx � �E / �E � .yx � �E /yxp
1 � .yx � �E /2

;

where we have set for brevity �E in place of �E .x/. Therefore

J @Ef .x/2 D
����
n̂

iD1

r@Ef�.x/��i �

����
2

D
�
u�.jxj/
jxj

�2n
.yx � �E /2

�����1 ^ � � � ^ �n�1 ^
�
�E � .yx � �E /yxp
1 � .yx � �E /2

�����
2

C
�
u�.jxj/
jxj

�2.n�1/
u0�.jxj/2

�
1 � .yx � �E /2

����1 ^ � � � ^ �n�1 ^ yx��2
� 1C

�
u�.jxj/
jxj

�2.n�1/
u0�.jxj/2

�
1 � .yx � �E /2

�
;

from which (2.78) follows thanks to
p
1C a � 1Cp

a for a � 0. �

2.6 Nucleation lemma
The following nucleation lemma can be found, with slightly different state-

ments, in [1, VI(13)] or in [42, lemma 29.10].

LEMMA 2.10. Let �.n/ be the constant of Besicovitch’s covering theorem in RnC1.
If T is closed, A D RnC1 n T , 0 < jEj <1, P.EIA/ <1, � > 0, and

� D min
� jE n I� .T /j
�P.EIA/ ;

�.n/

nC 1

�
> 0;

then there exists x 2 E.1/ n I� .T / such that

jE \ B� .x/j �
�

�

2�.n/

�nC1
�nC1:
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PROOF. By contradiction one assumes that

(2.80) jE \ B� .x/j <
�

�

2�.n/

�nC1
�nC1 8x 2 E.1/ n I� .T /:

Setting � D �.n/=� so that � � nC 1, we claim that (2.80) implies the existence,
for each x 2 E.1/ n I� .T /, of �x 2 .0; �/ such that

(2.81) P.EIB�x .x// >
�

�
jE \ B�x .x/j:

In turn, (2.81) contradicts (2.80): indeed, by applying Besicovitch’s theorem to
fcl.B�x .x// W x 2 E.1/ n I� .T /g we find an at most countable subset I of E.1/ n
I� .T / such that fcl.B�x .x//gx2I is disjoint and

jE n I� .T /j � �.n/
X
x2I

jE \ B�x .x/j <
�.n/�

�

X
x2I

P.EIB�x .x//

� �.n/�P.EIA/
�

D ��P.EIA/ � jE n I� .T /j;

a contradiction. We show that (2.80) implies (2.81): indeed, if (2.80) holds but
(2.81) fails, then there exists x 2 E.1/ n I� .T / such that, setting m.r/ D jE \
Br.x/j for r > 0,

(2.82) m > 0 on .0;1/; m.�/ <

�
�

2�

�nC1
;

and .�=�/m.r/ � P.EIBr.x// for every r 2 .0; �/. Adding up Hn.@Br.x/\E/,
which equals m0.r/ for a.e. r > 0 by the coarea formula, we obtain

(2.83) m0.r/C �

�
m.r/ � P.E \ Br.x// � m.r/n=.nC1/ for a.e. r 2 .0; �/:

where in the last inequality we have used that P.F / � jF jn=.nC1/ whenever 0 <
jF j <1; see, e.g., [42, prop. 12.35]. Since m > 0 on .0;1/ we find(

�
�
m.r/ � .1=2/m.r/n=.nC1/

8r 2 .0; �/ iff

(
m.r/ � .�=2�/nC1
8r 2 .0; �/

if m.�/ �
�
�

2�

�nC1
;

where the last condition holds by (2.82). Thus (2.83) gives

m0.r/ � .1=2/m.r/n=.nC1/ for a.e. r 2 .0; �/I
thus m.�/ � .�=2.nC 1//nC1 � .�=2�/nC1 as � � nC 1, a contradiction. �
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2.7 Isoperimetry, lower bounds, and collapsing
Given an L1-converging sequence of sets of finite perimeter fEj gj , the bound-

ary of the L1-limit set E will be (in general) strictly included inK D spt�, where
� is the weak-star limit of the Radon measures defined by the boundaries of the
Ej ’s. In the next lemma we show that, under some mild bounds on � and Ej , if �
is absolutely continuous with respect to Hn xK, then the Radon-Nikodým density
� of � is everywhere larger than 1, and is actually larger than 2 at a.e. point of
K n @�E (that is, a cancellation can happen only when boundaries are collapsing).

LEMMA 2.11 (Collapsing lemma). Let K be a relatively compact and Hn-recti-
fiable set in �, let E � � be a set of finite perimeter with � \ @�E � K, and let
fEj gj � E such that Ej ! E in L1loc.�/, and �j

�
* � as Radon measures in �,

where �j D Hn x .�\@Ej / and � D � Hn xK for a Borel function � . If�0 � �

and r� > 0 are such that for every x 2 K \�0 and a.e. r < r� with Br.x/ b �0

we have

�.Br.x// � c.n/rn;(2.84)

lim inf
j!1

Hn.Br.x/ \ @Ej / � C.n/ lim inf
j!1

Hn
�
@Br.x/ n A0r;j

�
;(2.85)

where A0r;j denotes an Hn-maximal connected component of @Br.x/ n @Ej , then
�.x/ � 1 for Hn-a.e. x 2 K \�0, and �.x/ � 2 for Hn-a.e. x 2 .K n @�E/\�0.

The bound � � 1 follows by arguing exactly as in [13, proof of theorem 2, step
three], and has nothing to do with the fact that the measures �j are defined by
boundaries; the latter information is in turn crucial in obtaining the bound � � 2

and requires a new argument. For the sake of clarity, we also give the details of the
� � 1 bound, which in turn is based on spherical isoperimetry.

LEMMA 2.12 (Spherical isoperimetry). Let � � RnC1 denote a spherical cap5 in
the n-dimensional unit sphere Sn, possibly with � D Sn. If K is a compact set
in RnC1 and fAhg1

hD0
is the family of the open connected components of � n K,

ordered so to have Hn.Ah/ � Hn.AhC1/, then

(2.86) Hn.� n A0/ � C.n/Hn�1.� \K/n=.n�1/:
Moreover, if � D Sn, �n D Hn.Sn/, and Hn�1.Sn \K/ <1, then each Ah is a
set of finite perimeter in Sn and for every � > 0 there exists � > 0 such that

(2.87) minfHn.A0/;Hn.A1/g D Hn.A1/ � �n

2
� �

implies

(2.88) minfHn�1.@�A0/;Hn�1.@�A1/g � �n�1 � �:
Here @�Ah denotes the reduced boundary of Ah in Sn.

5 That is, � D Sn \H where H is an open half-space of RnC1.
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PROOF. This is [13, lemma 9]. However, (2.88) is stated in a weaker form
in [13, lemma 9], so we give the details. Arguing by contradiction, we can find
� > 0 and fKj gj such that, for � D 0; 1, Hn�1.@�A�j / � �n�1 � � for every j ,
but Hn.A�j /! �n=2 as j !1. Since �n D Hn.Sn/ and A0j \A1j D ¿, we find
that, for � D 0; 1, A�j ! A� in L1.Sn/ where A0 \ A1 D ¿ and A0 [ A1 is Hn-
equivalent to Sn. Therefore Hn�1.@�A0/ D Hn�1.@�A1/ � �n�1 � � , where we
have used lower semicontinuity of the perimeter functional. Since infHn�1.@�A/

with Hn.A/ D �n=2 is equal to �n�1, we have reached a contradiction. �

PROOF OF LEMMA 2.11.

Step 1. We fix x 2 K\�0 such that Hn x .K�x/=r �
* Hn xTxK as r ! 0C.

Setting �.x/? D TxK for �.x/ 2 Sn, by the lower density estimate (2.84) we eas-
ily find that for every � > 0 there exists r0 D r0.�; x/ 2 .0;minfr�; dist.x; @�0/g/
such that j.y � x/ � �.x/j < �r for every y 2 K \ Br.x/ and every r < r0. In
particular,

lim
j!1

Hn.@Ej \ fy 2 Br.x/W j.y � x/ � �.x/j > �rg/ D 0 for every r � r0;
and thus by the coarea formula (see [13, eq. (2.13)])

(2.89) lim
j!1

Hn�1.��r;� \ @Ej / D 0 for a.e. r � r0
where we have set

�Cr;� D fy 2 @Br.x/ W .y � x/ � �.x/ > �rg;
��r;� D fy 2 @Br.x/ W .y � x/ � �.x/ < ��rg:

Let ACr;j be an Hn-maximal connected component of �Cr;� n @Ej , and define simi-
larly A�r;j . Equations (2.89) and (2.86) imply that, for a.e. r < r0,

(2.90) lim
j!1

Hn
�
A�r;j

� D Hn
�
��r;�

�
:

Now let fAhr;j g1hD0 denote the open connected components of @Br.x/ n @Ej , or-
dered by decreasing Hn-measure. We claim that

(2.91) if (2.90) holds, then either ACr;j or A�r;j is not contained in A0r;j :

Indeed, if for some r we have ACr;j [ A�r;j � A0r;j , then by (2.85) and (2.90) we
find

�.Br.x// � lim inf
j!1

�j .Br.x//

� C.n/ lim inf
j!1

Hn
�
@Br n A0r;j

� � C.n/rn�;(2.92)

a contradiction to (2.84) if � � �0.n/ for a suitable �0.n/. By (2.91) and (2.90),

(2.93) min
�
Hn
�
A0r;j

�
;Hn

�
A1r;j

�	 � ��n
2
� C.n/�

�
rn for a.e. r < r0:
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By Lemma 2.12 and (2.93), given � > 0, if � is small enough in terms of n and � ,
then

(2.94) min
�
Hn�1

�
@�A0r;j

�
;Hn�1

�
@�A1r;j

�	 � .�n�1��/rn�1 for a.e. r < r0

where @�A�r;j is the reduced boundary of A�r;j as a subset of @Br.x/. Since A0r;j is
a connected component of @Br.x/ n @Ej , we have

(2.95) .�n�1 � �/rn�1 � Hn�1
�
@�A0r;j

� � Hn�1.@Br.x/ \ @Ej /:
Now if fj .r/ D �j .Br.x// and f .r/ D �.Br.x//, then by the coarea formula
we easily find that fj ! f a.e. with lim infj!1 f 0j .r/ � f 0.r/ � Df , whereDf
denotes the distributional derivative of f . Hence, letting j ! 1 and � ! 0C in
(2.95), we obtain Df � �n�1 r

n�1 dr on .0; r0/. As !n D n �n�1, we conclude
that �.x/ � 1. We stress once more that so far we have just followed the argument
of [13, proof of theorem 2, step three].

Step 2. We use the boundary structure to show that � � 2Hn-a.e. on�0\ .K n
@�E/. Since fE.0/; E.1/; @�Eg is an Hn-a.e. partition of RnC1, we can assume
that x 2 .E.0/ [ E.1// \ K \ �0. We consider first the case x 2 E.0/. Given
� > 0, up to decreasing r0,

(2.96) � rnC10 � lim
j!1

jEj \ Br0.x/j D lim
j!1

ˆ r0

0

Hn.Ej \ @Br.x//dr:

Let us consider the measurable set Ij � .0; r0/,

Ij D
�
r 2 .0; r0/ W A0r;j [ A1r;j � @Br.x/ n cl.Ej /

	
:

We claim that

(2.97) Hn�1
�
@�A0r;j \ @�A1r;j

� D 0 8r 2 Ij :
Indeed, if r 2 Ij , then A0r;j , A1r;j , and @Br.x/ \ Ej are disjoint sets of finite
perimeter in @Br.x/, and in particular

�A0
r;j

D ��A1
r;j
; Hn�1-a.e. on @�A0r;j \ @�A1r;j ;

�A0
r;j

D ��@Br .x/\Ej
; Hn�1-a.e. on @�A0r;j \ @��@Br.x/ \Ej �;

�A1
r;j

D ��@Br .x/\Ej
; Hn�1-a.e. on @�A1r;j \ @��@Br.x/ \Ej �:

At the same time, since fAhr;j g1hD0 are connected components of @Br.x/ n @Ej ,

@�Ahr;j � @��@Br.x/ \Ej � modulo Hn

and thus Hn�1-a.e. on @�A0r;j \ @�A1r;j , we have

�@Br .x/\Ej
D ��A0

r;j
D �A1

r;j
D ��@Br .x/\Ej

;
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a contradiction. By (2.94) and (2.97), given � > 0 and provided � is small enough
in terms of n and � , for a.e. r 2 Ij we find

f 0j .r/ � Hn�1.@Br.x/ \ @Ej / � Hn�1
�
@�A0r;j [ @�A1r;j

�
D Hn�1

�
@�A0r;j

�CHn�1
�
@�A1r;j

� � 2.�n�1 � �/rn�1:
Hence,

fj .r0/ � 2.�n�1 � �/
rn0
n
� C.n/

ˆ
.0;r0/nIj

rn�1 dr

� 2.�n�1 � �/
rn0
n
� C.n/r1=n0

�ˆ
.0;r0/nIj

rn dr

�.n�1/=n
:(2.98)

We notice that for a.e. r 2 .0; r0/ n Ij , (2.93) gives

Hn.Ej \ @Br.x// � min
�
Hn
�
A0r;j

�
;Hn

�
A1r;j

�	 � ��n
2
� C.n/�

�
rn

so that (2.96) implies

(2.99) �rnC10 � c.n/ lim sup
j!1

ˆ
.0;r0/nIj

rn dr:

If we combine (2.98) and (2.99) and let j !1, then we find

f .r0/ D lim
j!1

fj .r0/ � 2.�n�1 � �/
rn0
n
� C.n/r1=n0

�
�rnC10

�.n�1/=n
:

Dividing by rn0 and letting r0 ! 0C, � ! 0C, and � ! 0C, we find �.x/ � 2

whenever x 2 E.0/\K\�0. The case when x 2 E.1/ is analogous and the details
are omitted. �

3 Existence of Generalized Minimizers: Proof of Theorem 1.4
Given the length of the proof, we provide a short overview. In Step 1, we check

that  ."/ <1 by using the open neighborhoods of a minimizer S of ` as compar-
ison sets for  ."/. We remark that this is the only point of the proof where (1.12)
is used. It is important here to allow for sufficiently nonsmooth sets in the com-
petition class E : indeed, minimizers of ` are known to be smooth only outside of
a close Hn-negligible set in arbitrary dimension. Once  ."/ < 1 is established,
we consider a minimizing sequence fEj gj for  ."/, so that Ej 2 E , jEj j D ",
� \ @Ej is C-spanning W , and

(3.1)
Hn.� \ @Ej / � Hn.� \ @F /C 1

j

8F 2 E jF j D "� \ @F is C-spanning W :

We want to apply (3.1) to the comparison sets constructed in Section 2, but, in
general, those local variations do not preserve the volume constraint. A family
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of volume-fixing variations acting uniformly on fEj gj is constructed through the
nucleation lemma (Lemma 2.10) following some ideas introduced by Almgren in
the existence theory of minimizing clusters [1]; see Steps 2 and 3. In Step 4 we
exploit cup and cone competitors to show that, up to extracting subsequences,
Hn x .� \ @Ej / �

* � D �Hn xK as Radon measures in �, and Ej ! E in
L1loc.�/ for a pair .K;E/ 2 K and for an upper semicontinuous function � � 1

on K. An application of Lemma 2.11 shows that � � 2 Hn-a.e. on K n @�E, thus
proving  ."/ � F.K;E/. In order to show that  ."/ D F.K;E/, and thus that
.K;E/ is a generalized minimizer of  ."/, we need to exclude that � \ @Ej con-
centrates area by folding against K at infinity or against the wire frame. By using
slab competitors we prove that�\@Ej , in its convergence towardsK, cannot fold
at all near points in @�E, and can fold at most twice near points inK\.E.0/[E.1//

(Step 5). In Step 6, concentration of area at the boundary is ruled out by a defor-
mation argument based on Lemma 2.4. Finally, in Step 7, we exclude area (and
volume) concentration at infinity by using exterior cup competitors to construct a
uniformly bounded minimizing sequence.

PROOF OF THEOREM 1.4.
Step 1. We show that

(3.2)  ."/ � 2`C C.n/"n=.nC1/ 8" > 0:
Let S be a minimizer of `, and let �0 > 0 be such that (1.12) holds. If � 2 .0; �0/,
then the open �-neighborhood U�.S/ of S is such that � \ @U�.S/ is C-spanning
W : otherwise we could find � 2 .0; �0/ and 
 2 C such that 
 \ @U�.S/ D ¿.
Since 
 is connected, we would either have 
 � fx W dist.x; S/ > �g, against the
fact that S is C-spanning, or we would have 
 � U�.S/ against (1.12). Hence
� \ @U�.S/ is C-spanning W .

As proved in [13], S is Hn-rectifiable. Moreover, as shown in Theorem B.1 in
the appendix, we have

(3.3) Hn.S \ Br.x// � c.n/rn 8x 2 cl.S/r < �0
where �0 depends on W , so that Hn.S/ < 1 implies that cl.S/ is compact. This
density estimate has two more consequences: first, combined with [42, cor. 6.5], it
implies Hn.cl.S/ n S/ D 0; second, it allows us to exploit [3, theorem 2.104] to
find

(3.4) jU�.S/j D 2�Hn.cl.S//C o.�/ D 2�Hn.S/C o.�/ as �! 0C:

By the coarea formula for Lipschitz maps applied to the distance function from S

(see [42, theorem 18.1, remark 18.2]), we have

jU�.S/ \ Aj D
ˆ �

0

P.Ut .S/IA/dt D
ˆ �

0

Hn.A \ @Ut .S//dt
8A � RnC1 open
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so that U�.S/ is a set of finite perimeter in RnC1 and Hn.@U�.S/n@�U�.S// D 0

for a.e. � > 0. Summarizing, we have proved that, for a.e. � 2 .0; �0/,
F� D � \ U�.S/ 2 E ; � \ cl.@�F�/ D � \ @F� is C-spanning W ;

and, by (3.4),

f .�/ D jF�j D
ˆ �

0

P.Ft I�/dt D
ˆ �

0

P.Ut .S/I�/dt � 2�Hn.S/C o.�/:

Notice that f .s/ is absolutely continuous with f .�/ D ´ �0 f 0.t/dt and f 0.t/ D
P.Ft I�/ for a.e. t 2 .0; �/. Hence, for every � > 0 there exist t1.�/; t2.�/ 2 .0; �/
such that f 0.t1.�// � f .�/=� � f 0.t2.�//. Setting Fj D Ft1.�j / for a suitable
�j ! 0C, we get

lim sup
j!1

P.Fj I�/ � 2`

where jFj j ! 0C. Finally, given " > 0, we pick j such that jFj j < ", and
construct a competitor for  ."/ by adding to Fj a disjoint ball of volume " � jFj j.
In this way,  ."/ � P.Fj I�/ C C.n/

�
" � jFj j

�n=.nC1/, and (3.2) is found by
letting j !1.

Since  ."/ < 1, we can now consider a minimizing sequence fEj g1jD1 for
 ."/. Given that P.Ej / � Hn.@�/CHn.� \ @Ej / � Hn.@�/C  ."/C 1 for
j large, and that jEj j D " for every j , there exist a set of finite perimeter E � �

and a Radon measure � in � such that, up to extracting subsequences,

(3.5)
Ej ! E in L1loc.�/;

�j D Hn x .� \ @Ej / �
* � as Radon measures on �;

as j ! 1; see, e.g., [42, sec. 12.4]. We consider the set, relatively closed in �,
defined by

K D � \ spt� D fx 2 � W �.Br.x// > 0 8r > 0g
and claim that

K is C-spanning W ; � \ @�E � K:(3.6)

Indeed, the first claim in (3.6) is obtained by applying Lemma 2.1 to Kj D � \
@Ej ; and if x 2 � \ @�E and Br.x/ � �, then

0 < P.EIBr.x// � lim inf
j!1

P.Ej IBr.x// � lim inf
j!1

�j .Br.x// � �
�
cl.Br.x//

�
so that x 2 K. Notice that, at this stage, we still do not know if .K;E/ 2 K: we
still need to show that K is Hn-rectifiable and, possibly up to Lebesgue negligible
modifications, that E is open with � \ cl.@�E/ D � \ @E. Moreover, we just
have jEj � " (possible volume loss at infinity), and we know nothing about the
structure of �.
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Step 2. We show the existence of � > 0 such that for every Ej there exist
x1j ; x

2
j 2 RnC1 such that fcl.B2� .x1j //; cl.B2� .x2j //;W g is disjoint and

(3.7)
��Ej \ B��x1j ��� D �1;

��Ej \ B��x2j ��� D �2;

for some �1; �2 2 .0; jB� j=2� depending on n, � , ", and ` only. With �0 as in
(1.11), for M 2 N n f0g to be chosen later on, and by compactness of W , we can
pick � > 0 so that

(3.8) .M C 1/� < �0; jBM � j < "

4
; jI.MC1/� .W / nW j < "

2
:

The value � in Lemma 2.10 corresponding to Ej and T D IM � .W / is given by

min
� jEj n I� .T /j
� P.Ej IRnC1 n T /;

�.n/

nC 1

�
� min

�
"=2

� . ."/C 1/
;
�.n/

nC 1

�
> 0

since jEj n I� .T /j � "=2 by (3.8), and since P.Ej I�/ �  ."/C 1. Therefore, by
setting

�1 D min
�

"=2

� . ."/C 1/
;
�.n/

nC 1

�
;

an application of Lemma 2.10 yields yj 2 RnC1 n I.MC1/� .W / such that

jEj \ B� .yj /j � min
��

�1

2�.n/

�nC1
�nC1

jB� j
2

�
D �1

so that �1 2 .0; jB� j=2� depends on n, `, ", and � only (observe that this is a conse-
quence of (3.2)). The continuous map x 7! jEj \B� .x/j takes a value larger than
�1 at yj 2 RnC1 n I.MC1/� .W /; at the same time, by (1.11), RnC1 n I.MC1/� .W /

is open and connected; therefore it is pathwise connected [20, cor. 5.6], and jEj \
B� .x/j ! 0 as jxj ! 1 in RnC1 n I.MC1/� .W /. Thus we can find x1j 2 RnC1 n
I.MC1/� .W / such that the first identity in (3.7) holds and fcl.B.MC1/� .x

1
j //;W g

is disjoint. Setting B D cl.B.M�2/� .x
1
j //, the value � in Lemma 2.10 correspond-

ing to Ej and T D I� .W / [ B is given by

min
� jEj n I� .T /j
� P.Ej IRnC1 n T /;

�.n/

nC 1

�
� min

�
"=4

� . ."/C 1/
;
�.n/

nC 1

�
> 0

so that, after setting

�2 D min
�

"=4

� . ."/C 1/
;
�.n/

nC 1

�
;

we can find j́ 2 RnC1 n .I2� .W / [ cl.B.M�1/� .x
1
j /// such that

jEj \ B� . j́ /j � min
��

�2

2�.n/

�nC1
�nC1

jB� j
2

�
D �2

with �2 2 .0; jB� j=2� depending on n, `, ", and � only. Since I2� .W / and
cl.B.M�1/� .x

1
j // are disjoint and since RnC1 n I2� .W / is pathwise connected by



38 D. KING, F. MAGGI, AND S. STUVARD

(1.11), we easily check that RnC1 n .I2� .W /[ cl.B.M�1/� .x
1
j /// is pathwise con-

nected. By continuity,

(3.9) 9x2j 2 RnC1 n �I2� .W / [ cl
�
B.M�1/�

�
x1j
���

such that the second identity in (3.7) holds. Finally, (3.9) implies that the family of
sets �

cl
�
B.M�3/�

�
x1j
��
; cl
�
B2�

�
x2j
��
; W

	
is disjoint. We pick M D 5 to conclude the proof.

Step 3. In this step we show that (3.1) can be modified to allow for compar-
ison with local variations Fj of Ej that do not necessarily preserve the volume
constraint. More precisely, we prove the existence of positive constants r� and
C� (depending on the whole sequence fEj gj , and thus uniform in j ) such that if
x 2 �, r < r�, and fFj gj is an admissible local variation of fEj gj in Br.x/, in
the sense that

(3.10) Fj 2 E ; Fj�Ej b Br.x/; � \ @Fj is C-spanning W

(notice that we do not require Br.x/ � �), then

(3.11) Hn.� \ @Ej / � Hn.� \ @Fj /C C�
��jEj j � jFj j

��C 1

j
:

We first claim that if Bj � � is a ball with dist.Bj ; Br.x// > 0, � W � ! � is a
diffeomorphism with �.Bj / � Bj , and f� ¤ idg b Bj , and if

(3.12) Gj D
�
Fj \ Br.x/

� [ ��.Ej / \ Bj � [ �Ej n �Bj [ Br.x/��
then Gj 2 E and � \ @Gj is C-spanning W . The fact that Gj is open is obvious
sinceGj is equal toEj in a neighborhood of�n.Br.x/[Bj /, to Fj in a neighbor-
hood of Br.x/, and to �.Ej / in a neighborhood of Bj , where Ej , Fj , and �.Ej /
are open, and where dist.Bj ; Br.x// > 0; this also shows that @Gj is equal to @Ej
in a neighborhood of� n .Br.x/[Bj /, to @Fj in a neighborhood of Br.x/, and to
@�.Ej / D �.@Ej / in a neighborhood of Bj , so that�\ @Gj is Hn-rectifiable and,
thanks to (3.10) and Lemma 2.3, that � \ @Gj is C-spanning W . Having proved
the claim, we only have to construct sets Gj as in (3.12) and such that

(3.13) jGj j D "; Hn.� \ @Gj / � Hn.� \ @Fj /C C�
��jEj j � jFj j

��
in order to deduce (3.11) from (3.1). To this aim, let fxkj gkD1;2 be as in Step 2:
the sets f.Ej � xkj / \ B� .0/gj are bounded in B� .0/ and have uniformly bounded
perimeters, so that, up to extracting a subsequence, for each k D 1; 2 there exists
a set of finite perimeter Ek

� � B� .0/ such that .Ej � xkj / \ B� .0/ ! Ek
� in

L1.RnC1/. The crucial point is that, by (3.7) and since �k 2 .0; jB� .0/j=2�, we
must have

B� .0/ \ @�Ek
� ¤ ¿:
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Hence, by arguing as in [42, sec. 29.6], we can find positive constants C 0
� and "�

such that for every set of finite perimeter E 0 � B� .0/ with

jE 0�Ek
� j < "�;

there exists a C 1-map �k W .�"�; "�/ � B� .0/ ! B� .0/ such that, for each
jvj < "�: (i) �k.v; �/ is a diffeomorphism with f�k.v; �/ ¤ Idg b B� .0/; (ii)
j�k.v; E

0/j D jE 0j C v; (iii) if � is an Hn-rectifiable set in B� .0/, then

jHn.�k.v;�// �Hn.�/j � C 0
�Hn.�/jvj:

By takingE 0 D .Ej�xkj /\B� .0/ (for j large enough), by composing the maps�k

with a translation by xkj , and then by extending the resulting maps as the identity
map outside of B� .xkj /, we prove the existence of C 1-maps �k W .�"�; "�/ �
RnC1 ! RnC1 such that, for each jvj < "�: (i) �k.v; �/ is a diffeomorphism
with f�k.v; �/ ¤ Idg b B� .x

k
j /; (ii) j�k.v; Ej /j D jEj j C v; (iii) if � is an

Hn-rectifiable set in RnC1, then

jHn.�k.v;�// �Hn.�/j � C 0
�Hn.�/jvj:

Finally, we set

r� D min
�
�;

�
"�

2!nC1

�1=.nC1/�
; Bj D B� .x

k.j /
j /;

where k D k.j / 2 f1; 2g is selected so that dist.Br.x/; Bj / > 0 (this is possible
because rx� � � and fcl.B2� .x1j //; cl.B2� .x2j //g are disjoint). We finally define
Gj by (3.12) with

� D �k.j /.vj ; �/; vj D jEj \ Br.x/j � jFj \ Br.x/j;
as we are allowed to do since Ej�Fj b Br.x/ and thus jvj j � !nC1 r

nC1
� �

"�=2. To prove (3.13): first, we have Gj�Fj b � n cl.Br.x//, while property (ii)
of �k.j / gives

jGj j � jEj j D j�k.j /.vj ; Ej / \ Bj j C jFj \ Br.x/j � jEj \ Bj j � jEj \ Br.x/j
D j�k.j /.vj ; Ej / \ Bj j � vj � jEj \ Bj j D 0I

second, property (iii) applied to the Hn-rectifiable set � D Bj \ @Ej gives

Hn.� \ @Gj / �Hn.� \ @Fj /
D Hn

�
�k.j /.vj ; Bj \ @Ej /

� �Hn.Bj \ @Ej / � C 0
� jvj jHn.Bj \ @Ej /

so that (3.13) follows by taking C� D C 0
�. ."/C 1/.

Step 4. In this step we apply (3.11) to the cup and cone competitors constructed
in Section 2 and show that K D � \ spt� is relatively compact in � and Hn-
rectifiable, that � D �Hn xK with � � 1 on K and � � 2 Hn-a.e. on K n @�E,
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and, finally, that .K;E/ 2 K. To this end, pick x 2 K, set d.x/ D dist.x;W / > 0,
and let

fj .r/ D �j .Br.x// D Hn.Br.x/ \ @Ej /;
f .r/ D �.Br.x//;

for every r 2 .0; d.x//:

Denoting by Df the distributional derivative of f , and by f 0 its classical deriva-
tive, the coarea formula (see [13, step one, proof of theorem 2] and [25, theorem
2.9.19]) gives

(3.14)
fj ! f a.e. on .0; d.x//; Dfj � f 0j dr;
Df � f 0 dr; f 0 � g D lim inf

j!1
f 0j ;

(3.15) f 0j .r/ � Hn�1.@Br.x/ \ @Ej / 8j and for a.e. r 2 .0; d.x//:
Now let � 2 .0; r=2/, let Aj denote an Hn-maximal open connected component
of @Br.x/ n @Ej , and let Fj be the cup competitor defined by Ej and Aj as in
Lemma 2.5. More precisely, whenEj \Aj D ¿, we let f�j

k
g1
kD1

be the decreasing
sequence with limk!1 �

j

k
D 0 defined in step two of the proof of Lemma 2.5, and

setting, for �j
k

such that � 2 ��j
kC1

; �
j

k

�
,

Yj D @Br.x/ n
�

cl.Ej \ @Br.x// [ cl.Aj /
�
;

Sj D @Ej \ cl.Aj / n
�
cl.Ej \ @Br.x// [ cl.Yj /

�
;

Uj D @Br.x/ \ fdSj < �jkg;
we define

(3.16) Fj D
�
Ej ncl.Br.x//

�[N
�
j

k

.Zj /; Zj D Yj[
�
Uj n cl.Ej \ @Br.x//

�
:

When Aj � Ej , instead we define

(3.17) Fj D
�
Ej [ Br.x/

� n cl
�
N�.Yj /

�
; Yj D .Ej \ @Br.x// n cl.Aj /I

see Figure 2.1. In both cases, fFj gj is an admissible local variation of fEj gj in
Br 0.x/ for some r 0 > r , and by (2.4), for a.e. r < d.x/ we have

lim sup
�!0C

Hn.� \ @Fj / � Hn.@Ej n Br.x//C 2Hn.@Br.x/ n Aj /

so that, by (3.11), for a.e. r < minfd.x/; r�g, we have

(3.18) fj .r/ � 2Hn.@Br.x/ n Aj /C C� lim sup
�!0C

��jEj j � jFj j
��C 1

j
:

The estimate of jjEj j�jFj jj is different depending on whether Fj is given by (3.16)
or by (3.17). In both cases we make use of the Euclidean isoperimetric inequality

.nC 1/ jB1j1=.nC1/ jU jn=.nC1/ � P.U / 8U � RnC1;
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and we also need the perimeter identities

P.Ej \ Br.x// D P.Ej IBr.x//CHn.Ej \ @Br.x//;
P.Br.x/ nEj / D P.Ej IBr.x//CHn.@Br.x/ nEj /;(3.19)

which hold for a.e. r > 0, with the exceptional set of r-values that can be made
independent from j . We now take Fj as in (3.16): up to further decreasing the
value of r� so to entail C� r�=.nC 1/ � 1=2, and assuming that r < r�, we have

(3.20)

C�
��jEj j � jFj j

�� � C�jEj \ Br.x/j C C�c.n/r
n�

j

k

� C� jB1j1=.nC1/ r jEj \ Br.x/jn=.nC1/ C C� c.n/ r
n �

j

k

� C�

nC 1
r� P.Ej \ Br.x//C C� c.n/ r

n �
j

k

� 1

2

�
P.Ej IBr.x//CHn.Ej \ @Br.x//

	C C�c.n/r
n�

j

k

� 1

2

�
fj .r/CHn.@Br.x/ n Aj /

	C C�c.n/r
n�

j

k
;

where in the last inequality we have used @�Ej � @E and Aj \ Ej D ¿ (that is
the assumption under which Fj is chosen as in (3.16)). If instead we take Fj as in
(3.17), then

(3.21)

C�
��jEj j � jFj j

��
D C�

��jEj \ Br.x/j � jFj \ Br.x/jbigj
D C�

��jBr.x/ nEj j � jBr.x/ n Fj j
��

� C�jB1j1=.nC1/r jBr.x/ nEj jn=.nC1/ C C�jN�.@Br.x/ \Ej n cl.Aj //j
� 1

2

�
P.Ej IBr.x//CHn.@Br.x/ nEj /

	C C� c.n/ r
n �

� 1

2

�
fj .r/CHn.@Br.x/ n Aj /

	C C� c.n/ r
n �;

where in the last inequality we have used @�Ej � @Ej and Aj � Ej (the as-
sumption corresponding to (3.17)). By combining (3.18) with (3.20) and (3.21),
we conclude that

(3.22)
fj .r/

2
� 3Hn.@Br.x/ n Aj /C 1

j
for a.e. r < minfr�; d.x/g:

By the spherical isoperimetric inequality, Lemma 2.12, and by (3.15), for a.e. r <
d.x/,

Hn.@Br.x/ n Aj / � C.n/Hn�1.@Br.x/ \ @Ej /n=.n�1/ � C.n/ f 0j .r/n=.n�1/;
which combined with (3.22) and (3.14), allows us to conclude (letting j ! 1)
that

f .r/ � C.n/ f 0.r/n=.n�1/ for a.e. r < minfr�; d.x/g:(3.23)
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Since x 2 spt�, f is positive, and thus (3.23) implies the existence of �0.n/ > 0

such that

(3.24) �.Br.x// � �0!nrn 8x 2 K; r < r�; Br.x/ b �:

Since K D � \ spt�, by [45, theorem 6.9] and (3.24), we obtain

(3.25) � � �0HnxK on � :

As a consequence of �.�/ <1 and of (3.24) we deduce that K is bounded, thus
relatively compact in �. In turn, @�E � K implies the boundedness of E. Notice
that we have not excluded jEj < " yet.

To further progress in the analysis of �, given � 2 .0; r=2/ let use now denote
by Fj the set corresponding to � constructed in Lemma 2.9, so that, by (2.71), for
a.e. r < d.x/,

(3.26) lim sup
�!0C

Hn.� \ @Fj / � Hn.@Ej n Br.x//C r

n
Hn�1.@Ej \ @Br.x//:

Using that fFj gj is an admissible local variation of fEj gj in Br.x/, and com-
bining (3.11) and (3.26) with jjEj j � jFj jj � C.n/rnC1, we find that

Hn.Br.x/ \ @Ej / � r

n
f 0j .r/C C� r

nC1 C 1

j
;

so that, as j ! 1, f .r/ � .r=n/f 0.r/ C C� r
nC1. By combining this last

inequality with Df � f 0.r/dr and (3.24), we find that

D.e�rf .r/=rn/

D n e�r

rnC1

�
r

n
Df C

�
r�

n
f .r/ � f .r/

�
dr

�

� ne�r

rnC1

�
f .r/ � C� rnC1 C r �

n
f .r/ � f .r/

�
dr

D ne�r

rn

�
� C� rn C �f .r/

n

�
dr � ne�r

�
�C� C ��0 !n

n

o
dr

so that, setting � � nC�=.�0!n/, we have proved

(3.27) e�r �.Br.x//

rn
is nondecreasing on r < minfr�; d.x/g:

By (3.27) and (3.25) we find that

�.x/ D lim
r!0C

�.Br.x//

!n rn
exists in .0;1/ for every x 2 K:

By Preiss’ theorem, � D � Hn xK� for a Borel function � and a countably Hn-
rectifiable set K� � �. Since K D � \ spt�, we have Hn.K� n K/ D 0,
while (3.25) gives Hn.K n K�/ D 0. Thus K is countably Hn-rectifiable and
� D � Hn xK. Moreover, � is upper semicontinuous on K thanks to (3.27).
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Finally, consider the open set

E� D �
x 2 � W 9r > 0 s.t. jBr.x/j D jE \ Br.x/j

	
:

The topological boundary of E� is equal to

@E� D �
x 2 cl.�/ W 0 < jE \ Br.x/j < jBr.x/j 8r > 0

	
so that � \ cl.@�E/ D � \ @E� by [42, prop. 12.19]. Clearly E� � E.1/;
moreover, if x 2 E.1/ nE�, then 0 < jE \Br.x/j < jBr.x/j for every r > 0, and
thus x 2 @E�. In particular,

� \ .E.1/ nE�/ � � \ @E� D � \ cl.@�E/ � K;

where K is Hn-rectifiable, and thus Lebesgue negligible. Since Hn.@�/ < 1,
we have proved Hn.E.1/ n E�/ < 1, and thus jE.1/�E�j D 0. By Lebesgue’s
points theorem, E� is equivalent to E, so that @�E D @�E�. Replacing E with
E� we find .K;E/ 2 K. Finally, the lower bounds � � 1Hn-a.e. on K and � � 2
Hn-a.e. on K n @�E follow by applying Lemma 2.11 with �0 D �: notice indeed
that assumptions (2.84) and (2.85) in Lemma 2.11 hold by (3.24) and by (3.22).

Step 5. We show that �.x/ � 1 at every x 2 � \ @�E and that �.x/ � 2 at
every x 2 K \ .E.0/ [ E.1// such that K admits an approximate tangent plane
at x (thus, that � � 2 Hn-a.e. on K n @�E). We choose �.x/ 2 Sn such that
TxK D �.x/? (notice that, necessarily, �.x/ D �E .x/ or �.x/ D ��E .x/ when,
in addition, x 2 @�E), and let B2r.x/ b �. For � 2 .0; 1/ and � 2 .0; �/ we set

(3.28)

S�;r D
�
y 2 Br.x/ W j.y � x/ � �.x/j < � r

	
;

V�;r D
�
y 2 Br.x/ W j.y � x/ � �.x/j < � jy � xj

	 � S�;r � S�;r ;

W �
�;�;r D

�
S�;r n cl.V�;r/

� \ fy W .y � x/ � �E .x/ ? 0g;
���;�;r D @S�;r \ @W �

�;�;r ;

that are depicted in Figure 3.1. By (3.24) and since Hn x .K � x/=� �
* Hn xTxK

as � ! 0C, the approximate tangent plane TxK is a classical tangent plane, and
thus there exists r0 D r0.�; x/ > 0 such that K \ Br.x/ � S�;r for every r < r0,
or, equivalently,

(3.29) K \ Br0.x/ � V�;r0 [ fxg:
In particular,

(3.30) �.S�;r/ D �.Br.x// 8r < r0:
We also notice that for a.e. value of r we have

(3.31) @S�;r \ @Ej is Hn�1-rectifiable 8j:
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Br.x/

W �
�;�;r

� r�r

W C
�;�;r

V�;rV�;r

�.x/

x

�C�;�;r

���;�;r

FIGURE 3.1. The sets defined in (3.28). Here � < � < 1, and S�;r is
decomposed into a central open cone V�;r of small amplitude � , the up-
per and lower open regionsW �

�;�;r , and the closed cone S�;r \ @V�;r . For
r � r0.�; x/, Br .x/\K lies inside V�;r by approximate differentiability
of K at x and by the density estimate (3.24). When x 2 @�E, if we
choose �.x/ D �E .x/, then the divergence theorem implies that E fills
up the whole W �

�;�;r , and leaves empty W C
�;�;r .

We now introduce the family of open sets

(3.32)

Aout
r;j D

�
A � @S�;r W A is an open connected component
of @S�;r n @Ej and A is disjoint from Ej

	
;

Ain
r;j D

�
A � @S�;r W A is an open connected component
of @S�;r n @Ej and A is contained in Ej

	
;

and denote by Aout
r;j and Ain

r;j Hn-maximal elements of Aout
r;j and Ain

r;j respectively.
Finally, given � 2 .0; r=2/, we let F ?

j be the slab competitor defined by Ej , A?r;j ,
and � in B2r.x/ for ? 2 fout; ing as in Lemma 2.8: accordingly, F ?

j 2 E ,�\@F ?
j

is C-spanning W ,

F ?
j n cl.S�;r/ D Ej n cl.S�;r/;(3.33)

lim
�!0C

Hn
�
.@S�;r \ @F ?

j /�.@S�;r n A?r;j /
� D 0;(3.34)

and

(3.35)

lim sup
�!0C

Hn.S�;r \ @F ?
j /

� C.n; �/
(
Hn
�
@S�;r n .Aout

r;j [Ej /
�

if ? D out,
Hn
�
.Ej \ @S�;r/ n Ain

r;j

�
if ? D inI
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see (2.66), (2.67), (2.68), and (2.69). By (3.11), Hn.@S�;r \ @Ej / D 0 and (3.33),

Hn.S�;r \ @Ej / � Hn.cl.S�;r/ \ @F ?
j /C C� c.n/r

nC1 C 1

j
8? 2 fout; ing:

By (3.34) and (3.35), taking the limit first as � ! 0C and then as j ! 1, and
by also taking into account that �j

�
* � and that (3.30) holds, we find, in the case

? D out, that

(3.36)

�.Br.x//

� lim sup
j!1

Hn.Ej \ @S�;r/

C C.n; �/ lim sup
j!1

Hn
�
@S�;r n

�
Aout
r;j [Ej

��C C� c.n/r
nC1;

and, in the case ? D in, that

(3.37)

�.Br.x//

� lim sup
j!1

Hn.@S�;r nEj /

C C.n; �/ lim sup
j!1

Hn
�
.Ej \ @S�;r/ n Ain

r;j

�C C� c.n/r
nC1:

We now discuss the cases x 2 @�E, x 2 K \E.0/, and x 2 K \E.1/ separately.

Case x 2 @�E. We claim that, in this case, for every � 2 .0; �/ and for a.e.
r < r0.�; x/,

lim sup
j!1

Hn
�
@S�;r n

�
Aout
r;j [Ej

�� � C.n/�rn;(3.38)

lim sup
j!1

��Hn
�
Ej \ @S�;r

� � !n rn�� � C.n/� rnI(3.39)

see Figure 3.2. We notice that (3.38) and (3.39) combined with (3.36) imply

�.Br.x//

rn
� !n C C.n/� C C.n; �/� C C� c.n/r for a.e. r < r0

which gives �.x/ � 1 by letting, in order, r ! 0C, � ! 0C, and then � ! 0C.
We now prove (3.38) and (3.39). Since x 2 @�E, we can set �.x/ D �E .x/. As
�E .x/ is the outer normal to E, by @�E � K, (3.29), and the divergence theorem,
we obtain ��W �

�;�;r0
nE�� D ��W C

�;�;r0
\E�� D 0:

By jW �
�;�;r0

nEj D 0, the coarea formula, and Fatou’s lemma, we deduce

0 D lim
j!1

��W �
�;�;r0

nEj
�� D lim

j!1

ˆ r0

0

Hn
�
@S�;r \

�
W �
�;�;r0

nEj
��
dr
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x

Br .x/

FjEj

� r

Aout
r;j

FIGURE 3.2. The slab competitor F out
j is used in proving that �.x/ � 1.

The fact that x 2 @�E is used to show that Ej \ @S�;r consists of a large
connected component whose area is close to !n r

n up to an o.rn/ error
as r ! 0C.

�
ˆ r0

0

lim inf
j!1

Hn
�
���;�;r nEj

�
dr;

and by arguing similarly with jW C
�;�;r0

\Ej D 0, we conclude that, for a.e. r < r0,

lim
j!1

Hn
�
�C�;�;r \Ej

� D 0;(3.40)

lim
j!1

Hn
�
���;�;r nEj

� D 0:(3.41)

By (3.40), (3.41), and since

(3.42) @S�;r D �C�;�;r [ ���;�;r [ .@S�;r \ @S�;r/;
we find that, as j !1,��Hn.@S�;r \Ej / � !n rn

��
� Hn.@S�;r \ @S�;r/C

��Hn.���;�;r \Ej / � !nrn
��C o.1/

� C.n/�rn C ��Hn.���;�;r/ � !n rn
��C o.1/

� C.n/� rn C o.1/;

that is, (3.39). At the same time, again by (3.29) and by the coarea formula, assum-
ing without loss of generality that r0 D r0.�; x/ also satisfies Hn.K\@Br0.x// D
0 in addition to (3.29), we get

(3.43)

0 D �.K \ cl.Br0.x// n V�;r0/ D lim
j!1

Hn.Br0.x/ \ @Ej n V�;r0/
� lim

j!1
Hn.S�;r0 \ @Ej n V�;r0/

� lim
j!1

ˆ r0

0

Hn�1.@S�;r \ @Ej n V�;r0/dr;
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that is,

(3.44) lim
j!1

Hn�1.@S�;r \ @Ej n V�;r0/ D 0 for a.e. r < r0:

Notice that (3.44) implies in particular that

(3.45) lim
j!1

Hn�1
�
�C�;�;r \ @Ej

� D 0 for a.e. r < r0:

Since �C�;�;r is a bi-Lipschitz image of a hemisphere, by Lemma 2.12,

(3.46) Hn�1
�
�C�;�;r \ J

�n=.n�1/ � c.n; �; �/Hn
�
�C�;�;r n A

�
whenever J is relatively closed in �C�;�;r , and A is an Hn-maximal connected com-
ponent of �C�;�;r n J . By (3.45) and (3.46) we find that, if

ACr;j is a maximal Hn-component of �C�;�;r n @Ej ;
then

(3.47) lim
j!1

Hn.�C�;�;r n ACr;j / D 0 for a.e. r < r0:

By connectedness, ACr;j is contained in either Aout
r;j , Ej , or

Yr;j D
[�

A W A 2 Aout
r;jA ¤ Aout

r;j

	
:

By combining (3.40) with (3.47) we find that for a.e. r < r0, if j is large enough,
then

ACr;j \Ej D ¿:

Similarly, should there be a nonnegligible set of values of r such that for infinitely
many values of j , the inclusion ACr;j � Yr;j holds, then by (3.41) and (3.47), there
would be an element of Aout

r;j different fromAout
r;j with Hn-measure arbitrarily close

to Hn.�C�;�;r/; thanks to (3.41), we would then have Hn.Aout
r;j / ! 0, against the

Hn-maximality of Aout
r;j itself. In conclusion, it must be

(3.48) ACr;j � Aout
r;j for a.e. r < r0 and for j large enough:

By combining (3.48) and (3.47) we conclude that

(3.49) lim
j!1

Hn
�
�C�;�;r n Aout

r;j

� D 0:

By (3.42), (3.41), and (3.49), we conclude that

lim sup
j!1

Hn
�
@S�;r n

�
Aout
r;j [Ej

�� � Hn.@S�;r \ @S�;r/ � C.n/�rn;

that is, (3.38). This completes the proof of �.x/ � 1 for x 2 @�E.
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Ej Fj

� r

Br .x/

x

Ain
r;j

FIGURE 3.3. The slab competitor used in proving that �.x/ � 2 when
x 2 E.0/ is the one defined by Ain

r;j . Since x 2 E.0/ we can show that
Ej \ @S�;r is o.rn/ as r ! 0C.

Case x 2 E.0/. We claim that, in this case, for every � 2 .0; �/,
lim sup
j!1

Hn.Ej \ @S�;r/ � C.n/�rn;(3.50)

lim sup
j!1

��Hn.@S�;r nEj / � 2!nrn
�� � C.n/� rn;(3.51)

for a.e. r < r0.�; x/; see Figure 3.3. The idea is using the competitor defined by
Ain
r;j : indeed, (3.50), (3.51), and (3.37) give

�.Br.x//

rn
� lim sup

j!1

Hn.@S�;r nEj /
rn

C C.n; �/ lim sup
j!1

Hn
�
.Ej \ @S�;r/ n Ain

r;j

�
rn

C C� c.n/r

� 2!n C C.n/� C C.n; �/� C C�c.n/r

and then �.x/ � 2 by letting, in order, r ! 0C, � ! 0C, and then � ! 0C. The
proof of (3.50) and (3.51) is simple: since x 2 E.0/ and @�E � K, by (3.29) and
by the divergence theorem we find that

jE \ Br0.x/ n V�;r0 j D 0:

In particular, by the coarea formula we find that for a.e. r < r0,

0 D lim
j!1

Hn
�
.Ej n V�;r0/ \ @S�;r

� D lim
j!1

Hn
�
Ej \

�
�C�;�;r [ ���;�;r

��
so that, by (3.42),

Hn.Ej \ @S�;r/ D Hn.@S�;r \ @S�;r/C o.1/ � C.n/�rn C o.1/
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x � r

Ej

Br .x/

Fj

Aout
r;j

FIGURE 3.4. The slab competitor used in proving that �.x/ � 2 when
x 2 E.1/ is the one defined by Aout

r;j .

as j !1, that is, (3.50), and��Hn.@S�;r nEj / � 2!nrn
��

� Hn.@S�;r \ @S�;r/C
��Hn.�C�;�;r [ ���;�;r/ � 2!nrn

��C o.1/

� C.n/� rn C o.1/

as j !1, that is, (3.51).

Case x 2 E.1/. We claim that for every � 2 .0; �/,
lim sup
j!1

��Hn.Ej \ @S�;r/ � 2!n rn
�� � C.n/� rn;(3.52)

lim sup
j!1

Hn
�
@S�;r nEj

� � C.n/�rn;(3.53)

for a.e. r < r0.�; x/; see Figure 3.4. Indeed, by using as in the case x 2 @�E the
competitor defined by Aout

r;j , (3.52) and (3.53) are combined with (3.36) to obtain

(3.54)

�.Br.x//

rn
� lim sup

j!1

Hn.Ej \ @S�;r/
rn

C C.n; �/ lim sup
j!1

Hn
�
@S�;r n .Aout

r;j [Ej /
�

rn
C C� c.n/r

� 2!n C C.n/� C C.n; �/� C C� c.n/r;

which gives �.x/ � 2 by letting once again r ! 0C, � ! 0C, and finally � ! 0C.
To prove (3.52) and (3.53), we notice that by x 2 E.1/, @�E � K, (3.29), and the
divergence theorem, we have

jBr0.x/ n .V�;r0 [E
��� D 0:
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By the coarea formula, for a.e. r < r0 we find

0 D lim
j!1

Hn
��
�C�;�;r [ ���;�;r

� nEj �
and conclude as in the previous case by exploiting (3.42).

Remark 3.1. We make an important remark on the constructions of Step 5, which
will be needed in the proof of Theorem 1.6. We claim that, under the assumptions
on x considered in Step 5, for a.e. r < r0.�; x/ we have

(3.55)
lim sup
�!0C

��Hn.fy 2 cl.S�;r/ \ @F ?
j W Ty.@F ?

j / D TxKg/ � �.x/ !n rn
��

� C.n/� rn C C.n; �/�rn C o.1/ as j !1:
Here ? D out if x 2 @�E [ .K \ E.1//, ? D in if x 2 K \ E.0/, and �.x/ D 1

if x 2 @�E and �.x/ D 2 if x 2 K \ .E.0/ [ E.1//. Consider, for example,
the case when x 2 @�E. By (3.34), @S�;r \ @F out

j � .@S�;r n Aout
r;j / [ Nj with

lim�!0C Hn.Nj / D 0: thus, by taking into account that

Ty.@F
out
j / D Ty.@S�;r/ Hn-a.e. on @F out

j \ @S�;r
and that �

y 2 @S�;r W Ty.@S�;r/ D TxK
	 D @S�;r n @Br.x/;

(recall that TxK D �.x/?), we have��Hn
��
y 2 cl.S�;r/ \ @F out

j W Ty.@F out
j / D TxK

	� � !n rn��
� ��Hn

��
y 2 @S�;r \ @F out

j W Ty.@F out
j / D TxK

	� � !n rn��
CHn.S�;r \ @F out

j /

� ��Hn
��
y 2 @S�;r n Aout

r;j W Ty.@S�;r/ D TxK
	� � !n rn��

CHn.Nj /CHn.S�;r \ @F out
j /

D ��Hn
�
@S�;r n .@Br.x/ [ Aout

r;j /
� � !n rn��CHn.Nj /CHn.S�;r \ @F out

j /

so that, by (3.35), (3.38), and Hn.@S�;r \ @Br.x// � C.n/� rn,

lim sup
�!0C

��Hn
��
y 2 cl.S�;r/ \ @F out

j W Ty.@F out
j / D TxK

	� � !n rn��
� ��Hn.@S�;r \Ej / � !nrn

��C C.n; �/Hn
�
@S�;r n .Aout

r;j [Ej /
�C C.n/� rn:

By (3.38) and (3.39) we deduce (3.55) when x 2 @�E. The case when x 2 K \
.E.0/ [E.1// is treated analogously and the details are omitted.

Step 6. We exclude area concentration near @� by showing that

(3.56) lim sup
�!0C

lim sup
j!1

�j .� \ U�.@�// D 0:
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Br0.x/

�

�0�

FIGURE 3.5. The boundary diffeomorphism f pushes out � into a
larger open set �0. Regions depicted with the same color are mapped
one into the other. Notice that the dark region on the left contains
� \ U�.@�/ \ Br0=2.x/ and is mapped outside of �. The diffeomor-
phism f can be formally constructed by exploiting the local graphicality
of �, and the simple details are omitted.

Exploiting the smoothness and boundedness of @�, we can find r0 > 0 such that
Lemma 2.4 holds, and such that for every x 2 @� there exists an open set �0

with � � �0 and a homeomorphism f W cl.�/ ! cl.�0/ D f .cl.�// with
f .@�/ D @�0, ff ¤ idg b Br0.x/, and f .Br0.x/ \ cl.�// D Br0.x/ \ cl.�0/,
which is a diffeomorphism f W �! �0, and such that

(3.57) f
�
� \ U�.@�/ \ Br0=2.x/

� � �0 n�; kf � idkC1.�/ � C�I
see Figure 3.5. Let �� D f �1.�/ and let Fj D f .Ej \ ��/ D f .Ej / \ �.
Clearly Fj 2 E , and f .@��/ D @� and �� \ @.Ej \��/ D �� \ @Ej give

� \ @Fj D f .��/ \ f
�
@.Ej \��/

� D f
�
�� \ @Ej

�
;

so that � \ @Fj is C-spanning W by Lemma 2.4. Assuming without loss of gen-
erality that r0 < r�, by (3.11), ff ¤ idg b Br0.x/ and f .Br0.x/ \ cl.�// D
Br0.x/ \ cl.�0/, we have

Hn.� \ Br0.x/ \ @Ej /

� Hn
�
f .Br0.x/ \�� \ @Ej /

�C C�
��jFj j � jEj j

��C 1

j

� .1C C�/Hn
�
Br0.x/ \�� \ @Ej

�C C�
��jFj j � jEj j

��C 1

j
;

where ��jFj j � jEj j
�� � ��jEj \��j � jEj j

��C ˆ
Ej\��

jJf � 1j
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� j� n��j C C"� � C�;
so that

Hn.� \ Br0.x/ \ @Ej n��/ � C��Hn
�
� \ @Ej

�C 1
	C 1

j

� C�f ."/C 2g C 1

j
:

Since � \ U�.@�/ \ Br0=2.x/ � � n��, by letting j !1 we conclude that

�
�
Br0=2.x/ \ U�.@�/

� � C� 8x 2 @�:
By a covering argument we find �.� \ U�.@�// � C �, and thus (3.56) follows.

Step 7. Let us now pick R > 0 such that W [ K [ E b BR.0/. If Ej �
BRC1.0/ for infinitely many values of j , then jEj D " and �j .�nBRC1.0// D 0,
which combined with (3.56) implies �j .�/! �.�/ D F.K;E/ as j !1, and
thus  ."/ D F.K;E/ with .K;E/ 2 K and jEj D ": thus .K;E/ is a generalized
minimizer of  ."/, as desired. We now assume without loss of generality that
jEj n BRC1.0/j > 0 for every j . By (3.5),

lim sup
j!1

jEj \ .BRC1.0/ n BR.0//j

D lim sup
j!1

Hn..BRC1.0/ n BR.0// \ @Ej / D 0:

By the coarea formula, this implies that for a.e. s 2 .R;RC 1/,

(3.58) lim sup
j!1

Hn.Ej \ @Bs.0// D lim sup
j!1

Hn�1.@Ej \ @Bs.0// D 0:

We fix a value of s such that (3.58) holds, and we let Aj denote an Hn-maximal
connected component of @Bs.0/ n @Ej . It must be Aj \ Ej D ¿: otherwise, by
the spherical isoperimetric inequality, Aj � Ej would imply

C.n/Hn�1.@Bs.0/ \ @Ej /n=.n�1/ � Hn.@Bs.0/ n Aj / � Hn.@Bs.0/ nEj /
� c.n/Rn �Hn.Ej \ @Bs.0//;

a contradiction to (3.58). Since Aj \ Ej D ¿, we can consider the exterior cup
competitor defined by Ej and Aj . More precisely, for every j there exists a de-
creasing sequence f�j

k
g1
kD1

with limk!1 �
j

k
D 0 such that, setting

Yj D @Bs.0/ n cl..Ej \ @Bs.0// [ Aj /;
Sj D @Ej \ cl.Aj / n

�
cl..Ej \ @Bs.0// [ Yj /

�
;

Uj;k D @Bs.0/ \ fdSj < �jkg; Zj;k D Yj [
�
Uj;k n cl.Ej \ @Bs.0//

�
;

the sets
Fj;k D

�
Ej \ Bs.0/

� [M
�
j

k

.Zj;k/
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satisfy Fj;k 2 E , with � \ @Fj;k C-spanning W , Fj;k � BRC1, and

(3.59)

lim sup
k!1

Hn.� \ @Fj;k/

� Hn.� \ Bs.0/ \ @Ej /C 2Hn.@Bs.0/ n Aj /
� Hn.� \ Bs.0/ \ @Ej /C C.n/Hn�1.@Bs.0/ \ @Ej /n=.n�1/:

Since jEj nBRC1.0/j > 0 for every j , we can select k.j / sufficiently large so that

Hn.� \ @Fj;k.j // � Hn.� \ Bs.0/ \ @Ej /

C C.n/Hn�1.@Bs.0/ \ @Ej /n=.n�1/ C 1

j
;

(3.60)

as well as jEj nBs.0/j > jM
�
j

k.j/

.Zj;k.j //j; then, after setting Fj D Fj;k.j /, define

�j > 0 by the equation

jB�j j D jEj j � jFj j D jEj n Bs.0/j � jM
�
j

k.j/

.Zj;k.j //j:

In particular, jB�j j � ", so that we can find x 2 � such that cl.B�j .x//\cl.Fj / D
¿ and

E�
j D Fj [ B�j .x/ � BRC1CC.n/ "1=.nC1/.0/ 8j:

We notice thatE�
j 2 E with jE�

j j D " and�\@Fj � �\@E�
j , so that�\@E�

j is C-
spanning W : in particular,  ."/ � Hn.�\ @E�

j /. By the Euclidean isoperimetric
inequality, and since jB�j j � jEj n Bs.0/j by definition of �j , we have

P.B�j / � P.Ej n Bs.0// D Hn
�
@Ej n Bs.0/

�CHn
�
Ej \ @Bs.0/

�
;

so that by (3.58) and (3.60) we get

 ."/ � lim sup
j!1

Hn.� \ @E�
j / � lim sup

j!1
Hn.� \ @Fj /C P.B�j /

� lim sup
j!1

Hn.� \ @Ej /C 2C.n/ lim sup
j!1

Hn�1.@Bs.0/ \ @Ej /n=.n�1/

D  ."/:

We have thus proved that fE�
j gj is a minimizing sequence for  ."/, with E�

j �
BR�.0/ for some R� depending only on R, n, and ". By repeating the argument
of the first six steps with E�

j in place of Ej , we see that E�
j ! E� in L1.�/ and

��j D Hnx.� \ @E�
j /

�
* �� where �� D 2Hnx.K� n @�E�/CHnx@�E�, and

where .K�; E�/ 2 K with jE�j D " and with

lim sup
�!0C

lim sup
j!1

��j .� \ U�.@�// D 0:
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Therefore ��j .�/! ��.�/ D F.K�; E�/ and in conclusion

F.K�; E�/ D ��.�/ D lim
j!1

��j .�/ D  ."/

so that, by jE�j D ", .K�; E�/ is indeed a generalized minimizer of  ."/. This
concludes the proof of the theorem. �

4 The Euler-Lagrange Equation: Proof of Theorem 1.6
PROOF OF THEOREM 1.6. Let .K;E/ be a generalized minimizer of  ."/ and

f W �! � be a diffeomorphism such that jf .E/j D jEj. We want to prove that

(4.1) F.K;E/ � F.f .K/; f .E//:

Let K 0 denote the set of points of approximate differentiability of K, so that
Hn.K n K 0/ D 0, and for x 2 K 0 denote by Tx D TxK D �?x the approxi-
mate tangent plane to K at x, where �x 2 Sn is chosen so that �x D �E .x/ if
x 2 @�E. As in Step 5 of the proof of Theorem 1.4, for every � > 0 we introduce
r0 D r0.�; x/ such that

(4.2) K \ Br.x/ � Sx�;r D fy 2 Br.x/ W j.y � x/ � �xj < �rg 8r < r0.�; x/I
see (3.29). In fact, by Egoroff’s theorem, we can find a compact setK� � K 0 with
Hn.K nK�/ < � such that r�.�/ D maxfr0.�; x/ W x 2 K�g ! 0C as � ! 0C,
that is, such that (4.2) holds uniformly on K�,

(4.3) K \ Br.x/ � Sx�;r 8x 2 K�8r < r�.�/:
Similarly, if Gn denotes the family of the n-planes in RnC1, endowed with a dis-
tance d , by Lusin’s theorem and up to further decreasing the size of K� while
keeping Hn.K nK�/ < � , we can make sure that

(4.4) sup
x;y2K�jx�yj<r

d.Tx; Ty/C sup
x;y2K�jy�xj<r

jrf .x/ � rf .y/j � !�.r/

for a function !�.r/! 0C as r ! 0C. Finally, since(
Hn.Br.x/ \ @�E/ D o.rn/;
Hn
�
Br.x/ \ .K n @�E/� D !n r

n C o.rn/ for Hn-a.e. x 2 K n @�E;(
Hn.Br.x/ \ @�E/ D !n r

n C o.rn/
Hn
�
Br.x/ \ .K n @�E/� D o.rn/ for Hn-a.e. x 2 @�E

as r ! 0C, by Egoroff’s theorem, up to decreasing K� and increasing !�, we can
also obtain

sup
x2K�n@�E

Hn.Br.x/ \ @�E/

C ��Hn
�
Br.x/ \ .K n @�E/� � !n rn�� � !�.r/rn;(4.5)
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sup
x2K�\@�E

��Hn.Br.x/ \ @�E/ � !n rn
��

CHn
�
Br.x/ \ .K n @�E/� � !�.r/rn;(4.6)

while still keeping Hn.K nK�/ < � and !�.r/! 0C as r ! 0C.
Let fEj gj be a minimizing sequence for  ."/ converging to .K;E/ as in (1.13),

and consider a point x 2 K�. Given � 2 .0; 1/ and � 2 .0; �/, for a.e. r < r�.�/

such that B2r.x/ b �, we have that @Sx�;r \ @Ej is Hn�1-rectifiable for every j
(with the exceptional set depending on x). For such values of r and for every
� 2 .0; r=2/, we can set

F x
j D

(
F out
j if x 2 @�E [ .K� \E.1//;

F in
j if x 2 K� \E.0/;

with F out
j and F in

j defined as in Step 5 of the proof of Theorem 1.4. In particular,
F x
j 2 E , �\ @F x

j is C-spanningW , F x
j n cl.Sx�;r/ D Ej n cl.Sx�;r/, and, as proved

in (3.55), for a.e. r < r�.�/ we have

(4.7)
lim sup
�!0C

��Hn
��
y 2 cl.Sx�;r/ \ @F x

j W Ty.@F x
j / D Tx

	� � �.x/!n rn��
� C.n/� rn C C.n; �/�rn C o.1/ as j !1;

where �.x/ D 1 if x 2 @�E and �.x/ D 2 if x 2 K \ .E.0/ [E.1//, as well as

(4.8) lim sup
j!1

lim sup
�!0C

Hn.Sx�;r \ @F x
j / � C.n; �/�rnI

see (3.35), (3.38), (3.50), and (3.53). By Besicovitch-Vitali’s covering theorem
and by Federer’s theorem (2.1), we can find a finite disjoint family of closed balls
fBi D cl.Bri .xi //gi such that Bi b � and

(4.9)
Hn
�
K�

�[
Bri .xi /

�
< �;

xi 2 K� \ .E.0/ [E.1/ [ @�E/; ri < r�.�/:

We let � < minifri=2g, define F xi
j accordingly, and set

Si D Sxi�;ri b Bi ; Ti D Txi ; F i
j D F

xi
j :

Correspondingly, we define a sequence fFj gj � E with�\@Fj C-spanningW by
setting

(4.10) Fj
�[

i

Bi D Ej
�[

i

Bi ; Fj \ Bi D F i
j \ Bi :

Since F i
j n cl.Si / D Ej n cl.Si / we find that

(4.11) Fj
�[

i

cl.Si / D Ej
�[

i

cl.Si /
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and, setting

(4.12) �i D 1 if xi 2 @�E; �i D 2 if xi 2 E.0/ [E.1/;

we deduce from (4.7) and (4.8) that, for each i ,

lim sup
�!0C

��Hn
��
y 2 cl.Si / \ @Fj W Ty.@Fj / D Ti

	� � �i !n rni ��
� C.n/� rni C C.n; �/�rni C o.1/;

(4.13)

lim sup
�!0C

Hn.Si \ @Fj / � C.n; �/�rni C o.1/;(4.14)

as j ! 1. Now let C� and "� be the volume-fixing variation constants defined
by f .E/. By the monotonicity formula (3.27), which can be applied to Bri .xi / as
xi 2 K, we have

(4.15) e��r�.�/�i!nr
n
i � e��ri �i!nrni � �.Bri .xi // D �.Si /

where in the last identity we have used (4.3), and where � depends on E. By
(4.15), �i � 1, and � D � Hn xK with � � 2,

(4.16)
X
i

rni � C.n;E/
X
i

Hn.K \ Bi / � C.n;E/Hn.K/ D C.n;E;K/

so that, by (4.11), jSi j � C.n/� rnC1i , and ri � r�.�/ � 1, we find

jFj�Ej j �
X
i

jSi j � C.n;E;K/�:

Therefore,

jf .Fj /�f .E/j � C
�
n;E;Lip.f /;Hn.K/

�f� C jEj�Ejg < "�
provided j is large enough and � is small enough depending on "�. By the volume-
fixing variations construction, for each j large enough there exists a smooth map
�j W .�"�; "�/ � RnC1 ! RnC1 such that, for every jvj < "�, �j .v; �/ is a
diffeomorphism with �j .v;�/ D � and���j �v; f .Fj /��� D v C ��f .Fj /��; Hn

�
�j .v;�/

� � Hn.�/C C� jvjHn.�/;

for every Hn-rectifiable set � � �. In particular, if we set

Gj D �j .vj ; f .Fj //; vj D jf .E/j � jf .Fj /j D jEj � jf .Fj /j;
then we find that Gj 2 E , jGj j D jEj D ", and

Hn.�\ @Gj / �
�
1CC �n;E;Lip.f /;Hn.K/

��
� CjEj�Ej

	�
Hn.�\ @f .Fj //:

Since � \ @Fj is C-spanning W , so is � \ @Gj thanks to Lemma 2.3, so that the
minimizing sequence property of Ej implies

(4.17) Hn.� \ @Ej / �
�
1C C

�
� C jEj�Ej

	�
Hn.� \ @f .Fj //C 1

j
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where, here and for the rest of the proof, C is a generic constant depending on K,
E, f , and n. We now claim that

(4.18) lim sup
�!0C

lim sup
j!1

lim sup
�!0C

Hn.� \ @f .Fj // � F.f .K/; f .E//C C�:

Notice that by combining (4.17) and (4.18), and by finally letting � ! 0C, we
complete the proof of (4.1).

To prove (4.18), we notice that f .�/ D �, � \ @f .Fj / D f .� \ @Fj /, and
(4.11) yield

Hn.� \ @f .Fj //
� Hn

�
f
�
� \ @Ej n

[
i

cl.Si /
��

C
X
i

ˆ
cl.Si /\@Fj

J @Fj f dHn

where

lim sup
j!1

lim sup
�!0C

n

H
�
f
�
� \ @Ej

�[
i

cl.Si /
��

� CHn
�
K
�[

i

Si

�
� C�

by (4.3), (4.9), and Hn.K nK�/ < � . Hence, as

Hn.� \ @f .Fj // �
X
i

ˆ
cl.Si /\@Fj

J @Fj f dHn C C� C o.1/(4.19)

where o.1/! 0C if we let first �! 0C and then j !1.
If we set

Zi D
�
y 2 @Si \ @Fj W Ty.@Fj / D Ti

	
then by (4.13) and (4.14) we find

Hn
��

cl.Si / \ @Fj
�
�Zi

� � C.n/� rni C C.n; �/�rni C o.1/��Hn.Zi / � �i!nrni
�� � C.n/� rni C C.n; �/�rni C o.1/

where o.1/ ! 0C if we let first � ! 0C and then j ! 1. Also, it follows from
(4.15), the characterization of �, and (4.6) that

(4.20) e��r�.�/ �i !n r
n
i � �i Hn.Si \K/C !�.ri /r

n
i :
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By (4.4), (4.20), and ri < r�.�/, we thus find

(4.21)

ˆ
cl.Si /\@Fj

J @Fj f

�
ˆ
Zi

J Tif C .Lip f /nfC.n/� C C.n; �/�g rni C o.1/

� �i!nrni
�
J Tif .xi /C C.n/!�.ri /

	C C
�
� C C.n; �/�

	
rni C o.1/

� �J Tif .xi /C C
�
!�.r�.�//C � C C.n; �/�

�	
� �

�i Hn.Si \K/C !�.r�.�//r
n
i

�
e�r�.�/ C o.1/

D J Tif .xi /
�
�i Hn.Si \K�/C �i C !�.r�.�//r

n
i

�
e�r�.�/

C C f!�.r�.�//C � C C.n; �/�g�Hn.Si \K/C !�.r�.�//r
n
i

�
e�r�.�/

C o.1/

where we have set

(4.22) �i D �i Hn.Si \ .K nK�// so that
X
i

�i < 2�:

Now, again by (4.4) we see that

�iJ
Tif .xi /Hn.Si \K�/ � �i

ˆ
Si\K�

JKf dHn C C.n/!�.ri /Hn.Si \K�/

D �i2Hn.f .Si \K�//C C.n/!�.ri /Hn.Si \K�/:

By combining this last relation with (4.16), (4.19), (4.21), and ri < r�.�/, we find
that

(4.23)
Hn.� \ @f .Fj // � e�r�.�/

X
i

�iHn.f .Si \K�//

C C f!�.r�.�//C � C C.n; �/�g e�r�.�/ C o.1/

with o.1/! 0 as first �! 0C and then j !1. If xi 2 K� n @�E, then �i D 2

and by (4.5) we have

�i Hn.f .Si \K�// � 2Hn
�
f
�
Si \ .K� n @�E/��C 2Lip.f /n !�.ri /rni

� 2Hn
�
f
�
Si \ .K n @�E/��C C!�.r�.�//r

n
i I

if, instead, xi 2 @�E, then �i D 1 and (4.6) give

�iHn.f .Si \K�// � Hn
�
f
�
Si \K� \ @�E��C Lip.f /n!�.ri /rni

� Hn
�
f .Si \ @�E/

�C C!�.r�.�//r
n
i :
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Combining these last two estimates with (4.16), we findX
i

�i Hn.f .Si \K�// �
X
i

2Hn
�
f
�
Si \ .K n @�E/��CHn

�
f .Si \ @�E/

�
C C!�.r�.�//

X
i

rni

� F
�
f .K/; f .E/I

[
i

f .Si /
�
C C!�.r�.�//;

where f .@�E/ D @�f .E/ by Lemma A.1. Combining this last estimate with
(4.23) we find

Hn.� \ @f .Fj //
� e�r�.�/�F.f .K/; f .E//C C

�
!�.r�.�//C � C C.n; �/�

		C o.1/

where o.1/! 0 as first �! 0C and then j !1; in particular, (4.18) holds.
We now conclude the proof. As explained, (4.18) implies (4.1). By a classical

first variation argument (see Appendix C), we deduce the existence of � 2 R such
that

(4.24) �

ˆ
@�E

X � �E dHn D
ˆ
@�E

divK X dHn C 2

ˆ
Kn@�E

divK X dHn

for every X 2 C 1
c .RnC1IRnC1/ with X � �� D 0 on @�. Let us now consider the

integer rectifiable varifold V supported on K, with density 2 on K n @�E and 1 on
@�E. By (4.24), we can compute the first variation of V as

�V .X/ D
ˆ

EH �X dkV k 8X 2 C 1
c .�IRnC1/

where EH D 0 on K n @�E and EH D � �E on @�E. In particular, EH 2 L1.kV k/,
and by Allard’s regularity theorem [47, chap. 5], we have K D � [ Reg, where
� � K is closed and has empty interior in K, and where for every x 2 Reg there
exists a C 1;�-function u defined on Rn such that

(4.25) Brx=2.x/ \K D Brx=2.x/ \ Reg D Brx=2.x/ \ graph.u/:

By the divergence theorem, if x 2 Reg\ @E, then, by (4.25) and by�\ @E � K,

E D epigraph.u/ inside Brx=2.x/;(4.26)

K D @E D graph.u/ inside Brx=2.x/;(4.27)

which imply Reg\@E � �\@�E. Conversely, if x 2 �\@�E, then Hn.Br.x/\
.K n @�E// D o.rn/ and Hn.Br.x/\ @�E/ D !n r

n C o.rn/ as r ! 0C, so that
Allard’s regularity theorem implies � \ @�E � Reg \ @E. Thus Reg \ @E D
� \ @�E, and, in particular, � \ .@E n @�E/ � �, so that � \ .@E n @�E/ has
empty interior in K. Moreover, by (4.26), (4.24) implies that the graph of u has
constant mean curvature in Brx=2.x/, and thus that @�E is a smooth hypersurface;
see, e.g., [27, sec. 8.2]. Finally, (4.24) implies that K n @E is the support of a
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multiplicity 1 stationary varifold in the open set � n @E, so that K n .� [ @E/ is
a smooth hypersurface with zero mean curvature and Hn.� n @E/ D 0. The proof
of Theorem 1.6 is complete. �

5 Convergence to Plateau’s Problem: Proof of Theorem 1.9
This section is devoted to showing that  ."/ ! 2` as " ! 0C and that a se-

quence f.Kh; Eh/gh of generalized minimizers for  ."h/ with "h ! 0C as h !
1 has to converge to a minimizer S for Plateau’s problem ` counted with multi-
plicity 2 in the sense of Radon measures. If one could prove the latter assertion
directly, then the former would follow at once by lower semicontinuity of weak-
star converging Radon measures and by the upper bound  ."/ � 2`C C"n=.nC1/

proved in (3.2). A possible direct approach to the convergence of .Kh; Eh/ to
a minimizer of Plateau’s problem may be tried using White’s compactness theo-
rem [50]. That would require proving an L1-bound on the first variations of the
varifolds Vh supported on Kh with density 1 on � \ @�Eh and with density 2 on
Kh n @�Eh. The validity of such bound is supported by the analysis of simple
examples like Example 1.1 and Example 1.2. However, Example 1.2 also indi-
cates that when singularities are present in the limit Plateau minimizers S , then an
L1-bound for the mean curvatures of the varifolds Vh would result from a quan-
titative balance between the rate of divergence towards �1 of the constant mean
curvatures of the reduced boundaries @�Eh and the rate of vanishing of the areas
Hn.� \ @�Eh/. Validating a quantitative analysis of this kind in some general-
ity would be of course very interesting per se as a way to describe the behavior
of generalized minimizers; nonetheless, completing this analysis has so far eluded
our attempts.

Coming back to the proof of Theorem 1.9, we adopt a different approach. We
prove directly that  ."/ ! 2` as " ! 0C by exploiting the same “compactness-
by-comparison” strategy adopted in the proof of Theorem 1.4. An interesting point
here is that because jEhj D "h ! 0C, we do not have a limit set that we can
use to uniformly adjust volumes among local competitors of the elements of the
minimizing sequence, and have to use a sort of “absolute minimality at vanish-
ing volumes” of any sequence f.Kh; Eh/gh of generalized minimizers such that
limh!1F.Kh; Eh/ is equal to lim inf"!0C  ."/.

PROOF OF THEOREM 1.9.
Step 1. We start by proving that  is lower-semicontinuous on .0;1/. Given

"0 > 0, let "j ! "0 > 0 as j !1 be such that

lim
j!1

 ."j / D lim inf
"!"0

 ."/;

and let Ej 2 E be such that jEj j D "j and Hn.� \ @Ej / �  ."j / C 1=j . By
(3.2),  ."j / is bounded in j , and thus by the compactness criteria for sets of finite
perimeter and for Radon measures we have that, up to extracting subsequences,
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�j D Hn x .� \ @Ej / �
* � as Radon measures in � and Ej ! E in L1loc.�/,

where� is a Radon measure in�, and whereE � � is a set of finite perimeter. We
now repeat the proof of Theorem 1.4, with the only difference being that while jEj j
was constant in that proof, we now have that jEj j D "j ! "0 for some "0 > 0. The
modifications are minimal. In Step 2 (nucleation of the sequence Ej ), we repeat
verbatim the argument, using the facts that jEj j � "0=2 and that Hn.� \ @Ej / �
2`C C"

n=.n�1/
0 C 1 in place of jEj j D " and Hn.� \ @Ej / �  ."/C 1. Based

on Step 2, in Step 3 we construct volume-fixing variations with uniform constant
"� and C�, and then repeat the rest of the argument without modifications. As a
consequence, we can show that � D � Hn xK and .K;E/ 2 K is a generalized
minimizer of  ."0/, with

 ."0/ D �.�/ D lim
j!1

�j .�/ � lim
j!1

 ."j / D lim inf
"!"0

 ."/

as claimed. The key information here is of course that jEj j � "0=2 where "0 > 0.
If "0 D 0, then the nucleation lemma is inconsequential, and the argument cannot
be used.

Step 2. Thanks to (3.2), to prove  ."/ ! 2` as " ! 0C we just need to show
that

(5.1) lim inf
"!0C

 ."/ � 2`:

To this end, we pick a sequence "h ! 0C such that

lim inf
"!0C

 ."/ D lim
h!1

 ."h/:(5.2)

Notice that, in this way, given an arbitrary sequence �h ! 0C, we have

(5.3) lim sup
h!1

� ."h/ �  .�h/� � 0:

Let fEh;j gj be a minimizing sequence in  ."h/. By Theorem 1.4, there exists a
generalized minimizer .Kh; Eh/ in ."h/ such that, up to extracting subsequences,

Eh;j ! Eh in L1.�/ as j !1;
�h;j´ D Hn x .� \ @Eh;j /

�
* �h as Radon measures in � as j !1;

jEh;j j D "h and Hn.� \ @Eh;j / �  ."h/C
1

j
8j 2 N

where, by (3.2) and up to extracting a further subsequence,

(5.4) �h D 2Hn x .Kh n @�Eh/CHn x .� \ @�Eh/
�
* �

as Radon measures in �.
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Given x 2 � \ spt�, we set d.x/ D dist.x; @�/, and let

Hx;r D fh 2 N W jEh n Br.x/j > 0g;
Ix D fr 2 .0; d.x// W Hx;r is infiniteg:(5.5)

We now look at local variations Fh;j ofEh;j such that jFh;j j has a positive limit
volume �h as j ! 1, which in turn satisfies �h ! 0C as h ! 1. The idea is
that, by (5.3), we will be able to use such variations to gather information on �.

Claim: For every r 2 Ix , if fFh;j gh2Hx;r ; j2N � E is such that � \ @Fh;j is C-
spanning W and Fh;j�Eh;j � cl.Br.x// for every h 2 Hx;r and every j 2 N,
and if

(5.6) 9 �h D lim
j!1

jFh;j j > 0 and lim
h2Hx;rh!1

�h D 0;

then

(5.7) �.Br.x// � lim inf
h2Hx;rh!1

lim inf
j!1

Hn.cl.Br.x// \ @Fh;j /:

To prove this claim, we first notice that, for every h 2 Hx;r ,

(5.8) �h D lim
j!1

jFh;j j � jEh n Br.x/j > 0:

In particular, for j large enough, jFh;j j > 0,  .jFh;j j/ is well-defined, and Fh;j
is a competitor for  .jFh;j j/, so that

 
�jFh;j j� � Hn.� \ @Fh;j /

D Hn
�
cl.Br.x// \ @Fh;j

�CHn
�
@Eh;j \� n cl.Br.x//

�
� Hn.cl.Br.x// \ @Fh;j /C  ."h/C

1

j
�Hn.@Eh;j \ Br.x//;

which can be recombined into

�h;j .Br.x// � Hn
�
cl.Br.x// \ @Fh;j

�C  ."h/ �  
�jFh;j j�C 1

j
:

Letting j ! 1, by �h;j
�
* �h, jFh;j j ! �h > 0, and the lower semicontinuity

of  on .0;1/, we find that

�h.Br.x// � lim inf
j!1

Hn
�
cl.Br.x// \ @Fh;j

�C  ."h/ �  .�h/:

Since �h ! 0C as h!1 with h 2 Hx;r , by �h
�
* � and (5.3) we deduce (5.7),

and thus prove the claim.
Step 3. We now fix x 2 spt�, set f .r/ D �.Br.x//, and prove that, for a.e.

r 2 Ix , (
either f 0.r/ � c.n/rn�1
or .f 1=n/0.r/ � c.n/(5.9)
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f .r/ � r

n
f 0.r/:(5.10)

By using the coarea formula together with jEhj ! 0 as h ! 1 and Eh;j ! Eh
as j !1, we find that for a.e. r < d.x/,

@Eh;j \ @Br.x/ is Hn�1-rectifiable;(5.11)

lim
j!1

Hn.Eh;j \ @Br.x// D Hn.Eh \ @Br.x//;(5.12)

lim
h!1

lim
j!1

Hn.Eh;j \ @Br.x// D 0;(5.13)

for every h; j 2 N. Moreover, if we set

fh;j .r/ D �h;j .Br.x//; fh.r/ D �h.Br.x//:

then, again by the coarea formula and by Fatou’s lemma, for a.e. r < d.x/ we find

Hn�1.@Eh;j \ @Br.x// � f 0h;j .r/;
gh.r/ D lim inf

j!1
f 0h;j .r/ � f 0h.r/;

g.r/ D lim inf
h2Hx;r ;h!1

f 0h.r/ � f 0.r/;
(5.14)

for every h; j 2 N. We first prove (5.9). Let r 2 Ix be such that (5.11), (5.12),
(5.13), and (5.14) hold, and let Ah;j denote an Hn-maximal connected component
of @Br.x/ n @Eh;j . If Ah;j � Eh;j , then, by spherical isoperimetry, by (5.14), and
since the relative boundary to Ah;j in @Br.x/ is contained in @Br.x/ \ @Eh;j , we
find

f 0h;j .r/ � c.n/Hn.@Br.x/ n Ah;j /.n�1/=n;
where the lower bound converges to c.n/ rn�1 if we let first j ! 1 and then
h ! 1 thanks to (5.13); hence, if Ah;j � Eh;j , the first alternative in (5.9)
holds. We now assume that Ah;j \Eh;j D ¿, and consider the corresponding cup
competitor Fh;j as defined in Lemma 2.5 starting fromEh;j ,Ah;j . More precisely,
if
�
�
h;j

k

	1
kD1

denotes the corresponding sequence as in (2.49), we choose k.h; j /
so that, setting

Yh;j D @Br.x/ n cl
�
.Eh;j \ @Br.x// [ Ah;j

�
;

Sh;j D @Eh;j \ cl.Ah;j / n
�
cl..Eh;j \ @Br.x// [ Yh;j /

�
;

we have that �j D �
h;j

k.h;j /
satisfies �j � r

2j
, with

Hn.@Br.x/ \ fdSh;j � �j g/ �
1

j
;(5.15)

�jHn�1.@Br.x/ \ fdSh;j D �j g/ � 1

j
:(5.16)
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Then, with the usual notation

Uh;j D @Br.x/ \ fdSh;j < �j g; Zh;j D Yh;j [
�
Uh;j n cl.Eh;j \ @Br.x//

�
;

we define
Fh;j D

�
Eh;j n cl.Br.x//

� [N�j .Zh;j /:

By Lemma 2.5,Fh;j 2 E ,�\@Fh;j isC-spanningW andEh;j�Fh;j � cl.Br.x//.
Since �j ! 0 as j !1, we find

�h D lim
j!1

jFh;j j D lim
j!1

jEh;j n Br.x/j D jEh n Br.x/j;

so that �h > 0 if h 2 Hx;r , and �h ! 0C if we let h ! 1. Thus Fh;j satisfies
(5.6), and we can apply (5.7) to Fh;j . To estimate the upper bound in (5.7), we
look back at (2.40), (2.43), (2.44), and (2.47), and find that

(5.17)

Hn.cl.Br.x// \ @Fh;j /
� .2C C.n/ �j /Hn.@Br.x/ n Ah;j /
C .2C C.n/ �j /Hn.@Br.x/ \ fdSh;j � �j g/
C C.n; �j

�
Hn�1.@Br.x/ \ @Eh;j /
CHn�1.@Br.x/ \ fdSh;j D �j g/

�
:

By (5.7), (5.15), (5.16), and (5.17) we deduce that

f .r/ D �.Br.x// � lim inf
h2Hx;r ;h!1

lim inf
j!1

Hn
�

cl.Br.x// \ @Fh;j
�

� lim inf
h2Hx;r ;h!1

lim inf
j!1

2Hn.@Br.x/ n Ah;j /

� C.n/ lim inf
h2Hx;r ;h!1

lim inf
j!1

f 0h;j .r/
n=.n�1/

� C.n/ f 0.r/n=.n�1/:

(5.18)

We have thus proved that the second alternative in (5.9) holds, as claimed. We now
prove (5.10): let us now denote by Fh;j the set defined by Lemma 2.9 as approx-
imation of the cone competitor corresponding to Eh;j in Br.x/ with � D �j D
r=2j . We have that Fh;j 2 E and that � \ @Fh;j is C-spanning W ; furthermore,
by (2.72) and (5.12) we find

�h D lim
j!1

jFh;j j � jEh n Br.x/j C
r

nC 1
Hn.Eh \ @Br.x//

(in particular, �h > 0 if h 2 Hx;r ) and, by (5.13), �h ! 0C as h!1. Thus (5.6)
holds, and we can deduce from (5.7) and (2.71) that

f .r/ D �.Br.x// � lim inf
h2Hx;r ;h!1

lim inf
j!1

r

n
Hn�1.@Eh;j \ @Br.x// �

r

n
f 0.r/;

that is (5.10).
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Step 4. We now define a function g W �! .0;1/ [ f�1g by letting

g.x/ D sup
�
s > 0 W .0; s/ � Ix

	
D sup

�
t > 0 W if s < t , then jEh n Bs.x/j > 0 for infinitely many h

	
:

We notice that

g is lower semicontinuous on �;(5.19)
fg D �1g contains at most one point:(5.20)

(Notice that fg D �1g may indeed contain one point: this is the case of the
singular point of a triple junction; see Figure 1.3-(b)). To prove (5.19): if g.x/ ¤
�1, then g.x/ > 0, and for every s 2 .0; g.x//, jEh n Bs.x/j > 0 for infinitely
many h. Thus, if � 2 .0; g.x// andm� is such that jx�xmj < � for everym � m�,
then, for every m � m� and s 2 .0; g.x/ � �/,

jEh n Bs.xm/j � jEh n BsC�.x/j > 0; for infinitely many h;

that is g.x/ � � � g.xm/ for every m � m�; this proves (5.19). Next, if g.x1/ D
g.x2/ D �1, then for every s > 0 there exists h.s/ such that

jEh n Bs.x1/j D jEh n Bs.x2/j D 0 8h � h.s/:
If x1 ¤ x2 we can take s D jx1 � x2j=2 and deduce jEhj D 0; thus (5.20) holds.

Let us now consider the open set fg > sg � �, s > 0, and set

Z.s/ D spt� \ fg > sg; Z D spt� \ fg > 0g:
We claim that if x 2 Z.s/, then

(5.21) f .r/ � c0.n/ rn 8r 2 .0; s/; r�n f .r/ increasing over r 2 .0; s/:
The second assertion is immediate from (5.10). To prove the first one, set

L1 D
�
r 2 .0; s/ W f 0.r/ � c.n/ rn�1	; L2 D .0; s/ n L1;

with c.n/ as in (5.9). If x 2 Z.s/ is such that H1.L1/ � s=2, then for every
r 2 .0; s/

f .r/ �
ˆ
L1\.0;r/

f 0 � c.n/
ˆ
L1\.0;r/

tn�1 dt

� c.n/
ˆ minfr;s=2g

0

; tn�1 dt � c.n/

n 2n
rnI

if instead H1.L2/ � s=2, then for every r 2 .0; s/,
f .r/1=n �

ˆ
L2\.0;r/

.f 1=n/0 � c.n/H1.L2 \ .0; r//

� c.n/min
�
r;
s

2

�
� c.n/

2
r;

where we have used the fact that, by (5.9), we have .f 1=n/0 � c.n/ on L2. Thanks
to (5.21) we are in the position of using [45, theorem 6.9] and Preiss’ theorem
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(as done in Step 4 of the proof of Theorem 1.4) on each Z.s/, to find that Z is
Hn-rectifiable with

(5.22) � xZ D �Hn xZ;

where the density

�.x/ D lim
r!0C

�.Br.x//

!n rn
exists in �c0.n/;1/ for every x 2 Z:

Moreover, by (5.20),

(5.23) H0.spt� nZ/ � 1:
By combining (5.22) and (5.23) we find that K D spt� is Hn-rectifiable and such
that � D � Hn xK. SinceKh D spt�h is C-spanningW and �h

�
* �, by Lemma

2.1 we find that K is C-spanning W , and thus admissible in `, so that
lim inf
"!0C

 ."/ D lim
h!1

�h.�/ � �.�/

D
ˆ
K

� dHn � min
K
�Hn.K/ � `min

K
�:

(5.24)

Thus, to complete the proof of (5.1) we just need to show that

(5.25) � � 2Hn-a.e. on K:

Since �h;j D Hn x .� \ @Eh;j /
�
* �h as j ! 1, with �h

�
* � Hn xK as

h!1, we can extract a diagonal subsequence j D j.h/ so that, denoting E�
h
D

Eh;j.h/, fE�
h
gh � E , � \ @E�

h
C-spanning W , and

��h D Hn x .� \ @E�
h /

�
* � Hn xK as h!1:

Moreover, �.Br.x// � c.n/rn for every r 2 .0; s/ if x 2 K\fg > sg and, thanks
to (5.17),

lim inf
h!1

Hn.Br.x/ \ @E�
h / � C.n/ lim inf

h!1
Hn
�
@Br.x/ n A0r;h

�
where A0

r;h
denotes an Hn-maximal connected component of @Br.x/ n @E�

h
, this

time for every x 2 K and Br.x/ b �. We can thus apply Lemma 2.11 with the
open set �0 D fg > sg to deduce that

� � 2Hn-a.e. on fg > sg \K n @�E�

where E� D ¿ is the L1-limit of the sets E�
h

. Since @�E� D ¿, taking the union
over s > 0 and recalling (5.23), we conclude that (5.25) holds.

Step 5. Now that  ."/ ! 2` as " ! 0C has been proved, let .Kh; Eh/ be a
sequence of generalized minimizers of  ."h/ for an arbitrary sequence "h ! 0C.
Since the limit of  ."/ as " ! 0C exists, "h automatically satisfies (5.2), and
the arguments of Steps 2 to 4 can be repeated verbatim. Correspondingly, up to
extracting subsequences, (5.4) holds with � D �Hn xK, � � 2 Hn-a.e. on K,
and K a relatively compact subset of �, Hn-rectifiable, and C-spanning W . By
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plugging  ."/ ! 2` as " ! 0C in (5.24), we find that � D 2 Hn-a.e. on K,
2Hn.K/ D 2`, so that K is a minimizer of `, and thus, looking back at (5.4), we
conclude that (1.18) holds. �

Appendix A A Technical Fact on Sets of Finite Perimeter
LEMMA A.1. If � is an open set in RnC1, E is a set of finite perimeter in �, and
f W � ! � is a diffeomorphism, then f .E/ is a set of finite perimeter in � with
@�f .E/ D f .@�E/ and

(A.1) �f .E/.f .x// D
.rg.f .x///T�E .x/
j.rg.f .x///T�E .x/j 8x 2 @�E

where g D f �1.

PROOF. In [42, prop. 17.1, remark 17.2] it is shown that f .E/ is a set of finite
perimeter with

�f .E/ D f#
�
Jf .rg.f //T �E

�
;

and that mapping by f preserves essential boundaries (thus just theHn-equivalence
of @�f .E/ and f .@�E/ is deduced there). In order to prove @�f .E/ D f .@�E/,
we pick a ball Br.f .x// b �, and look at

(A.2)

�f .E/.Br.f .x///

j�f .E/j.Br.f .x///
D
´
g.Br .f .x///\@�E

Jf rg.f /T�E dHn

´
g.Br .f .x///\@�E

Jf jrg.f /T�E j dHn

D
´
.@�E�x/=r ur.´/�E .x C r ´/dHn

´´
.@�E�x/=r jur.´/�E .x C r ´/j dHn

´

;

where we have set

Fr D g.Br.f .x/// � x
r

; ur.´/ D 1Fr
.´/Jf .x C r ´/rg.f .x C r ´//T:

If we set F D L.B1.0// for the linear map L D rg.f .x//, then for every " > 0

we have

L.B1�".0// � Fr � L.B1C".0// provided r is small enough,

and thus, as r ! 0C,

1Fr
! 1F uniformly on RnC1 nX"

where we have set
X" D L.B1C".0/ n B1�".0//:

Since Fr ; F � BLipg.0/, and since for every R > 0

Jf .x C r ´/rg.f .x C r ´//T ! Jf .x/rg.f .x//T uniformly on j´j � R
as r ! 0C, we conclude that

(A.3) ur.´/! u.´/ WD 1F .´/Jf .x/rg.f .x//T uniformly on RnC1 nX":
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We now decompose the integrals over .@�E�x/=r appearing in (A.2) throughX".
By (A.3), ����

ˆ
�.@�E�x/=r�nX"

ur.´/�E .x C r ´/dHn
´

�
ˆ
�.@�E�x/=r�nX"

u.´/�E .x C r ´/dHn
´

���
� !.r/Hn.BLipg.0/ \ �.@�E � x/=r� nX"/

� !.r/P.EIBr Lipg.x//! 0

as r ! 0C, while x 2 @�E gives

lim
r!0C

ˆ
�.@�E�x/=r�nX"

u.´/�E .x C r ´/dHn
´ D
ˆ
Tx.@�E/nX"

u.´/�E .x/dHn
´:

At the same time, since jur j � C for a constant C independent of r , we have����
ˆ
X"\�.@�E�x/=r�

ur.´/�E .x C r ´/dHn
´

����
� CHn

�
X" \ @�E � x

r

�
! CHn.X" \ Tx.@�E//

as r ! 0C. Combining the above estimates with juj � C , we finally find

lim sup
r!0C

����
ˆ
.@�E�x/=r

ur.´/�E .x C r ´/dHn
´ �
ˆ
Tx.@�E/

u.´/�E .x/dHn
´

����
� CHn.X" \ Tx.@�E// 8" > 0:

Letting "! 0C, we find Hn.X" \ Tx.@�E//! Hn.X \ Tx.@�E// where

X D L.@B1.0//:

Since L is invertible, L.@B1.0// intersects transversally any plane through the ori-
gin, and in particular Tx.@�E/. Therefore Hn.X \ Tx.@�E// D 0, and we have
proved

lim
r!0C

ˆ
.@�E�x/=r

ur.´/�E .x C r ´/dHn
´ D
ˆ
Tx.@�E/

u.´/�E .x/dHn
´

D Jf .x/LT �E .x/Hn.F \ Tx.@�E//:
An analogous argument shows

lim
r!0C

ˆ
.@�E�x/=r

jur.´/�E .x C r ´/jdHn
´

D Jf .x/jLT�E .x/jHn.F \ Tx.@�E//;
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and finally we conclude that if x 2 @�E, then

lim
r!0C

�f .E/.Br.f .x///

j�f .E/j.Br.f .x///
D LT �E .x/

jLT �E .x/j 2 Sn:

In particular, f .x/ 2 @�f .E/ and (A.1) holds. �

Appendix B Boundary Density Estimates
for the Harrison-Pugh Minimizers

In this appendix we prove that when @W is smooth and ` < 1, then every
minimizer S of ` satisfies uniform lower density estimates up to the boundary
of �.

THEOREM B.1. If ` <1, @W is smooth, and S is a minimizer of `, then

(B.1) Hn.Br.x/ \ S/ � c.n/rn 8x 2 cl.S/r 2 .0; r0/
for a value of r0 depending on W .

PROOF. By Lemma 2.4, and since S minimizes Hn with respect to every rela-
tively closed subset of � that is C-spanning W (recall (1.8)), we have

(B.2) Hn.S/ � Hn.f .S//

whenever f W cl.�/ ! cl.�/ is a homeomorphism with f .@�/ D @�, ff ¤
idg b Br0.x/ for x 2 @�, and f .Br0.x/ \ cl.�// D Br0.x/ \ cl.�/ for r0
depending on W . We immediately deduce from (B.2), that

(B.3)
ˆ
S

divS X dHn D 0

for every X 2 C 1
c .Br0.x/IRnC1/ with X � �� D 0 on @�. Since S is an Almgren

minimizer in �, (B.3) also holds for every X 2 C 1
c .�IRnC1/. Finally, we deduce

the validity of (B.3) for every X 2 C 1
c .RnC1IRnC1/ with X � �� D 0 on @� by a

standard covering argument.
The validity of (B.3) for every X 2 C 1

c .RnC1IRnC1/ with X � �� D 0 on @�
is a distributional formulation of Young’s law, which has been extensively studied
in the classical work of Grüter and Jost [30], and has been recently extended to
arbitrary contact angles by Kagaya and Tonegawa [36]. The main consequence of
(B.3) we shall need here is an adapted monotonicity formula that takes care of the
local geometry of @W . We now introduce this tool and then complete the proof.

Let r0 be sufficiently small so that Ir0.@W / admits a well-defined nearest-point
projection map�W Ir0.@W /! @W of class C 1. By [36, theorem 3.2], there exists
a constant C D C.n; r0/ such that for any x 2 Ir0=6.@W / \ cl.�/ the map

(B.4) r 2 .0; r0=6/ 7! Hn.S \ Br.x//CHn.S \ zBr.x//
!n rn

eCr
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is increasing, where

(B.5) zBr.x/ WD fy 2 RnC1 W zy 2 Br.x/g; zy WD �.y/C .�.y/ � y/;
denotes a sort of nonlinear reflection of Br.x/ across @W . In particular, the limit

(B.6) �.x/ D lim
r!0C

Hn.S \ Br.x//CHn.S \ zBr.x//
!n rn

exists for every x 2 Ir0=6.@W / \ cl.�/ , and the map x 7! �.x/ is upper-
semicontinuous in there; see [36, cor. 5.1].

Next, we recall from [36, lemma 4.2] a simple geometric fact: if x 2 Ir0.@W /,
and � > 0 is such that dist.x; @W / � � and B�.x/ � Ir0.@W /, then

(B.7) zB�.x/ � B5�.x/:

We are now in the position to prove (B.1). First of all we recall that, since S defines
a multiplicity 1 stationary varifold in �, we have

(B.8) Hn.S \ Br.x// � !n rn 8x 2 S;Br.x/ b �:

In particular, (B.1) holds with c D !n for all x 2 S n Ir0=6.@W / as soon as
r < r0=6. Therefore we can assume that

(B.9) x 2 cl.S/ \ Ir0=6.@W /:
We first notice that we have �.x/ � 1: by upper semicontinuity of � on cl.S/ \
Ir0=6.@W /, we just need to show this when, in addition to (B.9), we have x 2 S ,
and indeed in this case,

�.x/ � lim
�!0C

Hn.S \ B�.x//
!n �n

� 1;

thanks to (B.8); this proves �.x/ � 1. Now we fix r < 5r0=6 and distinguish two
cases depending on the validity of

(B.10) dist.x; @W / >
r

5
:

If (B.10) holds, then by (B.8),

Hn.S \ Br.x// � Hn.S \ Br=5.x// � !n
�
r

5

�n
thus proving (B.1). If dist.x; @W / � r=5, then, thanks to the obvious inclusion
Br.x/ � Ir0.@W /, we can apply (B.7) with � D r=5 to find zBr=5.x/ � Br.x/. In
this way, by exploiting �.x/ � 1 and (B.4), we get

c.n/rn � �.x/!n
�
r

5

�n
� �Hn.S \ Br=5.x//CHn.S \ zBr=5.x//

�
eCr=5

� 2Hn.S \ Br.x//eCr0 � 4Hn.S \ Br.x//
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up to further decreasing r0. �

Appendix C A Classical Variational Argument
Let .K;E/ be a generalized minimizer of ."/. In Theorem 1.6, we have proved

that if f W �! � is a diffeomorphism such that jf .E/j D jEj, then

(C.1) F.K;E/ � F.f .K/; f .E//:

Here we show how to deduce from (C.1) the existence of � 2 R such that

(C.2) �

ˆ
@�E

X � �E dHn D
ˆ
@�E

divK X dHn C 2

ˆ
Kn@�E

divK X dHn

for every X 2 C 1
c .RnC1IRnC1/ with X � �� D 0 on @�. This is proved following

a classical argument; see, e.g., [42, theorem 17.20].
We first treat the case when we also have

(C.3)
ˆ
@�E

X � �E dHn D 0:

In this case, let Y 2 C 1
c .�IRnC1/ be such thatˆ

@�E

Y � �E dHn D 1

and set
ft;s.x/ D x C tX.x/C sY.x/ x 2 �:

Given that X � �� D 0 on @� and that @� is smooth, it is easily seen that for t and
s sufficiently small, ft;s is a diffeomorphism from � to �. In particular, the map

'.t; s/ D jft;s.E/j
is such that '.0; 0/ D jEj, .@'=@t/.0; 0/ D 0 by (C.3), and .@'=@s/.0; 0/ D 1 by
the assumption on Y , so that, by the implicit function theorem we have '.t; s.t// D
jEj for every t sufficiently small and for s.t/ D O.t2/. Setting gt D ft;s.t/, by
(C.1), we find that

m.t/ D 2Hn.gt .K/ n @�gt .E//CHn.� \ @�gt .E//
has a minimum at t D 0. By Lemma A.1, we can write

m.t/ D 2Hn.gt .K n @�E//CHn.gt .� \ @�E//:
By the area formula, and since s.t/ D O.t2/ gives .@gt=@t/jtD0 D X , we de-
duce the validity of (C.2) when (C.3) holds. Let us now consider two fields Xk 2
C 1
c .RnC1IRnC1/, k D 1; 2, with Xk � �� D 0 on @� and set

X D X1 �
´
@�E X1 � �E dHn´
@�E X2 � �E dHn

X2:
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In this way X satisfies (C.3), and thus (C.2); as a consequence, the quantity´
@�E divK Xk dHn C 2

´
Kn@�E divK Xk dHn

´
@�E Xk � �E dHn

has the same value for k D 1; 2.
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