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Abstract Stochastic multi-agent systems raise the necessity to extend
probabilistic model checking to the epistemic domain. Results in this
direction have been achieved by epistemic extensions of Probabilistic
Computation Tree Logic and related Probabilistic Interpreted Systems.
The latter, however, suffer of an important limitation: they require the
probabilities governing the system’s behaviour to be fully specified. A
promising way to overcome this limitation is represented by imprecise
probabilities. In this paper we introduce imprecise probabilistic inter-
preted systems and present a related logical language and model-checking
procedures based on recent advances in the study of imprecise Markov
processes.
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1 Introduction

Probabilistic model checking arises in connection with the specification and veri-
fication of computational systems of stochastic nature. Broadly speaking, it in-
cludes a series of languages for specifying probabilistic properties of stochastic
systems and relative semantics based on Markov models [3]. Notable examples
of logical languages for property specification are PCTL [14], its extensions
(PCTL˚, PRCTL) and CSL [3]. Probabilistic model checking has been applied to
many different fields, such as software verification [7], communication protocols
[6], and even computational biology [8,5].

In recent years, the increasing relevance of stochastic multi agent systems
(MAS for short) has raised the necessity of extending probabilistic model check-
ing to languages endowed with epistemic modalities. Given its popularity, it has
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been natural to propose epistemic extensions of probabilistic model checking, in
particular within the field of MAS verification. Regarding property specification,
these extensions result in a series of languages merging PCTL and standard epi-
stemic operators for both single and multi-agent knowledge and belief (e.g. in
[26,9]). Regarding model specification, these extensions exploit the formalism of
so-called Probabilistic Interpreted Systems (PIS), a class of structures obtained
by merging standard interpreted systems [24] with Markov models [3]. For ex-
ample, [26] introduces the logic PCTLK to represent probabilistic knowledge in
stochastic MASs. The logic is conceived to merge PCTL and epistemic operat-
ors, the former modelled through a probabilistic state-transition matrix, as in
standard PCTL, the latter modelled by epistemic accessibility relations as in
canonical interpreted systems. Furthermore, the paper proves the reducibility
of relevant model-checking tasks for PCTLK to more standard model-checking
procedures implementable in PRISM, the canonical software tool to model-check
probabilistic systems [18].

Despite their success, standard probabilistic model-checking and its epistemic
extensions suffer the limitation of requiring the probabilities describing the sys-
tem behaviour to be precisely defined. This represents a problem especially for
epistemic domains, because it is tantamount to assuming that an agent always
knows precisely all the probability values describing each possible state-transition
of the system. In other words, it is impossible to model agents with an high-order
uncertainty about transition probabilities. This is the case, for instance, when
agents in a MAS (partially) ignore the stochastic behaviour of other agents in
the system. A possible way to overcome this limitation is represented by so-
called parametric Markov models [2,10], which replace precise probabilities with
unknown parameters. In [2] for instance, the authors introduce an extension of
PCTL specific for parametric Markov chains. The complexity of the correspond-
ing model-checking procedure, based on fraction-free Gaussian elimination, is
however exponential in the number of states of the models, hence limiting its
applicability only to models of small size.

An alternative, but poorly explored, approach is offered by the formalism
of imprecise probabilities [25] and, for what interests us here, related impre-
cise Markov models such as imprecise Markov chains (IMC) [23,13,16]. Roughly,
IMCs are the imprecise counterparts of precise Markov chains obtained by re-
placing precise probability distributions with so-called Credal sets, i.e., sets of
probability distributions describing the model and compatible with some specific
constraints given by the agents [11].

A first attempt to extend probabilistic model-checking to imprecise probab-
ilities has been proposed in [23], which introduces an imprecise PCTL with a
semantics based on discrete-time imprecise Markov chains (IMC). The language
for properties specification is obtained by replacing the standard probability op-
erator with an operator for representing lower and upper bounds of imprecise
probability distributions. Model checking with respect to the new probability
operators is reduced to the computation of lower and upper bounds of marginal
probabilities on an IMC. These bounds are computed efficiently by means of



Logic and Model Checking by Imprecise Probabilistic Interpreted Systems 3

specific transition operators whose applicability is an optimisation task solv-
able through linear programming. This approach enables the authors to verify
that shifting from precise to imprecise probabilistic models does not affect the
overall complexity of the most relevant model-checking procedures. Another ex-
ample of imprecise probabilistic model-checking is offered in [21], which proposes
a semantics and corresponding model-checking procedures based on imprecise
Markov reward models. Differently from [23], the model-checking procedures
outlined by [21] are based on an algorithm proposed by [22] for computing,
among others, lower and upper bounds of hitting probabilities. The present work
extends the results presented in [21] with the as yet unexplored application of
model-checking with imprecise probabilistic models to the epistemic domain.

The paper is structured as follows. In Section 2 we recap some background
knowledge about Markov models and their imprecise counterparts. In Section 2.2
we introduce imprecise probabilistic interpreted systems, a new kind of structures
conceived as the imprecise counterparts of the probabilistic interpreted systems
proposed in [26]. In Section 3 we introduce a new language, called epistemic
imprecise PCTL (EIPCTL) extending standard PCTL with new imprecise-
probabilistic, epistemic and doxastic operators. In Section 3.2 we introduce a
proper semantics for EIPCTL based on imprecise probabilistic interpreted sys-
tems. In Section 4 we discuss relevant procedures for model checking imprecise
probabilistic interpreted systems against EIPCTL formulae. Interestingly, we
verify that shifting to imprecise probabilities does not affect the overall computa-
tional complexity of the relevant model-checking tasks, which therefore remains
polynomial in the number of states of the models. In Section 5, we propose a
simple illustrative example. Finally, in Section 6 we underline some conclusive
remarks about future extensions.

2 Background

Let S denote a finite non-empty set of possible states and S a variable taking
its values from S. A probability mass-function (PMF) over S, denoted as P pSq,
is a non-negative normalized real map defined over S. Furthermore, given a
real-values function f of S, its expectation based on P pSq, denoted EP rf s, is
defined as: Erf s :“

ř

sPS f ¨P pSq. A joint PMF P pS1, Sq is a PMF that gives for
each pair of states s, s1 the probability that s and s1 jointly occur. A conditional
PMF instead, defined as P pS1|sq :“ tP ps1, sq{P psqu@s1PS , is a PMF that assigns
to each s1 P S the probability of s1 to occur given that s occurred. Furthermore,
if P ps1|sq “ P ps1q for each s1 P S, we say that S1 is (stochastically) irrelevant to
s. It is easy to check that stochastic irrelevance and independence are equivalent.

A Credal Set (CS) over S, denoted by KpSq, is a collection of PMFs over
S compatible with some given constraints. We consider here only finitely gen-
erated CSs, i.e., CSs whose convex hull has only a finite number of extreme
points. Given a function f of S, its upper expectation with respect to KpSq is
defined as EP rf s :“ supP pSqPKpSqEP rf s while the lower expectation is defined
as E :“ infP pSqPKpSqEP rf s. Furthermore, as stated by [11], suprema (infima)
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of upper (lower) expectations can be equivalently reduced to maxima (mimima)
over the extreme points of the CS convexification. Consequently, we can identify
a CS with the extreme points of its convex hull. Given a joint CS KpS, S1q,
defined as a collection of joint PMFs P pS, S1q, the (marginal) CS KpS1q is ob-
tained by element-wise marginalization of S on its elements. At the same time,
if P psq ą 0 for each P pSq P KpSq, the conditional CS KpS1|sq can be obtained
by element-wise conditioning. Finally, we say that S is epistemically irrelevant
to S1 if and only if KpS1|sq “ KpS1q for each s P S. It is easy to check that epi-
stemic irrelevance is the generalization to the formalism of CSs of the standard
notion of stochastic irrelevance. Although in the present paper we decide to ad-
opt epistemic irrelevance as the standard generalization of stochastic irrelevance,
other possible ways of representing it are based on stochastic independence of
the CS elements, or of the CS extreme points (usually called, respectively, strict
and strong irrelevance) [12]. All these notions are equivalent for unconditional
queries [17], as it is the case for most of the inferential tasks considered in this
work.

2.1 Markovian Models

Precise Markov Chains. A precise discrete-time Markov Chain (MC, for short)
is a family of categorical stochastic variables tStutPN taking their values from
S, that satisfies the Markov property, i.e., P pSt`1|Stq “ P pSt`1|St, . . . , S0q, and
the stationarity assumption, i.e. P pSt`1|Stq is the same for each t P N. Given the
Markov property and the stationarity assumption, a MC can be fully described
by a single transition matrix T : S2 ÞÑ r0, 1s such that T ps, s1q :“ P pSt`1 “

s1|St “ sq for each ps, s1q P S2 and a t P N whose choice is arbitrary because of
stationarity.

To compute relevant inferences in MCs it is useful to introduce a transition
operator T̂ and its dual T̂ :. The former maps a non-negative real function f
defined over S to its left scalar product, i.e.:

pT̂ fqpsq :“
ÿ

s1PS
T ps1, sq ¨ fps1q ; (1)

for each s P S; while the latter maps the same function on the right scalar
product, i.e.:

pT̂ :fqpsq :“
ÿ

s1PS
T ps, s1q ¨ fps1q ; (2)

for each s P S. It is easy to check that T̂P pStq “ P pSt`1q hence, by the well-
known total probability theorem, T̂ tP pS0q “ P pStq. Similarly, it is also easy to
check that T̂ :fpStq “ ErfpSt`1q|Sts hence, by definition of conditional expect-
ation, ppT̂ :qqtfpS0qqpsq “ ErfpStq|S0 “ ss.

Notice that, given an event B Ď S and the indicator vector IB of B, the
T̂ operator allows to efficiently compute the marginal probability of B, i.e.,
P pSt P Bq :“ T̂ tIB . Similarly, its dual T̂ : is useful for computing the hitting
probability vector hB , i.e. the vector that provides for each s P S the probability
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of reaching a given event B Ď S from s eventually in the future. According to
standard literature [19,3], hB is defined as the vector of the minimal solutions,
for each s P S, of the following system of linear equations:

hBpsq :“

#

1 if s P B ,
ř

s1PS hBps
1q otherwise

(3)

For MCs with a finite time-horizon t P N an efficient algorithm to solve
the above system in time polynomial in |S| is the following. Let htB denote the
bounded-time hitting probability vector providing, for each s P S, the probability
of reaching B until a number of time-steps less than or equal to t. Let IB denote
the indicator function of B returning, for each s P S, 1 if s P B and 0 otherwise.
For t “ 0, htB is given by

ht“0
B “ IB . (4)

The probability of reaching B in 0 time-steps can corresponds only to 1 or 0
depending on whether the actual state is included in the event B or not. Given
IB and IBc , respectively the indicator vector of B and of the complement of B,
the algorithm proceeds by computing hτB for increasing values of τ :“ 0, 1, . . . , t
as follows:

hτB “ IB ` IBc ¨ rT̂
:hτ´1
B s , (5)

where the sums and the products are intended as element-wise operations on the
vector arrays.

Obviously, this procedure allows to compute htB only for finite time horizons
t P N. The standard definition of hitting probability, however, is conceived for
MCs of possibly infinite time-length and refers to the probability of reaching
B eventually in the future. Intuitively, the computation of hB corresponds to
compute limτÑ`8 h

τ
B . As under the stationary hypothesis it has been proved

that limτÑ`8 h
τ
B is always defined [19], it is possible to approximate the values

of hB through Equation 5 by iterating hτB over increasing values of τ until
convergence.

Imprecise Markov Chains. An imprecise Markov chain (IMC) is the imprecise
counterpart of a MC. It is obtained replacing the initial PMF P pS0q with a
CS KpS0q and all the conditional PMFs tP pSt`1|stqustPS with conditional CSs
tKpSt`1|stqusPS . The imprecise counterpart of the stationarity hypothesis con-
sists of assuming the specification of the collections of CSs KpSt`1|Stq independ-
ent of t. As for standard MCs, under the stationarity hypothesis, a compact
specification of the CSs can be achieved in terms of an initial CS KpS0q and
a collection tKpS1|squsPS of transition CSs. The collection of CSs can be seen
as an imprecise transition matrix T :“ tKpS1|squsPS whose rows consist of the
transition CSs KpS1|sq for each s P S. This matrix provides a full specification
of the stochastic behaviour of the system modelled by the IMC [12]. Similarly,
the linear transition operator in Equations (1) and its dual in (2) are replaced in
IMCs with analogous non-linear operators for modelling, respectively, the lower



6 A. Termine et al.

and upper bounds of transition probabilities. Following [23, Definition 14], in
particular, the upper transition operator, denoted by T , is defined as follows:

pT fqpsq :“ sup
T pS1,sqPKpS1|sq

ÿ

@s1PS
T ps1, sq ¨ fps1q (6)

while its dual [22, Eq. 1], denoted by T :, is defined as follows:

pT :fqpsq :“ sup
T ps,S1qPKpS1|sq

ÿ

@s1PS
T ps, s1q ¨ fps1q (7)

The analogous lower operators, denoted respectively by T and T : can be
defined by replacing the supremum in equations (6) and (7) with an infimum.
Notice that, the optimization for (7) is a linear programming task whose feasible
region is the convex hull generated by KpS1|sq that can be described by a finite
number of linear constraints, see [25].

Similarly to precise MCs, these operators can be used to compute lower and
upper bounds of, respectively, marginal and hitting probabilities. In particular,
as recently proved in [23, Eq. 34,35], the lower P pSt P Bq and upper P pSt P Bq
bounds of the marginal probability P pSt P Bq for a number t P N of time-steps
can be computed by t application of the lower (upper) transition operator to the
indicator vector IB of B, i.e.:

P pSt P Bq :“ T tIB (8)

P pSt P Bq :“ T tIB (9)

Similarly, [16, Lemma 14] and [22] proved that a recursive schema analogous
to 5 can be used to compute, respectively, the lower htB and the upper h

t

B hitting
probability vectors for IMCs of a finite time length t P N. As in the precise case,
the initialization for both ht“0

B and h
t“0

B is given by the indicator vector of B,
while the recursive steps are defined as follows:

hτB “ IB ` IBcT :hτ´1
B , (10)

h
τ

B “ IB ` IBcT
:
h
τ´1

B ; (11)

These definitions, similarly to their analogous for precise MCs in equation
(5), allow to compute the lower and upper hitting probability vectors only for
IMCs of finite time length. As in the precise case, however, the generalization
to IMCs of infinite time length can be obtained by computing the respective
limits: limτÑ`8 h

τ
B and limτÑ`8 h

τ

B . As proved in [16, Prop 16], these limits
are defined. Consequently, the values of the lower hB and the upper hB hitting
probability vectors for IMCs of infinite time length can be approximated by
iterating both (10) and (11) for increasing values of τ until converge.
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Labelled Markov Chains When dealing with model-checking tasks, we need to
refer to labelled MCs (respectively, labelled IMCs), which are standard MCs (re-
spectively, IMCs) augmented with a set of atomic propositions AP :“ tp, q, . . . u
and a labelling function l : S ÞÑ 2AP that assigns to each s P S a set lpsq Ď AP .
From now on, when talking about MCs (respectively, IMCs) we always refer to
their labelled extensions.

2.2 Probabilistic Interpreted Systems

Precise PISs. In computational logic, probabilistic interpreted systems (PIS) are
usually considered the reference formalism for representing knowledge and beliefs
in stochastic MASs [26]. A PIS is a tuple:

MPIS :“ xS,A, t„iuiPA, tT iuiPA, AP, lpsqy ; (12)

consisting of a finite non-empty set of states S, a finite non-empty set of agents
A :“ ti, j, . . . , nu, a set of atomic propositions AP , a labelling function l : S ÞÑ
2AP , a transition matrix T i for each i P A describing the stochastic behaviour
of the single agent i and an epistemic equivalence relation (EER) „iĎ 2SˆS for
each agent i P A such that „i associates to each s P S all the states s1 P S
that are epistemically equivalent (or indistinguishable) from s according to i.
Given a state s P S, the set of all the states s1 P S such that s „i s1 is called
the equivalence class of s for i, denoted as Eqipsq. Given a group of agents
Γ Ď A, specific EERs for different kinds of multi-agent knowledge can be defined,
including:

– Everybody Knows: „ΓE :“
Ť

@iPΓ „
i

– Common Knowledge: „ΓC :“ itp
Ť

@iPΓ „iq, where it denotes the iterative
closure

– Distributed Knowledge: „ΓD:“
Ş

@iPΓ „
i.

Each EER induces a respective epistemic equivalence class (EEC) for Γ . In
the following, by EqΓE , Eq

Γ
C , Eq

Γ
D, we denote the equivalence classes respectively

for Everybody Knows, Common Knowledge and Distributed Knowledge. Finally,
while each individual transition matrix T i, i P A describes the stochastic beha-
viour of a single agent, a global transition matrix TPIS describing the stochastic
behaviour of the whole MAS can be generated computing, for each s, s1 P SˆS,
the logarithmic pooling of the transitions:

TPISps, s
1q :“ η

ź

iPA
T ips, s1q (13)

where η is a normalizing factor given by

η :“
1

ř

s2PS: s2‰s1 T ips, s2q

that forces the transitions to satisfy the condition:
ř

@s1PS TPISps, s
1q “ 1 for each

s P S. The global transition matrix TPIS also describes a specific MCs. This is
typically called the embedded MC of the PIS and describes the overall stochastic
behaviour of the whole MAS.
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Imprecise Probabilistic Interpreted Systems. An imprecise probabilistic inter-
preted systems (IPIS) is the imprecise counterpart of a PIS. For each agent
i P A, let tKipS1|squsPS denote a family of (credal) sets including, for each s P S,
all the transition PMFs P ipS1|sq that are compatible with some agent’s beliefs.
By replacing in a standard PIS, for each i P A, the transition matrices T i with
the imprecise transition matrices T i :“ tKipS1|squsPS , whose rows correspond
to the transition CSs: KipS1|sq, s P S, we obtain an IPIS. Since transition CSs
are sets of PMFs, admitting such sets is tantamount to admit agents’ high-order
(non-quantified) uncertainty about transition probabilities.

Similarly to PISs, in the case of IPISs a global imprecise transition matrix
TIPIS can be obtained computing, for each transition s, s1 P S ˆ S, the credal
logarithmic pooling of the family of conditional CSs tKipS1|sq : i P Au defined
as the element-wise application of the standard logarithmic pooling to the ele-
ments of the credal sets. This element-wise approach, however, might comport
exponential complexity with respect to the number of agents in the model. A
similar problem also occurs when considering alternative strategies, such as the
one proposed in [1] within the framework of general credal networks. An efficient
way to overcome the problem, here adopted, consists of considering a so-called
outer approximation of the lower and upper bounds of the credal logarithmic
pooling. This is achieved by defining:

T IPISps, s
1q :“

ś

iPA T IPISps, s
1q

ś

iPA T IPISps, s
1q `

ř

s2‰s1

ś

iPA T IPISps, s
2q

; (14)

and similarly for the upper bound:

T IPISps, s
1q :“

ś

iPA T IPISps, s
1q

ś

iPA T IPISps, s1q `
ř

s2‰s1

ś

iPA T IPISps, s2q
; (15)

The obtained global transition matrix TIPIS consists of an interval-valued trans-
ition matrix TIPIS whose entries are intervals pa, bq Ď r0, 1s with a and b rep-
resenting, respectively, the lower T IPISps, s

1q and the upper T IPISps, s
1q bounds

of the transition probabilities. Similarly to the precise case, the global matrix
describes a specific IMC called the embedded IMC of the IPIS. As we show in
the following, this can be used to compute inferences arising with the overall
stochastic behaviour of the whole MAS modelled by the IPIS.
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3 Imprecise Epistemic PCTL

3.1 EIPCTL Syntax

The EIPCTL syntax is defined as follows:

A :“ ti, j, . . . , nu ,

∇ :“ tă,ď,“,ě,ąu ,

φ :“ J | p |  φ | φ1 ^ φ2 | PJψ | P∇bψ | P∇bψ | K
iφ | EΓφ | CΓφ | DΓφ ,

ψ :“©φ | φ1
ď

φ2 | φ1

ďt
ď

φ2 ,

ε :“ Bi∇bφ | B
i
∇bφ ;

The language is an epistemic extension of the well-known PCTL able to cope
with agents’ high-order uncertainty about transition probabilities. To this aim,
the canonical PCTL probability operator is replaced with three new operators,
for the following formulas with b P r0, 1s, J Ď r0, 1s:

1. P∇bψ: The lower bound of the probability of reaching a path that satisfies ψ
is ∇b;

2. P∇bψ: The upper bound of the probability of reaching a path that satisfies ψ
is ∇b;

3. PJψ:The probability of reaching a path that satisfies ψ belongs to the interval
J .

In addition, we extend standard PCTL language including a (single-agent) know-
ledge operator and canonical multi-agent operators for Everybody Knows, Com-
mon Knowledge and Distributed Knowledge. Finally, we also include in the lan-
guage two weighted-belief operators:

– Bi∇bφ: The agent i believes that the lower bound of the probability to reach φ
eventually in the future is ∇b;

– Bi∇bφ:The agent i believes that the upper bound of the probability to reach φ
eventually in the future is ∇b.

In the following, the doxastic formulae including these operators are called im-
precise probabilistic beliefs.

3.2 Semantics of EIPCTL

Semantics of Boolean formulae. Given an IPIS MIPIS and a state s P S, the
following conditions hold:

MIPIS, s |ù p iff p P lpsq ,

MIPIS, s |ù  φ iff MIPIS, s ­|ù φ ,

MIPIS, s |ù φ1 ^ φ2 iff MIPIS, s |ù φ1 and MIPIS, s |ù φ2 .
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Semantics of ψ formulae. Given an IPIS MIPIS and a path π, the following
conditions hold:

MIPIS, π |ù©φ iff M,πp1q |ù φ ,

MIPIS, π |ù φ1

ďt
ď

φ2 iff Dτ ď t :
MIPIS, πpτq |ù φ2
@τ 1 : 0 ď τ 1 ă τ : MIPIS, πpτq |ù φ1

,

MIPIS, π |ù φ1
ď

φ2 iff Dτ ě 0 :
MIPIS, πpτq |ù φ2
@τ 1 : 0 ď τ 1 ă τ MIPIS, πpτ

1q |ù φ1 .

Semantics of Probabilistic Formulae. Given a modelMIPIS and a state s P S, let
Pathspsq denote the set of all the paths π :“ pπp0q, πp1q, . . .q such that πp0q “ s.
We denote by PIPISpπ P Pathspsq|π |ù ψq the overall3 probability that a path π
satisfying the property ψ belongs to Pathspsq. Similarly, we denote by P IPISpπ P
Pathspsq|π ( ψq and P IPISpπ P Pathspsq|π ( ψq, respectively the lower and
upper bounds of PIPISpπ P Pathspsq|π |ù ψq.

The satisfiability conditions for probabilistic-until formulae are hence defined
as follows:

MIPIS, s |ù P∇bψ iff P IPISpπ P Pathspsq|π ( ψq∇b ,
MIPIS, s |ù P∇bψ iff P IPISpπ P Pathspsq|π ( ψq∇b ,
MIPIS, s |ù PJψ iffMIPIS, s |ù P“pinf Jqψ andMIPIS, s |ù P“psup Jqψ .

Notice that, similarly to standard PCTL [3], the computation of the lower and
upper bounds of PIPISpπ P Pathspsq|M,π ( ψq varies depending on ψ. We analyse
further this point in the next section focused on model-checking procedures.

Semantics of Epistemic Formulae. Given an IPIS MIPIS, an agent i P A or a
group of agents Γ Ď A and a state s P S, the following conditions hold:

MIPIS, s |ù Kiφ iff @s1, s „i s1 : s1 |ù φ ,

MIPIS, s |ù EΓφ iff @s1, s „ΓE s1 : s1 |ù φ ,

MIPIS, s |ù CΓφ iff @s1, s „ΓC s1 : s1 |ù φ ,

MIPIS, s |ù DΓφ iff @s1, s „ΓD s1 : s1 |ù φ .

Semantics of Imprecise Probabilistic Beliefs. The weighted-belief operators of
EIPCTL model the lower and upper bounds of the probability that a single agent
i P S eventually reaches a state satisfying φ. Following the probabilistic until se-
mantics (Section 3.2), this probability can be written as P ipπ P Pathspsq|π |ù
J
Ť

φq, that is, the probability that φ is satisfied eventually in the future accord-
ing to agent i. This probability is computed analogously to P pπ P Pathspsq|π |ù
J
Ť

φq, see Section 3.2, but replacing the global imprecise transition matrix TIPIS,
describing the overall stochastic behaviour of the whole MAS, with the trans-
ition matrix T i that describes the specific behaviour of the agent i P A. As here
3 i.e., computed through the global transition matrix TIPIS.
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we consider imprecise models, as usual, we are interested in computing the lower
and upper bounds of P ipπ P Pathspsq|π |ù J

Ť

φq that we denote, respectively,
by P pπ P Pathspsq|π |ù J

Ť

φq and P pπ P Pathspsq|π |ù J
Ť

φq. The procedure
to compute those bounds is further detailed in Section 4. Here we limit to in-
troduce the satisfiability conditions for imprecise probabilistic belief formulae as
follows:

MIPIS, s |ù Bi∇bφ iff @s1 : s „i s1 P ipπ P Pathsps1q|π ( J
ď

φq∇b ,

MIPIS, s |ù Bi∇bφ iff @s1 : s „i s1 P
i
pπ P Pathsps1q|π ( J

ď

φq∇b .

4 Model Checking

The present section describes specific procedures to model-check an IPIS against
properties specified in the EIPCTL language. In particular, it aims to prove
that relevant model-checking tasks can be solved using slightly modified versions
of the algorithms described in 2.1. Here we consider only procedures relevant
for probabilistic and epistemic formulae of EIPCTL. The checking procedures
against Boolean and CTL formulae are standard and a detailed explanation of
them can be found in [3].

Probabilistic Formulae. Given the semantics introduced in Section 3.2, to check
whether a model satisfies a given probabilistic formula requires to compute the
lower and upper bounds of PIPISpπ P Pathspsq|M,π ( ψq. These, in turn, vary
depending on ψ.

Probabilistic Next. We first consider the case when ψ :“©φ. Let Φ denote the
set of all the states satisfying φ. Thus, PIPISpπ P Pathspsq|M,π ( ψq corresponds
to the marginal probability PIPISpS1 P Φ|S0 “ sq. The first step for determining
such probability consists in generating the indicator vector IΦ computing, for
each s P S, the indicator function

IΦpsq :“

#

1 if s P Φ,
0 else.

.

This step requires a time linear in |S|. The second step requires to introduce the
lower T IPIS or the upper T IPIS transition operator. Given the global transition
matrix TIPIS, these can be defined following Equation (6) and used for computing
the lower and upper bounds of PIPISpS1 P Φ|S0 “ sq as follows:

P IPISpS1 P Φ|S0 “ sq “ pT IPISIΦqpsq . (16)

P IPISpS1 P Φ|S0 “ sq “ pT IPISIΦqpsq . (17)

As stated in Section 2.1, each application of either the lower or the upper
transition operator requires to solve, for each s P S, a linear programming task
whose feasible region is the convex hull obtained by convex closure of the local
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CS KpS1|sq. By definition, the time complexity of each linear programming task
is, at most, polynomial in |S|. Hence, since the computation requires to solve
at most |S| linear programming tasks, the overall time complexity is at most
polynomial in |S|.

Probabilistic Bounded Until. For ψ “ φ1
Ťďt

φ2, let us first define Φ1 and Φ2 as
the subsets of S satisfying, respectively, φ1 and φ2. The probability in Equations
(16) and (17) can be seen as a bounded-time hitting probability of Φ2 with the
additional condition that all the states visited before reaching Φ2 are in Φ1.
We denote such conditional hitting probability by htΦ2|Φ1

psq, s P S. A recursive
algorithm analogous to equations (10) and (11) can be formulated to compute the
values of the lower htΦ2|Φ1

and upper h
t

Φ2|Φ1
hitting probability vectors. Let IΦ2

denote the indicator vector of Φ2. Let IΦ1zΦ2
denote the indicator vector giving

1 to all the states that are in Φ1 but not in Φ2 and 0 otherwise. Finally, let
TIPIS denote the global transition matrix describing the overall behaviour of the
whole MAS, and let T :IPIS, T

:

IPIS denote, respectively, the lower and the upper dual
transition operators obtained as by definitions (10) and (11). A slightly modified
version of the algorithms in (10), (11) for computing, for each 0 ă τ ď t, the
above lower and upper hitting probability vectors can be achieved as follows:

hτΦ2|Φ1
:“ IΦ2

` IΦ1zΦ2
pT :IPIS h

τ´1
Φ2|Φ1

q , (18)

h
τ

Φ2|Φ1
:“ IΦ2

` IΦ1zΦ2
pT :IPIS h

τ´1

Φ2|Φ1
q . (19)

Notice that, exactly as in Equations (10) and (11) the initialization is given
by the indicator function of Φ2 while the recursive steps consist of iterated ap-
plications of the lower (upper) transition operator to the hitting vector computed
at the precedent time-step τ ´ 1, for each 0 ă τ ď t. The only relevant differ-
ence with the analogous scheme presented in Section 2.1 consists of the indicator
vector IΦ1zΦ2

that replaces IBc , i.e., the indicator vector of the complement of
the hitting event B. In the general scheme, IBc limits the iteration considering
only paths that have not already visited an s P B. Here, by IΦ1zΦ2

we limit the
iteration considering only paths whose actual and previous states are all in Φ1

and that have not already reached a state s P Φ2. This constraint follows from
the semantics of probabilistic until, see Section 4.

The time complexity remains polynomial with respect to |S|. In fact, the
solution of the schema (18) requires: (i) to generate the indicator vectors for Φ2

and Φ1zΦ2, (ii) to execute element-wise sums and products on the vectors arrays,
(iii) to execute t ´ 1 applications of the lower (respectively, upper) transition
operator. (i) requires a number of time-steps linear in |S| and (ii) requires a
number of time-steps linear in |S| for each recursive step 0 ă τ ď t. Both, hence,
do not affect the overall time complexity of the procedure. Finally, remember
that each application of the lower (upper) dual operator has a time complexity
at most polynomial in |S|, see Section 2.1. As the overall procedure requires a
finite number t ´ 1 P N of successively recursive applications of the respective
transition operator, one for each recursive step 0 ă τ ď t, the overall time
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complexity results being polynomial in |S|. To conclude, notice that here we
consider the CSs KIPISpS

1|sq, s P S describing the global transitions of the whole
MAS. By the definition of global transition matrix TIPIS in Section 2.2, these CSs
are given by the rows of TIPIS.

Probabilistic Until. The strategy to solve model-checking tasks for probabilistic
(unbounded) until formulae, i.e. formulae composed by a probabilistic operator
ranging over ψ :“ φ1

Ť

φ2, is the same as for probabilistic bounded until but
considering, in place of IMCs of a finite time length t P N, IMCs of infinite time
length. Recall that the existence of the limits limτÑ`8 h

τ
B and limτÑ`8 h

τ
B

defined in section 2.1 has been proved, see [16, Lemma 14]. The slightly modific-
ation introduced in 10 and 11, consisting of replacing IB in the general schema
with the indicator vector IΦ1zΦ2

, does not affect the validity of the proof outlined
in [16]. Consequently, the values of the lower and upper hitting probability vec-
tors hΦ2|Φ1

and hΦ2|Φ1
can be approximated by iterating the schema 10, respect-

ively, the schema 11, over increasing values of τ until convergence. Regarding
the overall time complexity of the procedure, the same reasoning outlined above
for probabilistic bounded until formulae holds.

Epistemic Formulae. The model-checking for epistemic formulae requires an it-
erative procedure. In practice, it consists of computing the epistemic equivalence
class (EEC) relative to the specified agent (respectively, group of agents) and
the actual state of the system, hence checking for each state in the EEC whether
it satisfies the formula nested by the epistemic operator.

Let κ :“ Ki, EΓ , CΓ , DΓ , κφ and let Eqi,ΓE,C,D be a generic notation for one of
the possible EEC Eqipsq, EqΓEpsq, Eq

Γ
Cpsq, Eq

Γ
Dpsq. Given a state s P S, our task

consists of defining a procedure for checking whether s |ù κφ. Step (i) consists
of deciding which states s1 P S belong to the EEC Eqi,ΓE,C,Dpsq. This can be
obtained in time linear in |S| by simply computing the characteristic function
of Eqi,ΓE,C,D, i.e.:

IEqi,ΓE,C,D
psq :“

#

1 if s1 P Eqi,ΓE,C,Dpsq ,
0 otherwise .

(20)

Step (ii) consists of selecting the appropriate model-checking procedure for φ,
else check, for each s1 P Eqi,ΓE,C,Dpsq, whether s

1 |ù φ. If φ is an epistemic formula,
(i.e., φ :“ κ1φ1) we return to step (i) and repeat the same procedure for each
s1 P Eqi,ΓE,C,D. Steps (i) and (ii) are successively iterated until all the resting
nested formulae φ are all non-epistemic formulae. The time complexity of the
whole procedure is polynomial in |S|. In fact, (i) consists of computing an EEC,
a task that can be solved in time linear in |S| while (ii) requires the execution of
a checking procedure for each state in the EEC. As all the checking tasks relative
to any kind of EIPCTL non-epistemic formulae are solvable in time polynomial
in |S|, also (ii) will be solvable in time at most polynomial in |S|.
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Imprecise Probabilistic Belief. The model-checking procedure for imprecise prob-
abilistic beliefs formulae requires to compute P ipπ P Pathspsq|π |ù J

Ť

φq

and P
i
pπ P Pathspsq|π |ù J

Ť

φq. As the semantics of imprecise probabil-
istic belief formulae is analogous to the semantics of probabilistic until for-
mulae, we can reduce the computation of P ipπ P Pathspsq|π |ù J

Ť

φq and
P
i
pπ P Pathspsq|π |ù J

Ť

φq to the computation of, respectively, hiΦ and h
i

Φ.
These are the lower and upper bounds of the hitting probability of Φ computed
through the i’s transition matrix T i instead of the global transition matrix TIPIS.
Let T :i and T :i denote respectively the lower and the upper dual transition
operators obtained from T i as by definitions (10), (11). The model-checking
procedure is analogous to (18) with the only difference that we replace the dual
transition operators T :IPIS, T

:

IPIS with the analogous dual transition operators
T :i T

:

i . Regarding the time complexity of the procedure, the same reasoning
outlined above for probabilistic until formulae holds.

5 Example

We now validate the applicability of the proposed model-checking tasks on a
simple example. Consider an IPISMIPIS made of three agents A :“ ti, j, ku and
three states S :“ t1, 2, 3u labelled as: p :“ t1, 2u, q :“ t3u. The EER for each
agent are defined as:

„i: t1, 2u, t3u ; „j : t1, 2u, t3u ; „k: t1u, t2u, t3u . (21)

while the stochastic behaviours of the single agents are described by the following
imprecise, interval-valued, transition matrices:

i :“
”

0 0.4´0.9 0.1´0.6
0.2´0.8 0 0.2´0.8
0.3´0.5 0.7´0.5 0

ı

, j :“
”

0 0.45´0.95 0.05´0.55
0.25´0.88 0 0.12´0.75
0.32´0.5 0.5´0.78 0

ı

,

k :“
”

0 0.55´0.95 0.05´0.45
0.15´0.95 0 0.05´0.85
0.32´0.5 0.5´0.78 0

ı

.

The task consists in checking whether the following formula holds for s “ 1:

M, s |ù KiP0.99´1J

ď150
ď

p3q ; (22)

First, we derive the global transition matrix TIPIS from the subjective transition
matrices stated above. Applying Equations (14) and (15) to each row of the
matrix, and rounding to the fourth digit, we obtain:

”

0 0.4´0.9997 0.0003´0.6
0.0145´0.9982 0 0.0018´0.9855
0.0673´0.5 0.5´0.9327 0

ı

.

Second, we compute for each s1 P S : 1 „i s1 whether:

MIPIS, s
1 |ù Pě0.99J

ď150
ď

p3q .
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Figure 1. Hitting probability ranges w.r.t. increasing time horizon 0 ă τ ď 150 for
starting state 1 (left) and 2 (right). The horizontal dotted line denote the threshold
level hp3q “ 0.99, while the vertical dotted line show the first time step for which such
threshold is exceeded.

Since the only states equivalent to 1 for i are 1 and 2, we check the above formula
with respect to both these two states. Following Equation (16), this corresponds
to calculate the lower h150p3q and upper h

150

p3q bounded-time hitting probability
vectors relative to event t3u by means of the recursive scheme in Equations (10)
and (11) for a time horizon t “ 150. These lower and upper bounds are reported
in Figure 1. Finally, we extract from the vector the respective values for states
1 and 2 and check for both if the probability conditions specified in the formula
are satisfied. As showed in Figure 1, both for states 1 and 2 the lower bound
reached value 0.99 as well as the upper bounds converges to 1 before t “ 150.
The above formula is hence satisfied for s “ 1.

6 Conclusions

In this paper we define a logic and relative model-checking procedures to model-
check stochastic MASs characterized by agents’ high-order (not quantified) un-
certainty about transition probabilities. Here we limit to consider agents whose
stochastic behaviour can be described by discrete-time models. Recent develop-
ments [15] in the study of imprecise continuous-time Markov chains (ICTMC)
strongly suggest that an analogous extension for agents whose behaviour is de-
scribed by continuous-time models is possible. These models are particularly
relevant for applications in fields like computational and systems biology, see
[8,5]. Other important extensions we would consider are multi-agent imprecise
Markov decision-processes because they offer a natural connection with the field
of Reinforcement Learning [20]. Finally, we aim to consider possible connections
with other logical formalism developed within the theory of imprecise probabil-
ities, such as depth-bounded belief functions [4].
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