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ON THE CATEGORICAL BEHAVIOUR OF V -GROUPS

MARIA MANUEL CLEMENTINO AND ANDREA MONTOLI

Abstract. We consider compatible group structures on a V -category, where V is a quan-

tale, and we study the topological and algebraic properties of such groups. Examples of such

structures are preordered groups, metric and ultrametric groups, probabilistic (ultra)metric

groups. In particular, we show that, when V is a frame, symmetric V -groups satisfy very strong

categorical-algebraic properties, typical of the category of groups. In particular, symmetric

V -groups form a protomodular category.

1. Introduction

In the paper [13], preordered groups have been studied from a categorical point of view. On

one hand, using the analogies of topological nature between the categories Ord of preordered

sets and monotone maps and Top of topological spaces and continuous maps, one can describe

limits and colimits in the category OrdGrp of preordered groups using the properties of the

forgetful functors to Ord and to the category Grp of groups. On the other hand, the main

difference between topological groups and preordered ones is that the former are internal groups

in Top while the latter aren’t, since it is not required that the inversion map is monotone. For

these reasons, the algebraic properties of OrdGrp are not so good as the ones of topological

groups (for instance, the Split Short Five Lemma does not hold in OrdGrp). In order to under-

stand better the algebraic behaviour of OrdGrp, the strategy used in [13] was mainly based on

the well known fact that a compatible preorder on a group is completely determined by the sub-

monoid of positive elements. Using this observation, it was shown in [13] that OrdGrp shares

many categorical-algebraic properties with the category Mon of monoids. In particular, in both

categories it is possible to identify intrinsically a full subcategory, of so-called protomodular ob-

jects [23], which has basically the same algebraic properties of Grp. In the case of monoids,

this subcategory is precisely Grp, while in OrdGrp it is the subcategory whose objects are the

groups equipped with a compatible preorder which is symmetric, i.e. a congruence. These are

precisely the internal groups in Ord.

Another approach is possible. Indeed, it is known [20] that preordered sets can be seen as cat-

egories enriched in the lattice 2 = {⊥,⊤}, with ⊥ < ⊤. Following this point of view, preordered

groups can be seen as those monoid objects in the monoidal category 2-Cat (of categories en-

riched in 2) that are groups. In [20] several other examples of categories enriched in a quantale

(i.e. in a complete lattice equipped with a tensor product which is distributive w.r.t. arbitrary

joins) are considered, allowing to describe in this way important mathematical structures, like

metric spaces.

The aim of the present paper is to follow this alternative approach, based on V -categories,

where V is a quantale satisfying suitable properties, to study in a common framework structures
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like preordered groups and metric groups. We consider what we call V -groups, namely monoid

objects in the monoidal category V -Cat, of V -categories and V -functors, that are groups. The

advantage of working in this setting is twofold. On one hand it allows to extend to a wide class

of situations the results obtained for preordered groups in [13]. Actually, some of these results

appear even more interesting in some of the new examples. For instance, the “good” objects in

OrdGrp are those whose preorder is symmetric, and this somehow destroys the ordered struc-

ture of the object (in particular, if we restrict our attention to partially ordered groups, the only

good ones are the discrete groups), while requiring symmetry for metric groups is much more

classical and natural. On the other hand, the proofs we get following the V -categorical approach

are significantly simpler than the ones we had in [13] for preordered groups, using the positive

cone.

After recalling the necessary background on V -categories, we obtain relevant information on

limits, colimits and factorization systems in the category V -Grp of V -groups using the properties

of the forgetful functors into V -Cat andGrp, as well as some topological properties of V -groups.

Then we will concentrate our attention on the algebraic properties of V -groups, observing that

they are well-behaved especially when V is a frame, which means that the tensor product defined

on V coincides with the meet operation. Under this assumption, we show that the protomodular

objects are precisely the symmetric V -groups, and hence the full subcategory of V -Grp whose

objects are the symmetric V -groups is protomodular. Furthermore, observing that symmetric

V -groups are precisely the internal groups in the cartesian closed category V -Cat, we show that

the full subcategory V -Grpsym of symmetric V -groups has representable actions (in the sense

of [4]) and is locally algebraically cartesian closed (in the sense of [14]). Finally, we study split

extensions in V -Grp, showing that all the compatible V -category structures on the semidirect

product of two V -groups are intermediate between the one given by the tensor and a lexicographic

one, a generalization of the lexicographic order on a product.

2. V -categories

Let V be a commutative and unital quantale, that is, V is a complete lattice (with top element

⊤ and bottom ⊥) equipped with a symmetric and associative tensor product ⊗, with unit k,

which preserves joins, that is,

v ⊗
∨

i

ui =
∨

i

(v ⊗ ui), and v ⊗⊥ = ⊥

for every v ∈ V , and family (ui)i∈I in V . Therefore it has a right adjoint, hom; that is, for all

u ∈ V , ( )⊗ u : V → V is left adjoint to hom: V → V , or, equivalently, for every v,w ∈ V ,

v ⊗ u ≤ w ⇐⇒ v ≤ hom(u,w).

Moreover, we also assume that arbitrary joins distribute over finite meets, that is, as a lattice,

V is a frame.

Example 2.1. Any frame V defines a commutative and unital quantale, with ⊗ = ∧ and k = ⊤.

This type of quantales will be used often, and we will refer to them saying that the quantale V

is a frame. (It should not be confused with our additional assumption that V , as a lattice, is a

frame.)

In order to define a V -category, we will make use of the bicategory V -Rel, whose objects are

sets and whose morphisms r : X−→7 Y are V -relations, i.e. maps X × Y → V ; the composition
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of V -relations r : X−→7 Y , s : Y−→7 Z is a V -relation X−→7 Z defined by relational composition:

(s · r)(x, z) =
∨

y∈Y

r(x, y)⊗ s(y, z).

The identity morphism X−→7 X is given by

1X(x, x
′) =

{

k if x = x′,

⊥ elsewhere.

In general every map f : X → Y can be considered as the V -relation

f(x, y) =

{

k if y = f(x),

⊥ elsewhere,

so there is a (non-full, bijective on objects) inclusion Set → V -Rel.

Given r, r′ : X−→7 Y , r ≤ r′ if, for all x ∈ X, y ∈ Y , r(x, y) ≤ r′(x, y) in V .

A V -category is a pair (X, a), where X is a set and a : X−→7 X is a V -relation such that

1X ≤ a and a · a ≤ a;

in pointwise notation this means that:

(R): (∀x ∈ X) k ≤ a(x, x),

(T): (∀x, x′, x′′ ∈ X) a(x, x′)⊗ a(x′, x′′) ≤ a(x, x′′);

Property (R) is usually called reflexivity while (T) is transitivity ; they are also called, respectively,

unit and associativity axioms. Pairs (X, a) satisfying (R) are called V -graphs.

Given two V -categories (or V -graphs) (X, a) and (Y, b), a map f : X → Y is a V -functor

f : (X, a) → (Y, b) if f · a ≤ b · f ; in pointwise notation this means

(∀x, x′ ∈ X) a(x, x′) ≤ b(f(x), f(x′)).

It is easy to check that V -categories and V -functors define a category, denoted by V -Cat; the

category of V -graphs and V -functors is denoted by V -Gph.

Remark 2.2. For each V -relation r : X−→7 Y we can define the opposite relation r◦ : Y−→7 X

by r◦(y, x) = r(x, y). Given a V -category (X, a), (X, a◦) is also a V -category, usually called

the dual of (X, a). Based on the lemma below, we can conclude that this assignment defines a

functor ( )op : V -Cat → V -Cat, with (X, a)op = (X, a◦) and fop = f .

When a = a◦ we call the V -category (X, a) symmetric. The full subcategory of V -Cat of

symmetric V -categories will be denoted by V -Catsym.

The proof of the following Lemma is straightforward, and can be found in [11].

Lemma 2.3. (1) If we consider the map f : X → Y as a V -relation, we have that

f · f◦ ≤ 1Y and 1X ≤ f◦ · f ;

that is, f◦ is the right adjoint of f .

(2) For V -categories (X, a), (Y, b) and a map f : X → Y , the following conditions are equiv-

alent to f : (X, a) → (Y, b) being a V -functor:

(a) a ≤ f◦ · b · f ;

(b) f · a · f◦ ≤ b;

(c) f · a◦ ≤ b◦ · f .
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Consider the following commutative diagram

V -Catsym
I2 //

&&▲▲
▲▲

▲▲
▲▲

▲▲
V -Cat

I1 //

��

V -Gph

yysss
ss
ss
ss
s

Set,

where the horizontal functors are embeddings and the vertical ones are forgetful functors.

Proposition 2.4. (1) The functor I1 is a right adjoint, that is, V-Cat is a reflective sub-

category of V-Gph.

(2) The functor I2 has both a left and a right adjoint, that is, V -Catsym is both a reflective

and a coreflective subcategory of V-Cat.

(3) The forgetful functors V -Gph → Set, V -Cat → Set, and V -Catsym → Set are topo-

logical.

Proof. (1) The left adjoint is built by iteration of the pointed endofunctor V -Gph → V -Gph

that assigns to each (X, a) the V -graph (X, a · a) (see [11, Theorem 4.4] for details).

(2) The symmetrization of a V -category (X, a) is defined by â(x, x′) = a(x, x′) ∧ a(x′, x), for

every x, x′ ∈ X. It is easily checked that this defines the right adjoint to I2. The left adjoint of I2

is built in two steps: first define ã(x, x′) = a(x, x′)∨ a(x′, x), and then ǎ is obtained by iteration

of the pointed endofunctor V -Gph → V -Gph of (1), applied to ã. It is clear that the symmetry

of ǎ follows from the symmetry of ã.

To show (3), using (1) and (2) it is enough to prove that V -Gph → Set is topological (see [1]).

This follows the arguments of [11, Theorem 4.5]. Given fi : X → (Yi, bi), the largest possible

V -graph structure on X that makes all the fi V -functors is

a :=
∧

i∈I

f◦i · b · fi,

and it is easy to check that a verifies (R). �

The monoidal structure of V induces a monoidal structure on V -Cat; indeed, for V -categories

(X, a) and (Y, b), we define (X, a) ⊗ (Y, b) by (X × Y, a ⊗ b), where (a ⊗ b)((x, y), (x′, y′)) =

a(x, x′)⊗ b(y, y′), with f ⊗g = f ×g. The unit is the V -category I = ({∗}, κ), where κ(∗, ∗) = k.

Theorem 2.5. V -Cat is a monoidal closed category.

Proof. It is straightforward to prove that ( ) ⊗ (X, a) : V -Cat → V -Cat is left adjoint to

[(X, a), ( )] : V -Cat → V -Cat, where [(X, a), (Y, b)] = ({f : (X, a) → (Y, b) V -functor}, [ , ]),

with

[f, g] =
∧

x∈X

b(f(x), g(x)),

for every pair of V -functors f, g : (X, a) → (Y, b). (See [20] for details.) �

Remark 2.6. It is clear that, with the same construction, V -Gph and V -Catsym are also

monoidal closed categories.

Remark 2.7. As shown in [17, Section 3.5], every lax homomorphism ϕ : V →W of quantales,

so that ϕ is order preserving, ϕ(u) ⊗ ϕ(v) ≤ ϕ(u ⊗ v), and l ≤ ϕ(k), where u, v ∈ V and

k, l are the units of V and W respectively, induces a functor Bϕ : V -Cat → W -Cat, with

Bϕ(X, a) = (X,ϕ · a), and Bϕ(f) = f . Moreover, any adjunction ψ ⊣ ϕ of lax homomorphisms

of quantales induces an adjunction Bψ ⊣ Bϕ.
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In particular, for every non-degenerate quantale V , we may define two lax homomorphisms

ι, τ : 2 → V , with ι(⊥) = τ(⊥) = ⊥, ι(⊤) = k, and τ(⊤) = ⊤ (which obviously coincide when

the quantale is integral, that is k = ⊤); ι has always a right adjoint, the so called pessimist’s

map p : V → 2, with p(v) = ⊤ ⇐⇒ v ≥ k. The optimist’s map o : V → 2, defined by

o(v) = ⊤ ⇐⇒ v 6= ⊥, is a lax homomorphism if, and only if, for any u, v ∈ V ,

u⊗ v = ⊥ =⇒ u = ⊥ or v = ⊥.

We call these quantales optimistic. For optimistic quantales the optimist’s map o is left adjoint

to τ . Therefore, when V is integral and optimistic, we have a chain of adjunctions

2 ι // V

o

xx

p

ff
⊥

⊥
.

Examples 2.8. (1) If V = 2 = ({⊥,⊤},≤) with ⊗ = ∧, then 2-Cat is the category Ord

of preordered sets and monotone maps.

(2) When V = P+ = ([0,∞],≥) is the complete real half-line as studied by Lawvere in [20],

with ⊗ = +, and then hom(u, v) = v ⊖ u = max(v − u, 0), P+-Cat is the category

Met of Lawvere (generalized) metric spaces and non-expansive maps. Since P+ is both

integral and optimistic, thanks to Remark 2.7 Ord embeds in Met both reflectively and

coreflectively:

Ord Bι
// Met

Bo

uu

Bp

ii ⊥

⊥
.

If we take instead Pmax, so that in ([0,∞],≥) we take ⊗ = ∧ (note that this is max for

the usual order in the real numbers), then Pmax-Cat is the category UMet of ultrametric

spaces and non-expansive maps. The identity Pmax → P+ is a lax homomorphism,

inducing an embedding UMet → Met.

(3) The unit interval [0, 1], with its usual order, is a complete lattice. It can be equipped

with different tensor products, making ([0, 1],≤) a quantale. Here we mention the most

relevant ones: the minimum ∧, the multiplication ×, and the  Lukasiewicz tensor ⊕,

defined by u⊕ v = max(u+ v − 1, 0), the three of them with unit 1. We will denote the

corresponding quantales respectively by [0, 1]∧, [0, 1]×, and [0, 1]⊕.

The bijection ϕ : [0, 1] → [0,∞], with u 7→ − lnu, defines an isomorphism of quantales

[0, 1]× → P+, and therefore the category [0, 1]×-Cat is isomorphic to P+-Cat, i.e., the

category Met of generalized metric spaces.

The same map ϕ induces an isomorphism of quantales [0, 1]∧ → Pmax, henceforth

[0, 1]∧-Cat is isomorphic to the category UMet of ultrametric spaces.

The category [0, 1]⊕-Cat is worth to be mentioned: it is isomorphic to the category

Met1 of (generalized) metric spaces bounded by 1 and non-expansive maps. Indeed,

ψ : [0, 1]⊕ → P+, with ψ(u) = 1 − u for every u ∈ [0, 1], is a lax homomorphism of

quantales, defining a functor Bψ : [0, 1]⊕-Cat → Met. It is easily checked that it is an

embedding, with image Met1. The isomorphism [0, 1]⊕-Cat → Met1 assigns to each

[0, 1]⊕-category (X, a) the metric space (X, a), with a(x, x′) = 1 − a(x, x′) for every

x, x′ ∈ X, and keeps morphisms unchanged. (For more information on tensor products

on ([0, 1],≤) see for instance [12] and the references there.)
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(4) When V is the quantale ∆ of distribution functions, that is,

∆ = {ϕ : [0,∞] → [0, 1] |ϕ is monotone and ϕ(x) =
∨

y<x

ϕ(y)}

with the pointwise order and ⊗ given by

(ϕ⊗ ψ)(x) =
∨

y+z≤x

ϕ(y)× ψ(z),

then ∆-Cat is the category ProbMet of probabilistic metric spaces and non-expansive

maps, as studied in [16] (see also [12]).

We note that, as observed in [16, Section 3.3], the natural embedding P+ → ∆ has

both a left and a right adjoint, and so we have the following chain of adjunctions

(2.i) Ord Bι
// Met

Bo

uu

Bp

ii ⊥

⊥ // ProbMet
tt
jj ⊥

⊥
;

in particular, Met embeds both reflectively and coreflectively in ProbMet.

If we take ∆∧, that is, ∆ together with the tensor product ∧ defined pointwise, then

∆∧-Cat is the category ProbUMet of probabilistic ultrametric spaces and non-expansive

maps, where UMet embeds both reflectively and coreflectively.

For more examples and information on V -categories we refer to [15, Appendix], and [12, 16].

3. Basic results on V -groups

A V -category (X, a) equipped with a group structure (X,+: X ×X → X, i : X → X, 0: I →

X) such that +: (X, a) ⊗ (X, a) → (X, a) is a V -functor is said to be a V -group. Note that

0: (I, κ) → (X, a), as every map from (I, κ) to (X, a), is a V -functor, and that we do not

impose that the inversion (X, a) → (X, a) is a V -functor. We will use the additive notation

although our groups need not be abelian. Given two V -groups (X, a), (Y, b), a V -homomorphism

f : (X, a) → (Y, b) is a V -functor which is a group homomorphism. We will denote by V -Grp the

category of V -groups and V -homomorphisms. We observe that a V -group is precisely a monoid

object in the monoidal category (V -Cat,⊗) which is a group.

Proposition 3.1. Let (X,+) be a group and (X, a) be a V -graph. The following conditions are

equivalent:

(i) +: (X, a) ⊗ (X, a) → (X, a) is a V -functor;

(ii) (X, a) is a V -category and a is invariant by shifting, that is,

(3.i) (∀x, x′, x′′ ∈ X) a(x′, x′′) = a(x′ + x, x′′ + x).

Proof. If +: (X, a) ⊗ (X, a) → (X, a) is a V -functor, then, for every x ∈ X, the maps x +

( ): (X, a) → (X, a) and ( ) + x : (X, a) → (X, a), defined by

X
∼= // I ⊗X

x⊗idX// X ⊗X
+ // X and X

∼= // X ⊗ I
idX⊗x

// X ⊗X
+ // X ,

are V -functors; hence,

a(x′, x′′) ≤ a(x′ + x, x′′ + x) ≤ a(x′ + x− x, x′′ + x− x) = a(x′, x′′);

moreover,

a(x, x′)⊗ a(x′, x′′) = a(x, x′)⊗ a(0,−x′ + x′′) ≤ a(x+ 0, x′ − x′ + x′′) = a(x, x′′).
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Conversely, if (3.i) holds, then, for every x1, x2, x
′
1, x

′
2 ∈ X,

a(x1, x2)⊗ a(x′1, x
′
2) = a(0,−x1 + x2)⊗ a(−x1 + x2,−x1 + x2 + x′2 − x′1)

≤ a(0,−x1 + x2 + x′2 − x′1) = a(x1 + x′1, x2 + x′2).

�

Corollary 3.2. Any lax homomorphism ϕ : V →W of quantales induces a functor Gϕ : V -Grp →

W -Grp. Moreover, any adjunction ψ ⊣ ϕ induces and adjunction Gψ ⊣ Gϕ.

Proof. It follows from Proposition 3.1, since with a also ϕ · a is invariant by shifting. �

Corollary 3.3. If (X, a,+) and (Y, b,+) are V -groups and f : X → Y is a homomorphism,

then f is a V -functor if, and only if,

(∀x ∈ X) a(0, x) ≤ b(0, f(x)).

Proof. For each x, x′ ∈ X,

a(x, x′) = a(0, x′ − x) ≤ b(0, f(x′ − x)) = b(0, f(x′)− f(x)) = b(f(x), f(x′)).

�

Remark 3.4. (1) If (X, a) is a V -group, then (X, a◦) is also a V -group. From (3.i) it follows

that the inversion is an isomorphism of V -groups i : (X, a) → (X, a◦), since

a(x, y) = a(−x+ x− y,−x+ y − y) = a(−y,−x) = a◦(−x,−y).

(We thank Dirk Hofmann for this observation.) Moreover, the inversion i : (X, a) →

(X, a) is a V -functor if, and only if, the V -category (X, a) is symmetric, that is, if

(X, a,+) and (X, a◦,+) coincide. A V -group (X, a) with i a V -functor will be called a

symmetric V -group. When ⊗ = ∧, a symmetric V -group is exactly an internal group in

V -Cat. We will denote by V -Grpsym the full subcategory of V-Grp consisting of the

symmetric V -groups.

(2) When ⊗ = ∧, any finite group (X, a,+) is a symmetric V -category. Indeed, if x 6= 0,

then −x = nx for some n, and so

a(0,−x) = a(0, nx) ≥ a(0, x) ⊗ · · · ⊗ a(0, x) = a(0, x).

Proposition 3.5. V -Grpsym is both a reflective and a coreflective subcategory of V-Grp.

Proof. Using Proposition 3.1, it is enough to show that, for every V -group (X, a,+), â and ǎ,

defined in the proof of Proposition 2.4, are invariant by shifting, which follows from the fact that

invariance by shifting is preserved by meets, joins, and composition of V -relations. �

Examples 3.6. For each quantale V described in Examples 2.8, we can now consider the

corresponding category V -Grp. Namely,

(1) when V = 2, 2-Grp is the category OrdGrp of preordered groups and monotone group

homomorphisms studied in [13];

(2) P+-Grp is the category MetGrp whose objects are the (generalized) metric groups, i.e.

the Lawvere generalized metric spaces with a group structure which is a non-expansive

map, and whose arrows are the non-expansive group homomorphisms;

(3) Pmax-Grp is the category of (generalized) ultrametric groups and non-expansive group

homomorphisms;
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(4) when V = ∆ (resp. V = ∆∧), V -Grp is the category ProbMetGrp of probabilistic

metric (resp. ultrametric) groups.

Thanks to Corollary 3.2, when V is an integral and optimistic quantale, OrdGrp embeds both

reflectively and coreflectively in V -Grp:

OrdGrp Gι
// V -Grp

Go

ss

Gp

kk ⊥

⊥
;

and, moreover, all the embeddings of categories of V -categories we mentioned in Examples 2.8

restrict to embeddings of V-Grp. Namely, (2.i) gives rise to the following chain of adjunctions

OrdGrp Gι
// MetGrp

Go

ss

Gp

kk ⊥

⊥ // ProbMetGrp
ss

kk ⊥

⊥
.

Proposition 3.7. If (X, a,+) is a V -group, Y is a group, and f : X → Y is a surjective group

homomorphism, then b := f · a · f◦ makes (Y, b,+) a V -group and f a V -homomorphism.

Proof. Using Proposition 3.1, it is enough to show that (Y, b) is a V -category and b satisfies (3.i).

Note that, for every y1, y2 ∈ Y ,

b(y1, y2) =
∨

x,x′∈X

f◦(y1, x)⊗ a(x, x′)⊗ f(x′, y2) =
∨

f(xi)=yi

a(x1, x2).

For each y, y1, y2, y3 ∈ Y ,

• b(y, y) =
∨

f(x)=f(x′)=y

a(x, x′) ≥
∨

f(x)=y

a(x, x) ≥ k;

• if f(x) = y, then

b(y1, y2) =
∨

f(xi)=yi

a(x1, x2) =
∨

f(xi)=yi

a(x1 + x, x2 + x) =
∨

f(x′i)=yi+y

a(x′1, x
′
2) = b(y1 + y, y2 + y);

• and

b(y1, y2)⊗ b(y2, y3) =
∨

f(xi)=yi

a(x1, x2)⊗
∨

f(x′i)=yi

a(x′2, x
′
3) =

∨

f(xi)=yi=f(x′i)

a(x1, x2)⊗ a(x′2, x
′
3)

=
∨

f(xi)=yi=f(x′i)

a(x1 − x2 + x′2, x
′
2)⊗ a(x′2, x

′
3)

≤
∨

f(xi)=yi=f(x′i)

a(x1 − x2 + x′2, x
′
3) = b(y1, y3).

�

We point out that the structure b defined above is the least V -category structure making f

a V -functor. These V -homomorphisms are exactly the extremal epimorphisms in V -Grp, and

the structure b is the final structure with respect to the topological functor V -Grp → Grp we

study next.

4. The category V -Grp

It is well-known that the forgetful functor | | : Grp → Set is monadic, while, as we have

already shown, the forgetful functor | | : V -Cat → Set is topological. Next we will check that

these properties transfer to the forgetful functors U1 : V -Grp → Grp and U2 : V -Grp → V -Cat,

with U1 forgetting the V-categorical structure and U2 the group structure.
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Theorem 4.1. The functor U1 is topological, and the functor U2 : V -Grp → V -Cat is monadic.

Therefore we have the following commutative diagram

V -Grp
(topological) U1

zz✉✉
✉✉
✉✉
✉✉
✉ U2 (monadic)

%%❑
❑❑

❑❑
❑❑

❑❑

Grp

(monadic) | | $$❏
❏❏

❏❏
❏❏

❏❏
V -Cat

| | (topological)yysss
ss
ss
ss
s

Set

Proof. To show that U1 is a topological functor, let (fi : X → (Xi, ai))i∈I be a family of group

homomorphisms, with (Xi, ai), i ∈ I, V -groups. Then the initial structure on V -Cat

(4.i) a(x, y) =
∧

i∈I

ai(fi(x), fi(y))

makes X a V -group, and this defines clearly the U1-initial lifting for (fi). Indeed, to check that

(X, a,+) is a V -group it is enough to verify that (3.i) holds: for every x, y, z ∈ X,

a(x+ z, y + z) =
∧

i∈I

ai(fi(x) + fi(z), fi(y) + fi(z)) =
∧

i∈I

ai(fi(x), fi(y)) = a(x, y).

Topologicity of U1 gives that, with Grp, also V -Grp is complete and cocomplete.

To show that U2 is monadic, we will use [21, Theorem 2.4].

(a) U2 : V -Grp → V -Cat has a left adjoint : Given a V -category (X, a), let FX be the free

group generated by X, and ηX : X → FX the insertion of generators. Then, for each V -group

(Y, b,+) and each V -functor f : (X, a) → U2(Y, b,+), there is a homomorphism f : FX → Y such

that f · ηX = f . Equipping FX with the initial V -category structure â with respect to all the

f : FX → (Y, b,+) as defined in (4.i), the inclusion ηX : (X, a) → U2(FX, â) is a V -functor and

it is universal from X to U2, therefore U2 has a left adjoint as claimed.

(b) U2 reflects isomorphisms: given a morphism f : (X, a,+) → (Y, b,+) in V -Grp, if U2(f)

is an isomorphism in V -Cat then f is a bijective homomorphism and, for every x, x′ ∈ X,

a(x, x′) = b(f(x), f(x′)). Therefore its inverse map is both a homomorphism and a V -functor,

and so f is an isomorphism in V -Grp.

(c) V -Grp has and U2 preserves coequalizers of all U2-contractible coequalizer pairs. First recall

that the functor | | : Grp → Set is monadic. Given morphisms f, g : X → Y in V -Grp such

that U2(f),U2(g) is a contractible pair in V -Cat, we know that the coequalizer q : Y → Q in

V -Grp is preserved by U1, and so it is also preserved by | | · U1, since | | is monadic and

|U1(f)|, |U1(g)| form a contractible pair in Set. Therefore U2(q), as a split epimorphism that

coequalizes |U1(f)|, |U1(g)| in Set, is the coequalizer of U2(f),U2(g) in V -Cat. �

We collect below properties of V -Grp that follow from this proposition.

Remark 4.2. (1) The functor U1 : V -Grp → Grp has both a left and a right adjoint. The

left adjoint L1 : Grp → V -Grp equips a group X with the discrete V-category structure:

a(x, y) = k if x = y, and a(x, y) = ⊥ otherwise. The right adjoint R1 : Grp → V -Grp

equips a group X with the indiscrete V -category structure: a(x, y) = ⊤ for all x, y ∈ X.

It is immediate to see that both structures are compatible with the group operation.

(2) V-Grp is complete and cocomplete, as stated in the proof of Proposition 4.1. In partic-

ular, the initial object is ({∗}, κ) where κ(∗, ∗) = k, while the terminal object is ({∗}, c),

where c(∗, ∗) = ⊤. Hence V -Grp is a pointed category if and only if, in V , k = ⊤.
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(3) Limits are preserved by both forgetful functors. Therefore the product X × Y , of two

V -groups (X, a) and (Y, b), is the direct product of groups equipped with the relation

a ∧ b given by:

(a ∧ b)((x1, y1), (x2, y2)) = a(x1, x2) ∧ b(y1, y2).

Infinite products are obtained similarly. The equalizer of a pair f, g : X → Y of parallel

morphisms in V -Grp is the equalizer in Grp equipped with the V -category structure

induced by the one of X.

(4) Colimits are preserved by U1 : V -Grp → Grp (but not by U2), so they are formed like

in Grp and equipped with the suitable V -category structure, as outlined next.

Coequalizers are easily described. Given a pair of morphisms f, g : (X, a) → (Y, b), let

q : U1(Y ) → Q be the coequalizer in Grp of U1(f),U1(g). Defining on Q the structure

c = q · b · q◦, that is c(z1, z2) =
∨

q(yi)=zi

b(y1, y2), thanks to Proposition 3.7 we know that

q : (Y, b) → (Q, c) is a V -homomorphism. The universal property is easily checked. This

construction shows that the regular epimorphisms in V-Grp are exactly the surjective

V -homomorphisms f : (X, a) → (Y, b) such that b = f · a · f◦.

Coproducts are a bit more difficult. As a group, the coproduct (Y, b) of a family (Xi, ai)

of V -groups is the coproduct formed in Grp with the final structure with respect to the

forgetful functor into Grp. There is no easy way of describing this final structure.

(5) In V -Grp a V -homomorphism f : (X, a) → (Y, b) is an epimorphism if and only if it is

surjective: the preservation of colimits by U1 and its faithfulness imply that U1 preserves

and reflects epimorphisms; therefore f is an epimorphism in V -Grp if and only if U1(f) is

an epimorphism in Grp, that is, f is surjective. Regular monomorphisms in V -Grp are

the morphisms f : (X, a) → (Y, b) that are injective and with a(x, x′) = b(f(x), f(x′)),

for every x, x′ ∈ X. It is easily seen that (epi, reg mono) is a stable factorization system

in V-Grp: every f : X → Y can be factored as

(X, a)
f

//

e
%%❑

❑❑
❑❑

❑❑
❑❑

(Y, b),

(f(X), b)

m

99sssssssss

and epimorphisms are pullback stable (just because surjective homomorphisms are pull-

back stable in Grp).

(6) From the construction of coequalizers it follows that a morphism f : (X, a) → (Y, b)

is a regular epimorphism in V -Grp if, and only if, it is surjective and final, that is,

b(y1, y2) =
∨

f(xi)=yi

a(x1, x2); and f is a monomorphism exactly when it is an injective

map. Next we prove that (reg epi, mono) is a stable factorization system in V-Grp.

Indeed, every f : (X, a) → (Y, b) can be factored as

(X, a)
f

//

e
%%❑

❑❑
❑❑

❑❑
❑❑

(Y, b),

(f(X), c)

m

99sssssssss
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with c(y1, y2) =
∨

f(xi)=yi

a(x1, x2). Pullback-stability of regular epimorphisms is easily

checked: if

(X ×Y Z, a ∧ c)
π2 //

π1

��

(Z, c)

g

��
(X, a)

f

// (Y, b)

is a pullback diagram and f is a regular epimorphism, then π2 is surjective and

c(z1, z2) = b(g(z1), g(z2)) ∧ c(z1, z2)

=





∨

f(xi)=g(zi)

a(x1, x2)



 ∧ c(z1, z2)

=
∨

f(xi)=g(zi)

(a(x1, x2) ∧ c(z1, z2)) ;

hence π2 is also final.

Proposition 4.3. The category V-Grp is a regular category in the sense of Barr [2]. Moreover,

when V is integral (i.e. k = ⊤) it is normal in the sense of Z. Janelidze [19]: every regular

epimorphism is a cokernel.

Proof. As stated above, V -Grp is a (finitely) complete category with a stable factorization

system (reg epi, mono), hence it is regular. To show that it is normal when V is integral, we

observe that it is pointed and that, for every regular epimorphism f : (X, a) → (Y, b), U1(f) is a

regular epimorphism in Grp, hence it is the cokernel of its kernel in Grp. Then f is the cokernel

of its kernel also in V -Grp, indeed, thanks to Remark 4.2.(4), the structure b on Y is the final

one: b = f · a · f◦. �

In general, the category V -Grp is not Barr-exact [2]: see, for example, Remark 2.6 in [13]

for an example of an equivalence relation which is not effective, in the case V = 2. However,

V -Grp satisfies a slightly weaker property: it is efficiently regular in the sense of [8]:

Proposition 4.4. V -Grp is efficiently regular: it is regular and, if R is an effective equivalence

relation over an object X and T is another equivalence relation over X which is a regular

subobject j : T  R of R (i.e. j is a regular monomorphism in V -Grp), then T is itself

effective.

Proof. If T
t2

//
t1 // X is an equivalence relation in V -Grp as in the statement above, then U1(T )

is a kernel pair of a morphism in Grp, since Grp is Barr-exact; hence the following is a pullback

in Grp

U1(T )
U1(t1) //

U1(t2)
��

U1(X)

q

��
U1(X)

q
// Y,

where q : U1(X) → Y is the coequalizer of U1(t1) and U1(t2) in Grp. Putting on Y the fi-

nal structure described in Remark 4.2.(4), the square above becomes a commutative diagram

in V -Grp. It is a pullback in V -Grp, because 〈t1, t2〉 : T → X × X is a regular monomor-

phism in V -Grp. Indeed, R
r2

//
r1 // X is an effective equivalence relation in V -Grp, and so the
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monomorphism 〈r1, r2〉 : R→ X×X is a regular monomorphism in V -Grp. Moreover, being j a

regular monomorphism in V -Grp, we obtain from Remark 4.2.(5) that also the monomorphism

〈t1, t2〉 = 〈r1, r2〉 ◦ j is regular in V -Grp. We conclude that T is effective in V -Grp. �

The main reason why this property is interesting is the fact that, in an efficiently regular

category, a morphism is effective for descent if and only if it is a regular epimorphism. This

follows from [8, Proposition 1.2] and [18, Theorem 3.7].

5. Topological properties

Regularity of topological groups and openness of quotient maps between topological groups

play a crucial role in the topological behaviour of the category of topological groups. Following

the approach of [10], where, inspired by the description of topological spaces and continuous

maps as (T, V )-categories and (T, V )-functors (for T the ultrafilter monad and V = 2), several

topological properties were explored, we show next that in V -Grp these properties play also a

crucial role.

We start by recalling some notions, studied in [10], in the context of V -categories.

Definition 5.1. A V -functor f : (X, a) → (Y, b) is proper if b · f ≤ f · a, while it is open if

b◦ · f ≤ f · a◦.

Recalling that a map f : (X, a) → (Y, b) is a V -functor if f · a ≤ b · f , or, equivalently,

f · a◦ ≤ b◦ · f , one concludes that f is proper exactly when b · f = f · a, while f is open when

b◦ ·f = f ·a◦. Therefore, f : (X, a) → (Y, b) is proper if, and only if, f : (X, a◦) → (Y, b◦) is open;

using pointwise notation, f is proper when, for x ∈ X, y ∈ Y ,

b(f(x), y) =
∨

f(x′)=y

a(x, x′),

and f is open when

b(y, f(x)) =
∨

f(x′)=y

a(x′, x).

Definition 5.2. A V -category (X, a) is said to be regular if a · a◦ ≤ a, which is equivalent to

a = a◦, that is, it is symmetric. Indeed, regularity means that, for all x1, x2, x3 ∈ X, one has

a(x1, x2)⊗ a(x1, x3) ≤ a(x2, x3). Clearly, if (X, a) is symmetric, then this condition is satisfied.

Conversely, from regularity one obtains, choosing x1 = x3:

a(x3, x2) = a(x3, x2)⊗ k ≤ a(x3, x2)⊗ a(x3, x3) ≤ a(x2, x3) for all x2, x3 ∈ X.

As a side remark we observe that regularity of the V -relation a coincides with other properties

studied in diverse algebraic settings.

Lemma 5.3. For a V -category (X, a), the following conditions are equivalent:

(i) (X, a) is regular,

(ii) (X, a) is a symmetric V -category,

(iii) a is a positive V -relation (see [25]), i.e. a = b◦ · b for some V -relation b,

(iv) a is difunctional (see [24]), i.e. a · a◦ · a ≤ a. �

Corollary 5.4. A V -group is regular if, and only if, it is symmetric; hence, when ⊗ = ∧, a

V -group is regular if, and only if, it is an internal group in V-Cat. �

Proposition 5.5. A V -homomorphism f : (X, a) → (Y, b) between V -groups is open if, and only

if, it is proper.
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Proof. For every x ∈ X, y ∈ Y , b(f(x), y) = b(−y,−f(x)) = b(−y, f(−x)), and the result

follows. �

Remark 5.6. For inclusions, the notion of proper V -functor is the right substitute for closed

subobject. In fact, as proper map in topology means stably closed map, and closed embeddings

are pullback stable, a topological embedding is closed if, and only if, it is proper. Having this in

mind, the following statement corresponds to the well-known fact that every open subgroup of

a topological group is closed.

Corollary 5.7. If S is a subgroup of (X, a,+), then S is open in X if and only if it is proper.

�

Theorem 5.8. Every regular epimorphism in V-Grp is both open and proper.

Proof. As we checked in Remark 4.2, a regular epimorphism f : (X, a) → (Y, b) in V-Grp is a

surjective map such that b = f · a · f◦, that is, for every y1, y2 ∈ Y , b(y1, y2) =
∨

f(xi)=yi

a(x1, x2).

Hence,

b(y, f(x)) =
∨

f(x′)=y, f(x′′)=f(x)

a(x′, x′′) =
∨

f(x′)=y, f(x′′)=f(x)

a(x′ − x′′ + x, x) =
∨

f(z)=y

a(z, x).

�

6. Algebraic properties

The aim of this section is to study the algebraic properties of V -groups. From now on, we

will always assume that, in V , the equality k = ⊤ holds. This assumption is not particularly

restrictive: all the examples we mentioned in the previous sections satisfy it. But, as we observed

in Remark 4.2.(2), it implies that the category V -Grp is pointed. Note that, if k = ⊤, then the

condition for (X, a) to be a V -graph becomes a(x, x) = k = ⊤ for all x ∈ X.

Moreover, due to Proposition 6.1 below, we will concentrate mainly in the case of V being a

frame, i.e. ⊗ = ∧ in V : under this assumption, we will explore the main categorical-algebraic

notions, showing that, in general, the whole category V -Grp satisfies only relatively weak prop-

erties. However, if we restrict our attention to symmetric V -groups, we will see that the algebraic

behaviour is very similar to the one of the category Grp of groups. We start by observing that

the property of being unital holds in V -Grp if and only if V is a frame.

We recall that a pair of morphisms with the same codomain in a finitely complete category is

jointly strongly epimorphic if, whenever both morphisms factor through a monomorphism m, m

is an isomorphism. A pointed, finitely complete category is unital [7] if, for any two objects X

and Y , the canonical morphisms

X
〈1,0〉

// X × Y Y,
〈0,1〉
oo

induced by the universal property of the product, are jointly strongly epimorphic. We remark

that, for (X, a) and (Y, b) V -groups, the V -category structure on (X, a) × (Y, b) is a ∧ b.

Proposition 6.1. V -Grp is a unital category if and only if V is a frame.
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Proof. Suppose first that V is a frame. Given X,Y,Z ∈ V -Grp, consider the following commu-

tative diagram

X
〈1,0〉

//

f ##●
●●

●●
●●

●●
●

X × Y Y,
〈0,1〉
oo

g
{{✇✇
✇✇
✇✇
✇✇
✇

Z

m

OO

where m is a monomorphism. Since Grp is a unital category, m is an isomorphism of groups;

it only remains to show that its inverse t is a V -functor. The morphism t is defined by t(x, y) =

f(x) + g(y). In other terms, t = + ◦ (f × g). Hence t is a V -functor, being the composite of two

V -functors.

Conversely, suppose that V is not a frame. Hence there exist u, v ∈ V such that u⊗ v < u∧ v

(observe that, under the assumption that k = ⊤, it is always true that u ⊗ v ≤ u ∧ v for all

u, v ∈ V ). Given any pair (X, a) and (Y, b) of V -groups, the identity map

(X, a) ⊗ (Y, b)
1X×Y // (X, a)× (Y, b)

is a monomorphism in V -Grp. Moreover, we always have the following commutative diagram

in V -Grp:

(X, a)
〈1,0〉

//

1⊗0 &&◆◆
◆◆

◆◆
◆◆

◆◆
◆

(X × Y, a ∧ b) (Y, b),
〈0,1〉
oo

0⊗1xx♣♣♣
♣♣
♣♣
♣♣
♣♣

(X × Y, a⊗ b)

1X×Y

OO

where (1⊗ 0)(x) = (x, 0) and (0⊗ 1)(y) = (0, y). We want to show that 1X×Y is not always an

isomorphism. We define, on the additive group Z2 = Z/2Z, two V -group structures a and b as

follows:

a(0, 1) = a(1, 0) = u, a(0, 0) = a(1, 1) = k; b(0, 1) = b(1, 0) = v, b(0, 0) = b(1, 1) = k.

Then

(a⊗ b)((0, 0), (1, 1)) = a(0, 1) ⊗ b(0, 1) = u⊗ v < u ∧ v = a(0, 1) ∧ b(0, 1) = (a ∧ b)((0, 0), (1, 1)).

�

One of the key categorical-algebraic notions is the one of protomodular category [6]: for

pointed, finitely complete categories, it is equivalent to the validity of the Split Short Five

Lemma, and it has several important consequences, mainly related to the homological properties

of the category. Unfortunately, if V is non-degenerate (i.e. ⊥ 6= ⊤), V -Grp is not a protomodular

category. Indeed, as shown in [13], OrdGrp is not protomodular. Moreover, when V is integral

and non-degenerate, using the inclusion ι : 2 → V described in Section 2 it is not difficul to

see that OrdGrp can be identified with a full subcategory of V -Grp closed under finite limits.

Therefore V -Grp is not a protomodular category, since it has a full subcategory, OrdGrp, which

is closed under finite limits and not protomodular. However, when V is a frame, V -Grp is good

enough to identify, inside of it, an important full subcategory, which turns out to be the one of

symmetric V -groups, which is protomodular (and, actually, it satisfies even stronger algebraic

properties, as we will see in Section 8). In order to see this, we follow the objectwise approach

introduced in [23]: the idea is to identify a class of objects, in a category with weak algebraic

properties, such that the main categorical-algebraic properties hold locally for constructions

involving these “good” objects. In order to define formally such objects, we need the notion of

stably strong point:
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Definition 6.2. A point (i.e. a split epimorphism with a fixed section) A
f

// Y
soo with kernel

n : X → A in a pointed finitely complete category is strong if n and s are jointly strongly

epimorphic. It is stably strong if every pullback of it along any morphism g : Z → Y is strong.

Definition 6.3 ([23]). An object Y of a pointed, finitely complete category C is

(1) a strongly unital object if the point Y × Y
π2

// Y
〈1,1〉
oo is stably strong;

(2) a Mal’tsev object if, for every pullback of split epimorphisms over Y as in the following

diagram

A×Y Z

πA

��

πZ
// Z

g

��

〈sg,1Z〉
oo

A

〈1A,tf〉

OO

f

// Y,
soo

t

OO

the morphisms 〈1A, tf〉 and 〈sg, 1Z〉 are jointly strongly epimorphic;

(3) a protomodular object if every point over Y is stably strong.

Proposition 6.4. If (Y, b,+) is a strongly unital V -group, then, for every y ∈ Y ,

b(0, y) = b(y, 0) ⊗ b(0, y).

Proof. Assume there is x ∈ Y such that b(x, 0) ⊗ b(0, x) 6= b(0, x). Consider the subgroup X

of Y generated by x, equipped with the V -categorical structure induced by b (and that we will

denote also by b). We show next that, in the following diagram

Y
〈1,0〉

// Y ×X

1×j
��

π2
// X

〈j,1〉
oo

j

��
Y

〈1,0〉
// Y × Y

π2
// Y,

〈1,1〉
oo

with X × Y equipped with the product structure

d((0, 0), (y, y′)) = b(0, y) ∧ b(0, y′),

(Y, b)
〈1,0〉

// (Y ×X, d) (X, b)
〈j,1〉
oo are not jointly strongly epimorphic, that is, d is not the

final structure c for (〈1, 0〉, 〈j, 1〉).

To define c we first note that, since (y, z) = 〈1, 0〉(y − z) + 〈j, 1〉(z), necessarily

c((0, 0), (y, z)) ≥ b(0, y − z)⊗ b(0, z) = b(z, y) ⊗ b(0, z).

Let us define c0 : (Y ×X)× (Y ×X) → V by:

c0((0, 0), (y, z)) = b(z, y)⊗ b(0, z),

and extend it by shifting. Then (Y ×X, c0) is a V -graph and, since c0 may be neither transitive

nor compatible with the addition on Y ×X, we define then c by

c((0, 0), (y, z)) =
∨

c0((0, 0), (y1, z1))⊗ · · · ⊗ c0((0, 0), (yn, zn)),

where y1 + · · ·+ yn = y and z1 + · · · + zn = z, and extend it by shifting.
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To show that (Y ×X, c,+) is a V -group, thanks to Proposition 3.1, it is enough to show that

+: (Y ×X)× (Y ×X) → Y ×X is a V -functor. Let y, y′ ∈ Y , z, z′ ∈ X; then

c((0, 0), (y, z)) ⊗ c((0, 0), (y′ , z′)) =

=
∨

c0((0, 0), (y1, z1))⊗ · · · ⊗ c0((0, 0), (yn, zn))⊗ c0((0, 0), (y
′
1, z

′
1))⊗ · · · ⊗ c0((0, 0), (y

′
m, z

′
m)),

where y1 + . . . yn = y, z1 + · · ·+ zn = z, y′1 + · · ·+ y′m = y′, z′1 + · · ·+ z′m = z′, and this is clearly

less or equal to
∨

c0((0, 0), (y
∗
1 , z

∗
1))⊗ · · · ⊗ c0((0, 0), (y

∗
l , z

∗
l )),

with y∗1 + · · ·+ y∗l = y + y′, z∗1 + . . . z∗l = z + z′, that is, c((0, 0), (y + y′, z + z′)).

Finally we are going to show that

c((0, 0), (0, x)) = c0((0, 0), (0, x)) = b(x, 0) ⊗ b(0, x),

which shows that c 6= d since d((0, 0), (0, x)) = b(0, x), which is different from b(x, 0) ⊗ b(0, x)

by hypothesis. On one hand, we always have c0 ≤ c. On the other hand, given y1, . . . , yn ∈ Y ,

z1, . . . , zn ∈ X such that y1 + · · ·+ yn = 0 and z1 + · · ·+ zn = x,

c0((0, 0), (y1, z1))⊗ · · · ⊗ c0((0, 0), (yn, zn)) =

= b(z1, y1)⊗ b(0, z1)⊗ · · · ⊗ b(zn, yn)⊗ b(0, zn)

= b(z1, y1)⊗ · · · ⊗ b(zn, yn)⊗ b(0, z1)⊗ · · · ⊗ b(0, zn)

≤ b(z1 + · · ·+ zn, y1 + · · ·+ yn)⊗ b(0, z1 + · · ·+ zn) = b(x, 0) ⊗ b(0, x),

which shows that

c((0, 0), (0, x)) =
∨

c0((0, 0), (y1, z1))⊗ · · · ⊗ c0((0, 0), (yn, zn)),

where y1 + · · ·+ yn = 0, z1 + · · ·+ zn = x, is less than or equal to b(x, 0) ⊗ b(0, x). �

Theorem 6.5. When ⊗ = ∧ in V , for a V -group (Y, b,+), the following conditions are equiva-

lent:

(i) (Y, b,+) is a protomodular object in V -Grp;

(ii) (Y, b,+) is a Mal’tsev object in V -Grp;

(iii) (Y, b,+) is a strongly unital object in V -Grp;

(iv) (Y, b) is a symmetric V -category;

(v) (Y, b,+) is an internal group in V -Cat.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) follow from Propositions 7.2 and 6.3 in [23], because

V -Grp is a regular category, as observed in Remark 4.2.(6).

(iii) =⇒ (iv) ⇐⇒ (v): follows from the previous proposition since, whenever ⊗ = ∧, from

b(0, y) = b(y, 0) ∧ b(0, y) = b(0,−y) ∧ b(−y, 0) = b(−y, 0) ∧ b(0,−y) = b(0,−y)

we conclude that b(0, y) = b(0,−y) = b(y, 0), and therefore (Y, b) is a symmetric V -category, or,

equivalently, the inversion is a V -functor, as we observed in Remark 3.4.

It remains to show that (v) =⇒ (i): given an internal group (Y, b,+), consider the following

diagram in V -Grp

N

��

n // (Z ×Y X, d)

f ′

��

h′ // (X, a)

f

��
0 // (Z, c)

〈1Z ,sh〉

OO

h

// (Y, b),

s

OO



ON THE CATEGORICAL BEHAVIOUR OF V -GROUPS 17

where both downwards squares are pullbacks. The pullback structure d on Z ×Y X is given by

d((0, 0), (z, x)) = c(0, z) ∧ a(0, x),

for every (z, x) ∈ Z×Y X. To show that d coincides with the final structure d′ for n and 〈1Z , sh〉,

we note that, for every (z, x) ∈ Z ×Y X,

(z, x) = (0, x − sf(x)) + (z, sf(x)) = (0, x− sf(x)) + (z, sh(z)).

From V -functoriality of 〈1Z , sh〉 one gets immediately that

d′((0, 0), (z, sh(z)) ≥ c(0, z).

Now, using V -functoriality of s and f , and symmetry of (Y, b),

d′((0, 0), (0, x − sf(x)) ≥a(0, x− sf(x)) ≥ a(0, x) ∧ a(0, s(−f(x)))

≥a(0, x) ∧ b(0,−f(x)) = a(0, x) ∧ b(0, f(x)) = a(0, x).

Therefore d′ ≥ d. In other terms, the identity morphism 1Z×YX : (Z×Y X, d) → (Z×Y X, d
′) is a

V -functor. But 1Z×Y X is clearly a monomorphism, and n and 〈1Z , sh〉 factor through it. Being

d′ the final structure for these two morphisms, we get that 1Z×YX : (Z ×Y X, d) → (Z ×Y X, d
′)

is an isomorphism, i.e. d′ = d. �

As a reflective subcategory of V -Grp (see Proposition 3.5), V -Grpsym is closed under limits

in V -Grp. Hence V -Grpsym is a protomodular category, thanks to [23, Corollary 7.4]. Indeed,

by the previous theorem, V -Grpsym is the full subcategory of protomodular objects of V -Grp.

In particular we get the following examples which give rise to protomodular categories:

(1) When V = 2, OrdGrpsym is the category of groups equipped with a congruence, or in

other terms the category whose objects are pairs (G,N) where G is a group and N is a

normal subgroup of G, and whose arrows are the group homomorphisms that restrict to

the normal subgroups.

(2) When V = Pmax, UMetGrpsym is the category of symmetric ultrametric groups, i.e. ul-

trametric groups in which the distance is symmetric, and non-expansive homomorphisms.

Moreover, if we consider the full subcategory UMetGrpsym,0 of (classical) ultrametric

groups, i.e. of those ultrametric groups that are symmetric, separated (if d(x, y) = 0,

then x = y) and finitary (for all x, y d(x, y) < ∞), it is easy to observe that this sub-

category is closed in V -Grpsym under finite limits, hence it is itself protomodular (since

the notion of protomodularity can be expressed only by means of finite limits).

(3) When V = ∆∧, ProbMetGrpsym is the category of symmetric probabilistic ultrametric

groups.

In Section 8 we will investigate more in detail the algebraic properties of V -Grpsym.

7. Split extensions

In this section we investigate the split extensions in V -Grp. We will always assume that k = ⊤

in V , so that V -Grp is pointed, but we do not require that V is a frame. Let

(X, a)
n // (Z, c)

f

// (Y, b)
soo be a split extension in V -Grp. Then X

n // Z
f

// Y
soo is a

split extension in Grp, hence Z, as a group, is isomorphic to the semidirect product X⋊ϕY with
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respect to the action ϕ : Y → Aut(X) of Y on X defined by ϕ(y)(x) = ϕy(x) = s(y)+n(x)−s(y).

Therefore we can restrict our study to split extensions of the type

(7.i) (X, a)
〈1,0〉

// (X ⋊ϕ Y, c)
π2

// (Y, b)
〈0,1〉
oo

We recall that, for (x, y), (x′, y′) ∈ X × Y , (x, y) +ϕ (x′, y′) = (x+ ϕy(x
′), y + y′). In general we

will omit the index ϕ in the sum +.

First we present a necessary condition for a V -category structure c on X ⋊ϕ Y to make (7.i)

a split extension in V -Grp.

Lemma 7.1. If (7.i) is a split extension in V-Grp then, for every y ∈ Y , ϕy : (X, a) → (X, a)

is a V -functor.

Proof. Invariance of a by shifting gives that, for every x, x′ ∈ X,

a(x, x′) =c(n(x), n(x′)) = c(s(y) + n(x)− s(y), s(y) + n(x′)− s(y)) = c(ϕy(x), ϕy(x
′))

=a(ϕy(x), ϕy(x
′)).

�

As for preordered groups, there are two possible extremal structures to be considered, a

minimal one given by the tensor ⊗ in the product, and a maximal one, a generalized lexicographic

structure we introduce below.

Theorem 7.2. Let X and Y be groups, ϕ : Y → Aut(X) a group action, and let (X ⋊ Y,+) be

the semidirect product defined in Grp by ϕ. The following assertions are equivalent:

(i) (X, a)
〈1,0〉

// (X ⋊ Y, a⊗ b)
π2

// (Y, b)
〈0,1〉
oo is a split extension in V -Grp;

(ii) the map ϕ : (X ⊗ Y, a⊗ b) → (X ⊗ Y, a⊗ b), with (x, y) 7→ (ϕy(x), y), is a V -functor.

Proof. (i) =⇒ (ii): (X ⋊ Y, a ⊗ b,+) is a V -group if, and only if, for all x1, x2, x
′
1, x

′
2 ∈ X,

y1, y2, y
′
1, y

′
2 ∈ Y ,

(a⊗b)((x1, y1), (x2, y2))⊗(a⊗b)((x′1, y
′
1), (x

′
2, y

′
2)) ≤ (a⊗b)((x1, y1)+(x′1, y

′
1), (x2, y2)+(x′2, y

′
2));

that is,

a(x1, x2)⊗ b(y1, y2)⊗ a(x′1, x
′
2)⊗ b(y′1, y

′
2) ≤ a(x1 + ϕy1(x

′
1), x2 + ϕy2(x

′
2))⊗ b(y1 + y′1, y2 + y′2).

When x1 = x2 = 0 and y′1 = y′2 = 0, we obtain

a(x′1, x
′
2)⊗ b(y1, y2) ≤ a(ϕy1(x

′
1), ϕy2(x

′
2))⊗ b(y1, y2),

and this means exactly that ϕ is a V -functor.

(ii) =⇒ (i): To verify that (X ⋊ Y, a ⊗ b,+) is a V -group, let x1, x2, x
′
1, x

′
2 ∈ X and

y1, y2, y
′
1, y

′
2 ∈ Y ; then

(a⊗ b)((x1, y1), (x2, y2))⊗ (a⊗ b)((x′1, y
′
1), (x

′
2, y

′
2))

=a(x1, x2)⊗ b(y1, y2)⊗ a(x′1, x
′
2)⊗ b(y′1, y

′
2)

=a(x1, x2)⊗ a(x′1, x
′
2)⊗ b(y1, y2)⊗ b(y′1, y

′
2)

≤a(x1, x2)⊗ a(ϕy1(x
′
1), ϕy2(x

′
2))⊗ b(y1, y2)⊗ b(y′1, y

′
2) (ϕ is a V -functor)

≤a(x1 + ϕy1(x
′
1), x2 + ϕy2(x

′
2))⊗ b(y1 + y′1, y2 + y′2)

=(a⊗ b)((x1, y1) + (x′1, y
′
1), (x2, y2) + (x′2, y

′
2)).
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It remains to show that the homomorphisms of the split extension are V -functors, and that

〈1X , 0〉 is a kernel. The monomorphisms 〈1, 0〉 and 〈0, 1〉 are always V -functors, as well as π2,

since it means that a(x, x′) ⊗ b(y, y′) ≤ b(y, y′), and this is true because we are assuming that

k = ⊤; moreover, for every x, x′ ∈ X, a(x, x′) = (a ⊗ b)((x, 0), (x′, 0)), and so (X, a) has the

initial structure for the map 〈1, 0〉. �

Remark 7.3. (1) Theorem 7.2 applied to the case V = 2 gives Proposition 5.2 of [13]: when

V = 2, (X ⋊ Y, a⊗ b,+) is a V -group if and only if

(∀ y ≥ 0) (∀x ∈ X) ϕy(x) ≥ x.

Indeed, V -functoriality of ϕ gives:

b(0, y) = (a⊗ b)((x, 0), (x, y)) ≤ (a⊗ b)((ϕ0(x), 0), (ϕy(x), y)) = a(x, ϕy(x))⊗ b(0, y).

Then, when V = 2 and y ≥ 0, i.e. b(0, y) = ⊤, a(x, ϕy(x)) ∧ ⊤ ≥ ⊤ means exactly that

ϕy(x) ≥ x.

(2) The same theorem, applied to the case V = P+, says that (X ⋊ Y, a⊗ b,+) is a V -group

if and only if

∀x1, x2 ∈ X, ∀ y1, y2 ∈ Y with b(y1, y2) 6= ∞, a(x1, x2) ≥ a(ϕy1(x1), ϕy2(x2)).

Indeed, ϕ is a V -functor (i.e. a non-expansive map) if and only if, for all x1, x2 ∈

X, y1, y2 ∈ Y

(a⊗ b)((x1, y1), (x2, y2)) ≥ (a⊗ b)((ϕy1(x1), y1), (ϕy2(x2), y2)),

which is the same as to say that

a(x1, x2) + b(y1, y2) ≥ a(ϕy1(x1), ϕy2(x2)) + b(y1, y2).

Next we analyse how to interpret the lexicographic structure in V -Grp. For V -categories

(X, a), (Y, b), consider lex : (X × Y )⊗ (X × Y ) → V defined by

lex((x, y), (x′, y′)) =

{

a(x, x′) if y = y′

b(y, y′) if y 6= y′.

In general (X × Y, lex) is a V -graph but not necessarily a V -category, as shown in the proof of

the theorem below.

Theorem 7.4. Given V -groups (X, a), (Y, b), and a group action ϕ : Y → Aut(X) with ϕy : (X, a) →

(X, a) a V -functor for every y ∈ Y , the following conditions are equivalent:

(i) (X, a)
〈1,0〉

// (X ⋊ Y, lex)
π2

// (Y, b)
〈0,1〉
oo is a split extension in V -Grp;

(ii) for all x ∈ X and y ∈ Y \ {0}, b(y, 0)⊗ b(0, y) ≤ a(x, 0).

Proof. (ii) =⇒ (i): Thanks to Proposition 3.1, to show that (X⋊Y, lex) is a V -group it is enough

to show that + is a V -functor; that is, for each x1, x2, x
′
1, x

′
2 ∈ X, y1, y2, y

′
1, y

′
2 ∈ Y ,

lex((x1, y1), (x2, y2))⊗ lex((x′1, y
′
1), (x

′
2, y

′
2)) ≤ lex((x1+ϕy1(x

′
1), y1+ y

′
1), (x2 +ϕy2(x

′
2), y2+ y

′
2)).

For that we consider the possible cases:

• y1 + y′1 = y2 + y′2, y1 = y2, y
′
1 = y′2:

a(x1, x2)⊗ a(x′1, x
′
2) ≤ a(x1, x2)⊗ a(ϕy1(x

′
1), ϕy1(x

′
2)) (ϕy1 is a V -functor)

≤ a(x1 + ϕy1(x
′
1), x2 + ϕy1(x

′
2)) ((X, a,+) is a V -group).
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• y1 + y′1 = y2 + y′2 and y1 6= y2 (and so −y2 + y1 = y′2 − y′1 6= 0): Using (ii) we conclude

that

b(y1, y2)⊗ b(y′1, y
′
2) = b(−y2 + y1, 0)⊗ b(0, y′2 − y′1) ≤ a(x1 + ϕy1(x

′
1), x2 + ϕy2(x

′
2)).

• y1 + y′1 6= y2 + y′2 and y1 = y2:

a(x1, x2)⊗ b(y′1, y
′
2) ≤ b(y′1, y

′
2) = b(y1 + y′1, y2 + y′2).

• y1 + y′1 6= y2 + y′2 and y1 6= y2, y
′
1 6= y′2: immediate.

From the definition of lex it is clear that all the maps of (i) are V -functors, and, moreover, 〈1, 0〉

is the kernel of π2.

(i) =⇒ (ii): take (x, y) + (0,−y) = (x+ ϕy(0), 0) = (x, 0), for y 6= 0:

b(y, 0)⊗ b(−y, 0) = lex((x, y), (0, 0)) ⊗ lex((0,−y), (0, 0)) ≤ lex((x, 0), (0, 0)) = a(x, 0).

�

Remark 7.5. (1) Theorem 7.4 applied to the case V = 2 gives Proposition 5.4 of [13].

Indeed, for V = 2 condition (ii) is trivially satisfied when the preorder is antisymmetric:

(∀ y 6= 0) b(y, 0) ∧ b(0, y) = ⊥,

and, in the presence of a non-positive element x of X, so that a(0,−x) = ⊥, (ii) implies

antisymmetry of b.

This extends to optimistic quantales. Indeed, if V is optimistic and X is such that

∧x∈X a(x, 0) = ⊥, then condition (ii) is valid for (Y, b) if, and only if, for every y ∈ Y \{0},

b(y, 0) = ⊥ or b(0, y) = ⊥. That is, for V -groups (X, a), (Y, b), lex makes the semidirect

product X ⋊ Y a V -group if, and only if, considering the reflections of (X, a) and (Y, b)

in OrdGrp, the corresponding lexicographic preorder makes X⋊Y a preordered group.

In particular, when V = P+ or V = Pmax, if (X, a) is a non-bounded (ultra)metric

space, then the only (Y, b) which admit the lexicographic order on X ⋊ Y are those with

either b(y, 0) = ∞ or b(0, y) = ∞, for any y 6= 0.

(2) As expected, for symmetric V -groups (Y, b) the lexicographic order rarely makes X ⋊ Y

a V -group: if (X, a) is such that ∧x∈X a(x, 0) = ⊥, then, for every y 6= 0, b(y, 0) = ⊥,

since, for any quantale V and u ∈ V , u⊗ u = ⊥ implies u = ⊥.

Finally we establish the result announced before Theorem 7.2.

Proposition 7.6. If (X, a)
〈1,0〉

// (X ⋊ Y, c)
π2

// (Y, b)
〈0,1〉
oo is a split extension in V-Grp, then

a⊗ b ≤ c ≤ lex.

Proof. From the equality (x, 0) + (0, y) = (x, y), for every x ∈ X and y ∈ Y , and the fact that

〈1X , 0〉 and 〈0, 1Y 〉 are V -functors, it follows that

a(0, x) ⊗ b(0, y) ≤ c((0, 0), (x, 0)) ⊗ c((0, 0), (0, y)) ≤ c((0, 0), (x, y)).

Moreover, V -functoriality of π2 gives that, for every y, y′ ∈ Y , c((x, y), (x′, y′)) ≤ b(y, y′). When

y = y′, c((0, y), (x, y)) = c((0, 0), (x, 0)) = a(0, x), because 〈1X , 0〉 is a kernel. �

Proposition 7.7. When ⊗ = ∧ and (Y, b) is a symmetric V -category, the only possible compat-

ible structure on X ⋊ Y is a⊗ b = a ∧ b.
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Proof. Let x ∈ X and y ∈ Y . By V -functoriality of π2, c((0, 0), (x, y)) ≤ b(0, y). Moreover, since

(x, 0) = (x, y) + (0,−y), one gets

c((0, 0), (x, y)) = c((0, 0), (x, y)) ∧ b(0, y) = c((0, 0), (x, y)) ∧ b(0,−y) =

= c((0, 0), (x, y)) ∧ c((0, 0), (0,−y)) ≤ c((0, 0), (x, 0)) = a(0, x).

�

8. Symmetric V -groups

At the end of Section 6 we observed that the category V -Grpsym of symmetric V -groups is

protomodular, when ⊗ = ∧. One of the several equivalent ways of formulating this property is

in terms of the so-called fibration of points: given a finitely complete category C, we denote by

Pt(C) the category of points in C, i.e. of split epimorphisms with a fixed section. The functor

cod: Pt(C) → C

which associates with every point its codomain is a fibration, called the fibration of points.

Several categorical-algebraic properties of a category C can be expressed in terms of the change-

of-base functors of this fibration. In particular, C is protomodular if and only if, for every

morphism f : E → B in C, the change-of-base f∗ : PtB(C) → PtE(C) is conservative [6]. For

pointed categories, this is equivalent to the validity of the Split Short Five Lemma. This means,

in particular, that given a split extension

(8.i) (X, a)
n // Z

f

// (Y, b)
soo

in Grp, where (X, a) and (Y, b) are symmetric V -groups, there is at most one V -category struc-

ture c on Z that turns (8.i) a split extension in V -Grpsym. As we observed in Proposition 7.7,

this structure is always the product structure described in Theorem 7.2.

Moreover, the change-of-base functors of the fibration of points in V -Grpsym are not only

conservative, but actually monadic. Categories with this property are called categories with

semidirect products. The reason is that, in such categories, the points (i.e. the split exten-

sions) correspond to suitable internal actions (in the sense of [5]). The fact that V -Grpsym has

semidirect products is a consequence of the following result (of which we recall here a particular

case):

Proposition 8.1 ([22], Proposition 7). Let C be a category with finite limits such that the

category Grp(C) of internal groups in C has pushouts of split monomorphisms. Then Grp(C)

has semidirect products.

Actually, V -Grpsym satisfies a stronger categorical-algebraic condition: for any symmetric

V -group X, the functor SplExt(−,X), associating with every symmetric V -group Y the set

of isomorphic classes of split extensions in V -Grpsym with kernel X and cokernel Y , is rep-

resentable. Taking into account the equivalence between split extensions and internal actions

mentioned before, categories with such a property are said to have representable actions, or to

be action representative [4]. The fact that V -Grpsym has representable actions is a consequence

of the following result:

Theorem 8.2 ([4], Proposition 1.5). If C is a finitely complete cartesian closed category, then

the category Grp(C) of internal groups in C is action representative.
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In fact, V -Grpsym is the category of internal groups in the finitely complete, cartesian closed

category V -Cat. Following the detailed proof of Theorem 8.2 (which can be found in [3]), we

can conclude that the representing object of the functor SplExt(−,X) is the V -group Aut(X)

of maps that are at the same time automorphisms of groups and of V -categories, with the V -

category structure induced by the exponential in V -Cat.

Coming back to the fibration of points, another strong property which holds in V -Grpsym is

that every change-of-base functor has a right adjoint. This is formalized by saying that V -Grpsym

is locally algebraically cartesian closed (briefly: lacc) [14]. Once again, this is a consequence of

the fact that V -Grpsym is the category of internal groups in V -Cat:

Proposition 8.3 ([14], Proposition 5.3). Let C be a cartesian closed category with pullbacks.

The pullback functor along any morphism in the category Grp(C) of internal groups has a right

adjoint.

This implies, in particular, that V -Grpsym is algebraically coherent in the sense of [9].
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