Drug-Related Pneumonitis in Patients Receiving Vedolizumab Therapy for Inflammatory Bowel Disease

Noninfective drug-related pneumonitis (DRP) is a well-known adverse effect of several drugs: clinical manifestations have mostly an acute/subacute onset and vary from mild to life-threatening. Several DRP cases have been described in patients receiving anti–tumor necrosis factor α, rituximab, and tocilizumab. To date, only 4 reports of vedolizumab-related pneumonitis have been presented. Data were extracted retrospectively from the medical records of 3 Italian referral inflammatory bowel disease (IBD) centers. Inclusion criteria were the development of respiratory symptoms after vedolizumab initiation and ruling out alternative causes. Baseline characteristics, IBD clinical activity, laboratory findings, respiratory symptoms and therapies, and, whenever available, radiologic and pathologic findings were reported.

Ten patients affected by IBD developed DRP while on vedolizumab therapy (patient characteristics are summarized in Supplementary Table 1). None had a history of lung disease or remarkable abnormalities at screening chest radiography. Four patients were ex-smokers, and the remaining were nonsmokers. Eight patients had been exposed previously to anti–tumor necrosis factor α. All received anti-integrin therapy because of moderate to severely active IBD.

At DRP onset, patients received a median of 4 vedolizumab infusions, for a median time of 12 weeks; IBD was quiescent or mild in all of them, but an increase in C-reactive protein levels was observed (mean C-reactive protein, 15.7 mg/L ± 22.6 SD).

The most common presenting symptoms were cough (10 of 10 patients), fever (7 of 10 patients), and dyspnea (3 of 10 patients). Three patients were admitted to the hospital because of symptoms worsening. One patient, affected by chronic heart failure and atrial fibrillation, required tracheal intubation and mechanical ventilation. All patients had a chest radiograph, with the most common findings of bilateral interstitial opacities (5 of 10 patients), peribronchial thickening (5 of 10 patients), lobar consolidation (3 of 10 patients), and multiple pulmonary nodules (1 of 10 patients); 5 chest computed tomography scans showed focal consolidation with interlobar septal thickening and centrilobular nodules in 1 patient, scattered ground-glass opacities in 2 patients, and bilateral pulmonary nodules with prevalent centrilobular distribution in the remaining 2 patients (Figure 1). Respiratory virus serology and routine sputum cultures were negative in all patients. In 2 patients, bronchoalveolar lavage was performed and the stains and cultures of the alveolar milieu were negative for mycobacterial (also polymerase chain reaction), bacterial, and fungal infections. Cytologic analysis showed a dominant lymphocyte proportion in both patients. One patient underwent a pulmonary biopsy showing chronic mononuclear interstitial infiltrates and macrophage desquamation with obliteratorative and evident eosinophilic aspects. Two patients underwent pulmonary function tests showing mild and moderate restrictive ventilatory patterns with consensual reduction of carbon monoxide–diffusing capacity.

Antibiotic therapy (oral fluoroquinolones or macrolides and/or parenteral penicillins) was used as first-line monotherapy in all patients, but no significant clinical improvement was recorded in any patients. All patients received corticosteroids (prednisolone equivalent dose, 50 mg/d, tapered within 6 weeks) with prompt resolution of symptoms and of pulmonary infiltrates on follow-up chest radiograph (median, 7 weeks after onset; range, 3–12 wk).

In 1 patient, vedolizumab was restarted after pneumonitis resolution. However, symptom relapse occurred 2 weeks after rechallenge, requiring vedolizumab definitive cessation and a new course of oral corticosteroids, with improvement.

Here, we report a large series of noninfective vedolizumab-related pneumonitis. All patients developed respiratory symptoms and radiologic findings of pneumonitis after vedolizumab initiation, with full recovery after its withdrawal and steroidal therapy. Radiologic findings showed a mainly interstitial pattern, predominantly with a centrilobular distribution. Three significant features from our cohort need to be highlighted: (1) the main alternative etiologies were ruled out; (2) we reported the first case of pneumonitis relapse after vedolizumab rechallenge, supporting a causative association with drug exposure; and (3) 2 patients were bio-

Abbreviations used in this paper: DRP, drug-related pneumonitis; IBD, inflammatory bowel disease.

© 2021 by the AGA Institute

https://doi.org/10.1016/j.cgh.2021.08.041
naïve, excluding that DPI could represent an uncommon extraintestinal manifestation, emerged after switching from a systemic to a putatively gut-selective drug. The exact underlying mechanism has not been elucidated. The bound of vedolizumab to $\alpha_{4}\beta_{7}$ causes its internalization, making other integrins more prevalent on leukocyte surfaces; under these circumstances, proinflammatory leukocytes homing might be skewed toward nonintestinal sites, where they cause immune-mediated damage. Lung endothelial cells, in response to antigen presentation, can increase the expression of E- and P-selectin, which bind $\alpha_{4}\beta_{1}$ integrin, whose expression on intestinal leukocytes is increased in vedolizumab-treated Crohn’s disease patients. Limitations of our study include the limited availability of a computed tomography scan for more careful radiographic evaluation and limited availability of bronchoalveolar lavage, which could exclude mycobacterial and viral infections and allow differential cell counts to characterize the lesions.

Comprehensively, our report suggests that noninfective DRP might represent a significant and, potentially underdetected, adverse effect of vedolizumab, which can range in severity from mild to life-threatening and might require therapy suspension and out-of-class switch.

Figure 1. (A–C) Chest computed tomography (CT) scan of a patient who developed lung consolidations secondary to vedolizumab. Axial CT scans show bilateral areas of consolidation (white arrows), with subpleural patchy distribution. Some centrilobular micronodules also are evident (arrowheads), especially in the inferior lobes. (D and E) Patient who developed interstitial lung involvement secondary to vedolizumab. (D) Chest radiograph shows bilateral ill-defined hazy opacities with a reticular pattern; some alveolar opacities with peripheral distribution also are evident in midzones and in the lung bases. (E) Axial CT scan shows bilateral ground-glass areas (arrowheads) with a predominantly peripheral distribution, located primarily in the lower lobes; a superimposed septal thickening also is present in some ground-glass opacities.
<table>
<thead>
<tr>
<th>Patient Age, y</th>
<th>Sex</th>
<th>Disease</th>
<th>Smoking history</th>
<th>Comorbidities</th>
<th>Previous exposure to anti-TNF-α</th>
<th>Duration of VDZ therapy, wk</th>
<th>Symptoms</th>
<th>Laboratory findings</th>
<th>Radiograph</th>
<th>CT scan</th>
<th>BAL</th>
<th>Spirometry</th>
<th>Outcome</th>
<th>Therapeutic Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>F</td>
<td>UC</td>
<td>Former</td>
<td>None</td>
<td>No</td>
<td>12</td>
<td>Cough and fever</td>
<td>Normal Consolidation area in the right basal area</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td>Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>F</td>
<td>UC</td>
<td>No</td>
<td>None</td>
<td>Yes</td>
<td>40</td>
<td>Cough, dyspnea, and fever</td>
<td>Neutrophilic and eosinophilic leukocytosis</td>
<td>Subpleuric consolidation areas in the bilateral basal area</td>
<td>Negative for bacteria, yeast, and malignant cells</td>
<td>Mild restrictive ventilatory pattern with mild reduction of DLCO</td>
<td>Admission to hospital Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>M</td>
<td>UC</td>
<td>Former</td>
<td>Psoriasis</td>
<td>Yes</td>
<td>2</td>
<td>Cough and fever</td>
<td>Neutrophilic leukocytosis</td>
<td>Bronchovascular accentuation in the bilateral mid basal area</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td>Pneumonitis recurrence after VDZ rechallenge Resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>F</td>
<td>UC</td>
<td>Former</td>
<td>Endometriosis</td>
<td>Yes</td>
<td>16</td>
<td>Cough and fever</td>
<td>Neutrophilic and eosinophilic leukocytosis</td>
<td>Consolidation area in the right mid basal area</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>M</td>
<td>CD</td>
<td>No</td>
<td>Chronic heart failure and atrial fibrillation</td>
<td>No</td>
<td>4</td>
<td>Cough, fever, and dyspnea</td>
<td>Neutrophilic leukocytosis</td>
<td>Interstitial pneumonia in bilateral basal area</td>
<td>NA</td>
<td>Moderate restrictive ventilatory pattern with moderate reduction of DLCO</td>
<td>Pneumonitis resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Age, y</td>
<td>Sex</td>
<td>Disease</td>
<td>Smoking history</td>
<td>Comorbidities</td>
<td>Previous exposure to anti-TNF-α</td>
<td>Duration of VDZ therapy, wk</td>
<td>Symptoms</td>
<td>Laboratory findings</td>
<td>Radiograph</td>
<td>CT scan</td>
<td>BAL</td>
<td>Spirometry test</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>M</td>
<td>CD</td>
<td>No</td>
<td>None</td>
<td>1</td>
<td>Cough and fever</td>
<td>Neutrophilic leukocytosis and increase in CRP level</td>
<td>Multiple bilateral consolidation areas</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis</td>
<td>Resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>M</td>
<td>UC</td>
<td>Former</td>
<td>None</td>
<td>1</td>
<td>Cough and fever</td>
<td>Normal Bronchovascular accentuation in the bilateral midbasal area</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis</td>
<td>Resolution after VDZ discontinuation</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>73</td>
<td>M</td>
<td>UC</td>
<td>No</td>
<td>Atrial fibrillation</td>
<td>12</td>
<td>Cough and fever</td>
<td>Bilateral interstitial pneumonia Negative for bacteria, yeast, and malignant cells</td>
<td>Bilateral interstitial pneumonia in the bilateral midbasal area</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis</td>
<td>Admission to hospital, tracheal intubation and oxygen therapy Resolution after VDZ discontinuation and steroid therapy VDZ rechallenge without pneumonitis recurrence</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>F</td>
<td>CD</td>
<td>No</td>
<td>None</td>
<td>24</td>
<td>Cough and fever</td>
<td>Right-sided lobar pneumonia</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis</td>
<td>Resolution after VDZ discontinuation</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>F</td>
<td>CD</td>
<td>No</td>
<td>None</td>
<td>32</td>
<td>Cough</td>
<td>Left-sided basal pneumonia</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Pneumonitis</td>
<td>Resolution after VDZ discontinuation and steroid therapy</td>
<td></td>
</tr>
</tbody>
</table>

BAL, bronchoalveolar lavage; CD, Crohn’s disease; CRP, C-reactive protein; CT, computed tomography; DLCO, carbon monoxide diffusing capacity; F, female; M, male; NA, not applicable; TNF-α, tumor necrosis factor alpha; UC, ulcerative colitis; VDZ, vedolizumab.
S. ONALI
Gastroenterology Unit, Department of Science and Public Health University of Cagliari Cagliari, Italy
F. SCALDAFERRI
CEMAD, Inflammatory Bowel Disease Unit Unità Operativa Complessa di Medicina Interna e Gastroenterologia Dipartimento di Scienze Mediche e Chirurgiche Fondazione Policlinico Universitario "A. Gemelli" IRCCS Rome, Italy
A. GASBARRINI
CEMAD, Inflammatory Bowel Disease Unit Unità Operativa Complessa di Medicina Interna e Gastroenterologia Dipartimento di Scienze Mediche e Chirurgiche Fondazione Policlinico Universitario "A. Gemelli" IRCCS Rome, Italy
Dipartimento Universitario di Medicina e Chirurgia Traslazionale Università Cattolica del Sacro Cuore Rome, Italy

References

Reprint requests
Address requests for reprints to: Alessandro Armuzzi, MD, Gastroenterology Unit, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy. Largo Agostino Gemelli, 8, 00168 Roma RM. e-mail: alessandro.armuzzi@policlinicogemelli.it; fax: (39) 0638015723.

Conflicts of interest
These authors disclose the following: Daniela Pugliese received speaker fees and/or was on the advisory board for AbbVie, MSD, Takeda, Janssen, and Pfizer; Giuseppe Privitera received consulting fees from AlphiSag's and Janssen; Sara Onali received speaker fees from AbbVie, Takeda, Amgen, and Norgine; Franco Scaldaferri was on the advisory board for AbbVie, Janssen, MSD, Sanofi, and Takeda; Antonio Gasbarrini received personal fees for consultancy from Eisai; Flavio Caprioli served as a consultant to Mundipharma, AbbVie, MSD, Takeda, Janssen, Roche, and Celgene, received lecture fees from AbbVie, Ferring, Takeda, Allergy Therapeutics, and Janssen, and received unrestricted research grants from Giuliani, Sofar, MSD, Takeda, AbbVie, and Alessandro Armuzzi received consulting and/or advisory board fees from AbbVie, Allergan, Amgen, Biogen, Bristol-Myers Squibb, Celgene, Celltrion, Ferring, Gilead, Janssen, Lilly, MSD, Mylan, Pfizer, Samsung Bioepis, Sanoz, and Takeda, lecture and/or speaker bureau fees from AbbVie, Amgen, Biogen, Ferring, Gilead, Janssen, MSD, Mitsubishi Tanabe, Novo, Pfizer, Sanoz, Samsung Bioepis, and Takeda, and research grants from MSD, Pfizer, and Takeda. The remaining authors disclose no conflicts.