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Abstract—This paper is focused on the classification of vocalizations
characterizing intents of individual cats. Cats vocalize in order to
convey different emotions and/or intents and although their reper-
toire/vocabulary may not be universal, it exhibits consistent charac-
teristics on an individual basis. In this work, we present a complete
pipeline for processing streams of audio, with the twofold goal being
both detection as well as interpretation of cat vocalizations. The proposed
system is based on YAMNet pre-trained deep network where we apply
meaningful modifications addressing the requirements of the task-at-
hand. Interestingly, the overall system is able to run in real-time on
modern smartphones using the developed application. At the same time,
we address the non-stationarity problem meaning that class dictionary is
updated on-the-fly following user recommendations. After extensive ex-
periments, we show that the proposed pipeline achieves quite satisfactory
detection and recognition accuracy. To the best of our knowledge, this is
the first attempt in the related literature to address continuous detection
and interpretation of cat vocalizations in a real-time fashion.

Index Terms—Bioacoustics, cat vocalizations, deep learning, transfer
learning, learning in non-stationary environments.

[. INTRODUCTION

The scientific field of bioacoustics is receiving increased attention
over the past decades as it addresses a variety of applications
facilitating diverse scopes including biological research and education
of young scientists [1]-[3]. The typical pipeline of such systems
encompasses two modules of fundamental importance, i.e. signal
processing and pattern recognition. The former aims at the design
of mechanisms able to capture and reveal distinctive information
characterizing the problem-at-hand. The latter includes modeling the
extracted parameters using machine learning technologies allowing
the automatic characterization of novel audio patterns [4]-[6].

Animal vocalizations comprise a very efficient way of animal-
animal and animal-human communication since the specific modality
a) does not require visual contact between emitter and receiver,
b) can travel over long distances, and c¢) can carry the information
content under limited visibility conditions such as dense forests,
night, rain etc. [7], [8]. Animals produce a variety of sounds in order
to communicate for reasons that may be vital to their existence [1].
Vocalizations are employed for mate attraction, territorial defence
and for early warning of other members of the species regarding
the presence of dangerous predator. These sounds range from short
simple calls (also called pulses, syllables, or notes) to versatile long
songs, which are composed of a complex hierarchy of syllables
(very common in singing birds). The communication strategy and
the diversity of the frequency structure of the sound pattern depend
heavily on the environmental context of the living organism.

Cats a) are one of the most common companion animals, b) spend
a considerable amount of their life with humans and ¢) more often
than not, are recognised as social partners by their owners [9], [10].
Unfortunately, there is not a lot of works regarding automatic process-
ing of cat vocalizations assisting the understanding of their structure
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as well as the principles regulating cat-human communication and
interaction [11]. There are few works based on the visual modality
[12] but the acoustic modality is largely unexplored, thus this work
is focused on the automatic understanding of cat vocalizations. The
closest paper to this work is presented in [9] where an audio pattern
recognition system is designed based on Mel-frequency cepstral
coefficients and temporal modulation features combined with a graph-
based classifier composed of hidden Markov models. Three classes
of cat vocalizations are considered, i.e. waiting for food, isolation,
and brushing [13]. It emerges that there is not a standardized feature
set, while the case of non-stationary environments is not considered.
Indeed, it might be the case that new classes of cat vocalizations
might appear during system operation which need to be considered
by the mechanism responsible for their automatic processing and
characterization. The literature does not include other methods for
classifying cat vocalizations able to be executed on a standard smart
phone device, let alone addressing the case of evolving environments.
This work proposes an algorithm for processing raw streams of
audio potentially including cat vocalizations. We present a deep
learning framework addressing the automatic recognition of cat
vocalizations. Motivated by the gaps existing in the related literature,
we present a solution that
« carries out both detection and interpretation of cat vocalizations,
« operates in unrestricted open-end environments,
« claborates on a standardized feature set,
« incorporates non-stationarities on-the-fly based on user’s input,
« customizes interpretation models during operation learning prop-
erties at the individual level, i.e. creating personalized models,
and
« encompasses the entire framework in a suitably-developed mo-
bile application able to consider potential input(s) received by
its user.
We consider a large dictionary of classes including the following:
angry, defensive, fighting, hunting, happy, mating, mother call, pain,
rest. After extensive experiments, we present results systematically
assessing the performance of the proposed system.

II. PROBLEM FORMULATION

In classifying cat vocalizations, we assume availability of a training
set T'° encompassing single-channel recordings annotated according
to cat’s intent coming from dictionary D. Composition and cardi-
nality of D are known only up to a certain extent, i.e. dictionary
D = {C4,...,Ch}, where C; denotes the i-th class, meaning that
a-priori unknown classes may appear during system’s operation. Such
classes are inserted by the user during system’s operation. At the same
time, we assume that each class follows a consistent, yet unknown
probability density function, which is typical for generalized audio
processing systems [5].
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Fig. 1. The pipeline of the proposed framework encompassing a) acquisition of raw recordings, b) sound activity detection, c) extraction of Mel-spectrogram,

d) cat vocalization detection and e) intent prediction using YAMNet model.

The overall goal of the system is to detect and identify an individual
cat’s intent from the available audio signal, while incorporating new
user-defined classes in an online fashion.

III. THE PROPOSED FRAMEWORK

This section describes the proposed pipeline enabling classification
of individual cat vocalizations according to cat’s intent.

A. Feature extraction

Following the success of summarized spectrograms in the audio
signal processing literature [14]-[16] including YAMNet model', we
operate on Mel-scaled spectrograms extracted based on a triangular
filterbank of 128 log-energies. To this end, the audio signal is cut
in sliding windows on which short-time Fourier transform (STFT)
is obtained. The STFT result is processed by the Mel-filterbank and
finally the logarithm is computed. Interestingly, such a standardized
feature extraction process practically eliminates the need to design
acoustic features tailored to the problem at hand, which is typically a
time-consuming and costly process since it heavily relies on domain
expertise.

B. Model architecture

Given the fact that we are aiming at a mobile application, we
employed YAMNet model which is based on the depthwise-separable
convolution architecture [17]. YAMNet is a publicly-available pre-
trained deep network able to predict 521 audio event classes accord-
ing to the definition of the AudioSet-YouTube corpus [18]. YAMNet
follows a VGGish architecture including 3.7M weights, i.e. 1/20th
the size of VGGish (3.7M vs. 72.1M). At the same time, in terms
of computational needs, YAMNet requires approximately 1/10th the
resources of VGGish (69M vs. 864M).

Based on YAMNet model, we designed a structure suitable to
address the present problem as shown in Fig. 2. More specifically,
the network operates on input mel-spectrograms of size (32,48,32).
Such inputs are processed by an 1-D convolutional layer, followed
by a series of 2-D convolutional layers. The kernel size is 3 X 3
while stride and number of filters vary between 1-2 and 64-1024
respectively as demonstrated in Fig. 2. A global average pooling layer
is included aiming at minimizing potential overfitting by reducing the
total number of parameters of the model [19]. Finally, the network is
complemented by two fully-connected layers of sizes 1024 and 64,
along with a softmax one with dimensionality equal to the number of
classes existing in D. The last layer is responsible for the output of the
network and the final prediction w.r.t. a given input. Importantly, only

Uhttps://github.com/tensorflow/models/tree/master/research/audioset/
yamnet

the final fully-connected and softmax layers are in need of training
using an appropriate dataset of cat vocalizations representative of the
problem-at-hand.

C. Model customization and personalization to individual cats

Since YAMNet is not specifically trained to address the problem
which is the target of this work, a suitable customization process was
designed making it able to address classification of cat vocalizations.
It relies on the representation extracted out of YAMNet as well as
an additional layer responsible to carry out the classification and
as such the number of its nodes is equal to the number of classes
existing in D. The motivation behind such a design lies in the fact
that YAMNet’s representation captures discriminative characteristics
of the input audio, which can be transferred to other problems.
The specific approach belongs to the family of transfer learning
techniques [20], [21], where only the last classification layers require
training. As such, the model is based on the well-learnt representation
of audio structures provided by YAMNet, which is trained on a 2
million human-labeled 10-second samples, combined with a suitable
classification mechanism able to address the task-at-hand.

More specifically, the present modeling scheme is based on trans-
ferring knowledge learnt by YAMNet facilitating our pipeline in two
modeling stages:

o detection of cat vocalizations in continuous streams of audio
deriving model Mp, and
« recognition of the included intent deriving model M%.

As such, our set of models encompasses two feedforward neural
networks. Interestingly, the initial part based on YAMNet is com-
mon and thus, is meant to run only once, accelerating the overall
recognition process. Both Mp and M are updated using incoming
user-generated data. M is updated on a daily basis as long as the
respective data becomes available, while Mp is updated over longer
time periods, e.g. monthly, mainly because of its large size, so that
there is a reasonably-sized bandwidth requested by the user.

D. Algorithm to update class dictionary based on user’s input

Following the general pipeline shown in Fig. 1, the system pro-
cesses incoming cat vocalizations and assigns them a label existing in
D. This label is presented to the user via the mobile application and
in case he/she does not agree with it, he/she is able to both indicate
it and alter it via the corresponding functionality. More specifically,
there are two possibilities for the user:

a) choosing another class existing in D, thus the model structure
depicted in Fig. 2 remains unaltered, or
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Fig. 2. The architecture of YAMNet model which is complemented by two fully-connected layers along with a softmax one with dimensionality equal to the

number of classes.

a) the user creates a novel class previously unknown to D. In that
case, the system needs to incorporate the newly presented class
and adapt accordingly.

The proposed algorithm belongs to passive concept drift detection
class [22], [23] since it doesn’t actively seek changes in the envi-
ronment, unlike for example approaches such as [24]. It relies on
user’s input indicating the appearance of a new class via the mobile
application. Such an indication increases the dimensionality of D
by 1 and the new class is populated by the newly captured data.
This data is used to retrain the last layers of the network in Fig. 2
while output’s dimensionality is increased by 1 as well. As more data
becomes available, the specific layer learns more classes depending
on user’s input.

It should be highlighted that at this point the learned model is per-
sonalized to the individual cat and as such, it has been adapted to its
characteristics. Thus, the updated model is going to be used only for
this individual without affecting models adapted to the characteristics
of others. This is also in line with the related literature stating that
there is not a universal vocabulary/dictionary encompassing every
class of cat vocalizations. Interestingly, such a functionality allows
the user to create his/her own classes and develop a personalized
unique interaction with the companion animal. This would be true
as long as the data is annotated by the user consistently, i.e. in
case of erroneous annotation, if the errors are consistent the cat’s
vocabulary will not be affected nor the model’s ability to generalize
over new recordings. Finally, learning both model customization and
personalization to individual cats, i.e. the layers operating on top of
YAMNet are trained based on Adam optimization algorithm [25].

IV. MOBILE APPLICATION

The entire pipeline, starting from data collection to cat vocalization
detection and intent interpretation, has been suitably implemented
in a mobile application called MeowTalk, available both on Google
Play and Apple App Store. Keeping in mind the specifications of
the present research and more specifically the ability to consider
user-driven non-stationarities, we outline the considerations and re-
quirements for the development of the mobile application towards
ensuring the collection of accurate information. As such, the mobile
application is seen as the extension of the current research with
functionalities serving and facilitating its goals.

The application provides users with an easy way to detect and label
their cat vocalizations. Out of the box, the application is loaded with
a model that can detect general cat vocalizations along with basic

intents as defined in section I following previous research in the area
[9].

The application has two recognition modes: single and continuous
intent detection mode as show in Fig. 3 right and middle part
respectively. In single intent detection mode the application will
detect a single cat vocalization, submit it to the intent classifier,
present the results to the user and ask the user to acknowledge
the correct classification or to provide a correction. The correct
classifications are used to train and improve the cat specific model
for the user’s cat. In continuous recognition mode the application
performs cat vocalization and intent classification sequentially but
does not offer the user the ability to correct or acknowledge the
system’s predictions.

Other features offered by the app include allowing the user to
create multiple cat profiles (typically depending on the number of cats
he/she owns), access their cat’s profile regardless of the mobile device
they use, provide custom labels and review the intent classification
history along with playing back of the recorded sound as shown in
Fig. 3 left part.

The MeowTalk Application is available both in Google Play and
Apple App Store (Android and iOS versions)?.

V. EXPERIMENTAL SET-UP AND RESULTS

This section describes the a) employed dataset, b) figures of merit,
c¢) feature and model parmeterization, and d) obtained results.

A. Dataset

The dataset includes the following classes: angry, defense, fighting,
happy, hunting, mating, mother call, pain, rest. Data were taken
from the worldwide web (YouTube, freesound, etc.) and are balanced
across classes, while annotation follows the description in [26].The
dataset includes approximately 200 samples per class with an average
duration of 1.7s. The sampling rate is 16kHz with 16 bit quantization.

B. Figures of merit

There are three aspects in need of evaluation of the proposed
system: a) detection of cat vocalizations, b) intent recognition using
dictionary D, c) intent recognition using user-augmented dictionary
Dl

Regarding detection we used the following two metrics:

o Fulse positive index (FP): it counts the times a cat vocalization

is detected when there is not (percentage).

2Google Play https://play.google.com/store/apps/details?id=com.akvelon.
meowtalk, Apple App Store https://apps.apple.com/us/app/id1524038030
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Fig. 3. MeowTalk application screen shots, recognition results screen,
continuous recognition screen, history screen

o False negative index (FN): it counts the times a cat vocalization
is not detected when there is (percentage).

Regarding intent recognition, we employed confusion matrices
both in D and D’. In this way, we are able to thoroughly assess
existing misclassifications and observe how the system is performing
when a new class is inserted by the user.

C. Feature and model parameterization

Regarding feature extraction, we used windows of size 30ms
moving by 10ms in each step to calculate the log-Mel spectrograms.
The FFT size is 1024. Moving to the classification model, the
receptive field sizes are given in Fig. 1. The activation function is
softmax at learning rate is 0.0001 while the maximum number of
permitted iterations is 50. Finally, the network is trained on mini-
mizing categorical cross-entropy loss. For reporting the experimental
results, we followed the ten-fold cross validation protocol and we
present the averaged values.

D. Results

As of now (28/8/2020), there are 150 registered users out of
which 101 users have created cat profiles with at least one recording.
Overall, current availability is 3,000 samples with cat vocalizations,
while the average duration is 1.5s.

During the first experimental phase, we assessed the cat vocaliza-
tion detection model via FP and FN rates as defined in section V-B.
The present experiment was conducted on real-world data captured
by users via their mobile phones. As such, the reported rates do
not concern any simulation case. On the contrary, we considered
approximately 3,000 samples to compute FNs and the rest for FPs.

FP and FN rates are shown in Table I. There, we see that
FPs are kept within low rates (5.7%) while FNs are considerably
higher (9.1%). Interestingly, most false positives come from people
mimicking a cat vocalization, which is actually a positive type of
error as it boosts user engagement. At the same time, FNs are
not so satisfactory mainly because of the variability of the non-cat
vocalization class which not only includes a vast gamut of sound
events but also many different environments. Our users are testing the
mobile application in both indoor and outdoor environments without
any type restriction; as such, acoustic conditions (e.g. reverberation,
noise, etc.) vary substantially and present an uncontrolled obstacle
of potentially increased level of interference. Another important
source of mis-detections/classifications is the mismatch between the

TABLE 1
FP AND FN RATES ASSESSING THE PERFORMANCE OF THE PROPOSED
SYSTEM IN DETECTING CAT VOCALIZATIONS.

[ Approach [ FP (%) [ FN (%) |
[YAMNetTL [ 57 [ 91 |

recording equipment. However, at the moment, normalization both at
time and frequency domains has minimized this issue so far.

Moving to intent recognition, we provide the results in the con-
fusion matrix form in Fig. 4. The one corresponding to stationary
conditions is shown on the left part while a non-stationary case
of a user who enhanced D by one class is on the right part. The
average recognition rate under stationary D is 90% demonstrating
the reliability of the proposed model. The class recognized with the
highest rate (100%) is resting, while classes happy and pain are
the ones recognized with the poorest accuracies, i.e. 65% and 76%
respectively. Most misclassifications concern errors made between
these two classes. Another important source of misclassification
concerns the pair of classes defence-hunting. Overall, we argue that
the performance of the system is more than satisfactory, while most
errors are due to the high intra-class variability of the dataset. To the
best of our knowledge, there is no method in the literature able to
learn cat vocalizations in evolving environments in order to carry out
a comparison.

The right part of Fig. 4 tabulates the confusion matrix calculated
when a specific user manually added an extra class, which is repre-
sentative amount of current users. The added class is labeled as come
in possibly denoting the case where the cat asks its owner to enter
a specific area. In this case, the model is retrained as explained in
section III-D so that the new class is incorporated in D. Conveniently,
retraining takes place on-the-fly as soon as a new class is presented to
the system while the computational expensive part is carried out when
the mobile phone is practically inactive (i.e. the user does not use
it). In the non-stationary case the average recognition rate is 87.1%,
slightly lower than the previous one. We observe that the newly added
class is recognized with 86% accuracy which shows the efficacy of
the presented approach in considering additional to D classes. The
specific evaluation process is not thorough and should be considered
as a proof-of-concept, while extensive experiments will be presented
in our future works.

In conclusion, we argue that the proposed pipeline is effective in
every included module, i.e. detecting and recognizing cat vocaliza-
tions even when a-priori unknown classes need to be processed. Inter-
estingly, such encouraging results are confirmed by user satisfaction
surveys concerning the adoption of the mobile application.

VI. CONCLUSIONS

This article presented a complete pipeline starting from raw
streams of audio, where individual cat vocalizations are detected and
interpreted automatically with more than satisfactory performance.
Interestingly, such functionality is able to be executed entirely on
reasonably high-end mobile phones via the developed application.
Transfer learning of knowledge learnt by YAMNet comprises the
cornerstone of the proposed method. Importantly and unlike most
machine learning based algorithms, the specific solution is able to
operate in non-stationary environments and learn novel user-defined
classes online.

Due to the automatized periodic model updating (both M p and
M R), overall performance is expected to improve over time. Slight
boost was already observed in the initial weeks of the mobile
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Fig. 4. Confusion matrices obtained by the proposed model w.r.t stationary (left) and non-stationary (right) class dictionary D.

application usage. Nonetheless, there are several ways worth ex-
ploring towards improving the current pipeline: 1) explore diverse
audio representations in parallel, e.g. features based on constant-q
transform,2) data augmentation, especially when learning in non-
stationary data-limited environments, 3) incorporation of contextual
non-acoustic information (routine, sex, castration, species, etc.). Fi-
nally, a fruitful direction would be to figure out ways to efficiently
manage the constantly growing amount of data and users. This might
assist in exploiting similarities and/or dissimilarities at the user and/or
individual cat level, e.g. by sharing model parameters/layers, suitable
clustering techniques, etc.
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