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Optimizing materials’ properties and functions by controlling defects in the crystalline phase has
been a cornerstone of materials science and condensed matter physics. However, this paradigm
has yet to be established in the broadly defined amorphous materials, which implies identification
of very subtle structural features in an otherwise uniformly disordered medium. Here we propose
and define a new integrated glassy defect (IGD), based on machine learning strategy informed by
atomistic physics, and also by an extremely wide configurational, thermodynamic, and dynamic
variables space of the disordered state. The IGD simultaneously includes positional topology and
vibrational features, as well as the local morphology of the potential energy landscape. This un-
precedented combination gives rise to a much more comprehensive and more effective definition of
the “glassy defect”, much beyond the conventional, purely structural input. IGD can be used not
only as an efficient predictor of athermal plasticity, but is also transferable to detect both short-time
vibrational anomalies (the boson peak), and long-time relaxation and diffusion dynamics in glasses.
The integrated strategy is instrumental to build the long-sought structure-property relationship in
complex media.

I. INTRODUCTION

Owing to plenty of attractive mechanical, physical and
chemical properties and a wide range of potential struc-
tural and functional applications, the metallic glasses
(MGs) are both of engineering significance and great
scientific relevance for the broad communities of mate-
rials science and condensed matter physics [1–5]. De-
spite decades of relentless pursuit, establishment of the
structure-property relationship in such disordered mate-
rials is still one of the most elusive yet most intriguing un-
solved problems up to date [6–13]. In contrast with their
crystalline counterparts, whose structural defects are eas-
ily identified from the periodic arrangement of atoms in
the lattice, the atomic-scale structure of amorphous ma-
terials is usually featureless. The structure of glass lacks
either translational or rotational periodicity, with each
atom residing in its own, individual atomic environment.
Thus it is rather difficult to find a physics-motivated de-
scriptor, like the Burgers’ vector of dislocation in crystal,
that is capable of characterizing the possible structural
defects in glasses, which act as plasticity-carriers under
external mechanical and/or thermal stimuli [14]. The
lack of a priori structural defects thus prevents establish-
ing an intuitive one-to-one structure-property relation-
ship in the widespread domain of amorphous materials.

Great efforts have been devoted to identifying pos-
sible structure-property relationships in the disordered
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materials over the past decades. Among these attempts,
the most successful representatives include the mean-field
free volume [15] and shear transformation zone (STZ)
models [16–18]. However, no structural defects that
could play the same role as dislocations in crystals, have
been reported in the literature about glassy materials
[19]. Until recent years, a few effective structural de-
scriptors have been used to explain the observed dynam-
ics of amorphous materials. Such structural signatures
can be categorized into three groups. The first category
is based on purely static structure, such as the short-
range Voronoi polyhedra [7, 20] and the related local five-
fold symmetry parameter [21, 22], as well as the Voronoi
cell anisotropy [23, 24], the inversion symmetry breaking
[25], the two-body excess entropy [26, 27], the local co-
ordination number [28], and other structural order met-
rics [29–31], etc. The second class involves descriptors
of thermodynamic response, e.g. soft vibrational modes
[32–34], vibrational mean-squared displacement (vMSD)
or Debye–Waller factor [35, 36], the flexibility volume
[37, 38], and finally the local thermal energy [39]. The
third group contains further dynamic features, which in-
cludes the local yield stress [40], the gradient along the
minimum energy pathway of STZ on the potential en-
ergy landscape (PEL) [41], etc. However, these physics-
motivated parameters usually partially forecast the na-
ture of the localized plastic flow in glasses. And often
the prediction is either material-specific, or deformation-
protocol dependent [41].

Instead of the conventional knowledge-driven strategy,
the new machine learning (ML) paradigm is especially
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suitable for constructing a robust correlation between
structures and functions in glasses [8, 42–48]. It has
been set in practice by combining a series of particle-
position based symmetric Gaussian functions, and by ex-
ploring interstice structural distributions in both short
and medium range via ML models. In all the pioneer-
ing works, the machine-learned structural defects, e.g.
the glass “softness” [43], the “quench-in softness” [45],
and the “structural flexibility” [48] are strongly corre-
lated with the elementary excitation in different glasses.
However, the protocols are only based on purely static
structure. The lack of high-order features may cause
incomplete description of the dynamics in glass. For
example, strong spatio-temporal correlation has been
found between structure and dynamics in model glasses
[29, 31], which suggests opening up a new avenue of re-
search, where an overarching structure-property “super-
relationship” can be developed based on even broader
physical input and not just the structural features. Actu-
ally, the recent concept of the flexibility volume [37] goes
in this direction as it combines both structural (Voronoi
volume) and thermodynamic (vibrational) feature of a
specific atom to predict dynamics.

Therefore, a novel proposition about a structure-
property super-relationship must simultaneously account
for all (structural, thermodynamic, dynamic) physical as-
pects that are associated with properties of glass. To this
end, we propose a machine-learning integrated glassy de-
fect (IGD) of MGs via extraction of all configurational,
thermodynamic and dynamic features that are coupled
and coexisting in the inherent configuration of disordered
phase. The extensive ML process is conducted by us-
ing atomic coordinates, vibrational analysis and the PEL
morphology, respectively, as different but equally impor-
tant fingerprints of the underlying glass physics. The
integrated defect via ML – termed integrated glassy de-
fect (IGD) – serves as an unprecedented signature of the
athermal local structural deformation (plasticity), as well
as thermal short-time vibrational anomalies, long-time
diffusion and slow relaxation dynamics in the amorphous
alloys.

II. METHODOLOGY

A. Molecular dynamics

All of the molecular dynamics (MD) simulations here
are performed by using the open source LAMMPS
code [49], with the Finnis-Sinclair-type embedded-atom
method empirical potential [50] being adopted to de-
scribe the interatomic interaction of the Cu50Zr50 metal-
lic glasses. We prepare 10 independent glass samples and
each of them contains 19 652 atoms, with 3D dimensions
of ∼70× 70× 70 Å. For the glass structure preparation,
the samples are first melted from their crystalline phases
(B2 phase, body-centered cubic) from 0 K to 2000 K,
and then being equilibrated for 2 ns at 2000 K before
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FIG. 1. The radial distribution function of a Cu50Zr50 metal-
lic glass. The split of the second peak in RDF indicates glass
nature of the atomic model.

being quenched to the glassy state at 0 K, with a cooling
rate of 1010 K/s. Periodic boundary conditions (PBCs)
and NPT ensemble (constant number of atoms, constant
pressure, and constant temperature) are applied for all
the atomistic simulations. Temperature is controlled by
the Nosé–Hoover thermostat [51]. Stress tensor is kept
zero within the Parrinello–Rahman barostat [52]. The
MD time step is 2 fs to numerically integrate the New-
ton’s equation of motion. Fig. 1 gives the radial distribu-
tion function (RDF) of one Cu50Zr50 sample. It clearly
indicates the nature of glass structure by the split of sec-
ond peak.

Athermal quasi-static shear (AQS) simulations [53]
with simple xy, yz, and zx shearing deformation pro-
tocols are performed at a step size of ∆γ = 1 × 10−5.
Each deformation increment is followed by operation of
energy minimization to remove all the thermal effect. In
this way, the strain rate effect on the mechanical response
is avoided in the shear deformation and, thus, reflecting
intrinsic nature of the local plastic event carried out by
the atomic rearrangement – shear transformation.

B. Construction of the
structural-thermodynamic-dynamic space

1. Structural features

We adopt a family of symmetric Gaussian functions
to describe the information embedded in the structural
space. The structural descriptor G − i for each atom,
which has been used to calculate the “softness” [43] and
details the potential energy landscape for complex mate-
rials [42], is defined as

Gi =

Ni∑
j

exp
[
−(Rij − µ)

2
/
L2
]
. (1)
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Here Rij denotes the distance between atom i and j. Ni
is the number of the neighbouring atoms around the ith
atom. µ and L are constants that need to be tested and
optimized. Actually, the Gaussian structural function is
a weighted sum of a group of the Gaussian functions. Pa-
rameter µ controls the position of the highest weight and
the parameter L denotes the speed of the weight drop.
According to the RDF of the present Cu50Zr50 model
glass as shown in Fig. 1, the parameter µ is set from 1.5
to 7.5 Å with an interval of 0.2 Å. It makes sure that
all the effective structural information from short-range
to medium-range order is contained in the ML model.
Moreover, the parameter L is set as 3.5 Å for each Gaus-
sian structural function. Therefore, there are altogether
31 Gaussian structural functions included in the machine
learning model. Gaussian functions at longer distance
has been tested but make trivial contribution to the ef-
fectiveness of IGD and therefore not considered in the
ML model.

A new purely static structure feature proposed here
is the two-body excess entropy at single-particle level,
which naturally encompasses positional information and
their correlation in space. It is defined as the two-body
term of the infinite-term expansion of the excess en-
tropy, which represents the loss of configurational en-
tropy with respect to the ideal gas state owing to the
positional correlation in some ordered phase [26]. This
two-body approximation has been applied to account for
the structure-dynamic relationship of the glass-forming
liquids [54]. Therefore, it is certainly an intriguing pure
positional feature that can enrich the information of the
structural space in the machine learning model. The two-
body excess entropy, or the local structural entropy, of
the ith atom is calculated according to the equation

S2,i = − 1
2

∑
v
ρv
∫ rcutoff

0
{guvi (r) ln guvi (r)−

[guvi (r)− 1]} dr.
(2)

Here u and v represent the types of particles (Cu or Zr
atoms in the present case), ρv is the number density of the
v type particles, and guvi denotes the local RDF between
the particle i of type u and other particles of type v. The
cutoff distance for the integration is set from 3 to 15 Å
with step of 0.5 Å. Furthermore, the freedom of choice in
the cutoff distance provides immense room to construct
the structural spaces for machine learning. On the basis
of two-body entropy, another 25 structural features are
augmented to the Gaussian functions.

2. Thermodynamic features

To detail the thermodynamic information in a quan-
titative manner, the vibrational mean-squared displace-
ment (vMSD), or the Debye–Waller factor, is defined ac-
cording to the equation:〈

∆r2
i

〉
=
〈
|ri (t)− ri,equil|2

〉
τ
. (3)

Here ri (t) is the instantaneous position at different times
during tracing for τ = 100 ps at different temperatures,
from 25 to 500 K with an interval of 25 K. ri,equil is
the equilibrium position of the ith atom in the inherent
structure after energy minimization. The angular brack-
ets imply the time average. This appropriate time dura-
tion ensures that the atoms vibrate around their thermo-
dynamic equilibrium positions without dynamic hopping
from one energy basin to another. Thus we obtain 20
features to construct the thermodynamic space preparing
for the machine-learning model. The wide temperature
range enables inclusion of possible anharmonic nature of
the local energy basin.

3. Dynamic features

To assign a series of meaningful dynamic properties
to the atoms in glass, the activation-relaxation technique
nouveau (ARTn) [55, 56] is adopted to extract the single-
atom activation energies. In the framework of ARTn,
the “activation” is initiated by imposing a random small
displacement to the local cluster centered on a chosen
atom. In the present work, the perturbation is restricted
to a specific atom by setting the cutoff distance to be
2 Å, which is shorter than the first maximum of RDF,
g (r), of the Cu50Zr50 glass, as shown in Fig. 1. The
activation direction for a possible event is chosen ran-
domly, with magnitude of the perturbation displacement
being fixed 0.1 Å. Then the activation is driven along
the minimum Hessian direction. The increment move-
ment is 0.15 Å. When the lowest eigenvalue of Hessian

matrix is less than −0.30 eV/Å
2
, the system is pushed

towards a connecting saddle point by using the Lanczos
algorithm. During the “relaxation” process, the maxi-
mum force tolerance of 0.05 eV/Å is used for converg-
ing to the saddle point. As shown in Fig. 2e, the
wide distribution of energy barriers for an atom indi-
cates the complexity, or multiplicity, of the activation
paths on the PEL. Therefore, single activation energy of
an atom is not enough to detail the local topology of PEL
where initial state resides. For statistical purpose, each
atom is furthermore activated for 24 times with random
initial perturbation direction. Consequently, 24 activa-
tion energies for each atom is arranged in order accord-
ing to their magnitude as {∆Q1,∆Q2, ...,∆Q24}, where
∆Q1 < ∆Q2 < ... < ∆Q24. Finally, we adopt such ar-
rangement to detail the distribution of activation energies
for an atom. We therefore obtain 24 features accounting
for the dynamic information of an atom by including both
difficulty (the barrier height) and multiplicity (possible
paths) of the local structural excitations.

The distributions of activation energies for all the
atoms, Cu atoms and Zr atoms are shown in Fig. 2(a)-
(c), respectively. It shows that the activation energy is
distributed over a very broad range, indicating a strong
dynamic heterogeneity as frequently reported in the liter-
ature, whereas the distribution for the Cu atoms is more
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FIG. 2. Dynamic features in Cu50Zr50 metallic glass shown by potential energy landscape. The distribution of activation
energies for (a) all atoms, (b) Cu atoms and (c) Zr atoms, respectively. (d) Color map of the spatial distribution of atomic
activation energies. The shown slice is normal to the z direction with a thickness of 5 Å. (e) The wide distribution of activation
barriers for two specific atoms. Each atom has been activated for 24 times along random directions.

concentrated than that of the Zr atoms. This is because
the coordination number of Zr atoms is higher than that
of Cu atoms, resulting in a greater diversity in the lo-
cal structural environment of Zr atoms. Compared with
Cu atoms, the peak position of the Zr barrier distribu-
tion shifts to the right. This is due to that Zr atoms
are heavier than Cu atoms, and the former are difficult
to be activated under the same external conditions. In
other words, compared with Cu atoms, Zr atoms require
a longer time to relax into stable positions corresponding
to the deeper basin of PEL. This phenomenon may be the
result of the larger constraints that Zr atoms undertake
in CuZr glass than Cu atoms.

In Fig. 2(d), we show the spatial distribution of ∆Q1

in a slice chosen on the x − y plane of the model. This
plot shows the topological information on activation en-
ergy and indicates the spatial heterogeneity of the PEL
in glass.

C. Supervisory signal for classification – shear
transformation

To identify the atoms that have undergone structural
rearrangement, we use the non-affine squared displace-
ment D2

min [17] and monitor its jump as global strain
evolves. To calculate the parameter, the first step is to
optimize a local affine transformation matrix, Ji, that

best maps { d0
ji} → {dji}, ∀j ∈ Ni, where Ni is the

number of the nearest neighbors of the ith atom, and
d0
ji and dji are the bond vectors for the reference and

the current configurations between the jth and ith (cen-
tral) atoms, respectively. The local non-affine squared
displacement of the central atom i relative to its nearest
neighbor atoms j, is then defined as

D2
i,min =

1

Ni

∑
j

(
dji − Jid

0
ji

)2
. (4)

In the present simulations, we monitor a flow refer-
ence ∆D2

min to compare two configurations that are close
by to one another, i.e. consecutive configurations sepa-
rated by a global shear strain difference of ∆γ = 0.01%
under AQS. A typical example is shown in Fig. 3(a),
where ∆D2

min of specific atoms is plotted as a function
of shear strain up to γ = 5%. Atom I and II can be
observed to undertake obvious jump at about γ = 1.6%
and γ = 1.8%, respectively, whereas atom III exhibits no
jump seen by ∆D2

min. Fig. 3(b) shows the distribution
of the maximum ∆D2

min of the atoms. Here, we chose
the turning point of 0.05 Å2 as the threshold to judge
whether atoms are taken to be the ones that have un-
dertaken rearrangement or not. For each sample (as we
have 10 samples), we perform AQS along xy, yz, and
zx directions, respectively. The ∆D2

min for each atom in
the three AQS loading protocols is monitored and, once
the value of ∆D2

min exceeds the threshold of 0.05 Å2, the
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FIG. 3. (a) ∆D2
min as a function of the global shear strain for

three specific atoms in Cu50Zr50 under AQS to a shear strain
γ = 0.05. ∆D2

min evaluates the non-affine displacement be-
tween two configurations that are close by to one another
with shear strain difference of γ = 0.01%. Atom I and II have
apparently experienced obvious jumps in ∆D2

min (and likely
local structural excitation) but not atom III. (b) Distribution
of the maximum jump of ∆D2

min with the blue line denot-
ing the frequency for different ∆D2

min, whereas the red line
characterizing the cumulative frequency.

corresponding atom will be labeled as a rearranged atom.
As shown in Fig. 3(b), where the position of the thresh-
old value is marked using dashed line, the rearranged
particles contain about 5% of all atoms.

D. Support vector machine model

The training set is given as the form of
{(x1, y1), ..., (xN , yN )}, where N denotes the num-
ber of atoms and xi = {x1

i , ..., x
M
i }T describes the

feature space of atom i, with M denoting the number
of features. In the present work, M = 100. Here,
yi = 1 if the ith atom have undergone obvious shear
transformation, while yi = −1 for the atoms that are
marked as non-rearranged ones. The aim of our SVM
model is to find a hyperplane in the high-dimensional
feature space that can separate data points with different
value of yi as preciously as possible. For this purpose,
the SVM algorithm of the LIBSVM package [57] is used
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FIG. 4. Contour plot of cross-validation accuracy. The RBF
(Gaussian) kernel function is used and predictions from mod-
els with different parameters are shown. The x-axis is log2C
and the y-axis is log2γ. The best model is identified to be
the one with the largest cross-validation accuracy. And thus
parameters are set as C = 4 and γ = 0.03125.

to solve the following primal optimization problem.

min
ω,ξ,b

1

2
ωTω + C

N∑
i=1

ξi

subject to yi(ω
Tφ(xi) + b) ≥ 1− ξi
ξi ≥ 0, i = 1, ..., N,

(5)

Here, φ(xi) maps xi into a higher-dimensional space,
ω is the vector variable used to construct the hyper-
plane, and C > 0 is the regularization parameter.
Due to the high dimensionality of ω, this dual prob-
lem is always solved by defining the kernel function as
K (xi,xj) = φ (xi)·φ (xj). In the present work, the radial
basis function (RBF, Gaussian) kernels with the form of

K (xi,xj) = exp
{
−γ ‖xi − xj‖2

}
are adopted. So (C, γ)

are the flexible parameters to be decided. We provide
a possible interval of C and γ in the grid space. The
tunable parameters are then optimized through cross-
validation in order to obtain the highest accuracy. The
heat map of cross-validation accuracy for different (C, γ)
parameters is shown in Fig. 4. It indicates that the cross-
validation accuracy is found to have a maximum value
when C = 22 and γ = 2−5. These values are therefore
used in the present SVM model for classification.

E. Short-time vibrational anomaly – boson peak

To test the correlation between IGD and the short-
time thermal properties of metallic glass, we propose and
implement a single-atom level intensity of boson peak,
which is the excess vibrational mode in the low frequency
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FIG. 5. Phonon features for the Cu50Zr50 metallic glass. (a)
The VDOS for the system. (b) The reduced VDOS g(ω)/ω2

for the system. It confirms the existence of boson peak in
Cu50Zr50 with the dashed line identifying the Debye level.
(c) VDOS for several specific atoms. (d) The reduced VDOS
g(ω)/ω2 or intensity of boson peak for several different atoms.

domain of phonons in glass, compared with the Debye
squared model. First of all, the vibrational, or phonon,
density of states (VDOS) for the system are calculated
by direct diagonalization of the Hessian matrix, which
is evaluated at a local energy minimum position of the
potential energy landscape – an inherent structure. The
Hessian matrix are constructed by evaluating the spring
constants of each atom from the empirical potential. The
single-atom VDOS of the atom i is then formulated as
[58],

gi (ω) =
1

3N

∑
j

δ (ω − ωj)
∣∣eij∣∣2. (6)

Here, N is the number of atoms in the system. ωj and
ej give the normal model frequency and the correspond-
ing polarization vector of the vibrational mode j, respec-
tively. Compared with the Debye squared model, i.e.
g (ω) ∝ ω2, the intensity of the single-particle boson peak
IBP is obtained by finding the maximum value of the re-
duced VDOS, i.e. IBP = max

[
gi (ω)

/
ω2
]
.

Figure 5(a) shows the VDOS of Cu50Zr50 metallic
glass. In Fig. 5(b), we show the reduced VDOS by the
Debye-squared model, g(ω) ∼ ω2 (the VDOS divided by
ω2). It indicates the existence of a boson peak in the
system and shows that the boson peak can be clarified
at around 5 THz. Fig. 5(c) shows the calculated single-
particle VDOS for several atoms and the corresponding
boson peaks for the specific atoms are shown in Fig. 5(d).
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squared displacement at 700 K for all atoms in the system.
(c) The non-Gaussian parameter at 700 K for all atoms. (d)
Self-intermediate scattering function with wave vector q = 2.7
Å−1 and temperature T = 700 K for all atoms.

F. Long-time dynamics – diffusion and relaxation

1. Diffusive mean-squared displacement

A commonly used long-time diffusive feature of amor-
phous solids is the mean-squared displacement (MSD),
which quantifies how far a particle has moved with re-
spective to its initial position as a function of time, i.e.

∆r2
i (t) =

〈
[ri (t)− ri (0)]

2
〉
. (7)

Here ri (t) and ri(0) denote the positions of the particle i
at the current and the initial configuration, respectively.
The angle bracket 〈· · · 〉 represents an ensemble average.
Here MSD is calculated at 700 K for the Cu50Zr50 sample.
Note that the diffusive MSD is different from the vibra-
tional MSD as shown in Eq. (3), the latter describes a
thermodynamic response.

The diffusive mean-squared displacement as a function
of time at 700 K for Cu50Zr50 sample is shown in Fig.
6(b). It indicates that MSD in metallic glass shows three
stages. At very short timescales, particle motion is free
from the influence of the neighboring atoms and therefore
show ballistic behavior with MSD is proportional to t2.
As the timescale increases, neighboring atoms function
as obstacle and block the further movement of the cen-
tral atom. Therefore, topological excitation for particles
become difficult and there is certainly a plateau shown
Fig. 6(b). Eventually, atoms will break away from the
bondage of the surrounding atoms and undergo random
walk diffusive motion.
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2. Non-Gaussian parameter

The non-Gaussian parameter is commonly used to
measure the dynamical heterogeneity of a disordered sys-
tem. While the diffusive MSD [∆r2

i (t)] is related to the
second order of the local atom position, the non-Gaussian
parameter is calculated by the fourth order of the parti-
cle’s position. It is defined as

α2 (t) =

3

〈
N∑
i

[ri (t)− ri (0)]
4

〉
5

〈
N∑
i

[ri (t)− ri (0)]
2

〉2 − 1. (8)

Here N is the number of atoms in the system. For
Brownian motion, the atomic displacement follows Gaus-
sian distribution. The non-Gaussian parameter therefore
characterizes the degree of deviation from the Gaussian
distribution of particle motion. Thus, α2 (t) = 0 for
Brownian motion. For the present metallic glass, the dis-
tribution of atomic displacements becomes non-Gaussian
at intermediate times as shown in Fig. 6(c). This is due
to the development of balance between the mobile and
immobile atoms in the system. Therefore, α2 (t) is always
positive at any time. The maximum value of α2 (t) mea-
sures the heterogeneity of diffusion, and the time when
αmax

2 (t) appeared indicates the duration of heterogeneity
establishment.

3. Self-intermediate scattering function and the
α-relaxation time

To understand the feature of relaxation dynamics,
we investigate the self-intermediate scattering function
(SISF) and the α relaxation time of the present Cu50Zr50

metallic glass. The generalized form of SISF is defined
as

Fs (q, t) =
1

N

N∑
l

〈exp {−iq · [rl (t)− rl (0)]}〉, (9)

where N is the number of atoms, q is the wave-vector
corresponding to the main peak of the static structure
factor S (q). In the present work, the wave-vector is cho-

sen 2.7 Å
−1

as shown in Fig. 6(a). The evolution of
SISF is similar to that of the diffusive MSD. Fig. 6d
shows the SISF of the whole Cu50Zr50 glass sample as
a function of time. It shows a feature of two-step relax-
ation, i.e. the short-time β-relaxation and the long-time
α-relaxation. The α-relaxation time τα is thereafter de-
fined as the timescale when SISF decays to e−1, as labeled
by a horizontal dashed line in Fig. 6(d).

III. RESULTS

A. Framework of machine learning

Our goal is to develop a supervisory model, using the
atomistically-informed machine learning, to simultane-
ously include the structural, thermodynamic, and dy-
namic aspects of the glass physics. Crucially the model
should be capable of distinguishing “fertile” atoms that
are responsible for the plastic rearrangements from those
“sessile” atoms that are not.

Figure 7 shows the workflow illustrating the classi-
fication process via machine learning. The first step
consists of collecting the dataset: we simulate a binary
Cu50Zr50 system and 10 independent glass configurations
are prepared by a rapid cooling method, with each sam-
ple containing 19 652 atoms. This composition has been
shown to be the most challenging one for predictions of
glassy and plastic behavior, owing to a lower degree of
both structural and dynamic heterogeneity compared to
other stoichiometries [48]. Therefore, it provides an up-
per threshold for predictability. But this choice, on the
other hand, represents the best ground to demonstrate
the validity of the ML strategy. As shown in Fig. 7,
there are three categories of the input features. First,
the radial symmetry Gaussian functions and the two-
body excess entropy are used to characterize the static
structural features of each atom. These quantities nat-
urally include both radial and structural-order informa-
tion about the glassy structures. Second, the vMSD, or
the Debye–Waller factor, at different temperature is uti-
lized to characterize the thermodynamic fingerprints of
each atom. Deviations from the harmonic approximation
(higher-order thermal response) become prominent with
increasing temperature. Third, a series of meaningful dy-
namic properties can be captured by the local topologies
of the PEL. A series of activation energies provide infor-
mation about steepness (or height) and multiplicity (or
width) of the possible shear transformation pathways.
A recent work [59] pointed out the importance of the
PEL topology, and has included the arithmetic mean en-
ergy barrier as the supervisory signal of ML to predict β-
relaxation in a metallic glass from purely static structure.
In contrast, here we employ a hierarchically-sorted list of
activation energies of possible structural excitations as
the learning descriptors relevant to the topology of PEL.
All together, we have built an abundant configurational-
thermodynamic-dynamic phase space of glass for ML
classification. The couplings between the different fea-
tures have been considered. Specifically, we construct a
dataset consisting of 56 structural (31 Gaussian functions
and 25 two-body entropies), 20 thermodynamic, and 24
dynamic descriptors for each atom, respectively. Conse-
quently, the feature vector reads xi = {x1

i , · · ·xMi }T =
{Gi (r1), · · · Gi (r31); S2,i (r1), · · · S2,i (r25); ∆r2

i (T1),
· · · ∆r2

i (T20); ∆Q1, · · · ∆Q24 }T with M = 100.
To identify an essential structural rearrangement, AQS

deformation [53] is conducted up to a global shear strain
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which classifies the atoms to be either structural defect or glassy matrix, with the non-affine atomic strains as the supervisory
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magnitude of 0.05. We track possible STZ events by mon-
itoring the instantaneous jump in the non-affine displace-
ment D2

i,min [17], which plays the role of a supervisory
signal in local plastic events. The next task is to select,
at random, a subset of atoms as the training set and label
the atoms with an index either yi = −1 or 1. As shown in
Fig. 3(b), an atom i is labeled as yi = 1 if it rearranges
within ∆D2

i,min is higher than 0.05 Å, and yi = −1 if

it does not. Approximately, 5% of all atoms have un-
dergone structural rearrangements after AQS loading up
to 5%. The training set is constructed by selecting all
the atoms that have undergone rearrangements (∼10 000
atoms), and an equal number of atoms that do not ex-
perience rearrangement in the first nine samples (among
total 10 samples). In this work, we train our machine-
learning architecture using the support-vector machine
(SVM) scheme, which builds a hyperplane in the multi-
dimensional space to best separate the data points with
different labels. Once this hyperplane is established for
the training set, the tenth sample is treated as the testing
set for calibration.

B. Predicting plastic atoms via machine learning

Figure 8 illustrates the capability of the proposed ML
model in identifying whether an atom is susceptible to
plastic rearrangement (or equivalently, belongs to flow
defects) or not. Fig. 8(a) visualizes the spatial distri-
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FIG. 8. Prediction of athermal excitation. (a) Spatial distri-
bution of the atoms that have undergone shear transforma-
tions, in which the purple ones are predicted as rearranged.
(b) Contour map of ∆D2

min in a slice of thickness 3.5 Å. White
spots are ML predicted arranged ones. (c) The probability
that an atom is predicted as active versus ∆D2

min.

bution of the atoms that have undergone, or not, plastic
rearrangements: among them, purple spheres mark the
atoms that are predicted to act as defects by the ML
model, while yellow spheres represent the atoms in the
glassy matrix which remain inactive during the deforma-
tion. It implies that atoms identified as defects by the
SVM model are very likely to participate in plastic de-
formation.

For the testing sample, the prediction accuracy is
78.4%; and the ML model captures 76.4% of the real
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rearrangements up to global shear strain magnitude of
5%. Fig. 8(b) shows the contour map of the magnitude
of the instant jumps in non-affine displacement, ∆D2

min,
under AQS deformation. We notice that the distribution
of ∆D2

min is inhomogeneous – atoms with high ∆D2
min

tend to aggregate spatially into clusters, which are re-
sponsible for initiating the plastic shear transformations.
For a direct comparison, white spots are superimposed
to mark the positions of the atoms that are predicted
as defects by ML model. The good overlap implies that
the spatial distribution of the rearranged atoms is also
heterogenous and, interestingly, almost coincides with
the regions of high ∆D2

min. This indicates that plas-
tic rearrangements have a high propensity to originate
from the plastically-active regions predicted by the ML
model. Fig. 8(c) shows the probability of an atom will
undergo plastic deformation, which goes up with increas-
ing ∆D2

min and saturates at a value of approximately 0.87

after ∆D2
min = 0.1 Å

2
. This is meaningful since the more

plastically-active the atom is, the more likely it is to be
predicted as glassy defect by the ML model.

C. Integrated glassy defect

The value of the integrated glassy defect – IGD that is
a parameter assigned for the ith atom – is quantified by
the decision value of the ML model. It distinguishes the
glassy defects from the inert glassy matrix. This scalar
value is proportional to the orthogonal distance between
a given position in the input space and the hyperplane
constructed by the ML model, with the same scale factor
for all atoms. Notably, when IGD > 0, the corresponding
data point in the input space lies on the glassy defect side
of the hyperplane; and IGD < 0 otherwise.

Figure 9 shows the features of the IGD. Fig. 9(a) is a
3D snapshot with atoms colored according to the magni-
tude of their IGD parameter value. We notice that the
spatial distribution of IGD is heterogeneous with a strong
spatial correlation. Fig. 9(b) displays the probability dis-
tribution of IGD for the rearranged (red), non-rearranged
(blue), and all atoms (black), respectively. There exists a
two-peak feature in the total distribution, with the right
peak denoting the defect atoms. The rearranging and
non-rearranging atoms are separated fairly well in the
IGD distribution. Compared with the non-rearranging
atoms, the peak position of the rearranging atoms shifts
to the right. This indicates that the machine-learned
scalar parameter, IGD, is indeed an effective predictor
of the atomic plastic rearrangements. It is indeed a
physically-relevant measure of the degree of structural
defect in glass. Besides, IGD is distributed over a very
broad range, indicating strong structural heterogeneity
as commonly observed in experimental characterizations
[19], which also resembles the inhomogeneous distribu-
tion of the non-affine displacements shown in Fig. 3(b).
It should be noted that the distribution of IGD is differ-
ent from that of softness in Ref. [44], the latter shows a

symmetric distribution peaked at the origin. The broad
distribution of IGD mainly comes from the additional
input features beyond “softness”. For example, vMSD
usually exhibits some distributions with a Gaussian core
and non-Gaussian tails [37]. Such non-Gaussian tail is
usually the physical origin of the dynamic heterogene-
ity in glasses [60, 61] and is the cause for the broad and
asymmetric feature of distribution of IGD.

To measure the universal spatial distribution of IGD,
we define a normalized spatial autocorrelation functions,

C (r) =
〈∆Pr0

∆Pr0+r〉−〈∆Pr0〉2
〈∆Pr0

2〉−〈∆Pr0〉2
, where P represents a

physical entity. The angle brackets 〈· · · 〉 denote ensemble
average. Pr0 and Pr0+r are the values of P for the central
atom at reference position r0, and the one at a distance of
r from the reference atom, respectively. The operator ∆
denotes the deviation from the ensemble average value.
The calculated data for ∆D2

min and IGD are plotted in
Fig. 9(c). They both decay exponentially with respect to
r. We adopt an empirical function C (r) ∝ exp (−r/ξ) to
fit the correlation data, which brings about ξ as the phys-
ically spatial correlation length. The spatial correlation
lengths for ∆D2

min and IGD are almost identical, with
ξ∆D2

min
= 3.1 Åand ξIGD = 3.2 Å, respectively. This sup-

ports the validity of the IGD as a signature of plasticity.
Both correlation lengths are approximately 1.2d, where d
is the effective diameter of a single particle. Here d = 2.7
Å as determined from the position of the first peak in
the RDF, which has been shown in Fig. 1. It indicates
that the sweeping scale of IGD is consistent with the re-
arrangement size. The conclusion is consistent with a
previous report from Cubuk et al. [8].

In Fig. 10, we compare the radial distribution func-
tions (RDFs) of two extreme cases – the 10% atoms
with the highest IGD values and those 10% with the
lowest IGD values. It indicates that high-IGD atoms
present a lower first peak which simultaneously moves
to shorter distance compared with that of the low-IGD
atoms. Thus, the formers are alike the liquid atoms with
high mobility.

D. Capacity of IGD in predicting athermal
structural excitations

To get deeper insights into the correlation between
IGD and the irreversible atomic rearrangements, we com-
pare the spatial distribution of IGD with the non-affine
deformation field in Fig. 11(a). The white bubbles rep-
resent the atoms which have undergone shear transfor-
mations. The bubble size is proportional to the mag-
nitude of ∆D2

min. It is clearly seen that most of the
shear transformations take place in the regions with high
values of IGD. The machine-learned IGD thus identi-
fies glassy defect with great propensity to undergo shear
transformations. As such, the IGD could be regarded as
a quantitative parameter to identify defect in glass, in
analogy to the Burgers’ vector in crystals. Note that not



10

-2 -1 0 1 2
10-3

10-2

10-1

F
re

q
u
en

cy
 

IGD

 All atoms

 Rearranged atoms

 Non-rearranged atoms

1.5

-1.5

IGD

(a)                                            (b)                                                     (c)

0 2 4 6 8 10 12

e-3

e-2

e-1

e0  DD2
min

 IGD

C
(r

)

r (Å )

xDD2
min

 = 3.1 Å

xIGD = 3.2 Å

FIG. 9. Features of the integrated glassy defect. (a) A 3D snapshot with particles colored by the magnitude of IGD. A small
fraction of the atoms on the cubic corner was removed to see the inner atomic environement. (b) IGD distribution for different
atoms. (c) Spatial autocorrelation function versus distance for ∆D2

min and IGD.

1 10
0.0

5.0

g
 (

r)
Z

r-
Z

r

r (Å )

 Lowest 10% IGD

 Highest 10% IGD

1 10
0.0

6.5

g
 (

r)
Z

r-
C

u

r (Å )

 Lowest 10% IGD

 Highest 10% IGD

1 10
0.0

7.0

g
 (

r)
C

u
-Z

r

r (Å )

 Lowest 10% IGD

 Highest 10% IGD

1 10
0.0

5.5

g
 (

r)
C

u
-C

u

r (Å )

 Lowest 10% IGD

 Highest 10% IGD

(a) (b)

(c) (d)

FIG. 10. Partial RDFs for the group of atoms having the
lowest 10% and the highest 10% IGD in a Cu50Zr50 metallic
glass.

all high-IGD regions should experience plastic rearrange-
ment, which is a stochastic phenomenon and sensitive to
the loading protocol and thermal fluctuation [41, 62]. It
is the anisotropic interaction between the glassy defect
and the high-dimensional loading direction that cooper-
atively determines if a glassy defect would lead to real
shear transformation. As a result, the rationale for the
structure-property relationship in an amorphous system
is expected to be statistical. The statistics is shown in
Fig. 11(b), with atomic-resolution ∆D2

min being plotted
against IGD. Each data point denotes a coarse graining
of 0.25% of all atoms, with nearly ∼50 atoms in each
bin. There exists a strong correlation between IGD and
∆D2

min. The atoms with higher values of IGD contribute
more to the non-affine deformation. This result is con-
sistent for both the testing set shown in the main plot,

and for the training plus testing set shown in the inset of
Fig. 11(b). The agreement once again shows that there
exists a robust correlation between the IGD parameter
and the plastic deformation in glass.

To demonstrate the efficiency of the integrated strat-
egy in predicting plasticity of glass, we compare IGD with
the existing individual physical models/parameters, each
taking only one physical aspect (either configurational,
thermodynamic, or dynamic) into account. Following
the training and prediction protocol as mentioned above,
models with only one of {vMSD, ∆Q, G and S2} as input
descriptors are developed. As shown in Fig. 12, model
prediction accuracy for the testing set differs largely with
different input descriptors. The predicting accuracy for
vMSD is 72.5%, followed by 64.2% for ∆Q, 61.5% for G
and 55.4% for S2, respectively. Thus, the thermodynamic
feature is most relevant to structural excitation. Note
that the predictor learned from only a family of Gaus-
sian functions is exactly the definition of the “softness”
metric [43]. Compared with the L-J model there, the
Cu-Zr metallic glass described by the many-body EAM
potential sets up an upper bound of difficulty for predic-
tion via machine learning. The improved predictability
demonstrated by IGD stresses the necessity of including
extra thermodynamic and dynamic input for predicting
the physical properties of generic, real and complex struc-
tural materials.

It should be noted that the prediction accuracy here
is not a superior indicator to evaluate the prediction
power of plasticity of our simulation results. As there
is only 5% of atoms in the testing set that are la-
beled as plastic ones, even an unintelligent model which
predicts all atoms as non-rearranged ones will achieve
95% prediction accuracy in the testing set. To further
quantify the predictive capability of metrics in assessing
glassy plasticity, a power factor is further introduced as

χ =
PR(Xi>Xtop5%)
PR(Xi<Xlow5%) , as there is nearly 5% of all atoms are

recognized as rearranged ones in our simulations. Here,
Xi is the magnitude of the feature X for the particle
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i. PR
(
Xi > Xtop5%

)
denotes the probability that a par-

ticle rearranges with Xi higher than the top 5% of all
atoms, and PR (Xi < Xlow5%) otherwise. Thus the pre-
dictive power factor is the ratio of the probability of re-
arrangements for the atoms with highest Xi with respect
to that for atoms with the lowest Xi. It should be noted
that this equation only suits for parameters PR (Xi) that
monotonically increase with Xi. When PR (Xi) and Xi

are inversely proportional or anti-correlated, χ is replaced
by its reciprocal. The higher the magnitude of χ, the bet-
ter the predictor X in discriminating between plastically-
active and inactive atoms.

The predictive power factor of different ML models is
calculated and plotted in Fig. 12(b), where IGD shows
the highest bar. It shows that IGD is superior to any
other physical model in predicting plasticity. Even if the
basic predictors are of poor predictive power when con-
sidered separately, once they are all integrated into IGD
via the present ML protocol, the predictive powder does
improve drastically. This observation implies that the

FIG. 12. (a) The prediction accuracy of models with different
input descriptors: excess entropy S2,i, Gaussian structural
function Gi, activation energy ∆Qi and vibrational mean-
squared displacements vMSD. (b) Absolute value of the pre-
dictive power factor for IGD in comparison with the other
four physical descriptors.

structural, thermodynamic and dynamic descriptors are
neither orthogonal, nor absolutely correlated with each
other. If they were absolutely correlated, there would
be no room to improve the prediction power via integra-
tion and, thus, there would be no synergy when they are
combined together. We also noticed that vMSD and ∆Q
serve as the most important descriptors in the machine-
learning process, while models with only structural fea-
tures, i.e. G or S2, represent poor performance in predict-
ing plasticity. It demonstrates the necessity of including
extra thermodynamic and dynamic features as done in
our ML process. The inclusion of the thermodynamic
and dynamic components not only enhances the classifi-
cation (since the prediction accuracy of ML model with
all of vMSD, ∆Q, G and S2 is nearly 80%, as opposed
to ∼ 60% accuracy achieved by the scheme with only
structural features), but also improves the predictive ca-
pability of plasticity in metallic glasses.

Our interpretation to this argument is in term of the
spatial autocorrelation of the SVM models with differ-
ent input descriptors, as shown in Fig. 13. It implies
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that predictors learned from structural features decreases
very quickly with increasing distance. Indeed, it exhibits
a decay length of only 1.9 Å for S2 and 2.0 Å for G,
which is much shorter than the size of atom rearrange-
ment – 3.1 Å as shown Fig. 9(c). This is presumably
a possible explanation for the poor predictive capability
of the purely structural function, which lacks informa-
tion about medium- to long-range interactions. Besides,
atomic structures vibrate under the influence of thermal
fluctuations, therefore the definition of glassy defect from
static structure might be not unique. In a real thermal
glass, the relationship between structure and property is
rather complex such that unstable phonon saddles are im-
portant, as evidenced by the instantaneous normal mode
analysis of the mechanical stability [63]. This is also the
reason why the flexibility volume [37] instead of Voronoi
volume correlates strongly with structural excitation ow-
ing to the fact that the former has crucially incorporated
the thermodynamic Debye–Waller factor.

E. Transferability of IGD

The remaining question is whether the IGD – learned
from supervised machine learning with athermal mechan-
ical excitation as supervisory signal – can be transferred
to predict also the thermal (or dynamic) properties of
glasses. The latter properties are important for many
applications and for routine material characterization.
We test the IGD by correlating it with several impor-
tant short-time, and long-time properties that have not
been considered at all in the ML protocol thus far. The
dynamic properties include the vibrational boson peak,

diffusion heterogeneity and the α relaxation, which are
properties that span multiple time scales.

1. Correlating IGD with boson peak

First of all, we begin with the correlation between IGD
and boson peak, the latter of which is a universal short-
time vibrational anomaly – with extra soft modes over
the Debye squared law – in a wide range of amorphous
solids [24, 64]. For this purpose, we calculate an atom-
istically resolved boson peak intensity in terms of the
partial vibrational mode anomaly at atomic scale. The
intensity of boson peak is represented by the peak value
of the reduced vibrational density of states [VDOS, g (ω)]
for a single atom. As shown in the section methodology,
the normal mode analysis is performed by directly diago-
nalizing the dynamical matrix (or Hessian matrix) of the
system. Once the whole vibrational spectra are available,
they are projected onto a single atom i, i.e. gi (ω). Since
the Debye model gives a quadratic distribution of the
normal-mode frequency – g (ω) ∝ ω2, the single-particle
intensity of boson peak can be derived as the height of
the peak in the reduced VDOS over the Debye model
IBP = max

[
gi (ω)

/
ω2
]
.

Figure 14(a) displays the reduced VDOS, gi (ω) /ω2,
for the atoms with different mean values of IGD. As seen
in Fig. 14(a), atoms with different values of IGD display
different intensity of boson peaks. These boson peaks
are arranged from the weakest to the strongest as IGD
increases. It indicates that defects characterized by high
value of IGD have lower tendency to participate in the
high-frequency vibrations, thus giving rise to a relatively
high intensity of boson peak at lower frequency. To fur-
ther confirm the correlation, we directly plot the intensity
of boson peak, IBP, versus IGD using a bin size of 500
atoms, which is nearly equal to 2.5% of all atoms in the
testing sample. As shown in Fig. 14(b), a good linear
correlation exists between IGD and IBP. Therefore, IGD
can be also used to predict the boson peak in glasses,
with even better predictability than our earlier proposed
purely structural metric – the short-range orientational
order parameter defined as the longest vector from a cen-
tral atom to its Voronoi polyhedron vertex [24].

2. Correlating IGD with diffusion heterogeneity

We can now consider how the IGD parameter corre-
lates with the long-time diffusion dynamics. Here, the
diffusive MSD is utilized to benchmark a direct link be-
tween IGD and the slow dynamics. Fig. 14(c) depicts
the diffusive MSD at 700 K for the atoms with differ-
ent values of IGD. Obviously, the atoms with the highest
IGD are these ones first escape from the caging plateau.
In other words, they are the most active atoms that con-
tribute to the diffusion dynamics. At the same time,
the slowing down of dynamics for the low-IGD atoms
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FIG. 14. Transferability of IGD in predicting dynamic proper-
ties of glass. (a) Reduced VDOS for the atoms with different
values of IGD. (b) Correlation between the boson peak in-
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rameter corresponding to (c). Inset: αmax

2 versus IGD. (e)
Self-intermediate scattering function of atoms with different
IGD. (f) α-relaxation time as a function of IGD.

is accompanied by an increasing dynamic heterogeneity,
which is signaled by the rise of the non-Gaussian param-
eter α2 with decreasing IGD, as shown in Fig. 14(d).
Generally, the peak value of the non-Gaussian parame-
ter, αmax

2 , can be used to quantify the degree of dynamic
heterogeneity. As seen in the inset of Fig. 14(d), we in-
deed find a strongly inverse correlation between the value
of IGD and the magnitude of αmax

2 . It actually reveals the
liquid-like nature of the atoms with high value of IGD,
and the solid-like nature of the low-IGD atoms. This is in
agreement with the common sense that dynamic hetero-
geneity of a disordered material diminishes with increas-
ing temperature upon crossing the glass-to-liquid transi-
tion [65, 66]. Finally, αmax

2 of the low-IGD atoms rises
on a longer time-scale. This phenomenon means that the
low-IGD atoms are in relatively deep glassy state, which
takes a longer time to escape from the relatively deep
basin of the β relaxation on the PEL.

3. Correlating IGD with the α-relaxation

The other long-time dynamic feature to be examined is
the slow relaxation behavior. To this end, we investigate
the self-intermediate scattering function [SISF, Fs (q, t)]
of the atoms with different values of IGD. The results
are shown in Fig. 14(e). It is evident that the relaxation
dynamics slows down dramatically with decreasing value
of IGD, represented by an extended plateau on the SISF
curve, which corresponds to the secondary β-relaxation
process. This trend indicates that motion of the low-IGD
atoms is highly confined by the neighboring atoms, dis-
playing a significant cage effect [67]. The revealed sce-
nario for relaxation is consistent with that of diffusive
MSD shown previously in Fig. 14(c), as both of them
have the same origin in the local basin climbing process
on the PEL.

In general, the characteristic timescale of the relax-
ation dynamics can be quantified by the α-relaxation
time τα, which is defined as the time where SISF has
decayed to e−1, as marked by the horizontal dashed line
in Fig. 14(e). The α-relaxation times for those atoms
with different value of IGD are shown in Fig. 14(f). A
very strong correlation is revealed between IGD and the
α-relaxation time. Thus, one can treat IGD as an ef-
fective indicator of the relaxation propensity at atomic
scale.

In short sum, the newly developed IGD parameter
proves highly versatile in being able to predict the short-
time boson peak vibrational phenomenon, the long-
time thermally-activated diffusion and the α-relaxation
dynamics. Surprisingly, these dynamic features have
never been considered in the supervised machine learn-
ing model in which only athermal shear transformation is
implemented as the supervisory signal. In this sense, the
proposed concept of integrated glassy defect can serve as
a generalized “super-defect”, in analogy to the conven-
tional crystalline imperfections – like vacancies, disloca-
tions, grain boundaries etc – to identify the carriers of
plasticity in amorphous solids [14].

IV. CONCLUDING DISCUSSION

In conclusion, we identified a “super-defect”– termed
IGD – to build possible structure-property relationship
for the disordered materials by using extensive machine
learning classification from a wide, intricate and par-
tially entangled configurational-thermodynamic-dynamic
space of data. IGD is glassy defect in the sense that the
atom with high value of IGD has the highest propensity
to undergo plastic shear transformation under athermal
mechanical perturbations. As a step beyond the usual
purely static structural descriptors, the present machine-
learned IGD incorporates also thermodynamic and dy-
namical features characterized by the vibrational excita-
tions and the thermal-activation events from probing the
morphology of local potential energy landscape. Infor-
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mation from a single physical input can only partially
capture the nature of the plastic deformation. In the
case of complex media, it is the synergistic cooperation
of both structural and thermodynamic-dynamic finger-
prints that jointly determines the properties.

The integrated defect also allows one to disentangle the
respective roles of different sectors of the overall phase
space in governing the properties of glasses. Amongst the
versatile descriptors is the thermodynamic feature that
is crucial for predicting (athermal) structural excitation
in glasses, and also provides a physical foundation for the
successes of the vibrational amplitude and the flexibility
volume as effective signatures of glass dynamics. In addi-
tion to the plastic deformation, the IGD is also shown to
be a quantitative metric for other important and general
thermal properties, such as the short-time low-frequency
vibrational anomaly – the intensity of boson peak, as well
as the long-time α-relaxation and diffusion heterogeneity
in amorphous alloys.

Our method relies on static structure, thermodynam-
ics as well as dynamics of a group of atoms. Thus, the
methodology is applicable directly to other glass systems,
where Gaussian functions, two-body excess entropy, vi-
brational mean-squared displacement as well as activa-
tion energies can be calculated at atomic scale. The
“softness” with only Gaussian functions as input has

been tested vastly in different systems, such Lennard-
Jones (LJ) mixture, Oligomer as well as Granular mate-
rials, and all shows acceptable predicting capacity [8, 43].
Here, the present strategy suggests that the combination
of configurational-thermodynamic-dynamic features can
construct comprehensive atomic environment and yield
a powerful predictability of IGD. Thus, one can reliably
infer that the IGD will perform as well for other disor-
dered systems since the real-atom CuZr system always
represents an upper bound of prediction for the property
of glasses [48].

The proposed concept of IGD opens up new opportuni-
ties to optimize the physical properties of disordered ma-
terials by modulating the material processing conditions,
besides the straightforward chemical-design of material
structure.
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