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Abstract

Many classical synchronization problems such as the assembly line crew scheduling problem

(ALCS), some data association problems or multisensor tracking problems can be formulated as

finding intra-column rearrangements for a single matrix representing costs, distances, similarities

or time requirements. In this paper, we consider an extension of these problems to the case

of multiple matrices, reflecting various possible instances (scenarios). To approximate optimal

rearrangements, we introduce the Block Swapping Algorithm (BSA) and a further customization

of it that we call the customized Block Swapping Algorithm (Cust BSA). A numerical study

shows that the two algorithms we propose – in particular Cust BSA – yield high-quality solutions

and also deal efficiently with high-dimensional set-ups.
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1 Introduction

The synchronization problems with multiple instances that we consider in this paper can be seen

as extensions of some multidimensional assignment problems. These problems are well studied

in the literature and have various applications such as the planning of workforces in production

systems with multiple synchronous workstations, the design of multitarget multisensor tracking sys-

tems, data association problems, and computer vision. For general treatments of multidimensional

assignment problems and their solution in particular cases, we refer to Haley (1963), Pierskalla

(1968), Rüschendorf (1983), Gilbert and Hofstra (1988), Bar-Shalom (1990), Poore, Rijavec, Lig-

gins, and Vannicola (1993), Pardalos and Pitsoulis (2000), Spieksma (2000), Karapetyan and Gutin

(2011), and the many references therein. The classical Assembly Line Crew Scheduling problem

(ALCS) with one problem instance has been studied in Coffman Jr and Yannakakis (1984) and in

Hsu (1984), while the related workforce planning problem is investigated in Lee and Vairaktarakis

(1997), Vairaktarakis, Cai, and Lee (2002), and in Camm, Magazine, Polak, and Zaric (2008).

We formulate extensions of these synchronization problems in the context of ALCS. In ALCS

it is assumed that the production of some item requires the serial execution of d jobs and that

there are n identical assembly lines available. Assume further that for the j-th job (j = 1, . . . , d)

there is a pool of n specialized workers available, such that the i-th worker (i = 1, . . . , n) requires

a deterministic labour time xij to complete the j-th job, i.e., there is one problem instance. The

time needed for the i-th assembly line to produce one good is then given by the sum si =
∑d

j=1 xij .

The objective of the classical ALCS is to arrange the workers on the n assembly lines so that the

production times or labour costs over all lines become as synchronized as possible. If one represents

the labour costs by the n× d cost matrix X = (xij), the problem can be formulated as permuting

the elements within each column of X such that the maximum of the row sums si of the rearranged

matrix is minimum; see Coffman Jr and Yannakakis (1984). Alternatively, one may also aim to

minimize the variance among the row sums (Pesko (2006), Pesko and Hajtmanek (2014)) in which

case the problem is within the class of quadratic assignment problems (Burkard (1979), Burkard,

Çela, Pardalos, and Pitsoulis (1998), Pardalos and Pitsoulis (2000), Loiola, de Abreu, Boaventura-

Netto, Hahn, and Querido (2007)). A more general aim here is to characterize minimal elements of

the vector s := (si) of row sums with respect to the Schur order (see Rüschendorf (1983)), which

implies the optimization of Schur-convex functions f(s1, . . . . . . , sn) of the vector of row sums si. In

this paper, we restrict ourselves to the variance formulation.

While for d = 2, the ALCS has a straightforward solution (arrange elements in the two columns

in opposite order), it is well known that for d > 2 it is NP-hard. A successful heuristic approach,

which has raised considerable interest in some specific applications in finance and actuarial science,

is the Rearrangement Algorithm (RA), introduced in Puccetti and Rüschendorf (2012) and in

Embrechts, Puccetti, and Rüschendorf (2013). The RA iteratively rearranges elements within the

columns of the cost matrix X such that they become oppositely ordered to the row sums taken
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across all other columns1. This heuristic relies on the fact that the property of opposite ordering

to the sum is a necessary condition for optimality.

In various applications, however, the labour times of workers may not be known with certainty

but are scenario dependent, i.e., we deal with multiple problem instances. Therefore, we assume

that an initial assignment of the workers under the different problem instances can be represented

by m different matrices Xk := (xkij) ∈ Rn×d, k = 1, . . . ,m, in which xkij represents the labour

time of the i-th worker allocated to the j-th job under the k-th problem instance (scenario). The

problem is then to assign the workers to the different working lines such that under all possible

scenarios the production times of the different production lines are as synchronized as possible, i.e.,

we need to rearrange the m matrices by the same set of column permutations such that their row

sums exibit minimum variability. The assignment of the workers cannot be adapted to the specific

scenario, but has to be chosen upfront without knowledge of the scenario at hand. This set-up

is also applicable when dealing with the allocation of workers in the case they have to conduct a

sequence of tasks (at the same machine).

In this paper, we do not embed the synchronization problem with multiple instances into the

corresponding linear continuous assignment problem. Indeed, it is well-known that the convex

polytope of such an assignment problem is not unimodular and allows for a large set of extreme

points with no integral values, which leads to interpretation problems and to only rough bounds

for the solutions. Instead, we propose the so-called Block Swapping Algorithm (BSA) where we use

the variance as a criterion for measuring synchronization. Note however that this algorithm is also

able to deal with more general synchronization criteria, as described above.

After formulating in Section 1.1 the synchronization problem as a (columns) rearrangement

(assignment) problem of multiple matrices, we describe in Section 2 the BSA and a further cus-

tomization of it that we call Cust BSA. Specifically, the customization consists in obtaining a

suitable initial assignment after which one applies BSA. To obtain the initial assignment, a linear

regression is applied to the initial matrices and next a generalized version of the so-called MinCov

algorithm, developed by Cornilly, Puccetti, Rüschendorf, and Vanduffel (2020) for dealing with fair

allocation problems, is used. To the best of our knowledge, there are no other algorithms available

that deal with the extended ALCS problem we consider. In Section 3, we study the quality of the

solutions obtained by BSA and Cust BSA. We find that, similar to the RA algorithm in the case

of one problem instance, the BSA and its customized version are able to deal efficiently with the

synchronization problem under a large number of problem instances.

The numerical experiments presented in this paper can be replicated by downloading the code

of our algorithms at the web address https://github.com/cdries/SPMI.

1The RA turns out to be very useful in operations research (Boudt, Jakobsons, and Vanduffel (2018)) and in
insurance where it appears as a reference tool for assessing the uncertainty with respect to risk estimates of portfolios
(Bernard, Rüschendorf, Vanduffel, and Wang (2017), Hofert, Memartoluie, Saunders, and Wirjanto (2017)).
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1.1 Formulation of synchronization problems as a (column) rearrangement prob-

lem for multiple matrices

We consider m matrices Xk = (xkij) ∈ Rn×d,

Xk =


xk11 xk12 . . . xk1d
xk21 xk22 . . . xk2d

...
...

. . .
...

xkn1 xkn2 . . . xknd

 , k = 1, . . . ,m.

The matrices Xk, k = 1, . . . , d, represent problem instances. Let A be the set of all vectors

π = (π1, . . . , πd) in which the components πj are permutations of {1, . . . , n}. Given a vector of

permutations π ∈ A, define Xk,π = (xk,πij ) by

xk,πij = xkπj(i)j , (1)

i.e., each πj permutes the elements of the j-th column of all the matrices Xk to obtain the column

permuted matrices Xk,π, k = 1, . . . ,m. In what follows, we call any π ∈ A a rearrangement and

each matrix Xk,π a rearranged matrix. The rearranged matrix Xk,π represents the cost matrix of

the classical ALCS under scenario k if one allocates workers via the rearrangement π.

Denote by sk,πi =
∑d

j=1 x
k,π
ij , i = 1, . . . , n, the row sums of Xk,π, k = 1, . . . ,m, and by sk their

mean value, i.e.,

sk =

∑n
i=1 s

k,π
i

n
=

∑n
i=1

∑d
j=1 x

k,π
ij

n
=

∑n
i=1

∑d
j=1 x

k
ij

n
.

Notice that sk does not depend on the specific rearrangement π. The variation of the production

costs (time lenghts) under the k-th scenario is given by

Vk(π) =

∑n
i=1(s

k,π
i − sk)2

n
.

Considering all m scenarios, the aim of the paper is to solve the optimal synchronization problem

V ∗ = min
π∈A

V (π), (2)

where V (π) is the variance function defined as

V (π) =

∑m
k=1 Vk(π)

m
. (3)

Since the set A of admissible rearrangements is finite, there exists a solution to the optimal syn-

chronization problem (2), i.e., a minimum variance rearrangement π∗ rearranging all m matrices

Xk,π, k = 1, . . . ,m, such that V (π∗) = V ∗. Note that the optimal synchronization problem (2) can
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be equivalently reformulated as minπ∈A V
′
(π) with V

′
(π) =

∑m
k=1 V

′
k (π)

m where V
′
k(π) =

∑n
i=1(s

k,π
i )2

n ,

thus as a multi-matrix version of a multidimensional quadratic assignment problem (QAP).

2 Algorithms

In this section, we describe the two algorithms we propose for approximating the optimal rear-

rangement π∗.

2.1 Block Swapping Algorithm (BSA)

In the Block Swapping Algorithm (BSA), the rearranged matrices Xk,π are obtained from the

matrices Xk by swapping in a selected block of columns (i.e., those for which γj = 1) the i1-th

element with the i2-th element, leaving all other elements unaffected. Hence, we consider particular

rearrangements (π1, . . . , πd) having the property that there exists γ = (γ1, . . . , γd) ∈ {0, 1}d and

i1, i2 ∈ {1, . . . , n} such that

i) for all j ∈ {1, . . . , d} such that γj = 1, it holds that πj(i1) = i2, πj(i2) = i1, and πj(i) = i for

all i ∈ {1, . . . , n} \ {i1, i2};

ii) for all j ∈ {1, . . . , d} such that γj = 0, it holds that πj(i) = i for i ∈ {1, . . . , n}.

We denote such a block rearrangement by π(γ, i1, i2) with blocksize
∑d

j=1 γj . Application of the

rearrangement π(γ, i1, i2) on the matrices Xk changes V (π) by the quantity

∆π(γ,i1,i2) =

m∑
k=1

(
(ski1 + δk)2 + (ski2 − δ

k)2 − (ski1)2 − (ski2)2
)
, (4)

where for k = 1, . . . ,m, we set

δk =
∑
j:γj=1

(xki2j − x
k
i1j).

Hence, if

∆π(γ,i1,i2) < 0, (5)

then the application of the rearrangement π(γ, i1, i2) to the matrices Xk leads to rearranged matrices

Xk,π with a strictly smaller value for V (π). The swapping condition (5) thus leads to the following

algorithm.
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Block Swapping Algorithm (BSA)

1. Let Xk, k = 1, . . . ,m, be given n× d matrices and let niter be a positive integer.

2. Randomly select γ ∈ {0, 1}d and i1, i2 ∈ {1, . . . , n}; if the swapping condition (5) is ful-

filled, then apply the rearrangement π(γ, i1, i2) to the matrices Xk to obtain the matrices

Xk,π(γ,i1,i2) and otherwise do nothing.

3. Let Xk = Xk,π(γ,i1,i2) and repeat Step 2. niter times.

4. Output the final matrices Xk
∗ and the rearrangement π such that Xk,π = Xk

∗.

At every iteration of BSA, the objective function is strictly reduced (when the swapping condi-

tion (5) is satisfied) or, otherwise, left unchanged. As a result, the BSA outputs a final rearrange-

ment π with corresponding objective value V (π) that can be expected to be close to the optimal

synchronization value V ∗. The BSA thus relies on the basic swapping idea that is inherent in the

RA (Embrechts, Puccetti, and Rüschendorf (2013)) and adapts it to the case of multiple matrices.

As there is ample evidence that approximations obtained by using the RA perform very well (see

eg., Boudt, Jakobsons, and Vanduffel (2018)), we may thus expect that BSA is able to provide a

good approximation of the optimal synchronization value V ∗. This expectation is confirmed by the

results of the numerical study we conduct in Section 3.

Remark 1. In this paper, we propose the BSA to obtain a rearrangement that minimizes the

variance function V (π). BSA is however a multi-purpose algorithm in that it can deal with the

optimization of any Schur-convex function, i.e., formula (4) can be suitably adapted to the Schur-

convex function at hand. Rearrangements obtained are in fact approximations for local minima

w.r.t. Schur-convex order, i.e., a rearrangement that minimizes the variance function can be ex-

pected to yield also low values for other Schur-convex functions.

2.2 Customization of BSA (Cust BSA)

In a parallel development to this paper, Cornilly, Puccetti, Rüschendorf, and Vanduffel (2020)

propose for the economic problem of fair allocation of indivisible goods the so-called Minimum

Covariance Algorithm (MinCov) as an efficient method for dealing with the optimization problem

(2). The MinCov algorithm, however, requires that the structure of the matrices Xk fulfils a specific

condition, namely that there exist real numbers βkj , k = 1, . . . ,m, j = 1, . . . d, such that

xkij = βkj x
1
ij . (6)

While condition (6) holds in the context of fair allocation, it does not hold for the synchroniza-

tion problem with multiple instances we consider.
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However, even when condition (6) does not hold, a slightly generalized version of MinCov can

still be used as a pre-processor for BSA. We call this approach the Customized Block Swapping

Algorithm (Cust BSA). To keep the paper self-contained, we briefly describe the MinCov algorithm

and next we explain how it can be used as a pre-processor to BSA.

2.2.1 MinCov Algorithm

In this subsection, we specifically assume that the structure of the matrices Xk = (xkij) fulfills the

condition that there exist real numbers αkj and βkj , k = 1, . . . ,m, j = 1, . . . d, such that

xkij = βkj x
1
ij + αkj . (7)

As compared to the original MinCov algorithm, we do not require that the coefficients αkj are

equal to zero. Our observation is that the MinCov algorithm can also be used under the extended

condition (7); this modest generalization is crucial for applying the linear regression step in the

customization of BSA.

The MinCov algorithm uses rearrangements π = (π1, . . . , πd) having the property that there

exist j1 ∈ {1, . . . , d} such that πj(i) = i for i ∈ {1, . . . , n} and j 6= j1. The matrices Xk,π are

thus obtained from the matrices Xk by permuting (potentially all) elements in the j1-th columns

without affecting the others; we denote such rearrangements as π(j1). To explain the basic intuition

of MinCov, for any π we interpret a n×d matrix Xk,π as a d-variate, discrete random vector where

the rows represent possible realizations, each occurring with probability 1/n.

Under this perspective, we can use for the formulation of problem (2) the probability language

in which (co-)variance corresponds to the empirical (co-)variance, i.e., we consider the problem

min
π∈A

∑m
k=1 var

(
Sk,π

)
m

, (8)

in which

var
(
Sk,π

)
=

∑n
i=1(s

k,π
i − sk)2

n
(9)

and where Sk,π = (sk,π1 , . . . , sk,πn ). For j1 ∈ {1, . . . , d}, Sk,π can be expressed as Sk,π = Xk,π
j1

+Sk,π(−j1),

where Xk,π
j1

denotes the j1-th column of Xk,π and

Sk,π(−j1) =
∑
j 6=j1

Xk,π
j .

It follows that an improvement in objective (8) is obtained if we determine a rearrangement π(j1)
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such that
m∑
k=1

cov
(
X
k,π(j1)
j1

, S
k,π(j1)
(−j1)

)
becomes as small as possible. As per assumption (7) we have that X

k,π(j1)
j1

= βkj1X
1,π(j1)
j1

+ αkj1 ; it

follows that π(j1) should be chosen such that

m∑
k=1

cov
(
X
k,π(j1)
j1

, S
k,π(j1)
(−j1)

)
=

m∑
k=1

cov
(
X

1,π(j1)
j1

, βkj1S
k,π(j1)
(−j1)

)
= cov

(
X

1,π(j1)
j1

,
m∑
k=1

βkj1S
k,π(j1)
(−j1)

)

is minimum and thus such that X
1,π(j1)
j1

becomes oppositely ordered to
∑m

k=1 β
k
j1
S
k,π(j1)
(−j1) . These

considerations lead to the following algorithm.

Minimum Covariance Algorithm (MinCov)

1. Let Xk, k = 1, . . . ,m, be given n× d matrices and let niter be a positive integer.

2. Randomly select j1 ∈ {1, . . . , d} and determine the rearrangement π(j1) such that X
1,π(j1)
j1

becomes oppositely ordered to
∑m

k=1 β
k
j1
S
k,π(j1)
(−j1) .

3. Re-label Xk,π(j1) as Xk and repeat Step 2. niter times.

4. Output the final matrices Xk
∗ and the rearrangement π such that Xk,π = Xk

∗.

2.2.2 Customization

The idea of the customization of BSA is to first transform the initial matrices Xk by approximating

them by a linear regression which yields transformed matrices Yk that satisfy condition (7), and to

apply next MinCov to the Yk. The solution, i.e., a rearrangement, is then applied to the original

matrices Xk after which BSA is applied. We formulate the following algorithm.

8

Electronic copy available at: https://ssrn.com/abstract=3681186



Customized BSA (Cust BSA)

1. Let Xk, k = 1, . . . ,m, be given n× d matrices and let niter be a positive integer.

2. Randomly select j1 ∈ {1, . . . , d} and, for each k = 2, . . . ,m, perform a linear regression

on the n data pairs (x1ij1 , xkij1) to obtain ykij1 = βkj1x
1
ij1

+ αkj1 for appropriate regression

coefficients βkj1 and αkj1 .

3. Define the matrices Yk = (ykij) in which ykij = xkij , j 6= j1, and ykij1 = βkj1x
1
ij1

+ αkj1 .

4. Apply a MinCov iteration to the matrices Yk (i.e., apply Step 2. of MinCov to the j1-th

column of Yk) and apply the obtained rearrangement to the matrices Xk.

5. Apply BSA to the output matrices obtained in Step 4. using niter iterations.

6. Output the final matrices Xk
∗ and the rearrangement π such that Xk,π = Xk

∗.

Remark 2.1 (Repetition of pre-processing). Steps 2-4 perform the pre-processing of Cust BSA

and can also be applied several times, each time selecting a different column number j1.

Remark 2.2 (Generalization of the pre-processing step using blocks). The use of MinCov as a

pre-processor is also possible via blocks. Randomly select δ ∈ {0, 1}d and replace all columns for

which δj = 1 by a single column with values yki1 =
∑m

j=1 δjx
k
ij . On these matrices, apply the

MinCov pre-processing Steps 2-4 based on the first column, resulting in a permutation π only for

the column containing the block row sums. This permutation is then applied to each of the columns

of the original matrices Xk selected by δj = 1. As stated above, this procedure can be repeated,

each time selecting a different random block. After this pre-processing, one applies BSA.

3 Numerical study of BSA and Cust BSA

We investigate the quality of BSA and Cust BSA for the synchronization problem (generalized

ALCS problem) where labour costs (production times) are described by various problem instances

Xk. Recall that a minimum variance solution π∗ ∈ A yields an optimal synchronization under

which the production costs (time lenghts) of the different production lines are as equal as possi-

ble across all scenarios. To this end, construct initial matrices Xk by independently drawing the

(xkij), i = 1, . . . , n, from the joint distribution F ∼ (Zkj ), where (Zkj ) is a multivariate normally

distributed random vector with standard normal marginal distributions F kj ∼ N(0, 1) and corre-

lations ρ(Zk1j1 , Z
k2
j2

) = ρδj1,j2 if k1 6= k2 and ρ(Zk1j1 , Z
k2
j2

) = δj1,j2 , if k1 = k2. Here, δ·,· denotes the

Kronecker delta. Roughly speaking, labour times of different workers are uncorrelated, whereas for

a given worker the labour times across the various possible scenarios are correlated.
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In the applications to follow, we let the number of rows be n = 10, 100, 1000, the number of

columns d = 5, 50, 500, the number of matrices m = 5, 10, 20, and ρ = 0.1, 0.5, 0.8. For each setting,

we generate 1000 random initial configurations (that is, 1000 different sets of m matrices Xk) and

apply each time the BSA and Cust BSA algorithms. As our extended synchronization problem

has not yet been considered in the literature, we use as a reference method a simple randomized

approach, called RandSelect, which consists in applying a randomly selected rearrangement π iter-

atively only if the objective V (π) decreases. In all our numerical experiments we fix the maximum

number of iterations niter = 106 for each algorithm, but we stop running a given algorithm when

no improvement is observed for a given number of consecutive iterations, which is set equal to

max(2d, 2n). In the latter case we say that the algorithm has converged. Note that in all numerical

experiments we conducted, convergence was always obtained.

For Cust BSA, in the pre-processing phase (Steps 2-4.) we run MinCov three times with block

version using an expected block size of d/2, i.e., each column is randomly selected with probability

1/2 for the first block, as described in Remark 2.2. Hence, after the pre-processing we have niter−3

iterations that are left for running BSA. In the second phase (Step 5.), the algorithm proceeds with

BSA using expected blocksizes d/2, d/4, and d/8 (probabilities for a column to be selected are 1/2,

1/4, and 1/8, respectively) and running n log(5 + d) (rounded to the nearest integer) iterations for

each blocksize, before continuing using blocksizes that are exactly equal to 1 and running iterations

until convergence or until the total budget of niter iterations is consumed. All computations were

run on a 2014 MacBook Air with 1.7 GHz Intel Core i7 processor.

3.1 Accuracy of the algorithms

In Table 1, we consider ρ = 0.5 and provide for all algorithms summary statistics related to the

objective function V (π). We also provide these summary statistics for the initial (not rearranged)

matrices, so that we can assess the extent to which the variability among row sums decreases when

applying the various algorithms. The results clearly show that BSA performs reasonably well,

in particular when the value for d is rather small, but Cust BSA is clearly outperforming, and

moreover is able to find configurations with low objective value V ∗. Specifically, for all values of n,

d and n, Cust BSA is always able to significantly improve an initial (randomly chosen) allocation.

Moreover, the degree of improvement (over an initial allocation) of Cust BSA is clearly increasing

in d, and, for a given value of m, V ∗ tends to be the lowest for high values of d or n. This last

observation is partially driven by the fact that when increasing d or n, it is more likely that there

are rearrangements that yield stable row sums and Cust BSA is able to find these. We also find,

as expected, a poor performance of RandSelect showing that a purely randomized approach is not

the appropriate way to go forward. Moreover, as RandSelect requires that in each iteration all

elements in all matrices are assessed, it quickly suffers from the curse of dimensionality. NA’s in

the tables to follow indicate that running RandSelect is computationally too expensive.

10

Electronic copy available at: https://ssrn.com/abstract=3681186



d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 3.24 5.43 8.49 32.71 53.82 83.47 318.22 533.11 830.86
RandSelect 1.63 2.92 4.80 12.59 22.78 37.69 NA NA NA
BSA 0.67 1.22 2.03 2.63 4.68 7.69 9.18 16.37 26.75
Cust BSA 0.63 1.15 1.93 0.33 0.60 1.00 0.09 0.16 0.26

n = 100 Initial 4.34 5.05 5.80 43.19 50.21 57.86 436.43 504.69 580.02
RandSelect 3.37 3.94 4.57 33.13 38.70 44.65 NA NA NA
BSA 0.41 0.48 0.56 3.77 4.42 5.17 18.03 21.28 24.79
Cust BSA 0.36 0.43 0.50 0.44 0.52 0.61 0.17 0.21 0.24

n = 1000 Initial 4.78 5.00 5.22 47.77 50.03 52.31 478.61 500.59 523.13
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.19 0.20 0.21 1.79 1.89 1.98 18.03 18.97 19.94
Cust BSA 0.16 0.17 0.18 0.17 0.18 0.19 0.17 0.18 0.19

Panel B: m = 10

n = 10 Initial 2.64 5.38 9.55 26.52 53.75 95.53 257.93 525.18 933.93
RandSelect 1.41 3.14 5.92 11.73 25.97 50.07 NA NA NA
BSA 0.72 1.65 3.19 3.91 8.83 16.95 21.29 46.84 88.26
Cust BSA 0.70 1.57 3.07 0.69 1.59 3.11 0.25 0.57 1.07

n = 100 Initial 4.14 5.03 6.04 41.00 50.14 60.40 414.86 504.05 606.88
RandSelect 3.28 4.05 4.91 32.30 39.78 48.27 NA NA NA
BSA 0.72 0.90 1.10 6.70 8.37 10.27 42.56 52.87 64.99
Cust BSA 0.66 0.83 1.01 1.10 1.37 1.69 0.53 0.67 0.82

n = 1000 Initial 4.71 5.00 5.30 47.11 50.02 53.10 470.86 499.98 530.10
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.49 0.53 0.56 4.64 4.97 5.31 46.31 49.55 52.90
Cust BSA 0.44 0.47 0.50 0.54 0.58 0.62 0.56 0.59 0.64

Panel C: m = 20

n = 10 Initial 2.20 5.35 10.48 21.98 53.82 106.04 219.19 535.86 1042.86
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.72 1.99 4.39 4.66 12.94 28.22 31.30 85.53 185.74
Cust BSA 0.70 1.95 4.32 1.22 3.50 7.70 0.53 1.47 3.18

n = 100 Initial 3.98 5.04 6.27 39.46 50.19 62.65 395.61 501.66 624.30
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.00 1.31 1.68 9.36 12.29 15.72 69.35 90.95 116.96
Cust BSA 0.94 1.23 1.59 2.22 2.93 3.78 1.28 1.69 2.17

n = 1000 Initial 4.65 5.00 5.37 46.49 50.04 53.77 464.37 500.09 536.51
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.84 0.92 1.00 8.00 8.69 9.43 79.84 86.60 93.87
Cust BSA 0.78 0.85 0.92 1.28 1.40 1.51 1.45 1.58 1.72

Table 1: We compute the m variances of the row sums of m initial matrices as well as after application of
various algorithms. We store the minimum, median, maximum, and average variance (V (π)). Each statistic
shown is the average of the individual summary statistics over 1000 random initial configurations. The
correlation parameter is fixed to ρ = 0.5.

To the best of our knowledge, there are no other benchmark algorithms available in the literature

for the generalized ALCS problem and no explicit solutions nor good bounds are readily available.

A notable exception, however, occurs when there is only one matrix to rearrange (situation of one

problem instance, i.e., when m = 1). In this case, it can be shown that for the set-up we consider

in the numerical study there exists, at least in the case n → ∞, a rearrangement π such that

V (π) = 0. Therefore, it is of interest to assess the extent by which the algorithms we propose are

able to find this optimal solution. Table 2 shows that in particular Cust BSA is able to closely

approximate the optimal rearrangement, indicating that the two algorithms can be expected to

also approximate optimal solutions when there are several problem instances (m > 1).
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

n = 10 Initial 5.57 5.57 5.57 55.40 55.40 55.40 565.41 565.41 565.41
RandSelect 1.71 1.71 1.71 10.19 10.19 10.19 56.54 56.54 56.54
BSA 0.19 0.19 0.19 0.07 0.07 0.07 0.01 0.01 0.01
Cust BSA 0.09 0.09 0.09 0.01 0.01 0.01 0.00 0.00 0.00

n = 100 Initial 5.07 5.07 5.07 51.01 51.01 51.01 502.41 502.41 502.41
RandSelect 3.36 3.36 3.36 32.20 32.20 32.20 297.77 297.77 297.77
BSA 0.01 0.01 0.01 0.05 0.05 0.05 0.02 0.02 0.02
Cust BSA 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

n = 1000 Initial 5.01 5.01 5.01 50.05 50.05 50.05 501.28 501.28 501.28
RandSelect 4.31 4.31 4.31 42.52 42.52 42.52 424.45 424.45 424.45
BSA 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Cust BSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: The same statistics (w.r.t. the variance) as in Table 1 for m = 1.

3.2 Stability

In order to gain further insight in the ability of the algorithms to improve the initial configuration,

we show in Table 3 and 4 summary statistics for the range of the row sums (production times)

that exist among the different assembly lines after application of the different algorithms. Clearly,

Cust BSA leads to very stable results along this dimension across the various matrices, proving

itself to be a useful tool when dealing with the generalized ALCS problem with uncertain labour

costs. For instance, when (n, d,m) = (1000, 500, 10) we obtain that Cust BSA is able to reduce

by a factor of 30 the average range of a matrix resulting from a random configuration (i.e., from

144.34 to 4.83). Also BSA leads to satisfactory results. These observations confirm the statements

in Remark 2.1 that rearrangements with (approximate) minimum variance also show low values

with respect to other Schur-convex functions like for instance the range. Note that BSA could be

adapted to minimizing the range instead of the variance function in which case the results would

be further improved.
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 5.15 6.86 8.84 16.33 21.65 27.77 50.68 67.95 87.84
RandSelect 3.70 5.05 6.69 10.21 14.16 18.63 NA NA NA
BSA 2.34 3.25 4.33 4.66 6.36 8.36 8.71 11.89 15.47
Cust BSA 2.27 3.15 4.20 1.64 2.28 3.02 0.86 1.18 1.53

n = 100 Initial 9.80 11.16 12.78 31.00 35.21 40.23 98.21 111.62 127.62
RandSelect 8.66 9.88 11.35 27.16 30.86 35.46 NA NA NA
BSA 2.99 3.41 3.93 9.01 10.21 11.69 19.61 22.26 25.35
Cust BSA 2.81 3.21 3.71 3.10 3.55 4.10 1.94 2.21 2.52

n = 1000 Initial 13.31 14.45 15.82 42.03 45.55 50.01 133.22 144.44 158.68
RandSelect NA NA NA NA NA NA NA NA NA
BSA 2.61 2.82 3.09 7.84 8.43 9.18 24.85 26.72 29.02
Cust BSA 2.44 2.64 2.92 2.44 2.63 2.87 2.43 2.63 2.87

Panel B: m = 10

n = 10 Initial 4.62 6.85 9.48 14.58 21.66 29.94 45.63 67.37 94.11
RandSelect 3.42 5.27 7.49 9.86 15.12 21.81 NA NA NA
BSA 2.43 3.80 5.48 5.69 8.80 12.54 13.26 20.24 28.60
Cust BSA 2.40 3.72 5.37 2.38 3.73 5.38 1.43 2.23 3.16

n = 100 Initial 9.43 11.14 13.31 29.70 35.16 42.08 94.35 111.49 133.26
RandSelect 8.45 10.02 12.02 26.38 31.30 37.60 NA NA NA
BSA 3.90 4.64 5.55 11.95 14.12 16.80 30.00 35.39 42.09
Cust BSA 3.77 4.46 5.36 4.85 5.77 6.97 3.38 4.00 4.81

n = 1000 Initial 13.02 14.42 16.32 41.13 45.62 51.67 130.16 144.34 162.95
RandSelect NA NA NA NA NA NA NA NA NA
BSA 4.11 4.55 5.12 12.51 13.78 15.43 39.50 43.45 48.72
Cust BSA 3.91 4.32 4.88 4.33 4.78 5.40 4.37 4.83 5.45

Panel C: m = 20

n = 10 Initial 4.20 6.83 10.03 13.22 21.71 32.03 41.74 68.45 100.48
RandSelect NA NA NA NA NA NA NA NA NA
BSA 2.41 4.20 6.49 6.17 10.68 16.33 16.02 27.43 41.91
Cust BSA 2.39 4.15 6.43 3.17 5.55 8.59 2.07 3.59 5.52

n = 100 Initial 9.14 11.15 13.89 28.72 35.18 43.72 91.00 111.23 138.42
RandSelect NA NA NA NA NA NA NA NA NA
BSA 4.57 5.63 7.04 13.94 17.21 21.41 37.95 46.74 58.08
Cust BSA 4.45 5.47 6.85 6.84 8.45 10.64 5.18 6.40 8.02

n = 1000 Initial 12.73 14.40 16.75 40.26 45.55 53.08 127.42 144.11 167.84
RandSelect NA NA NA NA NA NA NA NA NA
BSA 5.37 6.05 7.01 16.44 18.47 21.34 51.80 58.31 67.58
Cust BSA 5.16 5.83 6.75 6.64 7.50 8.71 7.08 8.00 9.32

Table 3: We compute the m ranges of the row sums of m initial matrices as well as after application of
various algorithms. We store the minimum, median, maximum, and average range. Each statistic shown is
the average of the individual summary statistics over 1000 random initial configurations. The correlation
parameter is fixed to ρ = 0.5.

3.3 Time complexity

We investigate in this subsection the run times and convergence properties of the algorithms as well

their behaviour across the iterations. Table 5 shows that BSA and in particular Cust BSA are fast

algorithms that are also able to efficiently deal with high-dimensional set-ups. For example, when

rearranging 20 matrices of 1000 rows and 500 columns each (i.e., when (n, d,m) = (1000, 500, 20)),

Cust BSA reaches convergence after 15 seconds.

Table 6 shows the number of iterations needed to obtain convergence. As compared to BSA,

Cust BSA uses more iterations to reach convergence and the pre-processing step of Cust BSA is
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

n = 10 Initial 6.87 6.87 6.87 21.78 21.78 21.78 69.54 69.54 69.54
RandSelect 3.85 3.85 3.85 9.44 9.44 9.44 22.28 22.28 22.28
BSA 1.20 1.20 1.20 0.73 0.73 0.73 0.22 0.22 0.22
Cust BSA 0.86 0.86 0.86 0.23 0.23 0.23 0.02 0.02 0.02

n = 100 Initial 11.27 11.27 11.27 35.59 35.59 35.59 111.74 111.74 111.74
RandSelect 9.15 9.15 9.15 28.39 28.39 28.39 86.20 86.20 86.20
BSA 0.40 0.40 0.40 1.18 1.18 1.18 0.76 0.76 0.76
Cust BSA 0.39 0.39 0.39 0.59 0.59 0.59 0.07 0.07 0.07

n = 1000 Initial 14.50 14.50 14.50 45.91 45.91 45.91 144.88 144.88 144.88
RandSelect 13.44 13.44 13.44 42.26 42.26 42.26 133.66 133.66 133.66
BSA 0.09 0.09 0.09 0.25 0.25 0.25 0.79 0.79 0.79
Cust BSA 0.09 0.09 0.09 0.09 0.09 0.09 0.24 0.24 0.24

Table 4: The same statistics (w.r.t. the range) as in Table 3 for the case m = 1.

d = 5 d = 50 d = 500
n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

Panel A: m = 5

RandSelect 0.0057 0.0255 NA 0.0136 0.1063 NA NA NA NA
BSA 0.0123 0.0113 0.2299 0.0109 0.0410 1.7123 0.2278 1.1572 33.5891
Cust BSA 0.0187 0.0133 0.1773 0.0130 0.0428 0.7838 0.0761 0.4110 6.1285

Panel B: m = 10

RandSelect 0.0052 0.0333 NA 0.0167 0.1828 NA NA NA NA
BSA 0.0104 0.0117 0.2714 0.0113 0.0473 2.9160 0.2614 2.1298 48.4079
Cust BSA 0.0152 0.0178 0.2006 0.0125 0.0506 1.1880 0.0943 0.6216 9.3419

Panel C: m = 20

RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.0102 0.0172 0.4153 0.0141 0.0656 7.1237 0.3596 4.9473 78.7507
Cust BSA 0.0217 0.0276 0.3113 0.0256 0.0635 2.2472 0.1331 1.0985 15.0317

Table 5: Computation times to reach convergence for a combination of n,m, d parameters (average over
1000 random initial configurations, time in seconds).

somewhat time costly. Nevertheless, each of the following iterations typically require less time than

in the case of BSA leading to a faster convergence overall. The reason why Cust BSA is typically

faster per iteration is due to the fact that in each iteration BSA deals with d/2 columns on average,

whereas for Cust BSA the number of columns that require manipulation decreases in a structured

way along the iterations.

d = 5 d = 50 d = 500
n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

Panel A: m = 5

RandSelect 34 360 NA 179 354 NA NA NA NA
BSA 106 5501 328360 520 5402 316438 4934 24819 310564
Cust BSA 98 5653 336200 912 10332 420764 6327 39902 476747

Panel B: m = 10

RandSelect 36 357 NA 178 359 NA NA NA NA
BSA 106 5589 329646 518 5382 310170 4826 24960 308872
Cust BSA 102 5765 340791 1186 13915 567468 8236 57327 686789

Panel C: m = 20

RandSelect NA NA NA NA NA NA NA NA NA
BSA 108 5605 344864 523 5575 324867 4926 25466 322290
Cust BSA 101 5993 362787 1496 18653 822628 12255 89764 987959

Table 6: Average number of iterations to reach convergence for a combination of n,m, d parameters (average
over 1000 random initial configurations). The maximum of niter = 106 iterations has never been reached.
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We also show in Figure 1 for some selected combinations of (n, d,m) the extent by which the

objective V (π) decreases as a function of the number of iterations performed. We observe that

for all algorithms the objective value first quickly decreases with a much slower decline in later

iterations. In particular, Cust BSA appears to achieve the fastest reduction of the objective value

indicating that the pre-processing step is very useful. This fast initial reduction is also clear from

Table 7, which shows for all combinations for (n, d,m) the improvement in the objective value

for Cust BSA after the preprocessing step. Figure 1 shows that also in later iterations Cust BSA

performs slightly better than BSA suggesting that selecting the block sizes in a structured manner

has positive impact on performance.

(a) (n, d,m) = (10, 5, 5)
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(b) (n, d,m) = (100, 5, 5)
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(c) (n, d,m) = (10, 50, 10)
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(d) (n, d,m) = (100, 50, 10)
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Figure 1: We show for different values of (n, d,m) how the objective value V (π) evolves when
increasing the number of iterations (average over 1000 random initial configurations).

d = 5 d = 50 d = 500
n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

Panel A: m = 5

m = 5 53.31 46.30 45.25 53.91 45.15 44.39 53.51 45.30 44.41
m = 10 49.03 40.17 39.19 49.01 38.95 38.33 47.69 39.22 38.17
m = 20 46.56 37.31 36.43 46.76 36.19 35.49 45.54 36.27 35.33

Table 7: Improvement in objective value expressed as a percentage after the pre-processing steps of Cust
BSA for a combination of n,m, d parameters (average over 1000 random initial configurations).
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3.4 Robustness with respect to the correlation parameter ρ

In Tables 8–11 we assess the performance of the algorithms for other values for the correlation

parameter ρ. First, in Table 8 and Table 9 we consider ρ = 0.8 and observe that the algorithms

BSA and in particular Cust BSA deliver high quality solutions, even outperforming those presented

in Table 1 and Table 3, respectively (in which ρ = 0.5). These figures are to be expected as higher

values for ρ – reflecting the strength of dependence among labour costs (production times) of a

worker – imply that the m scenarios are more similar. In the limiting case, when ρ = 1, the m

matrices coincide and the setting reduces to the case m = 1. Second, in Table 10 and Table 11 we

assess the case in which ρ = −0.1. We observe that also in this case Cust BSA continues to deliver

excellent results.

3.5 Robustness with respect to the degree of variability of production times

Finally, we also consider the case in which the production costs for a certain task present more

variability. In the basic set-up, the (xkij), i = 1, . . . , n, were drawn from the joint distribution F ∼
(Zkj ), where (Zkj ) was a multivariate random vector with standard normal marginal distributions

F kj ∼ N(0, 1) and a Gaussian copula with a single correlation parameter ρ = 0.5. Here, we preserve

the Gaussian dependence but assume the margins F kj ∼ t5 where t5 stands for a t-distribution

with five degrees of freedom, thus leading to more variability than in the case of a standard normal

distribution for the margins. The results in Table 12 and Table 13 show that also in this case Cust

BSA is outperforming and is still able to find configurations with low variance.

4 Conclusions

In this paper, we study a class of synchronization problems that can be seen as generalizations of

the classical ALCS problem (to the case of multiple scenarios) as well as of several further data

association and tracking problems that appeared in the literature on multidimensional assignment

problems. To the best of our knowledge this class of problems has not yet been considered and no

algorithms are available (unless there is only one scenario). We introduce the BSA algorithm for

solving this kind of synchronization problems and analyze its properties. It turns out that BSA

does not suffer from the curse of dimensionality in that it can deal with high dimensions, i.e., when

there are a large numbers of jobs, workers and problem instances (scenarios).

We propose a suitable pre-processing step, which builds on a linear regression combined with

a recently introduced algorithm called MinCov. The resulting algorithm Cust BSA provides a

further improvement of BSA. In general, the algorithms yield – similar to the Rearrangement

Algorithm (RA) in the single instance case – fast solutions that are of good quality. Cust BSA

is designed for dealing with the variance function as objective (see equation (3)) and significantly
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 4.09 5.74 7.67 39.64 55.85 75.85 399.56 570.96 775.91
RandSelect 1.34 2.28 3.46 9.48 15.93 25.39 NA NA NA
BSA 0.38 0.72 1.14 1.38 2.66 4.30 4.96 8.86 14.51
Cust BSA 0.34 0.68 1.17 0.22 0.39 0.68 0.05 0.08 0.14

n = 100 Initial 4.59 5.06 5.59 45.48 50.28 55.58 467.37 515.77 565.84
RandSelect 3.21 3.58 3.99 31.04 34.47 39.14 NA NA NA
BSA 0.22 0.26 0.31 2.04 2.39 2.77 9.26 10.88 12.90
Cust BSA 0.20 0.24 0.28 0.27 0.31 0.36 0.10 0.11 0.13

n = 1000 Initial 4.83 4.99 5.13 48.25 49.95 51.51 484.06 499.20 514.73
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.10 0.11 0.11 0.94 0.99 1.05 9.38 9.86 10.37
Cust BSA 0.09 0.09 0.10 0.09 0.10 0.10 0.09 0.10 0.10

Panel B: m = 10

n = 10 Initial 3.52 5.77 8.41 34.97 55.33 83.50 333.99 534.14 781.24
RandSelect 1.15 2.37 4.13 8.45 17.80 32.46 NA NA NA
BSA 0.38 0.86 1.68 1.85 4.30 8.51 9.95 22.49 42.92
Cust BSA 0.38 0.82 1.59 0.40 0.97 1.91 0.14 0.28 0.54

n = 100 Initial 4.51 5.12 5.85 44.10 50.41 57.79 444.20 504.96 579.47
RandSelect 3.11 3.66 4.24 30.45 35.72 41.29 NA NA NA
BSA 0.35 0.44 0.54 3.27 4.10 5.00 20.38 25.53 31.23
Cust BSA 0.32 0.40 0.50 0.64 0.80 0.98 0.28 0.34 0.43

n = 1000 Initial 4.78 4.99 5.19 48.16 50.24 52.31 478.45 500.22 521.46
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.23 0.25 0.27 2.20 2.36 2.53 21.94 23.38 24.93
Cust BSA 0.21 0.22 0.24 0.28 0.30 0.32 0.28 0.30 0.33

Panel C: m = 20

n = 10 Initial 3.05 5.44 8.71 31.00 55.42 88.38 309.18 549.91 880.59
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.38 1.01 2.22 2.14 5.86 12.93 13.13 37.47 82.56
Cust BSA 0.34 0.96 2.10 0.76 2.02 4.53 0.26 0.75 1.60

n = 100 Initial 4.41 5.20 6.02 43.12 50.34 58.82 420.95 495.58 577.68
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.45 0.60 0.78 4.39 5.72 7.28 31.07 40.35 52.27
Cust BSA 0.44 0.58 0.73 1.23 1.60 2.06 0.64 0.85 1.10

n = 1000 Initial 4.73 4.99 5.24 47.91 50.33 52.87 473.58 497.84 521.59
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.38 0.41 0.45 3.58 3.91 4.23 35.50 38.61 41.87
Cust BSA 0.35 0.38 0.42 0.63 0.69 0.75 0.83 0.90 0.98

Table 8: The same statistics (w.r.t. the variance) as in Table 1 for correlation parameter ρ = 0.8.

outperforms BSA. By contrast BSA can be adapted to any given Schur-convex function and is thus

more generally applicable.

As a special case of the BSA, one might only consider blocks of a single column. Under this

modification, the BSA reduces in the case of two matrices (i.e., when m = 2) to the swapping

Algorithm (SA), introduced in Rüschendorf and Rachev (1990) as an algorithm for the computa-

tion of the Wasserstein distance between two probability distributions, and investigated in detail

in Puccetti (2017). It is our experience by numerical experiments that the BSA converges faster

than SA, which is of particular importance in high-dimensional set-ups.
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 5.76 7.03 8.42 17.88 22.01 26.21 56.10 70.78 84.34
RandSelect 3.37 4.47 5.76 8.89 11.91 15.56 NA NA NA
BSA 1.76 2.46 3.23 3.38 4.79 6.22 6.33 8.72 11.44
Cust BSA 1.68 2.44 3.29 1.33 1.83 2.47 0.63 0.86 1.13

n = 100 Initial 10.00 11.22 12.45 31.66 34.86 38.65 101.15 113.35 125.23
RandSelect 8.53 9.40 10.63 26.28 29.14 33.34 NA NA NA
swapping 2.08 2.41 2.78 2.46 2.75 3.17 1.41 1.62 1.87
BSA 2.20 2.50 2.88 6.65 7.46 8.55 14.15 15.89 18.16
Cust BSA 2.10 2.41 2.80 2.42 2.75 3.21 1.46 1.65 1.90

n = 1000 Initial 13.45 14.48 15.53 42.51 45.59 48.95 135.57 145.99 157.84
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.91 2.06 2.26 5.70 6.15 6.67 17.77 19.16 21.13
Cust BSA 1.77 1.92 2.11 1.79 1.95 2.10 1.79 1.95 2.13

Panel B: m = 10

n = 10 Initial 5.28 7.07 8.84 16.66 21.85 27.92 51.18 67.46 85.76
RandSelect 3.04 4.55 6.20 8.39 12.54 17.75 NA NA NA
BSA 1.73 2.73 3.95 3.86 6.12 8.94 9.00 14.06 19.93
Cust BSA 1.74 2.71 3.92 1.80 2.93 4.23 1.06 1.59 2.21

n = 100 Initial 10.01 11.43 13.08 30.84 35.17 40.32 96.81 111.34 128.04
RandSelect 8.17 9.53 11.24 25.36 29.49 34.35 NA NA NA
BSA 2.76 3.25 3.88 8.36 9.91 11.87 20.75 24.56 29.27
Cust BSA 2.61 3.14 3.73 3.74 4.42 5.35 2.41 2.90 3.50

n = 1000 Initial 13.25 14.50 16.16 41.96 46.01 51.25 131.09 144.51 160.88
RandSelect NA NA NA NA NA NA NA NA NA
BSA 2.85 3.14 3.51 8.65 9.51 10.66 27.11 29.91 33.75
Cust BSA 2.70 2.99 3.38 3.12 3.45 3.90 3.14 3.47 3.94

Panel C: m = 20

n = 10 Initial 4.90 6.85 9.17 15.37 21.78 29.14 48.77 68.81 91.86
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.75 2.98 4.70 4.20 7.19 11.09 10.48 18.20 27.98
Cust BSA 1.66 2.90 4.49 2.47 4.19 6.57 1.44 2.56 3.95

n = 100 Initial 9.73 11.50 13.63 30.24 35.43 41.75 94.15 111.87 132.64
RandSelect NA NA NA NA NA NA NA NA NA
BSA 3.10 3.81 4.76 9.53 11.75 14.54 25.56 31.28 39.01
Cust BSA 3.05 3.77 4.68 5.04 6.25 7.87 3.70 4.57 5.73

n = 1000 Initial 13.05 14.49 16.32 41.07 45.81 51.86 129.44 143.48 162.96
RandSelect NA NA NA NA NA NA NA NA NA
BSA 3.60 4.06 4.71 10.99 12.42 14.29 34.76 38.87 45.16
Cust BSA 3.49 3.91 4.53 4.67 5.29 6.12 5.34 6.08 7.02

Table 9: The same statistics (w.r.t. the variance) as in Table 3 for correlation parameter ρ = 0.8.
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 2.84 5.18 8.90 29.84 52.61 87.47 289.16 538.70 890.72
RandSelect 1.87 3.38 5.56 15.10 28.02 46.37 NA NA NA
BSA 0.92 1.61 2.64 3.24 5.84 9.51 12.78 22.42 37.39
Cust BSA 0.83 1.47 2.36 0.44 0.77 1.26 0.11 0.20 0.32

n = 100 Initial 4.31 5.03 5.91 42.20 49.84 58.54 427.72 505.85 592.30
RandSelect 3.58 4.23 4.91 35.53 41.67 48.71 NA NA NA
BSA 0.54 0.64 0.74 5.05 5.91 6.85 23.57 28.07 32.53
Cust BSA 0.48 0.57 0.66 0.56 0.65 0.76 0.23 0.27 0.31

n = 1000 Initial 4.76 5.00 5.25 47.35 49.89 52.68 473.92 497.67 524.17
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.25 0.27 0.28 2.41 2.54 2.66 24.10 25.31 26.66
Cust BSA 0.22 0.23 0.24 0.22 0.23 0.24 0.22 0.23 0.25

Panel B: m = 10

n = 10 Initial 2.21 5.30 10.31 22.73 53.64 106.44 225.39 516.61 995.99
RandSelect 1.71 3.86 7.25 14.07 32.81 64.76 NA NA NA
BSA 0.94 2.21 4.31 5.58 12.32 23.34 31.36 66.43 125.73
Cust BSA 0.98 2.11 4.09 0.88 1.99 3.95 0.40 0.92 1.76

n = 100 Initial 4.00 5.00 6.28 39.87 50.08 61.29 402.29 506.90 626.37
RandSelect 3.51 4.47 5.43 34.84 43.65 54.98 NA NA NA
BSA 1.02 1.27 1.53 9.40 11.63 14.00 60.63 75.13 90.63
Cust BSA 0.91 1.12 1.39 1.43 1.79 2.18 0.88 1.10 1.34

n = 1000 Initial 4.67 5.00 5.34 46.83 50.06 53.57 466.42 500.36 535.99
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.68 0.73 0.79 6.51 6.94 7.41 64.13 68.42 73.04
Cust BSA 0.61 0.66 0.70 0.77 0.82 0.87 0.89 0.95 1.02

Table 10: The same statistics (w.r.t. the variance) as in Table 1 for correlation parameter ρ = −0.1.

d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 4.87 6.77 9.21 15.83 21.57 28.85 48.43 68.17 90.07
RandSelect 3.91 5.43 7.31 11.07 15.69 20.89 NA NA NA
BSA 2.75 3.73 4.97 5.16 7.07 9.29 10.09 13.94 18.30
Cust BSA 2.64 3.57 4.61 1.91 2.60 3.38 0.98 1.34 1.72

n = 100 Initial 9.74 11.16 12.93 30.48 35.22 40.33 97.54 112.33 129.44
RandSelect 8.88 10.06 11.66 28.36 32.07 37.04 NA NA NA
BSA 3.47 3.95 4.47 10.46 11.81 13.44 22.41 25.53 28.87
Cust BSA 3.27 3.74 4.31 3.49 3.99 4.49 2.22 2.53 2.90

n = 1000 Initial 13.34 14.50 15.84 42.21 45.83 50.12 132.84 145.12 158.96
RandSelect NA NA NA NA NA NA NA NA NA
BSA 3.00 3.23 3.56 9.12 9.76 10.69 28.66 30.80 33.65
Cust BSA 2.81 3.04 3.36 2.76 2.96 3.25 2.77 2.98 3.29

Panel B: m = 10

n = 10 Initial 4.34 6.80 9.83 13.66 21.76 31.99 42.91 67.42 97.09
RandSelect 3.76 5.84 8.28 10.92 16.99 24.80 NA NA NA
BSA 2.81 4.42 6.38 6.73 10.39 14.84 16.20 23.99 34.31
Cust BSA 2.82 4.28 6.27 2.66 4.19 6.13 1.80 2.83 4.05

n = 100 Initial 9.35 11.15 13.60 29.52 35.03 42.77 93.96 111.74 136.77
RandSelect 8.75 10.49 12.63 27.43 33.07 39.92 NA NA NA
BSA 4.67 5.50 6.53 14.07 16.59 19.77 35.51 41.86 49.66
Cust BSA 4.35 5.19 6.29 5.52 6.62 7.80 4.36 5.18 6.17

n = 1000 Initial 12.97 14.43 16.48 41.09 45.30 52.03 129.72 144.74 164.58
RandSelect NA NA NA NA NA NA NA NA NA
BSA 4.86 5.32 6.01 14.78 16.24 18.21 46.59 51.33 57.26
Cust BSA 4.60 5.11 5.76 5.13 5.71 6.44 5.59 6.20 7.01

Table 11: The same statistics (w.r.t. the range) as in Table 3 for correlation parameter ρ = −0.1.
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 5.06 9.09 15.18 51.62 88.87 136.25 547.19 922.11 1450.98
RandSelect 2.61 4.86 8.70 21.80 39.48 62.54 NA NA NA
BSA 1.17 2.18 3.99 4.44 7.79 12.67 16.24 27.53 45.17
Cust BSA 1.05 1.99 3.94 0.49 0.84 1.47 0.11 0.21 0.35

n = 100 Initial 7.04 8.34 10.04 72.38 84.10 97.06 733.70 850.22 973.91
RandSelect 5.53 6.51 7.89 55.01 64.69 76.12 NA NA NA
BSA 0.64 0.77 0.96 6.15 7.36 8.81 30.44 35.73 41.59
Cust BSA 0.58 0.69 0.85 0.61 0.72 0.86 0.22 0.26 0.31

n = 1000 Initial 7.90 8.32 8.80 79.26 83.21 87.37 797.90 830.99 871.06
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.30 0.32 0.37 3.06 3.21 3.37 30.28 31.87 33.43
Cust BSA 0.25 0.27 0.31 0.23 0.24 0.25 0.22 0.23 0.25

Panel B: m = 10

n = 10 Initial 4.05 8.91 17.95 46.34 89.67 166.32 430.88 879.16 1546.84
RandSelect 2.39 5.12 10.77 19.99 45.00 86.83 NA NA NA
BSA 1.17 2.79 6.41 6.81 14.82 28.38 35.29 81.32 150.91
Cust BSA 1.13 2.58 5.76 1.03 2.32 4.53 0.34 0.75 1.48

n = 100 Initial 6.82 8.46 11.36 68.29 83.06 101.14 692.10 836.94 1025.92
RandSelect 5.35 6.79 8.97 54.02 66.77 81.93 NA NA NA
BSA 1.20 1.51 2.40 11.48 14.41 17.72 72.37 90.90 111.36
Cust BSA 1.08 1.35 2.16 1.56 1.97 2.44 0.72 0.90 1.10

n = 1000 Initial 7.73 8.31 8.98 78.56 83.73 88.98 783.26 834.38 885.75
RandSelect NA NA NA NA NA NA NA NA NA
BSA 0.79 0.86 0.97 7.77 8.33 8.90 78.52 83.99 89.80
Cust BSA 0.70 0.76 0.86 0.74 0.80 0.85 0.76 0.81 0.86

Panel C: m = 20

n = 10 Initial 3.20 8.45 20.51 35.92 90.60 185.47 349.88 879.22 1741.96
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.10 3.25 9.42 7.44 21.89 48.22 53.95 142.52 307.40
Cust BSA 1.15 3.26 8.87 1.94 5.38 12.32 0.75 2.04 4.58

n = 100 Initial 6.45 8.52 11.98 65.47 83.50 109.58 655.12 830.22 1038.17
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.69 2.21 3.41 15.84 21.06 29.14 115.95 153.40 198.10
Cust BSA 1.55 2.07 3.29 3.39 4.50 6.56 1.77 2.37 3.07

n = 1000 Initial 7.60 8.32 9.22 77.83 83.66 90.22 770.95 831.20 890.65
RandSelect NA NA NA NA NA NA NA NA NA
BSA 1.39 1.53 1.75 13.60 14.81 16.08 135.44 147.49 160.22
Cust BSA 1.28 1.41 1.61 1.88 2.04 2.21 2.09 2.27 2.46

Table 12: The same statistics (w.r.t. the variance) as in Table 1 with production costs drawn from a t5
distribution.
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d = 5 d = 50 d = 500
min. med. max. min. med. max. min. med. max.

Panel A: m = 5

n = 10 Initial 6.53 8.87 12.20 20.67 27.80 35.60 67.63 91.11 115.50
RandSelect 4.66 6.57 9.07 13.28 18.57 24.18 NA NA NA
BSA 3.09 4.36 6.02 6.03 8.13 10.72 11.85 15.29 19.96
Cust BSA 2.95 4.18 5.84 1.99 2.70 3.60 0.96 1.33 1.75

n = 100 Initial 13.00 15.52 19.36 40.31 45.66 53.47 127.12 145.87 165.25
RandSelect 11.65 13.62 16.74 35.19 40.23 46.74 NA NA NA
BSA 3.82 4.56 6.02 11.47 13.23 15.43 25.71 28.96 32.80
Cust BSA 3.68 4.45 5.70 3.67 4.22 4.92 2.19 2.50 2.87

n = 1000 Initial 20.07 22.77 28.89 55.60 60.55 69.02 173.04 188.14 206.55
RandSelect NA NA NA NA NA NA NA NA NA
BSA 3.92 4.84 7.70 10.28 11.32 13.15 32.25 34.63 37.43
Cust BSA 3.65 4.58 7.02 2.82 3.04 3.33 2.78 3.00 3.25

Panel B: m = 10

n = 10 Initial 5.71 8.89 13.37 19.46 27.97 39.94 59.14 87.52 121.93
RandSelect 4.44 6.81 10.25 12.94 19.93 28.77 NA NA NA
BSA 3.09 4.95 7.90 7.67 11.44 16.51 17.12 26.92 37.82
Cust BSA 3.08 4.81 7.45 2.88 4.46 6.45 1.67 2.56 3.74

n = 100 Initial 12.72 15.84 22.23 38.49 45.99 56.63 122.25 143.65 175.54
RandSelect 11.15 13.85 19.07 34.58 41.08 50.95 NA NA NA
BSA 5.19 6.38 10.04 15.63 18.71 22.87 39.27 46.04 55.98
Cust BSA 4.91 6.08 9.63 5.85 6.96 8.58 3.92 4.63 5.58

n = 1000 Initial 19.26 22.85 31.80 54.52 61.60 73.12 167.40 187.25 211.65
RandSelect NA NA NA NA NA NA NA NA NA
BSA 5.83 7.16 11.89 16.24 18.08 21.84 51.41 56.45 63.18
Cust BSA 5.56 6.92 11.40 5.10 5.65 6.41 5.11 5.65 6.35

Panel C: m = 20

n = 10 Initial 5.14 8.70 14.54 16.61 28.06 43.17 53.13 87.61 129.55
RandSelect NA NA NA NA NA NA NA NA NA
BSA 3.03 5.41 9.48 7.92 13.79 21.62 21.25 35.35 54.36
Cust BSA 3.09 5.40 9.45 3.93 6.91 10.82 2.43 4.24 6.58

n = 100 Initial 12.22 15.70 23.57 37.06 45.88 60.67 116.08 143.69 180.74
RandSelect NA NA NA NA NA NA NA NA NA
BSA 6.01 7.77 12.41 18.20 22.56 30.36 49.47 60.84 76.32
Cust BSA 5.90 7.48 12.16 8.46 10.51 14.14 6.18 7.57 9.61

n = 1000 Initial 18.52 22.85 34.78 53.05 60.77 75.45 163.99 185.85 217.58
RandSelect NA NA NA NA NA NA NA NA NA
BSA 7.51 9.28 16.69 21.55 24.33 30.59 67.44 76.22 88.15
Cust BSA 7.20 8.98 16.19 8.05 9.08 10.78 8.47 9.56 11.03

Table 13: The same statistics (w.r.t. the range) as in Table 3 with production costs drawn from a t5
distribution.
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