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Abstract: We consider a gas of N bosons in a box with volume one interacting through a
two-body potential with scattering length of order N ~! (Gross—Pitaevskii limit). Assum-
ing the (unscaled) potential to be sufficiently weak, we prove complete Bose—Einstein
condensation for the ground state and for many-body states with finite excitation en-
ergy in the limit of large N with a uniform (N-independent) bound on the number of
excitations.

1. Introduction and Main Results

We consider systems of N bosons in the three dimensional box A = [—1/2; 1 /2]*3,
with periodic boundary conditions. In particular, we are interested in the Gross—Pitaevskii
regime; the Hamilton operator has the form

N N
Hy :Z—ij+KZN2V(N(x,~ —x)) (1.1)
j=1 i<j

and acts on the Hilbert space L?(AN ), the subspace of L2(AN) consisting of functions
that are symmetric with respect to permutations of the N particles. We will assume
V e L3(R?) to be non-negative, spherically symmetric and compactly supported. In
(1.1), we also introduced a coupling constant « > 0, which we will later assume to
be small enough. The scattering length ag of the potential xV is defined through the
Zero-energy scattering equation

[—A+§V]f=0 (1.2)

with the boundary condition f(x) — 1 as |[x| — oo (note that (1.2) is an equation
on R3, despite the fact that we consider particles moving on the torus A). Outside the
support of V, f has the form
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f@=1-2 (1.3)
|x|
The constant ag is known as the scattering length of k V. By scaling, the scattering length
of the interaction k N>V (Nx) appearing in (1.1) is given by ay = ag/N.
It follows from [16—18] that the ground state energy Ey of (1.1) is such that

. Ey
ngnoo N = dmag (1.4)
Moreover, it has been shown in [14,18] that the ground state of (1.1) exhibits Bose—
Einstein condensation in the one-particle orbital ¢p(x) = 1 on A. In other words, if ¥y
is a normalized ground state vector for (1.1), and if yli,l) =tro.. ~N|¥nN){(¥n| denotes its
one-particle reduced density, it was proven in [14] that
vy = le0) (@0l (15)

as N — oo (for example, in the trace-norm topology). Actually, results in [14,16] were
more general and also applied to non-translation invariant bosonic systems in the Gross—
Pitaevskii regime, where particles are trapped in a volume of order one by an external
confining potential. For rotating gases similar results have been obtained in [15]. In fact,
following the arguments of [14], it is also possible to give a bound on the rate of the
convergence (1.5), which is, however, very far from optimal.

The main result of our paper is a proof of Bose—Einstein condensation (1.5), valid
for sufficiently small values of the coupling constant ¥ > 0, with a presumably optimal
bound on the rate of the convergence. This is the content of the next theorem.

Theorem 1.1. Let V € L3(R3) be non-negative, spherically symmetric and compactly
supported and assume the coupling constant k > 0 to be small enough. Let ¥y €
L?(AN) be a sequence with ||Yn || = 1 and such that

(Yn, Hvyn) < 4mwagN + K (1.6)
for some K > 0. Let ylf,l) = try. . N |YN)(¥UN| be the one-particle reduced density
associated with . Then there exists a constant C > 0, depending on V and on k but
independent of K such that

.....

1) C(K+1)

1-— , < —, 1.7
(90, ¥y "¢0) < N (L.7)

where ¢o(x) = 1 forall x € A.
Furthermore, the ground state energy Ey of (1.1) is such that

|En —4maoN| < D (1.8)

for a D > 0 independent of N (depending only on V and k). Hence, the one-particle
reduced density associated with the ground state of (1.1) satisfies (1.7), with K replaced
by the constant D.

Remarks

(1) The inequality (1.7) bounds the number of particles orthogonal to the condensate
wave function ¢g. It states that the number of orthogonal excitations in the state ¥y
is bounded by C (K +1). In particular, by (1.8), the number of orthogonal excitations
in the ground state of (1.1) remains bounded, uniformly in N.
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(2) The bound (1.8) improves the result (1.4) obtained in [16-18] by showing that
4mapN 1is the ground state energy of (1.1) up to an error of order one, uniform in
N. This is a new result of independent interest.

(3) The inequality (1.7) immediately implies convergence of the reduced density yy;
towards the orthogonal projection |@g)(¢o| in the trace-class topology, since

O]

172 C
1 1
7 = ool | < 217 = loodgollins = 27 (1= tgo. i o)) = =

(4) We believe that the methods that we use to show Theorem 1.1 can be extended to
prove an analogous result for non-translation-invariant bosonic systems trapped by
confining external fields. The details will appear elsewhere.

(5) We think that the smallness assumption on k > 0 is technical; we expect the results
of Theorem 1.1 to remain true, independently of the strength of the interaction (of
course, assuming the interaction to scale as in (1.1)).

(6) The threshold K > 0 can also be chosen depending on N. Of course, if we allow
for a large excitation energy K ~ N* for some « < 1, the bound (1.7) deteriorates
and only shows that the number of orthogonal excitations is at most of the order
N%. The statement (1.7) remains non-trivial for all K < N.

Bounds similar to (1.7) have been obtained in [5,12,20,21] for N-boson systems in
the mean field limit, described by the Hamilton operator

H}V“f_z Ay + ZV(xl—x]) (1.9)

j=1 i<j

acting again on L2(A3N). In [5,12,13,21] establishing an estimate on the number of
particles orthogonal to the condensate was an important ingredient to show the validity
of Bogoliubov theory for the mean-field Hamiltonian (1.9). In this sense, (1.7) can be
thought of as a first step towards a better mathematical understanding of the excitation
spectrum of Bose gases in the Gross—Pitaevskii regime corresponding to (1.1).

To prove Theorem 1.1 we combine techniques from [13] with ideas developed in [1]
and recently in [3] to study the time-evolution in the Gross—Pitaevskii regime. First of
all, following [13], we observe that every normalized ¢y € L%(AN ) can be represented
uniquely as

YN = Zw"” g N (1.10)

for a sequence I/f( " e L2 (A)®s" Here L2 (A)®?" denotes the symmetric tensor product

of n copies of the orthogonal complement L? 1(A) of g in L2(A). This remark allows
us to define a unitary map

Uy : LXAN) - FEN through Unyy = (w0, v, vy L1

Here .7-' Fo= @n 0 Li (A)®" denotes the bosonic Fock space constructed over L? 1),
truncated to sectors with at most N particles. The unitary map Uy factors out the Bose—
Einstein condensate described by ¢g and it lets us focus on its orthogonal excitations,

described on ffN.



978 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

With Uy, we can define a first excitation Hamiltonian Ly = Uy Hy U;f, : EN —

ffN. To compute Ly, itis convenient to rewrite the original Hamiltonian (1.1) in second
quantized form as

K —~
Hy= ) payap+5o Y, V@/N)ay, azapag, (1.12)
pEA* p.q.reA*

where A* = 2773 is momentum space and where, forevery p € A*, a;, ay, are the usual
Fock space operators, creating and annihilating a particle with momentum p (precise
definitions will be given in Sect. 2). Roughly speaking, £y can be obtained from (1.12)
by replacing creation and annihilation operators ag, ag in the zero-momentum mode by

factors of (N —N;) /2, where N = > penn\ (0} dpdp is the number of particles operator

on the excitation space ]-"fN. This procedure can be thought of as a rigorous version of
the Bogoliubov approximation, proposed already in [2]. Conjugating Hy with Uy we
effectively extract, from the original interaction term in (1.12) (quartic in creation and
annihilation operators), contributions that are constant (commuting numbers), quadratic
and cubic in creation and annihilation operators (the precise form of Ly is given in (3.2)
and (3.3)).

In the mean field regime described by the Hamilton operator (1.9), assuming that V
is positive definite it turns out that, up to errors of order one,

(i) the constant term in E%f =Uy H}\,“fU;\‘, is given by N V(0) /2, which is (again up to
errors of order one) the ground state energy of (1.9),

(ii) the sum of all other contributions in L}Gf can be bounded below on ]-"EN by the
number of particles operator N5.

We conclude that R
[,%f—NV(O)/chNJr—C (1.13)
for appropriate constants C, ¢ > 0. This bound shows that states with small excita-
tion energy can be written as ¥y = Uy &y for an excitation vector £y € ffN with
(En, Ni&N) < C, uniformly in N. It is easy to check that this estimate implies (1.7).
In the Gross—Pitaevskii regime, on the other hand, conjugating with U is not enough.
The difference between the constant term in Ly and the ground state energy of (1.1)
is still of order N and, moreover, the sum of the other contributions to £y cannot
be bounded below by the number of particles operator. The problem, in the Gross—
Pitaevskii regime, is the fact that the completely factorized wave function Uy, Q = <p8w

(with Q = {1, 0, ..., 0} the vacuum vector in ffN ) is not a good approximation for the
ground state vector of (1.1) or, more generally, for low-energy states. Instead, states with
small energies in the Gross—Pitaevskii limit are characterized by a short scale correlation
structure, which already played a crucial role in [14,16] and also in the analysis of the
time-evolution; see [1,3,4,6,8—11,19]. To take into account correlations we proceed as
in [3], conjugating Ly = Uy Hy U}, with a generalized Bogoliubov transformation 7'.
This idea stems from [1], where Bogoliubov transformations of the form

~ 1
T =exp > Z g [a;‘afq - aqa_q] (1.14)
geAl

with coefficients 1, € R related to the solution of the zero energy scattering equation
(1.2) have been used to model correlations (in fact, since [1] studied the time-evolution
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in non-translation-invariant systems, a slightly more general version of (1.14) was used
there). A nice property of the unitary map (1.14) is the fact that its action on creation
and annihilation operators can be computed explicitly, i.e.,

T*a,T = cosh(np) a, +sinh(np) a*,

for all p € A’. Unfortunately, however, the Bogoliubov transformation T does not map
F=N intoitself (it does not preserve the constraint on the number of particles). To circum-
vent this obstacle, we follow [3] and introduce generalized Bogoliubov transformations,
having the form

1
T=cxpls D m [B3b%, = byboy (1.15)
peEAX

with the modified creation and annihilation operators

;V ap and b, =a ,/ -

We will choose 1, = —N _21’1515 (p/N), where W, are the Fourier coefficients of wy =
1 — f¢ and f; is a modification of the solution f of the zero-energy scattering equation
(1.2) (more precisely, fy is going to be the Neumann ground state on the ball of radius N ¢,
for an £ of order one). We will show in Lemma 3.1 that, with this definition, , >~ C«/|p| 2
for | p| < N, with fast decay for | p| 2 N guaranteeing that > » pznlz, ~ CN (the large
p behavior of 1, corresponds to the |x|~! singularity of (1.3), regularized on a length
scale of order N7 1).

Let us point out that the idea of using unitary operators of the form (1.15) already
appeared in [21], in the analysis of the excitation spectrum of mean-field Hamiltonians.
In[21], however, these generalized Bogoliubov transformations were used to diagonalize
the quadratic part of the excitation Hamiltonian U]{}f, and not, as we do here, to extract
additional contributions from cubic and quartic terms in £y ; as a consequence, in [21]
the choice of the coefficients 1, was very different than in (1.15).

Since T maps }'EN back into itself, we can use it to define a new, modified, excitation
Hamiltonian Gy = T*UyHyURT .7-'+5N — ]—'fN . While conjugation with 7' only
creates a finite number of excitations (because 7, is square summable; see Lemma 2.4),
it extracts an additional energy of order N (because Z p*n? ~ CN). Choosing 7 P
as indicated above makes sure that the constant term in g N 18 exactly 4magN and that
all other contributions can be bounded below by the number of particles operator, up to
errors of order one. In Proposition 3.2 we will conclude that, similarly to (1.13),

Gy —4magN = cN, — C (1.16)

for appropriate constants C, ¢ > 0 (the proof of Proposition 3.2 is given in Sect. 4 and
represents the longest part of the paper). Conjugating (1.16) with 7" and U (and using
the fact that, as discussed in Lemma 2.4, T only changes the number of particles by a
multiplicative constant), we arrive at the estimate

N
Hy —4maoN = ¢ Y (1 = |po){gol)j — C (1.17)
j=1
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between operators acting on the N -particle Hilbert space L?(AN ).Forj=1,..., N,
(1 — o) {¢ol) j indicates the projection 1 — |¢o){¢@o| onto the orthogonal complement of
the condensate wave function ¢ acting on the j-th particle. In other words, the operator
on the r.h.s. of (1.17) measures the number of orthogonal excitations of the condensate.
It is then easy to see that (1.17) implies complete Bose—Einstein condensation in the
precise sense of (1.7).

Technically, the main challenge that we have to face is the fact that the action of the
generalized Bogoliubov transformations (1.15) on creation and annihilation operators
is not explicit, as it was for (1.14). Instead, we will have to expand operators of the
form T*a,T in absolutely convergent infinite series and we will need to bound several
contributions. The main tool we use to control these expansions is Lemma 2.5 below,
which we take from [3].

2. Fock Space
Let

F=EPLian=gLrne"

n>0 n>0

denote the bosonic Fock space over the one-particle space L%(A). Here L%(A”) ~
L2(A)®s" is the subspace of L2(A™) consisting of all functions that are symmetric w.r.t.
permutations. We use the notation 2 = {1, 0, ...} € F for the vacuum vector.

For g € L%(A), we define on F the creation operator a*(g) and the annihilation
operator a(g) by

1 & B
@ (W)™ (x1, ..., xy) = ﬁZg@j)w(" DX, ey X1y Xy ey Xn)
j=1

(a() W)™ (x1, ..., xn) :\/n+l/ 2OV D (x x1, ..., x0) dx.
A

Creation and annihilation operators satisfy canonical commutation relations

la(g),a* (W] = (g, h), la(g),a()]=[a"(g).a" ()] =0 2.1)

forall g, h € L*>(A) (here (g, h) denotes the usual inner product on L>(A)).

Since we consider a translation invariant system, it will be useful to work in mo-
mentum space. Let A* = 2773, For p € A*, we define the normalized wave function
pp(x) = e~ 7% in L2(A) and we set

a, =a*(pp), and a, =a(py). (2.2)

In other words, a;‘, and a, create, respectively, annihilate a particle with momentum p.

In some occasions, it will be also convenient to work in position space (it is easier
to make use of the condition that the interaction potential V (x) is pointwise positive
when working in position space). To this end, we introduce operator valued distributions
dy, a; defined so that

a(f) = / Fydardy, a'(f) = / £ dx. 23)
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On F, we also introduce the number of particles operator, defined by (VW)™ =
nW ™ Notice that

N = E ajap =/sz;sz dx.
pEA*

It is useful to observe that creation and annihilation operators are bounded by the square
root of the number of particles operator, i.e.

la(HW < IFIINY2@I, Jla* (Ol < 1AV + D2 (2.4)

forall f € L2(A).
We will often have to deal with quadratic translation invariant operators on F (quadratic
in creation and annihilation operators). For f € 02(A*), we define

Apn(H) =Y fpdl a2, 2.5)
peEA*
where 1, o € {-, %}, and we use the notation a* = a, if ¢ = -, and a? = a* if § = .
Also,aj € {1} ischosensothata; = 1,if ) = *, 01 = —1iffl = -,ap = 1if fhp =
and ap = —1 if o = *. Notice that, in position space

A () = fdxdy f(x —y) 5)%1 é}ﬁ}z
with the inverse Fourier transform

[y =) fpe?

PEA*

Lemma 2.1. Let f € 02(A*) and, if t1 = - and o = x assume additionally that
f € Y (A*). Then we have, for any W € F,

1Az, 20 ()] < V2 [V + D] { I+l e = -y =

Il f 12 otherwise

We will need to work on certain subspaces of F. Recall that (po € L2(A) is the
constant wave function ¢o(x) = 1 for all x € A. We denote by L2 7 (A) the orthogonal

complement of the one dimensional space spanned by ¢ in LZ(A). We define then

Fo=PLimen

n>0

as the Fock space constructed over L% (A). A vector W = {y©@ ¢ (D} € Fliesin
Fi, if l/f(") is orthogonal to ¢, in each of its coordinate, for all n > 1, i.e. if

/ w(n)(-xi )’1»-“7)’n—1)dx :O
A

forall n > 1. In momentum space, it is very easy to characterize the orthogonal comple-
ment of ¢g; it consists of all functions in F2(A%) vanishing at p = 0. Hence, F is the Fock
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space generated by creation and annihilation operators a}k,, ap,forp e A} :=2m Z3\{0}.
On F,, we denote the number of particles operator by

_ *
N+ = Z apap.

PEAX

We will also need a truncated version of the Fock space F.. For N € N, we define
N
FN =@ Lim)®”
n=0

as the Fock spaces constructed over Lzl(A), describing states with at most N particles.

On .7-'+SN, we will consider modified creation and annihilation operators. For [ €
Li(A), we define

N—N+ N_N+
b(f) = Ta(f)’ and b*(f)=a*(f)\/T-

We have b(f), b*(f) : .7-"+SN — ffN. As we will discuss in the next section, the
importance of these fields arises from the application of the map Uy, defined in (1.11),
since, for example,

Una*(falpo)Uy = a*(/)y'N = Ni = VN b*(f). (2.6)

Equation (2.6) clarifies the action of the modified creation and annihilation operators;
b*(f) excites a particle from the condensate into its orthogonal complement while
b(f) annihilates an excitation back into the condensate. Compared with the standard
fields a*, a, the modified creation and annihilation operators b*, b have an important
advantage. They create or annihilate an excitation of the condensate but, at the same
time, they preserve the total number of particles (this is why they map }'fN into itself).

It is also convenient to introduce modified creation and annihilation operators in
momentum space, setting

NN, L IN-N,

b, = N ap, and b; =a, N

for all p € A} and operator valued distributions in position space

. N—-N; v .
v =\ Ty and b} =a

. [N— A,
* N
forall x € A.
Modified creation and annihilation operators satisfy the commutation relations

N 1
[b[,, b;] = (1 - W) 3[7,(] - ﬁa;‘ap

by, byl = [b%. b31 =0

2.7)
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and, in position space,
PR N, 1
k1 __ T _ xR
[Dx, by = <1 N d(x —y) Nayax

[bx. byl = [b}, b1 = 0.

2.8)

Furthermore, we find

[by. dfd:] = 8(x — y)b., b} d}a:] = —8(x — 2)b} (2.9)

These expressions easily lead us to [vx, N, = I;x, [l;; N, = —15;‘ and, in momentum
space, to [b, Nyl = bp, [b;‘,, Ny = —b;. From (2.4), we immediately find that

_ 12
1*(HEN < I £ H(N++ 1)!/? (%) £

N 1— . 1/2
ICHEN < 11 A2 <+—N> £

N

(2.10)

forall f € L2 (A)and & € F5. Since Ny < N on F2V, it follows that b(f), b*(f) :

F=N — F=N are bounded operators with [|b(f) |, I16*(£)]| < (N + D)/2|| ).

We will also consider quadratic expressions in the b-fields. Also in this case, we
restrict our attention to translation invariant operators. For f € ZZ(AD, we define,
similarly to (2.5),

Biyoy(f)= > fpbl, b2,

peA*
witho) = 1if ] =%, 01 = —1iff; =, ap = 1ifflp =-and ap = —1if o = *. By

construction, By, ¢, (f) : FN — F=N . In position space, we find

Bﬁl,ﬁz(f) = / f(x —-y) Eill;gz dxdy.

From Lemma 2.1, we obtain the following bounds.

Lemma 2.2. Let f € Zz(Af). If 41 = - and 1y = *, we assume additionally that
f € Y (A¥). Then

1By (DEN ﬁ{ £+ it =t =
H WNe+ 1) (N_TM>EH - £ 1l2 otherwise

forall & ffN. Since Ny < N on ffN, the operator By, 1, (f) is bounded, with

1B, :tz(f)||§x/§N{”f”2+”f”1 =0 =

1fll2 otherwise.
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We will need to consider products of several creation and annihilation operators.
In particular, two types of monomials in creation and annihilation operators will play

an important role in our analysis. For fi,..., f, € €2(A¥), 8 = (81,....8x),b =
(bo, ..., by_1) € {-, x}", we set
2
M2 fiv oo )
_ b b o b Bn—1 bp—1
- Z ba%pla,ﬁlplaallpzaﬁZPZaaZZPX o algn 1Pn—1 Qoty—1pn ﬂnpn Hfl(PZ)
P15 PnE€EA*

(2.11)
where, forevery £ =0, 1,....,n,wesetay = lifby =%, 0p = —1ifbp =, B =1
if g = - and By = —1 if y = *. In (2.11), we impose the condition that for every
j=1,...,n—1,wehaveeither §; = -andb; = % orff; = * and b; = - (so that the
product agi p(aZi pest Always preserves the number of particles, forall £ = 1,...,n—1).
With this assumption, we find that the operator H(z)( fis ..., fu) maps Fi =N into itself.
If, for some £ = 1,...,n, by = - and #;, = * (i.e. if the product aafz llplag‘;m for
£=2,...,n,orthe product bao 1 p1 for £ = 1, is not normally ordered) we require

additionally that f, € ¢! (A¥). In position space, the same operator can be written as

n
2 . by wily v 1 b <
wwhwm=/wygﬁ& B a b T foee — vo) dxedye.
=1
(2.12)

An operator of the form (2.11), (2.12) with all the properties listed above, will be called
a 1@ -operator of order n.

Forg, fi,..., fu € 2(AD), = (81, ..., 8) € (- %}",0 = (b0, ..., ba) € {-, %",
we also define the operator

H(lg(flvvfﬂvg)

_ bo g1 by g2 b2 Bn—1 Dp—1 an g
- Z bay, P19gy p G p2@g,y pyGerps -4, py D109, p, @ (8) 1_[ Je(pe)
Pls--es pnEA* =1

(2.13)

where oy and B, are defined as above. Also here, we impose the condition that, for
all¢ = 1,...,n,either fy = - and by = = or gy = % and by = -. This implies that
H(])(fl, vy fny ) maps .7-'+§N back into ]-"fN. Additionally, we assume that f, €

1 e

2'(A*),if by = -and fiy = * forsome £ = 1, ..., n (i.e. if the pair agz 1 e, py is not

normally ordered). In position space, the same operator can be written as
1 b vb b ﬁn bn n b
Do fai @) ::,/’b;? A ANADAY a5 A (g)
n
x [ ] fexe = yo) dxedye. (2.14)

=1

An operator of the form (2.13), (2.14) will be called a IT("-operator of order n. Operators
of the form b(f), b*(f),fora f € Ez(Ai), will be called IT"-operators of order zero.
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In the next lemma we show how to bound TT®- and IT(V-operators. The simple
proof, based on Lemma 2.1, can be found in [3].

Lemma23.Letn € N, g. fi..... fn € (2(A), & € FEN. Let IY) (1. fu) and
M) (f1. ... fu: 8) be defined as in (2.11), (2.13). Then

it (1= 5524

AN 172
(N++1)"“/2<1—J¥) s‘

(2.15)

n
HHQ)(fh s fo)E H < 6" 1_[ KEK_I’M
=1

n
1 be—1,
Inch o g < 6mnen [T &
=1

where

goevte _ L el felln ifbe—1 = - and e = *
¢ | fell2 otherwise.

Since No. < N on FEN, it follows that

N8 )

n
S (12N)l’l 1_[ ng—lst(
=1

n
1 -
Hnj(i’;(fl, st fn; g)H 5 (12N)n\/N||g” l—[Klé 1 té.
=1

To conclude this section, we introduce generalized Bogoliubov transformations, and
we discuss their main properties. For n € EZ(A ) with n_, = n, forall p € A}, we
define

i
By =5 ). (nabyb*y = Tybyb—q) (2.16)
geA}

and the unitary operator

1
B — exp EZ( JbibE, — ﬁqbqb,q> : (2.17)
qeNT

Notice that B(n), e2® : ffN — ffN . We will call unitary operators of the form
(2.17) generalized Bogoliubov transformations. The name arises from the observation
that, on states with Ay < N, we can expect that by >~ ay, bz ~ aj; and therefore that

~ 1 _
By =By =3 Y (nejar, —T,aia-)-
geAl

Since_ B (n) is quadratic in creation and annihilation operators, the unitary operator
exp(B(n)) is a standard Bogoliubov transformation, whose action on creation and anni-
hilation operators is explicitly given by

efE(n)apeE(n) = cosh(np)ap + sinh(np)aip. (2.18)
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As explained in the introduction, since the Bogoliubov transformation in (2.18) does not

map ]—"fN in itself, in the following it will be convenient for us to work with generalized
Bogoliubov transformations of the form (2.17). The price we have to pay is the fact
that there is no explicit expression like (2.18) for the action of (2.17). Hence, we need
other tools to control the action of generalized Bogoliubov transformations. A first result,
whose proof can be found in [3] and which will play an important role in the sequel, is the
fact that conjugating with (2.17) does not change the momenta of the number of particles
operator substantially, if n € £2 (AY) (the same result was previously established in [21]).

Lemma 2.4. Let n € Zz(Afr) and B(n) as in (2.16). Then, for every n1, ny € Z, there
exists a constant C > 0 (depending also on ||n||) such that

e BN+ DN +1 = NP < CNVG + DN + 1 — N,)™

<
on ]—';N.

Controlling the change of the number of particles operator is not enough for our
purposes. Instead, we will often need to express the action of generalized Bogoliubov
transformations by means of convergent series of nested commutators. We start by
noticing that, for any p € A%,

bod
By B _ +/0 ds e W, B0

1
= bp _ /0 ds efsB(n)[B(n), bp]esB(n)

1 S1
=bp = [B(D. byl + / ds fo dsy e 2P [B(), [B(), bplle™P .
0
Iterating m times, we obtain
m—1 (n)

ad,, \(by)

e—B(n)bpeB(n) — Z(_l)n B(z)' p
(2.19)

n=1 .
! 1 Sm—1
| dsif dsa... dspm e*mB“ﬂadg'g))(;,,,)esmmn)
0 0 0 n

where we introduced the notation adg()n)(A) defined recursively by

(n—1)

ad® (A)=A and adg()n)(A)z[B(n),adB(n) A)].

B(n)

We will show later that, under suitable assumptions on 7, the error term on the r.h.s. of
(2.19) is negligible in the limit m — oo. This means that the action of the generalized
Bogoliubov transformation e? on b p and similarly on b7, can be described in terms
of the nested commutators adg’()n)(bp) and adg()n)(b;’;). In the next lemma, we give a
detailed analysis of these operators.

Lemma 2.5. Let n € Ez(Aj“r) be such that 1, = n_, forall p € 2(A™). To simplify
the notation, assume also 1 to be real-valued (as it will be in applications). Let B(n) be
defined as in (2.16), n € N and p € A}. Then the nested commutator adgl()n) (bp) can
be written as the sum of exactly 2" n! terms, with the following properties.
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(i) Possibly up to a sign, each term has the form

ArAy . A NI 70 0 gap) (2.20)
for some i k,s €N, ji,...,jx € N0}, t € {-, )5 b e {-,«}* and o € {£1)}
chosen so that « = 1 if by = - and a = —1 if by = * (recall here that ¢,(x) =
e_ip‘x). In (2.20), each operator Ay, : ]—'fN — ]—'fN, w=1,...,i,is either a
factor (N — N})/N, a factor (N +1 — Ny)/N or an operator of the form

NG, (7 2,0 (2.21)
forsome h, z1, ...,z € N\{0}, 1, b € {-, %}/

(ii) If a term of the form (2.20) contains m € N factors (N —N.)/N or (N+1—N,)/N
and j € N factors of the form (2.21) with T1'®-operators of order hy, . . ., hj €
N\{0}, then we have

m+h+D+---+hj+D+k+1)=n+1 (2.22)

(iii) If a term of the form (2.20) contains (considering all A- and H(l)-operators ) the

arguments 1)’ , ..., n'" and the factor ), for some m, s € Nand some iy, ..., in €
N\{0}, then

i1+ +ip+s=n.

(iv) There is exactly one term having the form

NN N2 (N+1—=N.\"?
() (A e

if n is even, and

nbr, (2.24)

N —./\[+ (n+1)/2 N+1—./\/+ (n—1)/2
_< N ) ( N >

if n is odd.
(v) If the I -operator in (2.20) is of order k € N\{0}, it has either the form

. 1_[ i 1_[
Z bC‘OPl aﬂlpt “t[’t+1 _Pknp ap Mpi

or the form

bo l_[ i 2r+1 * 1_[
Z baom aﬂ:]’l alpH-l Pknp 7’]

Plseees Pk

for some reN, ji, ..., jx € N\{O}. Ifit is of order k = O, then it is either given

by n "b, or by 172” b, for some r € N.
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(vi) For every non-normally ordered term of the form

2 Mgty ) Mybad

geN* geN*

i * i *
D Mgty or D nghab
geN* geEN*

appearing either in the A-operators or in the TI'D-operator in (2.20), we have
i>2.

Proof. The proof is a translation in momentum space of the proof of Lemma 3.2 in [3].
For completeness, we repeat here the main steps. We proceed by induction. For n = 0
the claims are clear. For the induction from n to n+ 1 we will repeatedly use the relations

N =N

[B(n). byl = ————"n,b", Z bya” yapng
qu*
(N=N.+1) 1
= —T]pb* T — Z apa_q qnq,
qEA*
(N-Nyp 1
[B(n), b1 = —npb—p-—— 4 — 3 aba_ybyn,
N quA* (2.25)
(N =N, +1)
= —T b_p+— Z b a_qapnq,
qu*

[B(n), ayag] = [B(), agay] = —byb* 1y — 1pb—pby,
(BN, N = Nil= Y ng(byb*, +bgb_y).

qeA]
Since ad(g(;l)) (bp) =[B(n), ad (n) (bp)], by linearity it is enough to analyze
[B(n), ArAz . A NI P nj,%p)] (2.26)
with A1A2...Al-N’kl'Ié}|3(nf', ok 75 @ap) satisfying properties (i) to (vi). By

Leibniz, the commutator (2.26) is a sum of terms, where B(7) is either commuted
with a A-operator, or with the IT("-operator.

First, consider the case that B(n) is commuted with a A-operator. If A is either
equal (N — Ny)/N orto (N +1 — N3)/N, the last identity in (2.25) implies that, after
commutation with B(n), A should be replaced by

NI o+ NP (). 2.27)
This generates two terms contributing to adg(t]l)) (bp). Let us check that these new terms
satisfy (i)—(vi), with n replaced by (n + 1). (i) is obviously true. Also (ii) remains true
because, when replacing (N — N;)/N or (N +1—N,)/N by one of the two summands

in (2.27), the index m decreases by one but, at the same time, we have one more IT*)-
operator of order one (which means that j is replaced by j + 1, and that there is an
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additional factor & ;41 + 1 = 2 in the sum (2.22)). Since exactly one additional factor n
is inserted, also (iii) remains true. The TT1(1-operator is not affected by the replacement,
so also (v) continues to hold true. Since both terms in (2.27) are normally ordered, (vi)
remains valid as well, by the induction assumption. Finally, the two terms generated in
(2.27) are not of the form appearing in (iv).

Next, we consider the commutator of B(n) with an operator of the form (2.21) for
some h € N, with 2 < n by (ii). By definition

_ a—h b/ i b/ 5 b/ I:i;, 1 bh 1
A=N Z bo‘opl ﬂllma“lm ﬁipzao‘ﬂ’? Byt py—y Detn—1pn /31 Ph 1_[’7
(2.28)

When [B(n), -] hits bao p1» the first two equations in (2.25) imply that A is replaced by
the sum of two operators. The first operator is either

N —N.
- +N_hl'l;,2);,(n““, N2, or
' (2.29)
N — N+ +1 —h (2
_ NP 11+1’ 2 ph
N 7 (RN n")
depending on whether b;) = .or bo = x (here g = (b_’ , b/l, R b/hfl) with b_/o = . if

bé) = xand bé) = xif b6 = .). The second operator is a I1®-operator of order (h + 1),
given by

NTUIES (0 0 ™) (2.30)
where ¥ = (0, ;. ....£),5 = (0. byr ... by _).

Inboth cases (i) is clearly correct and (ii) remains true as well (when we replace (2.28)
with (2.29), the number of (N —N,)/N or (N — N, + 1)/ N-operators increases by one,
while everything else remains unchanged; similarly, when we replace (2.28) with (2.30),
the order of the I1®-operator increases by one, while the rest remains unchanged). (iii)
also remains true, since in (2.29) the power z; + 1 of the first n-kernel is increased by
one unit and in (2.30) there is one additional factor 1, compared with (2.28). (v) remains
valid, since the IT1()-operator on the right is not affected by this commutator. (vi) remains
true in (2.29), because z; + 1 > 2. It remains true also in (2.30). In fact, according to
(2.25), when switching from (2.28) to (2.30), we are effectively replacing b — b*a*a
or b* — baa*. Hence, the first pair of operators in (2.30) is always normally ordered.
As for the second pair of creation and annihilation operators (the one associated with the
function n*! in (2.30)), the first field is of the same type as the original b-field appearing
in (2.28); non-normally ordered pairs cannot be created. Finally, we remark that the
terms we generated here are certainly not of the form in (iv).

The same arguments can be applied if B(n) hits the factor b % 0 pp O the right of (2.28)

(in this case, we use the identities for the first two commutators in (2.25) having the
b-field to the left of the factors (N +1 — N,)/N and (N — N,)/N and to the right of
the apa’ , and aja_4 operators).

If instead B(n) hits a term a), ap,,, or ap,ay  in(2.28), foranr =1,....,h — 1,

then, by (2.25), A is replaced by the sum of the tvx}o terms, given by

_ 2 —(h— 2
_ [N rl—[;”)b” ¥, 0%, .., n1r+1):| [N (h r)néw) bW(nzm’ n, ..., nz;z)] (2.31)
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and by

- [N—’rl;%?, RIUENEN nz’)] [N—W—’)H;%? o (g nZh)] (2.32)

with b’ = (b;),..., b b“/ = (b,...,b,_ b = (), m,...,b}H) and with
To= et D20, 8 = g8, 87 = (8. 8)) (here, we denote
#, =xifg, =-andf, = - if . = %, and similarly for b’,_,). Obviously, the new

terms containing (2.31) and (2.32) satisfy (i). (ii) remains valid since the contribution
of the original A to the sum in (2.22), which was given by (h + 1) is now given by
(r+1)+(h—r+1) = h+2. Also (iii) continues to be true, because for both terms (2.31)
and (2.32), there is one new additional factor . Moreover, the terms we generated do not
have the form (iv). Since the TT(V- -operator is unaffected, (v) remains true. As for (vi),
we observe that non- normally ordered pairs can only be created where 1:1 is changed to
ji (in the term where ﬁ appears) or where b is changed to b’ » (in the term where b"”’

appears). In both cases, however, the change ﬁr — i, and br — b , comes together
with an increase in the power of 7 (i.e. % is changed to n**! in the first case, while
n*r+! is changed to nZ’“*l in the second case). Since z, + 1, z,+1 + 1 > 2, (vi) is still
satisfied.

Next, let us consider the terms arising from commuting B(n) with the operator

—k (1) ko S
NTETE s -0 ), )
_ bo t by o by k-1 br—1 I:Ik l_[
- Z baopl Bip1 %1 p2%Bs pronps - Ay oy Ytk—1 Pk Ay i apnp ’7
Plse-os DREA*

(2.33)

The arguments are very similar to the case when B(1) is commuted with a IT1»-operator

of the form (2.28). In particular, if B(#) hits bao p1» (2.33) is replaced by the sum of two
terms, the first one being

N — N, _ . .
— T+N kn;%(n““, e, njk; n;;‘pap) or
N—-Ni+1 4 q)y, '
_ T+N S0 )
depending on whether by = - or by = * (with b = (bg, b1, ..., bx_1)) and the second

one being
- 1 ' ‘
N “‘”)Hé,é(n, 't ap)
with f = (bo, f1, ..., ) and b = (bo, by, ..., bg). As for (2.29) and (2.30) above, one

can show that (i), (i), (iii), (v), (vi) remain valid. Property (iv) will be discussed below.

If B(n) is commuted with one of the factors af,’r ap,,, foranr =1,...,k — 1, the

resulting two terms will be given by

(2 ; (ke 1 ; ;
— [N rl'[;,,)’b,, ... it np<p )] [N (k ”H;,,?’bm (nr+t, ...,k T)‘;,%zp)]
(2.34)
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and by

5 . o 1 . .
- [N rl—[(//?/ b (77“ o 77”2 n;(pap)] [N * r)l-[;/))bw (n”“” ) 77]"; n;(oap)]
(2.35)

with ﬁ”, jiw, jjw and b”, bw, b”" as defined after (2.32). Proceeding analogously as for
(2.32), these terms satisfy (i), (ii), (iii), (v), (vi).

Let us next consider the case that (2.33) hits the last pair of operators appearing in
(2.33). From the induction assumption, this pair either equals 7> ayaporn g pat,.
In the first case, (2.33) is replaced by

2
—T2 7Py e, =TI

In the second case, it is replaced by

by (2.36)

—n2, 7 2 T, 237)

In (2.36), (2.37), we used the notation b’ = (b, . .., bx—1), £’ = (f1, ..., x). From the
expression (2.36), (2.37), we infer that also here (i), (ii), (iii), (v), (vi) are satisfied.
As for (iv), from the induction assumption there is exactly one term, in the expansion

for ad%m) (bp), given by (2.23) if n is even and by (2.24) if n is odd. As an example,

let us consider (2.23). If we commute the zero-order IT"-operator n;b p in (2.23) with
B(n), we obtain exactly the term in (2.24), with n replaced by (n + 1) (together with a
second term, containing a [TV -operator of order one). Similarly, if we take (2.24) and
commute the [TV -operator n;fb”jp with B(n), we get (2.23), with n replaced by (n + 1).

Considering the terms above, it is clear that there can be only exactly one term with this

form. This shows that also in the expansion for adg'(;l)) (bp), there is precisely one term

of the form given in (iv).

‘We conclude the proof by counting the number of terms in the expansion for the nested

commutator adg(;l)) (bp). By the inductive assumption, adg’()n) (b)) can be expanded in a

sum of exactly 2"n! terms. (ii) implies that each of these terms is a product of exactly

(n+1) operators, each of them being either (N —N), (N — (N, — 1)), a field operator bg

or a quadratic factor aﬁ az commuting with the number of particles operator. By (2.25),

the commutator of B(#n) with each such factor gives a sum of two terms. Therefore, by

the product rule, adgl(t]l)) (bp) contains 2" (n!) x 2(n + 1) = 27+ ((n + 1)!) summands.

O

Using Lemma 2.5 the remainder terms in the expansion (2.19) can be estimated in
the same way as in Lemma [3, Lemma 3.3]. The outcome is stated in the next lemma,
whose proof is a translation into momentum space of the proof of [3, Lemma 3.3].

Lemma 2.6. Let n € 52(A ) be symmetric, with ||n|| sufficiently small. Then we have

*B(n)b B(n) _ Z dg? )(bp)
n
(2.38)
—B(ﬂ)b* B(n) _ Z dg’() )(b;)
n

where the series on the r.h.s. are absolutely convergent.
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3. The Excitation Hamiltonian

We define the unitary operator Uy : LE(AN ) —> ffN asin (1.11). In terms of creation
and annihilation operators, the map Uy is given by

N—n

N
— _ ®n )
Unyn = nEPO(l 00) 00D "~ Uy

forallyy € L%(AN) (here weidentify ¥y € L?(AN) with the vector{...,0, ¥n,0, ...}
€ F). The map U, : & — L2(AV) is given by

UL, . 1p(N)}_X:" "o w(n).

It is useful to compute the action of Uy on the product of a creation and an annihilation
operators. We find (see [13]):

UnyagaoUy = N — Ny
Uya*aoUY = a*\/N — N,

pEEEN T i (3.1)
Unaga,Uy = +/N — Nia,

* * ok
UnajaqUy = ayag

for all p,q € A = A*\{0}. Writing the Hamiltonian (1.1) in momentum space, we
find

%2 * %
Hy = Z p-a ap+— Z V(r/N)apaqaq_,ap+r.
PEA* p,q,reA*

With (3.1), we can conjugate Hy with the map Uy, defining Ly = Uy Hy U;t, : ffN —
F=N_ We find

Ly =L+ +.Y+.8 (3.2)
with
N — VO
PR An v Devoy - N+ ( )M(N N
1
Eﬁ) = Z pla »ap + Z «V(p/N) [b*bp apap:|
peEAL pEAL
F23 /N)[b*b* +b,b ]
2 P p7=p T OPO=p (3.3)
peEA}
- Z V( /N) [b* a* a, +a*a_,b
N TN p p+qG—plq T Ayd—pDp+q
P,q€AL:p+q#0
K
Lg\‘/}) =N Z V(r/N)aIHr 2 ApAger-

PN reN* r#£—p,—q
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The superscript j = 0, 2, 3, 4 indicates the number of creation and annihilation operators
appearing in £§\J,). As explained in the introduction, in the mean-field regime the term
L',gs) is the ground state energy of the Bose gas and the sum of the quadratic, cubic and
quartic contributions can be bounded below by N, up to errors of order one (at least

for positive definite interaction). This is not the case in the Gross—Pitaevskii regime
we are considering here. To extract the important contributions to the energy that are

still hidden in Eﬁ), 1.353), L%), we need to conjugate Ly with a generalized Bogoliubov
transformation, as defined in (2.17).

To choose the function n € Zz(Aj‘r) entering (2.16) and (2.17), we consider the
solution of the Neumann problem

(-a+3V) fi=reti (3.4)

on the ball |[x| < N{ (we omit the N-dependence in the notation for f, and for A,; notice
that A, scales as N_3), with the normalization fy(x) = 1if |[x| = N£. Itis also useful
to define wy = 1 — f¢ (so that we(x) = 0 if |x| > N¢). By scaling, we observe that
fe(N.) satisfies the equation

kN? 5
—A+ TV(Nx) fe(Nx) = N g fe(Nx)

on the ball [x] < £. We choose 0 < ¢ < 1/2, so that the ball of radius ¢ is contained in
the box A. We extend then f;(N.) to A, by choosing fy(Nx) = 1 for all |x| > £. Then

Kk N? 5
(—A + TV(NX)) Je(Nx) = N7k fo(Nx) xe(x) (3.5)

where y is the characteristic function of the ball of radius £. In particular, x — w¢(Nx)
is compactly supported and it can be extended to a periodic function on the torus A. The
Fourier coefficients of the function x — w(Nx) are given by

;/ we(Nx)e P dx = ——dy(p/N)
2m)3 Ja N3
where

— 1 —ip.

We(p) = (27)3 /R} we(x)e P dx

is the Fourier transform of the function w,. From (3.5), we find the following relation
for the Fourier coefficients of wy(Nx):

2
9~ KN* ~ K ~ .

— N)+ —V(p/N) — — Vip—q)/N N

PP (p/N) + ==V (p/N) = ZA ((p — )/ N)We(q/N)
€ (3.6)

= N LeXe(p) — N*Ae Y Fe(p — @)ie(g/N)
geN*

In the next lemma we collect some important properties of wy, fy; its proof can be
found in [7, Lemma A.1] and in [3, Lemma 4.1] (exchanging V with « V and following

the k-dependence of the bounds). Notice that this lemma is the reason why we require
that V e L3(R3); for the rest of the analysis V € L?(R3) would be enough.
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Lemma 3.1. Let V € L3(R>) be non-negative, compactly supported and spherically
symmetric. Fix £ > 0 and let f; denote the solution of (3.4).

i) We have
3ayp
g = N (1+0O(ag/N¥))
(ii) We have O < fo, wy < 1 and
Ck
K / V(x)fe(x)dx — 8mag| < Tk (3.7

(iii) There exists a constant C > 0 such that

< d |V < .
wz(%)_m+1 and  [Vwe(X)] = 75—

(3.8)

forall |x| < NE.

(iv) There exists a constant C > 0 such that
. Ck
lwe(p)l = —
P

forall p € A%.

Using the solution f; of (3.4) and recalling that w, = 1 — f;, we definen : A* — R
through

I
Iy = =z De(p/N) (3.9)
From Lemma 3.1, it follows that
Ck
Myl < — (3.10)
p p2
and also that
Inol < N‘Z/ we(x)dx < Ck. (3.11)
R3

Hence n € Ez(Ai), uniformly in N. Another useful bound which can be proven with
Lemma 3.1 (part (iii)) is given by

> pPPnpl* = 1Villl3 < CNk?, (3.12)
peEA*

From (3.6), we obtain

Py +5V(p/N) + 52 3 V(lp =)/ Ny

. : aeh” (3.13)
= NheXe(p) + N22e Y Kelp — a)ng.
geN*

Using the coefficients 7,, for p # 0, we construct the generalized Bogoliubov
transformation ¢2 : }'fN — }'fN as in (2.17). With it, we define the excitation
Hamiltonian Gy : ffN — ffN by setting (recall the definition (3.2) of the operator
Ly)

Gy = e BDLyeBM = =By Hy U B (3.14)

In the next proposition, we collect important properties of the self-adjoint operator Gy .
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Proposition 3.2. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough. Then there

exists a constant C > 0 such that, on ffN,
1
272N, — C < SK+VN) = C <Gy —dmapN < C(K+Vy +1) (3.15)

where we used the notation

K ~
K= Z pza;ap and Vy = IN Z V(r/N) a;+ra;apaq+r.
peEAL P.qENT reN*
r#E=p.—q
The proof of Proposition 3.2 is, from the technical point of view, the main part of our
paper. It is deferred to Sect. 4 below. Using Proposition 3.2 we can now complete the

proof of Theorem 1.1.
Proof of Theorem 1.1. From the upper bound in (3.15), taking the expectation in the
vacuum = {1,0,...,0} € F=, we find
(UeBDQ, HyUePMQ) = (Q, Gy Q) < 4magN + C

In particular, this implies that the ground state energy Ey of Hy is such that

Eyn <4mapN +C. (3.16)

From the lower bound
27°N, — C < Gy —4magN

in (3.15), conjugating with ¢8 and then with U ~ we find, using Lemma 2.4, the
inequality
N
Hy > 4magN +c Uy N Uy — C = 4magN +¢ Y (1 —|go){go); — C  (3.17)
j=1
between operators on L?(AN ). Here (1 — |¢o){gol); denotes the orthogonal projection

1 — |¢po)(@o| acting on the j-th particle. On the one hand, (3.17) implies that Hy >
4mwagN — C and therefore that

Exn > 4magN — C.

Combined with (3.16), this bound implies (1.8). On the other hand, (3.17) implies that
for a normalized Yy € L?(AN) with

(YN, Hyyn) < 4magN + K

and with one-particle reduced density ylfll) we must have

N
1
K+Cz ey (n. (1= lgo) oD vw) = e N [1 = (0. 74 o) |

j=1
which implies that
C(K+1)

N

for an appropriate C > 0. This shows (1.7) and concludes the proof of Theorem 1.1. O

1
1 — (g0, y,(v)<p0> <
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4. Analysis of the Excitation Hamiltonian Gy

In this section, we prove Proposition 3.2. To this end, we use (3.2) to decompose the
excitation Hamiltonian (3.14) as

Gy =6V +60+6y +6y (4.1)
with

G\ = =B £ B

and with £’ as defined in (3.3), for j = 0,2, 3, 4.

4.1. Preliminary results. Before analyzing the operators on the r.h.s. of (4.1), we collect
in the following Lemma some preliminary bounds that will be used frequently in the
next subsections.

Lemmad.1. Let £ € F2¥, p.q € A%, iy in ki ko, 61, €2 €N, ji, ..., jiy M, ...
my, € N\{0} and a; = (_1)&' fori =1,2. Fors € {1,...,i1},s" € {1,...,i2}, let
Ay, A;, be either a factor (N — N})/N, a factor (N +1 — Ny)/N ora H(z)-operator
of the form

NI (0™ 4.2)
Jor some h € N\{0}, z1,...,zn € N\{O} and §,b € {, s}, Suppose that the operators
_ 1 j j
Ar...AyN kll'lé)b)(n“,m,n‘”‘];nf,lfﬂalp) (4.3)
_ 1 y ’
Aj L ALNTRIT G 0™ gayg)

with some & € {-,}¥1,b e {-, s} o/ e { «}2 v e {, x}2* appear in the ex-
pansion of adg’()n) (bp) and of adg(()n) (bg) for some n,k € N, as described in Lemma
2.5.

(i) For any B € Z, let
D=+ DB V2N A NI L g g, p)E
and
D =W+ D2 it il )t AL L AGE.

Then, we have
IDI, ID]| < C"c" p~ 2| (N + DP2g). (4.4)

If £1 is even, we also find

IDIl < C"«"p~ "V la,(Ni + DE=D2g . (4.5)
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(ii) For B € Z, let
E= Wi+ DDA A NI 07 g p)
X Aj L ALNTRTIL 0 ™ 0 ey S
Then, we have
IEN < € e pm20g 22 (WG + PO g . (4.6)
If €5 is even, we find
IE| < C™ ™ p=204 722 lay (Vs + 1DPPg| (4.7)
If £1 is even, we have

||E|| S Cn+kkN71Kﬂ+kp72(€1+1)q72K2 ” (N+ + 1)(ﬂ+1)/2€ ”
+ Cn+k/<”+kp_2(£1+£2),U¢£28p,7q ” (N+ + 1)(/5—1)/2%- “ (48)
+ Cn+kKn+kp—221q—2E2 ||ap(N+ + 1)/3/2&- ”
where o, = 1if €2 is odd and e, = 0 if €3 is even. If £y is even and either ki > 0
orky > 0orthere is at least one A- or A'-operator having the form (4.2), we obtain

the improved bound

B = CrtiN 22, 4 1y g
+ Cn+kN_lK"+kp—2(@1+@2)ﬂezap’_q (N + 1)(ﬁ+1)/2$ I (4.9)
+ C’H—kK’H‘kp_%lq_zéz ||ap(N+ + 1)/3/25 |

Finally, if £1 = > = 0, we can write
E=FE\(p,q)+ Exapasé (4.10)
where
IE1(p, @)l < C" kN1 p~2llag (N + 1P|
and E; is a bounded operator on ffN with
IECI < C™ i |V + DE D¢ @.11)

forg e {-,x}and forall ¢ € ffN. If k1 > 0 or ko > 0 or at least one of the A- or
A’-operators has the form (4.2), we also have the improved bound

IESC] < C™FNTLem (N + D2 (4.12)

forte (- *tandall ¢ € F=N.
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Proof. Let us start with part (). If A1 is either the operator (N — N,)/N or (N — Ny +
1)/N, then, on F=V,

[V + DED2A a NI G i g 8 |
<2 ” e+ DED20, A NI,k gl goalp)SH L @13

If instead A has the form (4.2) for a h > 1, we apply Lemma 2.3 and we find (using
part (vi) in Lemma 2.5)

_ _ 1 i i
|+ P28 A NI )6 |
< CMM WG+ DB A0 A NI (7 g )EN (4014)

where we used the notation /1 = z +- - - +zy, for the total number of factors 1’s appearing
in (4.2). Iterating the bounds (4.13) and (4.14), we find

_ _ 1 P ;
I+ DED2A A N it 0l s p)E

cethe hi+ethe — — 1 i i
< crehethyheths 4 ED2N R @t i 0t g, )8 |
4.15)

if r of the operators Ay, ..., A;, have either the form (N — A,)/N or the form (N —
Ni +1)/N, and the other s = i; —r are [1®- -operators of the form (4.2) of order
hi, ..., hs ,containing hi, ... hs factors n. Again with Lemma 2.3 and with (3.10), we

obtain (using also Lemma 2.5, part (iii), and the fact that (N, + 1)B- 1)/21'122(. L) =
DL OWe+ 1£D)E=D72)

) o .
NG+ DED2Ay A NIl g, pE

< Cr+h1+---+hs+j1+--~+jkl+£1Kl_11+-~»+i_15+j1+»--+jkl+(51p—2£1 IV, + l)ﬁ/ZSH
< C""p TP |(Ne + DFg (4.16)

This shows the bound (4.4) for || D||. The bound (4.4) for || 5|| can be proven similarly.
If we now assume that £; is even, the last field on the right in the IT"") operator in the
term D must be an annihilation operator a, (see Lemma 2.5, part (v)). Proceeding as
above, but estimating

_ _ D, i
NG+ DED 2N sl )E]
< Cj1+---+jk1+€1Kj1+~-+jk1+€|p72€1 ||ap(N+ + 1)(;‘3*1)/%”

we also obtain (4.5).

Let us now consider part (ii). The bounds (4.6) and (4.7) follow applying (4.4) twice
and, respectively, (4.4) and then (4.5). We focus therefore on (4.8). Here, we assume
that £ is even. This implies that the field operator on the right of the first [T -operator
is an annihilation operator a,. To bound |E|, we have to commute a, to the right,
until it hits . To commute a,, through factors of N,, we use the pull-through formula
apNy = (Ni + Dap. On the other hand, when we commute @, through a pair of
creation and/or annihilation operators associated with a function n/ for some j > 1
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(like the pairs appearing in the IT1® -operators of the form (4.2) or in the IT11-operators
in (4.3)), we generate a creation or an annihilation operator a, or a* p together with

an additional factor nf,. Furthermore, since the commutator erases a creation and an

annihilation operator, we can save a factor N ! (taken from the factor N " in (4.2) or
from the factor N %2 in (4.3)). For example,

|:apv Z nﬁa;"ar} = 77;7“[7
reA*

There are at most k pairs of creation and/or annihilation operators through which a,,
needs to be commuted (because every such pair carries a factor 7/, and the total number
of n factors on the right of a,, is k). At the end, we also have to pass a,, through the field
operator appearing on the right of the second IT"-operator; this is either the annihilation
operator ay if £; is even, or the creation operator a* e if £ is odd. Hence, the commutator
vanishes if £, is even, while it is given by

lap.a* ) =6p 4.17)

if £5 is odd. This leads to the estimate (4.8). If we additionally assume that either k; > 0
or ky > 0 or that there is at least one A- or A’-operator having the form (4.2), in the
contribution arising from the commutator of a, and a* , (which is only present if £; is
odd), we can extract an additional factor (M + 1)/N (this additional factor can be used
here and not elsewhere, because in this term, after commuting a,, and a* 2’ there is one
less factor of V). This observation leads to (4.9). Finally, let us consider £; = £, = 0.
In this case we proceed as before, commuting the annihilation operator a,, to the right.
The contribution of the commutators of @, with the pairs of creation and annihilation
fields appearing in the IT1V-operator and possibly in the IT®-operators lying on the
right of a, is collected in the term E; (this term can be estimated as on the first line
on the r.h.s. of (4.8) or (4.9)). After commuting a, all the way to the right, we are left
with the second term on the r.h.s. of (4.10), with the operator E, containing all A- and
A’-operators as well as all pairs of annihilation and/or creation operators appearing in
the two IT(V-operator which can be estimated, following Lemma 2.3 as in (4.11) or
(4.12). O

4.2. Analysis of QI(\?). From (3.3), we have

N—1) ~
GO = =8 O - V=D . L0+
with
V() V() _
€0 = e BD Af, oBOD _ T BO) A2, B0

In the next Proposition, we estimate the error term 51(\?).

Proposition 4.2. Let the assumptions of Proposition 3.2 be satisfied. Then there exists
a constant C > 0 such that
£ < CkN+1) (4.18)

as operator inequality on .7-"+SN.

Proof. Equation (4.18) follows from Lemma 2.4 and the fact that, on ffN, N, <N.O
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4.3. Analysis of gﬁ). From (3.3), we recall that
Ly =K+LY
where
K= Z pla* »ap
pEA]
is the kinetic energy operator and
1 K ~
2
EY =3 «Vip/n) |:b* Sasa p]+E 3 Vp/N) [b;bip+bpb_,,].

PEAL pEN]
4.19)

4.3.1. Analysis of e B [CeBM We write
e BWREM =+ 37 P2+ D pap [b;;bi ot bpb_p] +&0. (420
PEAY PEAY
In the next proposition, we bound the error term £ ](VK).

Proposition 4.3. Let the assumptions of Proposition 3.2 be satisfied (in particular, sup-
pose k > 0 is small enough). Then, for every 6 > O there exists a constant C > 0 such

that, on ffN,
6 < S(K+ V) + Ck (N, + 1),

Proof. We write
1
e B BN — IC+/ e—sB(n)UC B(n)]esB(")ds
_ IC+[ Z P np sB(W)bpb_pexB(W) +e7SB(n)b;bipeSB(”):| ds.
PEAL

Lemma 2.6, together with ad (71) (A) = s"adg()n) (A), implies that

k

—BGn) g, BO) _ G VA [ ) ® ]

e Ke =K+ kg n'k'(n+k+1) E pn,, adB(n)(bp)adB(n)(b_,,)+h.c. .
n,

We separate the summands with (n, k) = (0, 0), (0, 1); we find

e PIRED =K+ Y PPy [bpb—p + b;b*ﬂv]
pEAY
1
-3 > p*np (bp[B(). b_p] +hec)
PEAL

(=pm* 2 (n) *)
+ Z LR T XA: P, [adB(n)(b,,)adB(n)(b,p) + h.c.]
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where Z: « indicates the sum over all pairs (n, k) # (0, 0), (0, 1). With (2.7) and (4.20)
we obtain

1 N.
(K) _ N+ 2 2
En Z P [ PN ,,ap} N Py

PEAL PEAL

! 2.2 1 2
N Z p b Niby, — N Z P Npig (bpb;afqa,p +h.c.)
PEA} P.gen;

* _1)n+k

+Zn'k'(n+k+1) Z Py [adi (Bpad (b p) + e |

=:G1+Gy+G3+Gy

*

(=" ) )
+ Z Ty Z PPy [ady) (bpradfy) (b-p) +he ] @21)
The expectation of the first term on the r.h.s. of (4.21) can be estimated by

1
(€ Gig)l < 3 PPupllbpel® + - 3 g lapkl?

Pens Pens (4.22)
1/2 172
< sup (p*n3) INY %61 < Ce? I, g2
peEAL
with (3.10). To bound the second term on the r.h.s. of (4.21) we remark that, by (3.12),
> ™l = Vifl* < CNi. (4.23)
P
This implies that
2
(€. Gat)| < C2 N %12, (4.24)

To estimate the contribution of the third term on the r.h.s. of (4.21), we commute b, to
the right of b;. We find, using the fact that Ny < N on F; =N and again (3.10), that

2
(€, Gag)l = — > PhplNe+ D)2+ = Z prrdlla, (Vo + DY 2

peEAL pEA*

< CPHIWNG + D22
(4.25)

As for the fourth term on the r.h.s. of (4.21), we write it as

1
Gy = — T Z P277p77‘1 [b;afqa_pb,, +h.C.]

PqEAL
1 2

+W Z P Npig [a;apafqa,p+h.c.]

P.geA]

N — N:
* k

- ;\:*p |:b b + Tapap]

P

=:Gy1 + Gy + Gy3 (4.26)
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While it is easy to bound

6 Cod)l = 337 2 Phupngllag e+ D6 llla, (Ve + D12

2N2
P.gEA]
| 3
<oz | 2o PmpllagWVe+ D
P.qeN]

x| Y pPugllapNe+ D'V

P.gENL
< CNV23 | (NG + DV 21K g 4.27)
and
(&, Gaaé)| < CNTUP NG + D22, (4.28)

in order to control the term G4; we need to use Eq. (3.13). We find

K —~
Gy = I Z V(p/N)ng [b;afqa_pbp +h.c.]
P.qeN]

K —~
o5 2V =n/Nm [braazpby+he
D.qENL reA*

NS T [b;aiqa_,,b,,+h.c.]
P-geA]

— Nxg Z Xe(p —r)neng [bq a*,a_pbp +h.c.]
D.qENL, reA*

=: G411 + G412 + G413 + Ga14. (4.29)
We estimate
Ck R
(€, Gasé)l = — D Re(P)lInglllagNs + 1) € llap (Vs + D¢ |
P.geA]
Ck
< WIIX@IIzIIUIIII(/\Q +DE|?

< G (N + D22

Furthermore

C
6.Gaab)l = =5 D lg(Plinglllag s+ D¢ [lap VG + 1) /2%

P.geA]

< Crlinllighl NG + D22
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where we defined g(p) = ZreA* Xe(p — r)n,. Since
gl = Ilxenll < 1l = linll < Cx
we conclude that
(&, Ga1a8)| < Ci?Wo + D212,

Let us now consider the first term on the r.h.s. of (4.29). Switching to position space we
find, on ffN,

K - ' ‘ L
Gy = m s dxdydzdw Z V(p/N)TIq€lq(z_w)€lp(x_y)bjal’;axby
P.geN]

— / 1xdydzdw N2 V (N(,X — y))n(z — w)l;*a'w*a'xby.
4 A><4 Z
Hence

(£, Ga11£)| < Cx f | dxdydzdw N2V (N (x — )iz — w)|lldxéyé | |awd-E |
A><
1/2
< Ck [ f  dxdydzdw N2V (N(x — )iz — w)|2||éxéysn2}
A><

X UA4 dxdydzdw N*V (N (x — y))||éz&w$||2i|l/2
< C3P WG + Dyl
The term G412 can also be estimated similarly. We conclude that
(6. Gar8)] < CRP N+ D2E 1 + C¥2 W+ D) V) ¢l
and therefore, together with (4.27), (4.28), we find
(5, Gaé)| < CiI N + DV + Mo+ D2 + Cid2 N+ D26 1V 6
(4.30)

We consider next the last term in (4.21), namely the sum over all pairs (n, k) #*
(0, 0), (0, 1). According to Lemma 2.6, the operator

> Py adg’gn) (bp)ad® (b_,) (4.31)
PEAX

can be written as the sum of 2"**n!k! terms having the form

o )
G= Y plnpAr. A NI G 0 g, )
peAX

x AL AL NTRTIGL 0 0™ 00 )p) (4.32)
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with i1, i2, k1, k2, €1,82 € N, ji, ..., ji,,mi,....mg, € N\{0}, o; = (—l)l" for
i = 1,2, and where each A,, A is either a factor (N — N,)/N, (N +1 —Ny)/N ora
1 -operator of the form

NTMIE (Y, ) (4.33)

with i, z1, ..., 7 € N\{0}. We estimate the expectation of operators of the form (4.32).
Let us first assume that £1 + ¢, > 1. With Lemma 4.1, part (ii), we find (using the
bounds (4.6) if £ + £, > 2, (4.7)if (£1, £3) = (1,0) and (4.9) if (£, £2) = (0, 1))

(&, GE)| < C"™ (W, + D2

x 3 P+ kNI OG + 1) g
peA]

+ N7 G+ D2 4 a6 |

(4.34)

To apply (4.9) in the case (£1, £2) = (0, 1), we use here the fact that the pairs (n, k) =
(0, 0), (0, 1) are excluded. The choice (n, k) = (1, 0) is not compatible with (£1, £7) =
(0, 1) (by Lemma 2.5, ¢; < n and ¢, < k). Hence n + k > 2, while £| + £» = 1; this
implies by Lemma 2.5, part (iii), that either k1 > 0 or k» > 0 or at least one of the A- or
A’-operators is a H(z)—operator of the form (4.33). With (3.10) and (3.12), we conclude
from (4.34) that

(&, GE)| < C** (1 +k/N)" ™ |V, + 1)/ 2g |2 (4.35)

Let us now consider the case £; = £, = 0. With (4.10) in Lemma 4.1, we can write

(€. GE) = > P np(WNat D26 Ei(p, —p))+ D p’np((Ne+ 1)'/?E, Baapap§)
PEAY PEAY
(4.36)
where the first term can be bounded by

> PPNy + D'2E Ei(p, —p))

PEAY
< Y Ppll e+ DB (p. =)l
PEAX
< C"™ENTUFI WG+ D28 YT pllapkl

peAX
S Cn+kkN_lKn+k+l ||(N+ + 1)1/2§”2

As for the second term on the r.h.s. of (4.36), we use the relation (3.13) to replace

PPy = —=V(p/N) = == 3" V(p = )/ Nyng + NAZe(p)
) 2N S 1

+N?he Y Te(p — )i (4.37)
geN*
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To bound the contribution proportional to KV( p/N), we switch to position space. We
find , for £ € F=V,

[ 32 VMW + D'Pg, Eaapa )

PEAX

K / dxdyN>V (N (x — Y)E5 Ny + D2, deayt)
AXA

= K/A R dxdyN>V (N (x — y)IE; Vs + D)2 [ ||cedy&]l.
X

Since we are excluding the term with (n, k) = (0, 0), we have either k; > O or k, > 0
or at least one of the A-operators has the form (4.33); this allows us to apply the bound
(4.12). We obtain

k Y V(p/N)ESWNs+ D'V apa )

PEAX

< ek /A X dxdyN3?V (N (x — y)IIWNs + D 2g | laray €
X
1/2
< ik etk [ / dxdyN*V (N (x — y>>||zzxaysn2}
AXA

1/2
x U dxdyN3V (N (x — ) |(Ns + l)l/zéllz}
AxA
< MRV + D)2V e

The contribution of the other terms on the r.h.s. of (4.37) can be bounded similarly. We
conclude that, in the case £; = £, =0,

(&, GE)| < C*™ (1 + &/ N (N, + 1)1 2g )12
+ CR R 2 o, 4+ Y2y e | (4.38)

Combining this bound with (4.35) we obtain from (4.31), for sufficiently small «,

S it 27 [ i 0 e )|

< Cic|(Na + D262+ Cic PN + D2 V)2

£l
Together with (4.22), (4.24), (4.25), (4.30), we finally estimate (4.21) by

(g, EX08) | < Ciel NG + D2ENNUC+ Ny + D2E |+ Cic I VG + D2 vy e
Hence, for any § > 0, we can find C > 0 such that
+E(0 < 8(K+ V) + Ce(N + 1)

as claimed. O
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4.3.2. Analysis of e B LD eBM With £ as in (4.19), we write

By S K S
eBOED B0 _ ¢ 3 Vp/Nmp+5 Y2 Vip/N) [bpb_,,+b;;bip] +&2.
PEAY peEA} 4.39)

In the next proposition, we estimate the error term 5;\,2).

Proposition 4.4. Let the assumptions of Proposition 3.2 be satisfied (in particular, sup-
pose k > 0 is small enough). Then, for every § > 0, there exists a constant C > 0 such

that, on ffN,
+E7 < 8Vy + Ci(N +1).

Proof. Recall that

~ ~ 1 K =
2
O = 3 Vip/N) <b;’;b,, _ N“;a”> +s > V(p/N) (b,,b_,, +bj‘,bi1,).
peA] peA]
(4.40)
The expectation of the conjugation of the first term can be estimated by

k€ 22 VINE e Pbibpet ) i Y IV(p/NIE, e F Vb byel M)
peAL pEAL

< Ck &, e—B(U)N+eB('7)é§)

< Cr||(Ns + D212,
4.41)

The contribution proportional to —N~'a*a p on the rh.s. of (4.40) can be bounded
analogously. So, let us focus on the last sum on the r.h.s. of (4.40). According to Lemma
2.6, we can expand

K Z V(p/N)eiB“’)bpb_peB(”)
PEAX

-1 k+n R
- Z ( k!l)’l! k Z V(p/N)ad(”)(bp)ad(k)(b_p)
n.k=0 pEAY

€ 22 Vp/Nbpb—p =k 3 Vip/N)bpLB(). b-y]

peA* PEAL

(4.42)

k+n
+Z k')' k Y V(p/N)ad™ (b,)ad® (b_p)

PEAL

where the sum Y_* runs over all pairs (n, k) # (0, 0), (0, 1). The first term on the r.h.s.

of (4.42) does not enter the definition (4.39) of the error term 51(\,2). The second term on
the r.h.s. of (4.42) is given by
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—« Y Vp/N)by [B().b-p]

PEAY
N — N, =~ K ~
= — ey Vp/Nonpbyby, = > V(p/Nyngbpbia*,ap
peA] pqu*
N - N2 o 3
= ( N +) K Z V(p/N)np + Tk Z V(p/N)np (b b, apap)
peEN’ peEN]
N — N, ~
- K Z V(P/N)nqa;afqapa—p (4.43)
p.qeEN*

To bound the expectation of the last term, we observe that

% Y Vp/Nyg (e, aja* japapk)

pqu*
) > ﬂqaqa—qEH H Z V(p/N)apa_,,su (4.44)
geNL pEAT

On the one hand,
| 3 ngagage] = 3 Inglllag s+ 112

qenl qeAl
< Ck|[(Ns + DE| < N2k (NG + D2

On the other hand, switching to position space,

o) X P <k [ dxaynvne -yl
pEA] *

= ONY2 (20 g1+ Cll Ve + )2 )

From (4.44), we find

K —~
N 2 V/Ninglé, aza” japapf)
P,gEN*

1/2

< CiP NG+ DY2E 12 + CiP NG + D21y ¢ (4.45)

To control the first and second term on the r.h.s. of (4.43), we observe that

Cr? IV(p/N)|
—§ IV(p/N)Inp_—N >
p
pEN} PEAL
1 V() 2/ |V(q>|
< Ck? § — < Ck —dg < Ck? (4.46)
N3 g2 R g7



1008 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

since the sum over the rescaled lattice N~'A* can be interpreted as a Riemann sum.
Together with (4.45), this remark implies that

= 3 /N bylB(). bople) = > V(p/Nomy|
peEAT pEAT 4.47)
< CING + D287 + C PG + D281V %€ |

Let us now focus on the sum Z* over all pairs (n, k) # (0, 0), (0, 1) on the r.h.s. of
(4.42). According to Lemma 2.6, the operator

K Z V(p/N)ad™ (b,)ad® (b_,) (4.48)
peEA]

can be expanded as the sum of 2"**n!k! terms having the form

o~ _ 1 7 i
I=k Y Vp/NAr ... AN G0t g, )
peAl
_ 1
x Ay...ALN "Zl‘lé,,),),(nm‘, ™2 020 )

where i1, 2, k1, k2, €1, 62 € N, ji, ..., ji.mi,....mp, € N\{0}, o = (=1)% for
i = 1,2 and where each operator A;, A] is either a factor (N — N,)/N, a factor
(N — N, + 1)/N or a [T®-operator of order 4 € N\ {0} having the form

N~h n&) R0 (4.49)

with z1, ..., zn € N\{0}. To bound the expectation of an operator of the form I we
consider first the case £; + £ > 1. Combining the bounds (4.6) (if £1 + ¢» > 2), (4.7)
@Gf (€1, €3) = (1,0)) and (4.9) (if (¢, £2) = (0, 1)) from Lemma 4.1, we obtain

HEIE) <k Y IV(p/NIIWN + DVENWG + DTV2A LA,

PEAL
PP .
x N k‘l'[;’g(n“, otk nf,‘(p,,)A/l LA
— 1
x N7l o™ gl

S Cn+kKn+k+1||(N++ 1)1/25”
x ) IV(p/N)|{(1+k/N)p—4||(/\/++1)1/2§”

peAl
+p 2l + N7 p 2N + D)
< A+ k/N VG + D22 (4.50)

where we used again the bound (4.46). If instead £1 = ¢, = 0, we use (4.10) to
decompose

(&.18) =k Y V(p/N)WN:+ 1) Ei(p, —p))
PEAX

+k Y V(p/N)N:+ D28, Erapa_pf)

peAl
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The r.h.s. of the last equation can be estimated exactly as we did with the r.h.s. of (4.36).
We obtain, similarly to (4.38), that for £1 = ¢, = 0,

(£, 16)] < C* (1 +k/N) ™ (N, + D2 |12
+ CRme k2 A+ V2 Vg
Combining this bound with (4.50), we find from (4.48) that for sufficiently small «,

* -1 k+n .
‘Z( k.,)ﬂ k Y V(p/N)(E ad™ (by)ad® b_,)¢)
n,k o

peA]

< Crc|(Ny + D22+ Cc PN + D21V €.
Together with (4.41), (4.42) and (4.47), we conclude that
g, EPE) < Crel|(Na + D262 + Cic NG + D21V %€ ).

Hence, for every § > 0 we can find a constant C > 0 such that

+&7 < 8Vn + C (NG + D22,

O
4.4. Analysis of G§'. From (3.3) and (4.1), we have
GV =-"= 3 Vp/Ne P, a* a,eP +he. @.51)

VN

P.qE€AY, p+q7#0

In the next proposition, we show how to bound gﬁ).

Proposition 4.5. Let the assumptions of Proposition 3.2 be satisfied (in particular, sup-
pose k > 0 is small enough). Then, for every § > O there exists C > 0 such that, on
Fi,

4G < 8Vy + Ck (N, + 1)

Since some of the terms in gl‘\? (and many terms in g};‘), which will be analyzed in the
next subsection) have to be bounded with the potential energy operator, in the proof of
Proposition 4.5 (and in the proof of Proposition 4.7 in the next subsection) we will often
need to switch to position space. For this reason it is convenient to show a version of
the estimates in Lemma 4.1 stated in position space. The proof of the following Lemma
follows closely the proof of Lemma 5.2 in [3].

Lemma 4.6. Let& € F=", B € N iy, in. k1. ko, 01, €2 €N, j1. ... jiya iy, ... my, €
N\{0}, For every s = 1,..., max{i, i2}, let Ay, A}, be either a factor (N — NY)/N,
(N — Ny + 1)/N or a I®-operator of the form

N‘hl'lgé(nzl, ) (4.52)



1010 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

Jor some h € N\{0}, z1,...,zp € N\{O} and §,b € {-, «}". Suppose that the operators
_ D, j .y
Ar... Ay N klné’b)(rljl,uwnjk];’?il)
_ 1 v
Ay A NTRITD o e )

forsome tt € {-, %}K1, b e {, %} o' e (-, Y2 b e {-, x}2*1 appear in the expansion
of adg'()n) (by) and of adg(()n) (by) for some n,k € N, as described in Lemma 2.5. Here

we use the notation ﬁﬁ‘ for the function z — 7% (x — z), where 11 denotes the Fourier
transform of the function n°' defined on AZ. Let

— 1 v
S = INe+ DF2AL AL NI, 0L e i)
— 1 i i v
x Ar. A NI @t gt g,

Then we have the following bounds. If £1, £2 > 1,
S < CHEmH NG + P2 (4.53)
Ifty =0and ty > 1,
S < C™ (W + DD,
If¢y > 1land £, =0,
S < ™ NIV + )P 2|

+ R 1 o= TN + DP2 | (4.54)
+ Cn+kKn+k ”éy(-/\/; + 1)(/3+1)/2€ ”

where e, = 1 if £1 is odd, while g, = 0 if £y is even. If £1 > 1 and £ = 0 and we
additionally assume that ky > 0 or ky > 0 or at least one of the A- or A'-operators is
a 1P -operator of the form (4.52), we obtain the improved estimate

S < CR g NG + 1) B2 |
+ Oy N = IOV + D2 (4.55)
+ Cn+kKn+k“Zly(N+ +1)BH2g
Finally, if ¢4 = €, =0,
S < C" M N T a We + DPHD 2|+ e K ldcdy Ve + DPPg
We are now ready to proceed with the proof of Proposition 4.5.
Proof of Proposition 4.5. We start by writing

1
e_B(”)afpaqu(”) = afpaq +/O ds e B [afpaq, B(n))e* B

1
=d* ,a, +/O e_SB(”)(nqb*_p Tt Npbgbp)e’ B,
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With Lemma 2.6, we obtain

eEgE a,eBM

( 1)n+k
f + e —
@-pa nk!in+k+1)

n,k>0

k
+npady) (b)adff) b))].

[Uq adg()n) (bip)adg{()n) (biq)

From (4.51), we find

(_1)}’ K f r * *
¢ =3 Yo Vip/Nady), (bh.)a" aq

——
=0 VN P-gEAL:p+q#0
(_1)n+k+r
n’k’Xr;O nk!ri(ng +1)
K ~
Y TN, (a0 0
P-q€AL, p+q#0
-1 n+k+r
£ Y _ =™
Ny nklr'in+k+1)
K U (r) (n) k
X = > V/Nmpadyy, (), )adyy, (bp)ady, ()
P-q€AL, p+q#0
+h.c. (4.56)

We start by analyzing the last sum on the r.h.s. of (4.56). From Lemma 2.5, each
operator

K % (r) (n) (k)
J_N Z V(p/N)n, adl;(n) (b*,‘,w)ad;(n)(b,,)adB(n)(bq) 4.57)
P-g€AL, p+q#0

2n+l<+r

can be expanded in the sum of nlk!r! terms having the form

K -~ 1 i i 4
b= JN Yo VN, 0 G (pe) AT AT,
P.g€AL, p+q#0
x Aj . AL NTRIED M s 0200, )

ﬁ/’b/
k3 (1
x A ALN kméﬂ?bu(nsl, 5 0g) (4.58)
whereiy, iz, i3, k1, ko, k3, €1, €2, €3 € N, ji, ..., Jig, M1, ..., My, ST, ..., Sk € N\{0},
a;i = (—D)% for i = 1,2 and where each operator A;, A}, A is either a factor

(N —Ny)/N,afactor (N+1—N,)/Nora H(z)—operator of the form

— 2
N ’“ngg(n“,...,n%)
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for some 4, z1 ..., z;, € N\{0}. The expectation of (4.58) can be bounded by

(6. LE)| < j—ﬁ 3 Vp/NMnplIAL-.. A

T
< NI G, 0y G (e 6
< IAG - ALNTRI G ™ R, )
X AL AN G e g E.

Combining the bounds (4.4) (if £; > 1) and (4.5) (if £; = 0) on the one hand, and the
bounds (4.6) (if £2, €3 > 1), (4.7) (if &> > 1 and £3 = 0), (4.8) (if £, =0 and {3 > 1)
and (4.10) (if £; = €2 = 0) on the other hand, we conclude that

|(E LEH < Cn+k+r n+k+r+2

1
f > —2{( w oy Ve + DVl + lapag 1|

P.geN]:
P#F—q

(1+7/N) A+ r/M)
x {— AL

[N+ DE + lag (Vs + D)2

1
+ 7lapVs + D121 + lapagé |
S Cn+k+r(1 +r/N)Kn+k+r+2||(N+ + 1)1/25”2

From (4.57), we obtain that the expectation of the last sum on the r.h.s. of (4.56) is
bounded by

(— 1)n+k+r

’ nre0 nklr'iin+k+1)
K E r
x = Yo V(p/Nony (. adl) (b, adg) (bp)ady), (b)E)
P.qEN;, p+q#0
< Ck?| (Ve + D212, (4.59)

Next, we consider the second sum on the r.h.s. of (4.56) (we take the hermitian
conjugated operator). To bound the expectation of this term, we will need to use the
potential energy operator. For this reason, it is convenient to switch to position space.
We find

Kk o k
T5 2 VN adyl(b-ads, (b p)ady, (bpeg)
P-gENT, p+q#0

=« /A N dxdy N2V (N (x — y))adg()n) b ““>ad5$’3n> (1;y)ad§§gn) (by)  (4.60)

where we used the notation 77° to indicate the Fourier transform of the sequence A* 5
p — n;, and 7} denotes the function (or the distribution, if s = 0) z — 73(z) =
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7° (z — x). With Lemma 2.5, the r.h.s. of (4.60) can be written as the sum of 2"+ n1kr!
terms, all having the form

_ 1 ;
M:K/ dxdy N2V(N(x — y) Ay ... Ay NTOTIE) (L g iy

AXA

< A A NFRg® ™ n"M2; 7t
1Dy t/,b/n 5 e ey 77)
” ” _ 1 .

x Ay.. AN k3n§,,{b”(n“',...,nSks; ) 4.61)

whereiy, iz, 13, k1, ko, k3, €1, €2, €3 € N, j1, ..., jiy, M1, ..., My, ST, ..., Sk € N\{0}

and where each operator A;, A}, A} is either a factor (N — N,)/N, a factor (N + 1 —
N.)/N or a [T®-operator of the form

N~ hn@)(n ) (4.62)

for some #, z1, ..., zn € N\{0}. To bound the expectation of (4.61), we first assume
that (n, k) # (0, 1). Under this condition, we bound

(5, M&)| < K/ dxdy NV (N(x — y))
AxA
_ 1 i i v
< INTRTE) @it gt AT L ATE]
— 1 v

x HA’1 .. ALN "Zl‘lé,fb/(n’"l, ™)

X A ARNTRTG G g | (4.63)
With Lemma 4.6, we estimate

— 1 i i v
INTFTE 7t YA L ATEL < ORI+ D2 (4.64)

Considering separately all possible choices for the parameters ¢;, £3, Lemma 4.6 also
implies that

AT ALNTERL, (e AT AN TR i)
= O /NI + DEL + (1 + K/ NV + D)2
+ 1y OV + D2+ dye | (4.65)

When dealing with the choice (¢2, £3) = (0, 1), we used here the exclusion of the pair
(n, k) = (0, 1), which implies that n + k > 1 (because n > {», k > {3) and therefore
that either k; > 0 or k3 > O or that at least one of the A’- or of the A”-operators is a
1@ -operator of the form (4.62); this observation allowed us to use the bound (4.55),
which together with |7(x — y)| < CN|| V|1, led us to (4.65). Inserting (4.64) and (4.65)
in (4.63), we arrive at

(&, ME)| < C™ R+ (1 4+ &/ N)" 2 (VL + D)2 | L dxdy N*V(N(x — y))

X LIV + DE I+ 120G + D)+ lay G + DY+ a6
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S Cn+k+r(1 + k/N)Kn+k+r+2”(N+ + 1)1/25 ”2
+ O (L k /N2 N 1) g0 g (4.66)

Finally, let us consider the expectation of (4.61) in the case (n,k) = (0,1). In
fact, we can further restrict our attention to the choice (¢, £3) = (0, 1), because for
all other choices of (£7, £3), the bound (4.65) remains true even if (n, k) = (0, 1). If
(2, 23) = (n, k) = (0, 1), by Lemma 2.5, part (iii) and (iv), the operator (4.61) has the
form

M= K/ dxdy N°?V(N(x — y))
AxA

. L . (N =N, .
X A .. .AilN_kll'Ifi’lb)(n”, T n)lf'l‘)by%b*(ﬂx)
= /{/ dxdy N>V (N(x — y))
AxXA
_ ; .  (N+1=Ny)
X A A NI @ i )
+/</ dxdy N2V (N (x — y))
AxXA
. o N+1-=N) (N—-Ny) .
X A AN G it D N — )
: N N
=: M| + M. (4.67)

The expectation of the first term can be bounded by

{6, Mi8)| < C’x’”/A dxdy NPVING = y)I N+ D5l (No + D25

< CE"™ (NG + D22 (4.68)

As for the second term on the r.h.s. of (4.67), its expectation vanishes on vectors & € ffN
(because of the orthogonality to the constant orbital ¢g).

Combining (4.66) with (4.67) and (4.68), and summing over all n, k,r € N, we
conclude that, if || V|1 is small enough, the expectation of the second sum on the r.h.s.
of (4.56) is bounded by

(_1)n+k+r
‘ n,;rzo nklrl(n +k+1)
K o @) (n) (k)
X J_ﬁ Z V(p/N)ng (&, adB(n)(b}iﬂ,)adg(n)(bip)adg(n)(b’iq)é)

P-qE€N, p+q#0
< CIPIWNG + D22 + C3P NG + D2V el (4.69)

Finally, we consider the first sum on the r.h.s. of (4.56). From Lemma 2.5, each

operator
K

—= > Vp/Nyad) (bh,)a" a (4.70)
P.qENL:p+q#0
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can be written as the sum of 2"r! terms having the form

K ~ _ 1 . . )
P=—= o V/NMNTIIN @M e (e
P.q€AL:p+q#0
x Af ... Aja” a, 4.71)
foriy, k1,1 € N, ji, ..., ji, € N\{0}, ¢y = 11if £y is even, oy = —1if £; is odd. To

bound the expectation of P we distinguish three cases.
If £1 > 2, we bound (proceeding as in Lemma 4.1)

Ck _
& PEY] < —= S nprgl™ la-p A A NTH

P.gEeNp£E—q
< V@, 045 0oy (peg)E N lagE |
.
<Ctt Y — {napsn + —— Vs + 1)1/25||} lag& |l
= (r+4q) Np
PqENLipFE—q

< C"(L+r/N" NG + D282

If ¢y = 1, we commute the operator @ (p14) (or the b_(,,) operator) appearing in
the TT(V-operator in (4.71) to the right, and the operator a* p to the left (it is important
to note that [a_(p4q), af[,] = 0 since g # 0). We find

C i+l > 1
EPENs = Y VNI s IV + DElagé ]

T a)2
VN P-q€NLpE—q (P+4)
1
+———la_, (N, + D2 +la— _ }
N +9)? lla—p Ny + 1) 2Ellllag |l + lla-pé llla—(p+qraqgé |l
< C NG+ D22
Finally, if £; = 0 we only commute a* , to the left. We find (similarly as in
Lemma 4.1)

K o~
(&, P&) < |—= Z V(p/N)(Raprga—p§, az§)
VN P.gE€N;p+q#0

Crric™! IV(p/N)|
i gkl lagE | (4.72)

P.geAip#E—q

for an operator R with ||RE|| < C"«". To bound the first term, we switch to position
space. We find, similarly to (4.46),

(&, PE)| <« / dxdy N2V (N (x — ) |IR dydy& ||| d& |

AxXA
Crric"! IV(p/N)I
e gkl lagE
P.geAip#—q

< O NG+ D2V PN+ CT i VG + D22,
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From (4.70), summing over all r € N, we conclude that the expectation of the first sum
on the r.h.s. of (4.56) is bounded, if || V|1 is small enough, by

(D" «
\Z—r, Wi Yo Vip/mig ady) (bh,)at ,a.8)
rz0 - P.qEeNL:p+q#0

< Cic|(Na + D262+ Cic 2N + D211V el

From (4.56), (4.59), (4.69) and the last equation, it follows that for every § > 0 there
exists C > 0 such that

+G$) < SV + Ck(N; + 1),

O
4.5. Analysis of G). With £ as defined in (3.3), we write
gl(\‘,‘) — e*B(n)ﬁg\‘]‘)eB(n)
K ~
=Vntoe D VE/Nmgeng
qeENS reN*r#—q
+ % > V/N) g (bqb,q N B (4.73)
q,reENfr#£—¢q

In the next proposition, we estimate the error term 51(\?').

Proposition 4.7. Let the assumptions of Proposition 3.2 be satisfied (in particular, sup-
pose k > 0 is small enough). Then, for every § > 0 there exists C > 0 such that, on
Fi,

£+ < 8Vn + Cic(N; + 1).
Proof. We have
efB(n)Eﬁs)eB(n)

K —~
- ﬁ Z V(I’/N)e B(n)a*a;aq raP+reB(")
PgENf,reN r£—p.q

1
=Vy+ % Z V(r/N)/ ds e B [a;a;‘aq_,apJ,,, B(n)] B
P.qENL reAN*r£—p.q 0
R 1
— Uy + 3 V(r/N)nger / ds (e_SB(”)bj;bi B0+ h.c.)
qeEN reN*r#—q 0

1
K ~
Y Z V(r/N)ngr / ds (ef‘YB(")b’;meafq,rapeSB(”) +h.c.) .
P.gENT reN* r#p,—q 0

(4.74)
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Now we observe that

—sB(n) * sB(n)
e a’,_.ape

=a,_,ap+ /O‘Y dre—TBOD [ajqirap, B(’))] o~ TBOD
=a’, ,ap+ /ox dr e~ 7B (Upbi,,b’iq_r n 77q+rb,,bq+,) o—TBOD.
Inserting in (4.74) and using Lemma 2.6, we obtain
eBWLYPED Yy = Wi+ W)+ W+ Wi,

where we defined

i (- 1)n+k
n‘k'(n +k+1)

k
3 Vr/N)igar (adg’()n) (b)ad%) (b—y) +hec. )
qeENi reN*r#—q

(_1)n+k
nlkl(n +k+ 1)

v k
> Ve /Nongsr (adf @), ad) b, +he)
D.gqENL reEA*r#p,—q

}’L

X

W, =

W zho

n,k=0

X

ZIR

(4.75)

and

(_1)n+k+i+j

\:ME%

8 n!k!i!j!(i+j+1)(n+k+i+j+2)

> V(r/N)ngerny

P.qENL reN*r#—p—q

(ﬂ) )d(k) (bj)ad(l) (b* )ad(j())(b_q r)+h.C.>

K
N
( B(n) P+” B(n) B(n) n

(_1)n+k+i+j

o
D G —
k,i,j:On'k'l']'(l +j+D)n+k+i+j+2)

K 72 2
X N Z V(r/N)ng.,
D, qu* reAN*:r£—p—q

x ( o W ady) (Badl) (bp)ady) (besr) +hc) (4.76)

We consider, first of all, the expectation of the term W,. Since we will need the potential
energy operator to bound this term, it is convenient to switch to position space. On ]-'EN,
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we find
° (— 1)k
nZO nk!n+k+1)
x Kk /A B dxdyN*V (N (x — y)) (adg’gm (b;)adggn) (B)a* i)y + h.C')
4.77)

with the notation 7, (z) = 7(x — z). With Cauchy—Schwarz, we find
‘K / dxdy N*V(N(x — y))(&, ad (n)(b*)a (n)(b*)a (T’Ix)!lyf)‘
AXA

< Kf dxdy N*V(N(x — y))
AxXA

x 1N+ D)2ady) (by)ady) (BN + 1)~ 2a* Gk
We bound
IV + D7 2a* (0)dy &l < Crellayé ]

With Lemma 2.5, we estimate [|(V; + 1)!/2adly) (by)ady,, (b.)&| by the sum of
21+k 1k terms of the form

_ 0, Py
T= | Vo4 DA A NI 0 )
_ 1 v
x AL ALNTRIN L e )8 H (4.78)
with iy, iz, k1, k2, £1,€2 > 0, j1, ..., ji,.m1, ..., m, > 0 and where each A; and A’

operator is either a factor (N — N;)/N, (N — N, +1)/ N ora H(2)-operat0r (here ;721
indicates the function with Fourier coefficients given by 17 »forall p e AY).
With Lemma 4.6, we find

T < (e DEE IOV + D8] + 1y (G + DEI+ 1OV + D
NI + D2+ VN g1 |- (4.79)

For & e ffN, we obtain

« /A Ay NPV NG = ) (& ady (BDa dg‘()n)(l;;’?)a*(ﬁx)éyé‘)'

< (n+ k! c”*kK"+’<+2/ dxdy N>V (N(x — y))lay&|l
AXA

x {NING + D2+ Nl + Nlayg |+ N2 g |
< (4 DKL BRI+ D2y + N+ D2

and therefore, if « is small enough,

1/2

(&, WaE)| < CiP NG + DY2E 12 + Cid 2 (NG + D211V 76 (4.80)
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Next, let us consider the term W3, defined in (4.76). As above, we switch to position
space. We find

i (_1)n+k+i+j
W3 =
3 nk;_o nlkliljlG+j+Dn+k+i+j+2)

X K / dxdy N’V (N(x — y))

x (ad<"> Bad®) Badly) (0 Giad) 6 Giy)) + h.c.) . @81

With Cauchy—Schwarz, we have

K / dxdyN?V (N (x — ))(&, adg) (BDady (Bhadlyl (5*(i))ady), (15<ﬁy)>s>‘

(by)ad® (bo)&|l

<« / dxdy N*V(N(x — y)) (N + 1)!/2ad¥) B

B(n)

x NV + D7 2ady) (bGie))ad? (b(i,))E.

Expanding adgzm)(b(ﬁx))ad(j) (b(17y)) as in Lemma 2.5 and using Lemma 4.6 (with £;
and ¢> replaced by £1 + 1 and £, + 1, so that we can always use the inequality (4.53)),
we obtain

IV + D™ 2adfy

By B(1:)ad? (b )E | < itj1CH k2 We + DV (4.82)

As for the norm ||(N, + l)l/zadgzn) (l;y)adg’()n) (Ex)é I, we can estimate by the sum of

2k p1k! contributions of the form (4.78). With (4.79), we conclude that, if « is small
enough,

(€, W3)| < CICIING + D262+ CiPP WL + D2ENIVY e (4.83)

The term W4 in (4.76) can be bounded similarly. First, we switch to position space.
We find

0 (_1)n+k+i+j

Wy =

Z VNG + 7 -
n g J=0 nlkliljlG+j+D(n+k+i+j+2)

X K f dxdy N*V(N(x — y)) (ad<”>(13x)ad<k> (by)ad D (b(i7%))ad (by) + h.c.) .
(4.84)

The expectation of the operators on the r.h.s. of (4.84) can be bounded similarly as we
did for the operators on the r.h.s. of (4.81). The only difference is the fact that now we
have to replace the estimate (4.82) with

IV + D72adD b ()ad P (BN < iICH 2 [ + D' + a1

We arrive at

(€, WaE)| < CIIWNs + D2E2 + CPP WG + DP2EIVE. (485)
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Finally, we consider the term W in (4.75). Here, we separate contributions with
(n, k) = (0,0), (0, 1) by writing:

K o~
Wi= s > VG /N)nprg(bgb—g +he)
gAY reN*r#—q

K —~ ~
- N > V(r/N)nger (bg [B(),b—g] +hc) + Wi (4.86)
qeENf reN*r#—q

where

(- 1)n+k P
Xk: nkln+k+1) 2N
S VMg (adf, (bady (- +he)  @487)

qeENt reN*r#—q

and where the sum Zn  Tuns over all pairs (n, k) # (0, 0), (0, 1).
The first term on the r.h.s. of (4.86) does not enter the definition (4.73) of the error

term 51(\;1) . We do not have to estimate it. As for the second term on the r.h.s. of (4.86),

we compute the commutator
[B(n). b—_g] = —114(1 —N+/N)b*+— > nmbja*,a-g
meA*

Hence

T X Ve/Nngby [Ba.bg]

qeNf reN*r£—q

K 5 Ni+1
= - > V(r/N)rsqnghy b} <1— +N )
qeNi reN*r£—q
K o~
+ 7 > V(r/N)lragtimbgblya® a—y

q.meNf reN*r£—q

and therefore

T X VO/Nmgby [B). by

geNf reA*r#—q

~ N+ N++1
=—§ > v<r/N>nr+qnq(1—7)(1— N)

geEANL reN*r#—q

2« 72 Ni+1
+m Z V(F/N)nr+qnqa;aq <1 — N )
qeNL.reN*r£—q
K ~
* 5 > V() Nl gimaa* yaga_.

q,meNf reN*r£—q
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‘We conclude that

K ~ K ~
v 2 VOINmegbg [BoD. b+ D VO N
qeNt reN*r£—q geEANL reN* r#—q
=T +Tr+T;3
with
K ~
lem Z V(r/N)nr+q77q(2N++1+N+/N+N3/N)
qeN reN*r£—q
2K ~ Ny +1
T=15 > V(r/N)riqngaag (1 — *N )
geNs reN*r#£—q
K ~
T3 =3 > V(r/N)nyiqtimagya® ,aga_g.
q,meNs reN*r£—q
Since
K
N2 > Ve/N ) q)z 7=C< (4.88)
geEANL reA*r#—q
uniformly in N, we easily find
(€, T1&)] < Crel(WNs + D22
Furthermore,
23 ’
ETHI=Tr Y VNI )2 Sllagél

qeNS reN*r£—q
CNUGI WG+ D 2g )2

IA

Finally, we consider the term T3. To this end, we switch to position space. We find

K ~
_ * %
T; = m E V(r/N)nr+q NMmd,,a_,,dqgd—gq
q,meNs reN*r£—q

= K/ dxdy V(N (x — y)n(x — y)Baya,
AxXA
where B = ZmeAj‘_ nmaga*,,. Since | B*§|| < Ck||(N; + 1)&||, we obtain

(£, T3€)| < Ci?|[(N: + DY 2| fA X dxdy N2V (N(x — y)|i(x — y)|lldxéyé |l

< CAIN, + D) e /A VRV = )]

1/2

< CNTUEP WG+ D21V €.
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Let us now focus on the expectation of (4.87). According to Lemma 2.5, the operator

K o~
5 2 VO/Nngad® (bad® k)
geEANL reN* r#—q

can be written as the sum of 2"*n!k! terms having the form

K -~ B N .
X= ﬁ Z V(r/N)nq+rA1~--Ai1N klné,g(n“,--.,njkl;U,?‘(Palq)
geENL reN* r#—q

— 1
X A/l e AZZN kzn;/y)b/(nml’ ceey 77me§ 7]22‘/’*0!261)

where i1, i2, ki, ko, €1, €2 € N, ji, ..., ji,,m1,...,mg, € N\{0}, o; = 1if ¢; is even
and o; = —1 if £; is odd. To bound the expectation of the operator X, we distinguish
two cases.

If¢1 + >, > 1, we use Lemma 4.1 to estimate

3 IV(r/N)|

(€, XE)| < C"HMHH WL+ D) 2E N 5
(g+r)

q.reNir#—q
1 1 1
x {q—4(1 +k/N) NG+ D2 + q—znaqsn + N_q2”(N+ + 1)1/25||} .

Here we used the fact that we excluded the pairs (n, k) = (0, 0), (0, 1) to make sure
that, if £; = 0 and ¢> = 1, then either k1 > 0 or k» > 0 or at least one of the operators
A or A’ has to be a H(z)-operator. From (4.88) and from the similar bound

1
(q+r)2§C<oo

1 ~
sup— Y |V(r/N)|
g N =
uniformly in N, we conclude that, for £1 + ¢, > 1,
(5. XE)| < CiP |G + D22 (4.89)
For £1 = ¢, = 0, we use Lemma 4.1 to write

K o~
X=X VMg [Ag+Bagay] = X1+ X,
geEN} reA*

where
k
(&, Ag)| < C"+"x"+kN—q2||(N+ + )12

and (since we excluded the term with (n, k) = (0, 0))
IB*&]l < C"* NG + DE

We immediately obtain that

C"+kK"+k+2

(&, X4 6))| =

IA

92 1 1/262
> Ve/N) g |V + DY

geANL reN®
Cn+kKn+k+2 “ (N+ + 1)1/2&- “2

IA
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and, switching to position space,
I(€, Xa8)| = ‘K/ dxdy N>V (N (x — y))n(x — y)(B*E, dxdy&)
AXA
=< K/ dxdyN>V (N (x — y)In(x — y)llldcay&[I1B*E]
AxA

< CK"™ 2 (VL + DV dxdyN>>V (N (x — y))axayé&||
AxA

< C™ B2 WG+ D2 v el
Combining the last two bounds with (4.89), and then summing over all n, k, we find
g, Wig)] < ChPINe + D281 + C2 |G + D28 1V el
With (4.75), (4.76), (4.80), (4.83), (4.85), we conclude the proof of the proposition. O

4.6. Proof of Proposition 3.2. Combining the results of Propositions 4.2, 4.3, 4.4, 4.5
and 4.7, we conclude that the excitation Hamiltonian Gy defined in (3.14) is such that

N-—-1
QN=( ) )

-~ 2 -~ K -~
VO + 3 np | PPip+xVp/N 452 3 VE/Nonp
pEAL reA*ir#—p

V(p/N) « ~
2
# 30 Pk gy 30 VN (bbbt |
PEAL reA*ir#£—q

+K+Vy+EN

where the operator Ey is such that, for all § > 0 there exists C > 0 with
+EN < S(K+Vn)+Cr(N; + 1).

With (3.13), we obtain

_ -1

o K\7(0)+§ 3 V(p/Nomy +K +Vy +En

pEAX

V(p/N)no - N
+ 30 mp | e N R (p) + N Y Tup — )
pGAi qu*

~ _~ K =~
+ N () + NP Y Relp — @Ing — Y (P/N)mo
peAX geA*

x (bpb_p +b;bip). (4.90)
With the definition (3.9) and with the estimate (3.11) we find that

N -1

K\?(O)+g > Vip/Nym, - %/ N3V (Nx) fe(Nx)dx| < Ck.
peAl
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With the approximate identity (3.7), we conclude that

(N=-1) ~ K _
VO +5 > V(p/N)n, —4magN| < Ck.

peAl

As for the terms on the second line on the r.h.s. of (4.90), they are all at most of order
one. The first term can be estimated with (3.11) by

.-
C = V0IN) _ (s

K o~
‘N > V(p/N)npno‘ < — P
peA] peA]

similarly to (4.46). The second term can be controlled using Lemma 3.1, part (i), which
implies that )»gN3 < Ck. We find

N2%e Y Xe(p)np| < Crlixelllinll < Cx.
pEAY

As for the third term, we use again the bound N 3x¢ < Ck to estimate
N Tp = @ymgnp| = Nl = ONTE
PEAL,geN*

Next, we bound the expectation of the operator on the last line on the r.h.s. of (4.90).
The first contribution can be estimated by

V3 32 ) bpb-p8)| = CING + D21 D Te(pla- 6]

peA] peEA]
< CillxelWNa + DY2E |12 < Crll (N + D2g )2

Similarly,

Ve Y0 Tlp = @ngE.bybp)| < CNTIKITe # nlIONG + 1) 2
PEAY,geN*

< CN“ i ||(Ns + )22

Finally, to estimate the contribution of the last term on the last line on the r.h.s. of (4.90),
we switch to position space. We find

> Vip/Nomote, byb—p6)| = Cx / dxdy N2V (N (x = y)llaxay§ €]
pEA]

‘ K
2N

< CN~V232 VeIl
‘We conclude that

Gy = 4maoN + K+ Vy + Ex
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where the error term €~N is such that, for all § > O there exists a constant C > 0 such
that

+Ey < 8K +Vy) + C (N + 1). 4.91)

The statement of Proposition 3.2 now follows by the remark that, on TEN, N, <

(27r) 72K (i.e. the kinetic energy operator on ffN is gapped). Taking for example § = 1
in (4.91), we find

Gy <4magN +2(K+Vn) + C(Ny + 1) <4dmagN + C(K +Vy + 1).
Taking instead § = 1/3, we find the lower bound

2 2 ¢
Gy = 4magN + (K +Vy) — Ck (N + 1) > dagN + | = — — | (K +Vy) = C.
3 37 2n)2

Now, if ¥ > 0 is small enough, we obtain that
1
Gy = 4maoN + 5(K+Vy) = C = dmagN + 272N, — C,
which completes the proof of Proposition 3.2.
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