
EUROGRAPHICS 2021 / N. Mitra and I. Viola
(Guest Editors)

Volume 40 (2021), Number 2

Texture Defragmentation for Photo-Reconstructed 3D Models

Andrea Maggiordomo1 , Paolo Cignoni2 , and Marco Tarini1

1University of Milan, Italy
2ISTI – CNR, Italy

Figure 1: Our algorithm takes as input a textured 3D model (left), and iteratively merges texture charts to reduce the UV-map fragmentation
(middle), leveraging the existing parametrization to minimize and possibly avoid resampling artifacts in the output map.

Abstract
We propose a method to improve an existing parametrization (UV-map layout) of a textured 3D model, targeted explicitly at
alleviating typical defects afflicting models generated with automatic photo-reconstruction tools from real-world objects. This
class of 3D data is becoming increasingly important thanks to the growing popularity of reliable, ready-to-use photogrammetry
software packages. The resulting textured models are richly detailed, but their underlying parametrization typically falls short of
many practical requirements, particularly exhibiting excessive fragmentation and consequent problems. Producing a completely
new UV-map, with standard parametrization techniques, and then resampling a new texture image, is often neither practical nor
desirable for at least two reasons: first, these models have characteristics (such as inconsistencies, high resolution) that make
them unfit for automatic or manual parametrization; second, the required resampling leads to unnecessary signal degradation
because this process is unaware of the original texel densities. In contrast, our method improves the existing UV-map instead of
replacing it, balancing the reduction of the map fragmentation with signal degradation due to resampling, while also avoiding
oversampling of the original signal. The proposed approach is fully automatic and extensively tested on a large benchmark of
photo-reconstructed models; quantitative evaluation evidences a drastic and consistent improvement of the mappings.

CCS Concepts
• Computing methodologies → Texturing; Mesh models;

1. Introduction

We present a technique that improves the existing parametrization
(UV-map layout) of a given textured 3D model, by reducing the
amount of texture seams and texture charts while at the same time
striving to maintain the original parametrization as much as possi-
ble, and avoid resampling the original texture images.

The objective of starting with an existing UV-map and exploiting
some of the information it brings places our method in a different
class, outside of the well studied, although still open, problem of
ex-novo construction of a parametrization for a given 3D model.
Before we proceed to present the details of our solution (Sec. 2), we
illustrate the context that motivates this objective and the intended
scope of our technique.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142615

https://orcid.org/0000-0003-1759-5357
https://orcid.org/0000-0002-2686-8567
https://orcid.org/0000-0003-2301-3173

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

1.1. Context and motivations

Techniques for reconstructing a 3D model from a set of pho-
tographs, such as Photogrammetry or Structure-From-Motion
[HZ04, SCD∗06, RSN∗14] are now popular among the general
public, with well-understood groundbreaking applications in many
different areas such as cultural heritage (for digital documentation
of artifacts and sites), the entertainment industry (assets produc-
tion), electronic commerce (virtual product presentation), digital
art, leisure, and others. A variety of commercial and free software
packages are now available, only requiring basic photography skills
and minimal technical background from users to produce faithful-
looking textured 3D reconstructions.

These 3D models are becoming increasingly common and come
with a distinctive set of technical characteristics. The geometric res-
olution, texture resolution, and geometric accuracy are, generally,
fully adequate for high-quality renderings; the textures in particular
— directly stemming from the original photographs — contribute
greatly to the photo-realism of the renderings.

In stark contrast, the underlying UV-map is typically very low
quality: in this class of meshes, it is produced as an integral part of
the automatic reconstruction process. Often, the UV-map fragments
the surface into an excessive number of “texture islands”, many of
them small, others larger but presenting long, twisted boundaries;
overall, the models present an extremely large number of texture
seams (also called texture cuts), as empirically evidenced by a re-
cent study [MPCT20].

While texture seams are unavoidable in any textured mesh, their
presence imposes a small toll on performance, memory resources,
and quality of a rendering [YLT19] as summarized below. In nor-
mal meshes, the effect is usually negligible for most applications; in
typical photo-reconstructed models, however, the disproportionate
number of texture seams can result in significant strain on down-
stream applications, which can detract from usability, especially in
resource critical contexts such as web-applications or video-games.

This situation is not accidental, and should not be attributed
merely to an oversight or lack of engineering of current photo-
reconstruction tools. Rather, it results from peculiar requirements
and constraints of the UV-map construction inside the photo-
reconstruction pipeline compared to generic authored 3D models.

UV-map construction for generic models When a generic mesh
is to be textured, a UV-map needs be constructed starting from its
“naked” geometry, for example by appropriately cutting the surface
into disk-like regions, unfolding each of them into planar charts,
and packing these charts on the texture rectangle. During this pro-
cess, a blend of objectives is pursued, including limiting the geo-
metric distortions (undistorted mappings are desirable because they
imply an even texel distribution on the surface), as well as limiting
the amount of cuts. Only after the UV-map is ready, the final texture
is filled accordingly, by generating color values for each texel (for
example, painting them, or extracting them from a high-resolution
model [TCS03]).

With typical photogrammetry models, the above procedure is
neither desirable, nor practical. First, in this case the final color
information comes entirely from the photographs themselves; this

means that an undistorted (area and angle preserving) mapping
would not in any way be beneficial in this scenario: regardless of
how well texel samples are distributed on the surface, any color
information they contain will have to be extracted from the avail-
able samples, i.e. the pixels on the original images. Ideally, the
texture samples should precisely match the input pixels. A related
consideration is that rendering a textured mesh resamples the tex-
ture signal when the object is presented to the screen. If the tex-
ture data was already resampled from the original photographs then
the original signal would be resampled twice, deteriorating it fur-
ther. On top of this, an additional technical difficulty is that the
mesh is typically high-resolution, extremely irregular, and affected
by inconsistencies such as small holes, topological noise, or lack
of manifoldness. These factors hinder both automatic algorithms
and artist-assisted tools for UV-map creation. This is evidenced by
the empirical experiment in [MPCT20], which indicates that UV-
creation tools, from either commercial software suites or research
labs, fail to produce a satisfactory parametrization on more than
50% of photogrammetry models.

For these reasons, the UV-map creation phase of a photogram-
metry 3D reconstruction follows a different approach, as follows.

UV-map construction for photogrammetry models In photo-
reconstructed models, each part of the 3D surface is visible, by
definition, from a portion of one or more photographs. Therefore,
a natural mapping is already defined from each portion of the 3D
surface into the 2D photo, defined by the view projection. The final
texture is simply a collage of portions of the original photographs.
The resulting UV-map features a local sampling density that re-
flects the actual availability of color data. For example, it assigns
more texels to areas captured from close-up shots then to areas seen
from afar. It also avoids any undue oversampling, or indeed any re-
sampling of the original photographs.

As a bonus, this approach is extremely reliable, scalable, and
fully automatic. The difficult task of creating a global parametriza-
tion is substituted by the much simpler task of just identifying the
best photograph for each triangle, then clustering triangles accord-
ing to the assignment, and finally packing the resulting regions in
a final texture. This scales very well with the complexity of the
mesh, and does not require any assumption on its consistency (e.g.
manifoldness), although care must be taken to hide visible seams
and ghosting artifacts emerging from small inconsistencies in the
global registration of the available images [LI07, GWO∗10].

The drawback is that, as noted, the mapping will present exces-
sive fragmentation, because models are usually reconstructed from
many photographs form different angles, and the assignment of tri-
angles to photographs depends on occlusion and face normals, both
of which vary on a per-triangle basis (especially for complex or
noisy geometries).

Problems induced by texture fragmentation The penalty im-
posed by the excessive number of texture seams affecting typi-
cal photogrammetry models can be summarized as follows (see
[YLT19] for a more detailed analysis):

• Unused texture space. The gaps unavoidably left by the imper-
fect packing of charts represent a waste of texture memory; in

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

66

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

Packing

Texture
FillingAtlas

Defragmentation

Input / Not Resampled

Resampled
UV Optimized

Charts
Identification

Figure 2: Overview of our method. We begin by extracting the charts from an input textured model, then iteratively merge them by optimizing
a small area in neighborhood of the fused boundaries (in red). Then, we detect and repack the texture atlas, striving to limit the necessary
resampling in the following texture filling phase (orange areas are resampled, blue areas are grid-preserving [RNLL10] and copied verbatim
from the original).

many photogrammetry models, this accounts for a significant
percentage of the total texture memory on the GPU;
• Replicated texels. To minimize the visual artifacts at seams due

to bilinear interpolation, color values must be replicated on the
two sides of the texture in order to avoid the visual artifact known
as “texture bleeding”. This means that the number of unique tex-
ture samples can be much smaller than the number of stored tex-
els;
• MIP-mapping incompatibility. The above problem is exacer-

bated by MIP-mapping, which requires a much wider gap around
charts to avoid texture bleeding when minification filtering is
used;
• Incompressible residual visual artifacts. Irrespective of any

amount of texel replication, the seam will always be visible un-
der extreme magnification, because of the inconsistent pattern of
bilinear interpolation on the two sides of the cut (see [RNLL10]);
• Vertex duplication at seams. To represent texture seams, the

seam vertices must be duplicated in the buffered mesh geometry,
directly impacting the GPU memory usage, the per-vertex ren-
dering workload, and also vertex-cache efficiency on the GPU;
• Diminished texture-cache coherency. Texture seams cause the

pattern of access to texture to be less cache-coherent, affecting
the efficiency of the hard-wired texture look-ups.

The magnitude of these drawbacks grows with the number of
seams; therefore, by substantially alleviating the fragmentation, we
expect to reduce each of them significantly. In Sec. 5, we offer an
empirical assessment of the improvements obtained by our method,
as measured on a large benchmark of real-world examples.

2. Overview

We want to improve an existing texture UV-map by pursuing two
conflicting goals:

1. Mitigate its fragmentation, i.e. reduce the number of seams;
2. Preserve the original distortion properties, ideally avoiding alto-

Algorithm 1
1: procedure GREEDY TEXTURE DEFRAGMENTATION

2: Identify all candidate merge operations . Sec. 4.1
3: Score each operation . Sec. 4.3
4: Insert operations in priority queue Q
5: repeat
6: Extract top operation S from Q
7: Perform S . Sec. 4.2
8: if S failed then
9: Roll back S

10: Insert S in failed operation set F
11: else . Sec. 4.4
12: Update score of impacted operations in Q
13: Move impacted op. from F to Q
14: Update sorting of Q
15: end if
16: until Q is empty
17: Pack the final atlas and synthesize a new texture . Sec. 4.5
18: end procedure

gether the need to resample the original texture in as many areas
as possible.

In order to remove a given texture seam, the two sides of the cut
must be aligned in texture space, which in the general case requires
deforming their shape, thus affecting the distortion of the UV-map;
moreover, the change propagates to the affected triangles and, in
cascade, to the neighboring triangles. This means that our two goals
are conflicting, and our algorithm strives to find a balance between
them.

This problem statement leads to a combinatorial explosion of
the number of potential solutions that can be considered; finding
the global optimum would clearly be impractical. Instead, we re-
sort to a greedy approach which works by iteratively performing a

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

67

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

Figure 3: Our method produces a simplified cut layout for the ex-
isting UV-map by progressively dissolving texture seams.

sequence of local merge operations (summarized in Figure 2 and
Algorithm 1).

Each merge operation consists in attempting to fuse two neigh-
boring texture charts into one larger chart, dissolving all seams
originally separating them (thus helping towards Goal 1). Due to
the need to reduce the explosion of the number potential fusion op-
erations, we disregard partial fusion operations where only a part
of the seams are fused. Dissolving a seam in general implies the
modification of the UV positions of the involved vertices, which
introduces distortions and, potentially, new overlaps. To counter
this, we re-optimize the UV-map in a limited area around the mod-
ified UV positions (Sec. 4.2). This optimization step resembles the
distortion minimization procedure of standard parametrization ap-
proaches, with the difference that we target the shape of the orig-
inal UV triangles rather than the shape of the 3D mesh-triangles
(according to Goal 2 above). If, after the optimization, this merge
operation results in overlaps or excessive distortions it is discarded
and rolled back.

As in any greedy approach, the order of the attempted opera-
tions is crucial, as different orderings can lead to different results.
All potential operations are identified and scored according to their
predicted outcome towards our two goals, which is estimated with
a heuristic (Sec. 4.3). Then, they are attempted from most appeal-
ing to least appealing, progressively removing the existing seams
as shown in Figure 3. A successful operation affects the scores of
other potential operations, which are updated accordingly (a prior-
ity queue is used to quickly identify the next operation to attempt).

Once all merge operations have been attempted, we pack the up-
dated charts in a new texture area. When placing each chart, we
can detect triangles that have been only rigidly transformed but not
deformed, and constrain the chart placement to be grid-preserving
[RNLL10] w.r.t. the input position of such triangles. In doing so,
we can avoid resampling a possibly significant fraction of the input
signal when generating the new texture data.

Lastly, (Sec. 4.5) we synthesize a new texture image for the up-
dated UV-map (which is usually much smaller than the original im-
age), by resampling color values only where necessary, and copying
pixels verbatim in the other parts.

Before detailing each phase of this algorithm we review relevant
previous literature.

3. Related Work

Single-patch Mesh Parametrization There is a vast literature on
mesh parametrization, with applications in texture mapping among

the most common motivations. A thorough discussion of this topic
is beyond the scope of this work, and in the following we dis-
cuss only the more closely related issues; we refer the reader to
[FH05, SPR∗07, HPS08] for an introduction.

Single patch mesh parametrization seeks the best UV image of a
given disk-like discretized surface, and is typically formulated as an
energy minimization problem. The energy functional measures the
amount of distortion, defined as the discrepancy in shape (angles),
area, or both (isometric distortion, as in our case), between the 3D
mesh faces and corresponding texture triangles. The distortion is
minimized over the possible assignments of UV positions to mesh
vertices using numerical methods.

Several approaches have been proposed, differing for exam-
ple on whether the UV boundary needs to be known a priori
[EDD∗95, Flo97], whether only shape distortion is minimized
[DMA02, LPRM02, SC17], and whether local self-overlaps of
charts (also known as fold-overs) are prevented [Tut63]. In some
techniques, global self-overlaps of charts, i.e. self-intersecting chart
boundaries, are prevented [ZMT05, SS15, JSP17] or automatically
fixed [LPRM02, LVS18]. The complexity of the numerical meth-
ods employed also varies considerably, ranging form simple least-
squares solvers (only the case for conformal methods), to iterative
descent algorithms from non-linear optimization theory. Early ap-
proaches [HG00, SSGH01] move a single vertex at a time, and
exploit multi-resolution structures to accelerate the process. The
ARAP algorithm [SA07, LZX∗08] uses a local-global approach
where UV triangles are first individually aligned to their target
shape in a local step, before solving a global Poisson system over
UV vertices. Similarly, the SLIM algorithm [RPPSH17] iteratively
minimizes a quadratic proxy of the deformation energy. Other
works focus on identifying good descent directions to improve the
convergence rate of the energy minimization by preconditioning the
gradient descent direction with a positive-definite Hessian approx-
imation [SS15, SPSH∗17] or the mesh Laplacian [KGL16].

For our purposes, we can in principle pick any existing single-
patch optimization method, and employ it in the re-optmization
process that follows a merge operation; we need to adapt it by
changing its objective, simply by redefining the minimized func-
tional to minimize the isometric distortion with respect to the orig-
inal 2D UV triangle rather than the 3D triangle. Among all the pos-
sible choices, we choose to formulate our single-patch optimizer af-
ter [LZX∗08], which matches our requirements. See Section 4.2.2
for detail. Other alternatives would be viable, for example to strike
a different tradeoff between computational speed and result quality.

Global Mesh Parametrization Surfaces with a topology which is
not disk-like, or presenting intrinsic curvature far from flat, must be
cut before computing the flattening with single-patch parametriza-
tion techniques. Finding the optimal cut layout is at the core of
the global mesh parametrization task, and is known to be NP-Hard
[EHP04]; effective heuristics, however, are the subject of intensive
research spanning multiple decades.

There is a huge number of automatic methods, approaching the
problem for a variety of angles; their enumeration exceeds the
scope of this work, and the reader is referred to the State of The
Art sections of recent papers, such as [PTH∗17]. In spite or recent

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

68

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

advancements, the search for a fully automatic solution is still an
open problem, and the industry practice tends to leave artists par-
tially in control of the process, which is among the motivations for
our work.

In general terms, these methods share with ours the need to bal-
ance the amount of cutting with the total distortion. Many meth-
ods seek this balance implicitly [GGH02, SCOGL02, SH02], while
others explicitly combine the number of seams and the parametriza-
tion distortion into a single energy functional to be minimized
[PTH∗17, LKK∗18].

In order to approach this trade-off methodically, one needs first a
measure of the two quantities that must be balanced. Several well-
principled measures for distortion have been proposed in the con-
text of single-patch mesh parametrization (see above), but measures
for the amount of cutting have fewer predecessors. Many global
parametrization methods implicitly minimize quantities like num-
ber of seam edges, or total length of seams (in either 3D or UV
space), which is unsatisfactory as these quantities depend on either
meshing resolution, texture resolution, or model scale. The defini-
tions employed in [PTH∗17] or [LKK∗18] are carefully designed
for efficient numerical minimization, and present similar problems.
In this work, we adopt the definition of atlas “solidity” [MPCT20],
which is scale and resolution independent.

Signal-Specialized UV Maps In a similar spirit to our work, a
long standing idea in parametrization is that the content of the tex-
ture should be taken in account when optimizing a UV-map. For
example, in [SWB98], an importance map is computed from an ex-
isting texture, and used to drive the texture coordinate optimization.
In [SGSH02], the authors introduce a signal-stretch metric that also
takes into account the signal approximation error introduced by the
mapping, and [BTB02] presents a relaxation algorithm that evenly
distributes frequency content across the parametrized image.

Our method does not experiment with signal specialization, con-
sidering each used pixel of the original texture equally important,
and always aiming at their 1:1 preservation in the final textures.
The two concepts are, however, not mutually exclusive; in the fu-
ture, our approach could be augmented with signal specialization,
but a trade off will be necessary to combine this with our objective
of limiting the texture area to be resampled.

Mesh repairing One of the motivations behind our work is that
typical photogrammetry meshes come with inconsistencies hinder-
ing most automatic parametrization methods. One alternative to our
proposed strategy would consist, then, in addressing these incon-
sistencies prior to a standard re-parametrization of the mesh. Auto-
matic mesh repairing has a long history in literature [ACK13], but
it is not a completely solved problem. In addition, this route would
still need to globally parametrize a mesh featuring high geometric
complexity and resolution, which is also not a solved problem. Fi-
nally, there would be the drawback related to the change in texel
density and the need of resampling, as discussed. While mesh re-
pairing can be used in conjunction with our method to improve
model quality, it is not a prerequisite and we validate our approach
on unmodified real-world models.

Alleviating the effect of seams Our strategy is to strive to reduce
the number of seams in photogrammetry models. A class of orthog-
onal alternative strategies, surveyed in [YLT19], consists instead in
attenuating some or all of their many detrimental effects, such as the
need for texel duplication (e.g. [LH06]) and vertex duplication (e.g.
[Yuk17, Tar16]), visual artifacts (e.g. [RNLL10, LFJG17]), or tex-
ture packing inefficiency (e.g. [BL08]). Many of these techniques
require substantial changes in the downstream application; among
the others, [LFJG17] most closely resemble our approach in that an
existing UV-map and texture is modified to produce seamless tran-
sitions. There are, however, important differences: first, only the
problem of visual artifacts is addressed in [LFJG17]; second, the
targeted meshes typically feature a much smaller number of seams
compared to photogrammetry models, and it is not clear how the
method performs on more complex inputs.

Packing of texture charts Packing 2D charts efficiently inside the
texture rectangle in an important step of any atlas-based global
parametrization method. It is a form of polygon packing, a com-
binatorial optimization problem in the field of Computational Ge-
ometry that can only be addressed by heuristics. In the context of
texture mapping, a popular approach is to rasterize the charts and
pack them in a coarse 2D grid while greedily minimizing various
cost functions such as the height of the packing horizon [LPRM02],
or the wasted space left between charts [SWG∗03, NS11]. Packing
efficiency can be improved by detecting empty areas induced by
complex outlines and reduce them by splitting charts, so to obtain
more regular and compact boundaries [LVS18]; this approach can
be extremely effective, but introduces additional cuts, in direct con-
trast to our objective.

For our purposes, we can adopt any existing packing algorithm,
on the condition that we are able to adapt it by imposing the grid-
preserving constraints outlined in Sec. 2. We do not claim any ad-
vancement on the packing algorithm itself; rather, our strategy is
to surpass the packing efficiency of the input UV-map by virtue of
feeding fewer and more regular charts to the packing algorithm.

4. Phases of the algorithms

Our algorithm works entirely on the UV-layout of the original 3D
mesh, which is a 2D triangular mesh. With “vertex” and “edge”,
we refer to a 2D vertices and 2D edges in this layout (we will use
“mesh-vertex” and “mesh-edges” when we refer to the 3D mesh).

Most mesh-edges correspond to one edge each, but a mesh-edge
on a texture seam corresponds to two distinct edges, one on each
side of the cut, which we call “linked”. A pair of linked edges can
be “dissolved” by fusing together the vertices at their endpoints.

The UV-layout is partitioned into a number of connected compo-
nents, called “charts”. Two charts are said to be linked when they
are bounded by (one or more) linked edges.

4.1. Enumeration of candidate merge operations

To enumerate the candidate operations for our greedy approach we
consider, for every pair of linked charts, the merge operation that
consists in fusing the two charts into one by dissolving all the linked

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

69

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

Align Merge Optimize

Figure 4: Steps required to perform a merge operation. The two charts are first aligned by rigidly moving the smaller one so to maximize
the match between the edges to be fused (in this case, its entire boundary). Then, the edges are merged by displacing and fusing vertices,
which can introduce distortions and overlaps. Finally, vertex positions are locally re-optimized in area proportional to the displacements (red
shade), so that distortions with respect to the original shape, and possibly folds, are removed.

edges on their boundary. In principle, smaller operations could also
be considered, dissolving only some subset of the linked edges
shared by the two charts; however, in order to reduce the size of
the search space, those are not considered by our greedy strategy.
This choice is, again, justified by the combinatorial complexity of
the problem being faced.

Note that pairs of linked edges can also be found on the boundary
of the same chart. For each connected group of such linked edges,
we list an additional “intra-chart” candidate operation, which con-
sists in dissolving them without reducing the number of charts.
Therefore, multiple distinct intra-chart operations can be consid-
ered for a single chart, one for each set of connected linked edges.

Any merge operation that would result in a chart that is not genus
0 or becoming a closed surface is deemed invalid, and always dis-
carded.

4.2. Performing a merge operation

A merge operation S dissolves a certain number of edge pairs, com-
ing from two charts a and b. For intra-chart operations, in the fol-
lowing, we simply consider b = a. This operation (see Figure 4)
is performed in three steps: aligning the chart boundaries, merg-
ing and minimizing distortion, and finally checking the consistency
and quality of the updated UV-map; the process can ultimately ei-
ther succeed or fail, according to a number of criteria.

4.2.1. Initial alignment

Operation S has the effect of fusing together a certain number of
vertices, by first transforming them into a common 2D location and
then topologically unifying them in the mesh structure. These dis-
placements distort all affected triangles, against our second Goal. If
the distortion surpasses a given threshold, the operation is rejected
and rolled back. To increase the chance of success, we strive to at-
tenuate the needed distortions with a number of countermeasures.

As a preliminary step of every operation, we apply a 2D rigid
transformation MS to the smallest of the two charts to minimize, in
the least-squares sense, the distance between every pair of vertices
to be fused. Finding MS is a straightforward shape-matching prob-
lem that can be efficiently solved [SHR16], unless the operation is

α = 5 α = 10 α = 15

Figure 5: The impact of α on the size of the optimized area (high-
lighted in red) at the end of the defragmentation loop. In this ex-
ample, using values larger than 5 increases the area undergoing UV
re-optimization, for a small impact the removal of seams (black
lines).

intra-chart, in which case the linked edges belong to the same UV-
component and we simply set MS as the identity transformation.
Note that the rotation imposes a resampling of the smallest chart in
the final image, which is traded for the reduction of the number and
length of texture seams.

Once the linked edges are rigidly aligned, we move each pair
of vertices to be fused into their average 2D position and merge
them. In order to to mitigate the introduced distortions, we then
optimize the position of a subset of vertices in the neighborhood of
the dissolved seam, as follows.

4.2.2. Local UV re-optimization

Intuitively speaking, distortions caused by small displacements of a
vertex can be removed by changing only immediately adjacent tri-
angles, while large displacements require optimizing a correspond-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

70

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

ingly wide band around the vertex. We follow this intuition by iden-
tifying all triangles with a 2D distance within α times the displace-
ment of any fused vertex. The α parameter controls the trade-off
between the size of the UV optimization area and residual distor-
tion, and thus the likelihood for the operation to succeed and ulti-
mately the removal of seams. In all our experiments we use a value
of α = 5, which we empirically identified as a good compromise
(see Figure 5).

Our distortion minimization procedure closely follows the As-
Rigid-As-Possible (ARAP) pararametrization approach [LZX∗08],
which targets isometric distortions. In our case we seek to minimize
the isometric distortion with respect to the original UV layout: this
simply means that we set the target shape and size of each trian-
gle as the one in the original 2D layout rather than the one in the
3D mesh. Other single patch parametrization techniques could be
adapted in a similar way. Iterative methods such as ARAP fit well
with our approach because they can exploit the existence of a valid
starting configuration.

In the optimization, we freeze (i.e. set as constant) the position of
vertices outside the optimization area, while vertices inside the op-
timization area are free to move during the global phase of ARAP.
This greatly reduces the size of the ARAP instance, dramatically
speeding up the merge execution.

After the optimization, the value of the minimized energy, as de-
fined in [LZX∗08], is measured, and summed over the optimized
area. If it surpasses a “local” distortion threshold, the operation
is rejected because it is deemed to introduce too much distortion.
Additionally, the accumulated distortion over the entire UV-map
is also tracked, and operations are also rejected if they exceed a
global distortion threshold (see Sec. 5 for the values employed in
our experiments).

4.2.3. Consistency Checks

Performing a merge can infringe consistency constraints in various
ways.

A merge S can introduce global UV overlaps when, after the
transformation MS is applied, the boundaries of the two charts a and
b collide (disregarding the edges that are fused by the operation).
This condition is detected early, before UV re-optimization takes
place.

Another occurrence of global UV overlaps can be produced by
the UV re-optimization, when the boundary of the combined chart,
inside the optimized area, is made to intersect. Similarly, the re-
optimization can introduce local UV overlaps (triangle folds), in
spite of these configurations being penalized by the minimized en-
ergy. These conditions are detected after UV re-optimization.

Note that we reject operations that introduce new overlaps, but
tolerate the ones that were already present in the input map, which
are detected and labelled in pre-processing for this purpose. Our
scenario justifies this choice. Even if the final UV-map fixed a pre-
existing overlap condition, there would be no distinct color data to
fill the no-longer-overlapping regions, and the final texture resam-
pling would just replicate the artifacts of the input texture.

ba

a

b
q1

q2

q3

p3

p2

p1
3D UV

La

Lb

Figure 6: Quantities used to estimate the appeal score of a merge
operation involving charts a and b.

4.3. Ranking of the candidate operations

Attempting merges, and in particular the UV re-optimization stage,
is the most time consuming part of our pipeline. The global effi-
ciency of our algorithm depends on the ability to identify sensible
operations to be attempted first, and avoid spending times on op-
erations that will fail and need to be reverted. In addition, the suc-
cess or failure of an operation can depend on the operations that
previously affected the same charts. For all these reasons, we de-
vise a method to quickly evaluate an “appeal” score based on the
geometric attributes of the charts involved (Figure 6), with higher
scores assigned to operations estimated as more likely to succeed
and more beneficial towards our two conflicting goals.

In order to reduce the fragmentation (Goal 1), we want the
perimeters of the affected charts to be reduced. Therefore, we want
to prioritize operations that dissolve a large fraction of the bound-
ary of either chart. Specifically, an operation S, fusing edges in a
with a total length La and edges in b with a total length Lb, has a
potential benefit estimated as

Benefit(S) = max
(

La

Perimeter(a)
,

Lb
Perimeter(b)

)
. (1)

The maximal value of 1 occurs for operations which place one chart
completely inside a hole of the other, which, indeed, we want to at-
tempt early in the greedy process, as they are likely to succeed, and
simplify boundaries which otherwise risk causing global overlaps
later.

Performing an operation S implies fusing a certain number of
vertex pairs. The farther the vertices are after being rigidly aligned,
the more they will have to be displaced, and the more severe dis-
tortions will likely be introduced by the operation, even after being
minimized by the UV re-optimization. Therefore, we assign to S an
estimated cost, computed as the average residual distance:

Cost(S) =
1
|VS|
· ∑
(p,q)∈VS

‖p−MS(q)‖2, (2)

where VS is the set of vertex pairs to be fused, and MS is the rigid
transformation matrix associated to the operation S. Note that at this
stage the transformation MS is only used to evaluate the matching
error, although we cache it to avoid recomputing it later when the
actual operation is executed.

Additionally, we observe that operations where either chart is

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

71

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

small are in general computationally less expensive to attempt, and
less likely to fail. Therefore, we favor operation S with a bonus
given by

SizeBonus(S) = 1/min(Area(a),Area(b)) (3)

Finally, an operation S that has already failed kS > 0 times is
likely (although not guaranteed) to fail again when re-attempted.
Therefore, we introduce a back-off penalty factor to make it in-
creasingly less appealing:

BackOff(S) = 2−kS . (4)

The final appeal score of an operation S is then given by

Appeal(S) =
Benefit(S)

Cost(S)
·SizeBonus(S) ·BackOff(S) (5)

4.4. Updating candidate operations

If an operation S fails, it is removed from queue of potential opera-
tions Q, and placed in a set of “failed operations” F .

If it succeeds, then we need to update all the candidate operations
in Q involving each of the affected charts a and b (which will now
affect the unified chart resulting from the execution of S), and also
to reevaluate their appeal and update the ranking in Q.

In this case, we also reinsert any failed operations affecting a or
b, moving them from F to Q (although with a diminished appeal
score, due to the back-off factor). There are a variety of reasons
that can make a previously failed operation succeed after a chart
has been updated. One occurring fairly easily is that is that global
overlaps become less frequent when chart boundaries are simplified
by previous operations, e.g. by filling holes.

4.5. Atlas Repacking

When all merge operations have been attempted, the resulting
charts must be packed to obtain the final texture layout.

The space of 2D transformations that can be applied to the orig-
inal texture coordinates without requiring a resampling of the in-
put only includes rotations by multiples of 90-degrees and transla-
tions by an integer number of pixels, and their horizontal and ver-
tical reflections. These transformations, which have been referred
to as “grid-preserving” in previous literature [RNLL10], can be ex-
ploited in conjunction with our defragmentation procedure to avoid
resampling possibly large portions of the new texture atlas and
match the input texture reconstruction exactly when rendering the
output model (Figure 7). Namely, we can identify within each chart
the maximal set of rigidly transformed UV-triangles that share the
same transformation matrix, and constrain the packing algorithm to
be grid-preserving with respect to those triangles.

We begin by analyzing the final charts to determine if they
should be constrained by the packing algorithm. In each chart, we
detect the triangles that can be rigidly transformed back into their
input position, and record the corresponding rotation angle. Let θ

be the angle shared by the subset of triangles maximizing the chart
area (we have chosen to maximize 3D area, hence visibility during
rendering, rather than 2D area). If this area is larger than a fixed

Input Output
Unconstrained

Output
Grid-Preserving

Figure 7: Exact correspondence between the input and output tex-
els can be achieved by constraining a rigidly-transformed chart sub-
region to be grid-preserving. First closeup: a rendering of the in-
put. Second closeup: a rendering of the output with grid-preserving
packing. Third close-up: when the packing is unconstrained, the
texture is resampled.

Figure 8: Two examples of texture defragmentation, with the re-
sampled areas highlighted in orange. As expected, the resampled
area increases as the models undergo a larger number of successful
merge operations (right).

percentage of the chart (we used 5%), then we label all triangles
associated to θ as “preserved”, and the chart as constrained. This
means that we will only allow the packing algorithm to rotate this
chart by k(π/2)− θ. Finally, after packing, we enforce the grid-
preserving constraint of all the preserved triangles by applying a
sub-pixel correction offset to each chart, ensuring that the final po-
sitions of the relevant vertices is indeed an integer translation of the
rotated input. As highlighted in Figure 8, the impact of such grid-
preserving packing is heavily affected by the input fragmentation,
the chart size distribution and the overall efficacy of the defragmen-
tation step.

Our packing algorithm, following [LPRM02, SWG∗03], is
based on rasterizations on a coarse grid. We approximate the region
occupied by a chart with the grid cells it partially or completely

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

72

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

cover (accounting for an extra “safety border” of texels, needed to
avoid bleeding).

We track the packing area and available space using multiple
horizons [NS11]; for a given packing direction, we track both the
upper horizon, and an inner horizon that maps the largest available
gap below the upper horizon. Using multiple horizons allows place-
ment of smaller charts between larger ones, which is particularly
useful in presence of large charts (which our merging algorithm
is designed to produce). Chart placement is performed in a greedy
fashion, minimizing a cost function that penalizes wasteful place-
ments. If the chart is placed using the inner horizon, we minimize
the wasted space as [LPRM02, SWG∗03], that is, the empty grid
area left between a chart’s bottom horizon and the current horizon
profile. Otherwise, we place the chart in the position that minimize
the horizon increase. The sequence of chart placements is usually
determined by sorting charts from largest to smallest, as this pro-
vides reasonably good results without needing to enumerate all the
possible permutations of the sequence. If we have fewer than 100
charts, we also attempt a number of randomized sequences, which
we have found to help improve packing efficiency.

Finally, we detect the bounding square of the used texture space
and we trim the texture to this size, which is usually smaller that the
original size (see Results in Sec. 5). The final texture is simply con-
structed by either copying texels for the original texture verbatim,
inside the triangles labeled as “preserved”, and interpolating pixels
in the other areas. In our prototype, we color all unused texels by
extending and blending the colors of used texels, using push-pull
algorithm in [GGSC96], in order to contain the bleeding artifacts at
any MIP-map level.

4.6. Extension to Multiple Texture Sheets

Photogrammetry models frequently encode the surface color into
multiple texture sheets, assigning different part of the model to dif-
ferent sheet. This can be done, for example, to circumvent the hard-
coded upper bound on texture resolution, thus affording a larger
number of texels for the model. Since our objective is to produce a
UV-map with the same mapping resolution of the input, we adapted
the packing algorithm to handle this occurrence. During the pack-
ing, we target a texture size equal to the maximal resolution of the
sheet. when a chart cannot be accomodated in the current sheet, we
initialize a new empty sheet.

5. Results

Implementation We have implemented our algorithm in C++ us-
ing the VCG Library and Eigen. The source code of this reference
implementation is publicly available and provided as additional
material.

Experiments We evaluate the performance and robustness of our
method over a benchmark that reflects the textured models pro-
duced by the current generation of photo-reconstruction tools
[MPCT20]. The benchmark consists of 568 models of varying res-
olution from several different sources and constructed with differ-
ent photogrammetry tools. They exhibit complex geometry, dense

0.0 0.2 0.4 0.6 0.8 1.0
Atlas Solidity

0

20

40

60

80

100

120

140

160

N
um

be
ro

fM
od

el
s

Mean: 0.08

Median: 0.04

Input: Real-World Textured Things Benchmark (568 Models)

0.0 0.2 0.4 0.6 0.8 1.0
Atlas Solidity

0

20

40

60

80

100

120

140

160

N
um

be
ro

fM
od

el
s

Mean: 0.13

Median: 0.08

Output: Defragmented Models

Figure 9: Distribution of Atlas Solidity values before and after pro-
cessing the benchmark.

and uneven meshing tessellation, inconsistencies such as non-
manifoldness, non-coherent face orientation, degenerate faces, and
so on. Textures are high-resolution and in many cases consist of
multiple image files.

We batch process the dataset, successfully producing a result
from every input. Examples of processed models are reported in
Figure 16.

We use the following settings: we allow alignment errors up to
twice the seam length, and forbid operations that do not reduce the
perimeter by 20% for at least one of the charts; the ARAP energy
thresholds are 0.5 for the local optimization area, and 0.025 for the
energy of the entire atlas (the latter compensates for the relaxed
matching threshold used).

Processing time The average processing time is around 5 minutes
on a PC equipped with an Intel Core i7 8750H and 32 GBs of RAM.

Defragmentation efficacy We empirically assess the efficacy by
statistically examining a number of quantitative measurements and
practical impacts in the produced output.

We measure the Atlas Solidity [MPCT20] value of each model
before and after our defragmentation, and plot the distributions in
Figure 9. Atlas Solidity is an aggregate measure characterizing the
overall amount of seams in an atlas, defined as the inverse of the
ratio between the total length of texture seams and the length of the
minimal perimeter of a 2D shape encircling the same texture area,
with a Solidity of 1 being the best and theoretical maximum. Other
measures comprise the reduction in the total number of charts, and
UV border length (Figure 10).

A direct practical benefit of defragmenting the UV-map is the re-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

73

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

-100% -80% -60% -40% -20% 0%
Chart Count (Relative Change)

0

5

10

15

20

25

30

35

40

N
um

be
ro

fM
od

el
s

-100% -80% -60% -40% -20% 0%
UV Length (Relative Change)

0

5

10

15

20

25

30

N
um

be
ro

fM
od

el
s

Figure 10: Aggregate chart count and UV border length reductions
achieved by our method.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vertex Replication Coefficient

0

20

40

60

80

100

120

140

160

N
um

be
ro

fM
od

el
s

Mean: 1.18

Median: 1.11

Input: Real-World Textured Things Benchmark (568 Models)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vertex Replication Coefficient

0

20

40

60

80

100

120

140

160

N
um

be
ro

fM
od

el
s

Mean: 1.08

Median: 1.05

Output: Defragmented Models

Figure 11: Vertex replication factors before and after processing
the dataset.

duction of vertex replications that are necessary to encode seams,
which impacts the memory required to store and render the model
(e.g. the GPU buffers). Distributions of the vertex replication coef-
ficients, i.e. the ratios of the number of 2D vertices to 3D vertices,
before and after optimizing the models with our method is reported
in Figure 11. Another direct effect is the reduction of the overall

-75% -50% -25% 0% 25% 50% 75% 100% 125%
Texture Size (Relative Change)

0

10

20

30

40

50

60

70

N
um

be
ro

fM
od

el
s

Figure 12: Efficacy of our method in reducing the size of texture
images required to render the models.

0.000 0.005 0.010 0.015 0.020 0.025
ARAP Energy (Relative to Input UV Triangles)

0

10

20

30

40

50

N
um

be
ro

fM
od

el
s

Figure 13: Distribution of ARAP energies after optimizing the tex-
ture atlases. Note the very low global cut-off at 0.025, and also how
in most cases the energy values remain well below this threshold.

number of texture samples while preserving the input texel density
and mapping resolution, reported in Figure 12.

The different measures concur in showing a clear reduction of
the fragmentation and of the associated practical problems, both on
average and in each instance. For example, chart count decreases
up to 99% and 72% on average, vertex duplication decreases up to
43% and 6.8% on average, and atlas solidity increases by up to 20
times and 21% on average.

The one exception is overall texture size. While the average re-
duction is 23.3%, there are a few cases where the the output texture
is actually larger than the input texture. In our analysis, two factors
contribute to this result. First, we always pack our textures using a
padding size of 4 texels (meaning charts are at least 8 texels apart),
which ensures correct filtering when MIP-mapping is used up to
level two, while the several of the original images accommodate for
no padding at all. Second, the larger produced charts can be harder
to pack; if deemed necessary, this could be countered with strate-
gies such as [LVS18, LFY∗19], which reintroduce straight cuts for
the sake of packing efficiency. We omitted 7 models from this anal-
ysis, as they are anomalous in the context of photogrammetric re-
constructions, in that they contain either instanced objects or faces
with random texture coordinates; these configurations mislead our
system into trying to unnecessarily allocate texture space for these
areas.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

74

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

0% 20% 40% 60% 80% 100%
Grid-Preserving Area

0

5

10

15

20

25

30

35

N
um

be
ro

fM
od

el
s

Figure 14: Distribution of fractional object areas (computed in 3D
space) that do not require resampling the input texture and where
the signal reconstruction exactly matches the input data.

Introduced distortions As stated, our second objective is to keep-
ing the mapping distortion faithful to the input UV-map low, for the
reasons explained in Sec. 1.1. We assess the fulfillment of this goal
by measuring the ARAP energy (which, as discussed, measures the
loss of isometry with respect to the original UV layout,) as done in
Figure 13.

A closely connected objective, as stated, is to avoid any resam-
pling in areas of the original model, which is one main character-
istic setting our method apart from any predecessor (to the best of
our knowledge). We report statistics of the fulfillment of this ob-
jective in Figure 14. On average, 46.6% of the surface area was not
resampled.

5.1. Ablation study

To validate our design choices, we have performed an ablation
study measuring the individual impacts of the local optimization
phase (for various values of the expansion parameter α), the greedy
ordering of the operations (against a random order), and of each
component of the Appeal function (5) used to order them.

The results, reported in Table 1, confirm that each stage of our
algorithm yields a significant benefit, and that our choice of param-
eters strike good trade-off.

In particular: larger values of α, expanding the UV re-optimized
area, improve the results in terms of atlas Solidity, but increase the
need of texture resampling and the running time considerably; the
opposite is true for smaller values. The ordering of the operations
is proved important, as adopting a random order produces consis-
tently worse results and drastically increases the running time; also,
dropping any component of the Appeal function clearly degrades
the performance, with the possible exception of discarding Size-
Bonus, which leads to mixed results according to the other metrics.
Finally, a designated experiment confirms that reattempting previ-
ously failed operations is unquestionably beneficial.

5.2. Comparison against computing an entirely new UV-map

In support of the premise of our work, we compare against tradi-
tional approaches which ignore the existing UV-map and rebuild

Input Same Cuts
Minimal 3D Distortion

Ours

Te
xe

ls
pe

r u
ni

t a
re

a

Figure 15: Comparison between generating a UV-map ex-novo and
our method on a model exhibiting uneven texel distribution across
the surface. Top: traditional parametrization approaches minimize
distortion w.r.t. the 3D surface and are unable to preserve the in-
put texel distribution. Bottom: close-ups of areas mapped at high-
resolution reveal how this results in loss of high-frequency detail,
while our approach produces a noticeably sharper texture.

it from scratch; an obstacle is that, as mentioned, previous experi-
ments [MPCT20] already establish that a direct application of off-
the-shelf software suites or existing implementations of automatic
UV-mappers fails to produce satisfactory results in a majority of
cases (due to various inconsistencies on the input models or their
excessive resolution). We consider this as an argument in favor of
our approach.

A central point of our strategy is that we strive to preserve the
shape of the existing UV-map triangles, rather than minimizing the
distortions of the 3D-to-2D mapping, which can make a significant
difference when the texture samples distribution and UV-map res-
olution over the object surface are not uniform (Figure 15, top).
To validate this choice, we visually compare our method against
the results obtained by applying a state-of-the-art UV-optimization
algorithm to the original UV-map, reducing its distortion but with-
out affecting the cut layout of the mesh. The produced UV-map is
representative of the results that can be obtained by recomputing a
UV-map ex-novo, at least away from cuts. For this experiment, we
minimize the symmetric Dirichlet energy [SS15] (minimal for iso-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

75

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

Average relative change over Dataset Average relative change over Baseline

Time (s)
Resampled

Area
Vertex

Replication
Texture

Size Solidity # Charts Time (s)
Resampled

Area
Vertex

Replication
Texture

Size Solidity # Charts

Baseline 322 +53.4 % −6.8 % −23.3 % +121.0 % −72.3 %
α = 2.5 295 +39.0 % −6.1 % −23.6 % +89.5 % −68.5 % −9.5 % −26.0 % +0.7 % 0.0 % −10.9 % +25.4 %
α = 10 600 +64.6 % −7.0 % −23.2 % +133.2 % −73.5 % +130.1 % +27.8 % −0.2 % +0.4 % +4.3 % −7.1 %
NoRetry 319 +53.0 % −6.7 % −23.4 % +117.2 % −71.6 % −0.1 % −0.8 % +0.1 % −0.1 % −1.0 % +6.1 %
NoBC 406 +53.6 % −6.7 % −23.4 % +117.7 % −72.0 % +28.2 % +1.5 % +0.1 % +0.4 % −1.3 % +2.8 %
NoSB 363 +53.8 % −6.8 % −23.6 % +122.6 % −72.2 % +14.7 % +1.0 % −0.1 % −0.2 % +0.8 % +1.3 %
Random 607 +55.9 % −6.5 % −23.3 % +115.5 % −70.7 % +83.7 % +7.0 % +0.3 % +0.8 % −0.4 % +37.7 %

Table 1: Results of the ablation study comparing baseline results of our approach against variations of our algorithm reducing and increasing
the UV optimization area expansion α (compared to our baseline value of 5), and altering the greedy sequence of merge operations. NoRetry:
do not reattempt failed operations; NoBC: drop the Benefit/Cost ratio from the Appeal function (5), NoSB: drop the SizeBonus term from
Appeal function (5); Random: rank the operations randomly.

metric mappings) with Composite Majorization [SPSH∗17], using
scaffolding[JSP17] to ensure the new texture atlas is overlap-free.

A visual comparison is offered in Figure 15. Our approach is vis-
ibly better at preserving highly detailed areas and high frequencies
of the input texture image.

6. Conclusions

We proposed a new automatic approach designed to attenuate tex-
ture fragmentation of an existing texture model, which is a defect
systematically arising with photogrammetry-based 3D reconstruc-
tion techniques. The method is proved to be effective at reduc-
ing the fragmentation and the consequent drawbacks, making the
models more usable by downstream applications. Compared to al-
ternative approaches, including a global re-parametrization of the
model, the main benefits are reliability, and fidelity to the input
image quality, thanks to the ability to preserve the original texel
distribution and UV-map resolution. A re-sampling of the texture
is avoided on approximately half of the object surface on average.
The method was extensively tested and evaluated by batch process-
ing a dataset consisting of 568 real world 3D models created using
the most common photogrammetry tools.

Future work This work is, to the best of our knowledge, the first
approach to target specifically the goals set in Sec. 2; we think it
is very likely that a more effective or more elegant strategy can
be employed to reduce the fragmentation or the resampled areas
more aggressively. For example, the local optimization itself could
be designed to pursue the objective to avoid re-sampling inside
each optimized triangle. This objective is “all-or-nothing” in na-
ture, making its optimization difficult; recently, however, advanced
numerical methods have been successfully employed over objec-
tives posing a similar challenge [PTH∗17, LKK∗18].

Limitations Our approach is not well suited for situations where
there is a vast redundancy of input photographs, and where super-
resolution approaches such as [LTH∗17] could be exploited to in-
crease the texture quality. Another scenario is when the texture res-
olution must also be downsized, which can be the case for exam-
ple when very high-resolution photographs are available. In both
cases, the benefit of inheriting the input texel distribution is di-
minished (although the reliability and robustness of the proposed
method would still be an advantage).

Acknowledgments

This work has been partially supported by the ARIADNEplus
project under grant agreement 2019-2023 H2020-INFRAIA-2018-
1-823914. We also thanks Alessandro Muntoni for porting the code
inside the MeshLab framework.

We wish to dedicate this contribution to our dear colleague and
friend Matteo Dellepiane, who initially sketched the research di-
rection at the basis of this work. Your voice is sorely missed.

References

[ACK13] ATTENE M., CAMPEN M., KOBBELT L.: Polygon mesh re-
pairing: An application perspective. ACM Comput. Surv. 45, 2 (2013).

[BL08] BURLEY B., LACEWELL D.: Ptex: Per-face texture mapping for
production rendering. In Computer Graphics Forum (2008), vol. 27,
pp. 1155–1164.

[BTB02] BALMELLI L., TAUBIN G., BERNARDINI F.: Space-optimized
texture maps. In Computer Graphics Forum (2002), vol. 21, pp. 411–
420.

[DMA02] DESBRUN M., MEYER M., ALLIEZ P.: Intrinsic parameter-
izations of surface meshes. Computer Graphics Forum 21, 3 (2002),
209–218.

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE H., LOUNS-
BERY M., STUETZLE W.: Multiresolution analysis of arbitrary meshes.
In Proceedings of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques (1995), SIGGRAPH ’95, pp. 173–182.

[EHP04] ERICKSON J., HAR-PELED S.: Optimally cutting a surface into
a disk. Discrete & Computational Geometry 31, 1 (2004), 37–59.

[FH05] FLOATER M. S., HORMANN K.: Surface parameterization: a
tutorial and survey. In Advances in Multiresolution for Geometric Mod-
elling (Berlin, Heidelberg, 2005), Dodgson N. A., Floater M. S., Sabin
M. A., (Eds.), Springer Berlin Heidelberg, pp. 157–186.

[Flo97] FLOATER M. S.: Parametrization and smooth approximation of
surface triangulations. Computer Aided Geometric Design 14, 3 (1997),
231–250.

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry images. ACM
Trans. Graph. 21, 3 (2002), 355–361.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The lumigraph. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (1996), SIGGRAPH
’96, pp. 43–54.

[GWO∗10] GAL R., WEXLER Y., OFEK E., HOPPE H., COHEN-OR D.:
Seamless montage for texturing models. Computer Graphics Forum 29,
2 (2010), 479–486.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

76

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

Figure 16: A gallery of results obtained with our algorithm.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

77

A. Maggiordomo, P. Cignoni and M. Tarini / Texture Defragmentation for Photo-Reconstructed 3D Models

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global
parametrization method. In Curve and Surface Design: Saint-Malo 1999,
Laurent P.-J., Sablonnière P., Schumaker L. L., (Eds.), Innovations in
Applied Mathematics. Vanderbilt University Press, Nashville, TN, 2000,
pp. 153–162.

[HPS08] HORMANN K., POLTHIER K., SHEFFER A.: Mesh parameter-
ization: Theory and practice. In ACM SIGGRAPH ASIA 2008 Courses
(2008), SIGGRAPH Asia ’08.

[HZ04] HARTLEY R., ZISSERMAN A.: Multiple View Geometry in Com-
puter Vision, 2 ed. Cambridge University Press, 2004.

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex
augmentation framework for bijective maps. ACM Trans. Graph. 36, 6
(2017).

[KGL16] KOVALSKY S. Z., GALUN M., LIPMAN Y.: Accelerated
quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4
(2016).

[LFJG17] LIU S., FERGUSON Z., JACOBSON A., GINGOLD Y.: Seam-
less: Seam erasure and seam-aware decoupling of shape from mesh res-
olution. ACM Trans. Graph. 36, 6 (2017).

[LFY∗19] LIU H.-Y., FU X.-M., YE C., CHAI S., LIU L.: Atlas re-
finement with bounded packing efficiency. ACM Trans. Graph. 38, 4
(2019).

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. ACM Trans.
Graph. 25, 3 (2006), 579–588.

[LI07] LEMPITSKY V., IVANOV D.: Seamless mosaicing of image-based
texture maps. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2007), IEEE Computer Society,
pp. 1–6.

[LKK∗18] LI M., KAUFMAN D. M., KIM V. G., SOLOMON J., SHEF-
FER A.: Optcuts: Joint optimization of surface cuts and parameterization.
ACM Trans. Graph. 37, 6 (2018).

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least
squares conformal maps for automatic texture atlas generation. ACM
Trans. Graph. 21, 3 (2002), 362–371.

[LTH∗17] LEDIG C., THEIS L., HUSZAR F., CABALLERO J., CUN-
NINGHAM A., ACOSTA A., AITKEN A., TEJANI A., TOTZ J., WANG
Z., SHI W.: Photo-realistic single image super-resolution using a gen-
erative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (July 2017), pp. 105–
114.

[LVS18] LIMPER M., VINING N., SHEFFER A.: Box cutter: Atlas
refinement for efficient packing via void elimination. ACM Trans. Graph.
37, 4 (2018).

[LZX∗08] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER S. J.:
A local/global approach to mesh parameterization. Computer Graphics
Forum 27, 5 (2008), 1495–1504.

[MPCT20] MAGGIORDOMO A., PONCHIO F., CIGNONI P., TARINI M.:
Real-world textured things: A repository of textured models generated
with modern photo-reconstruction tools. Computer Aided Geometric De-
sign 83 (2020).

[NS11] NÖLL T., STRIEKER D.: Efficient packing of arbitrary shaped
charts for automatic texture atlas generation. Computer Graphics Forum
30, 4 (2011), 1309–1317.

[PTH∗17] PORANNE R., TARINI M., HUBER S., PANOZZO D.,
SORKINE-HORNUNG O.: Autocuts: Simultaneous distortion and cut op-
timization for uv mapping. ACM Trans. Graph. 36, 6 (2017).

[RNLL10] RAY N., NIVOLIERS V., LEFEBVRE S., LÉVY B.: Invisible
seams. Computer Graphics Forum 29, 4 (2010), 1489–1496.

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Trans. Graph.
36, 2 (2017).

[RSN∗14] REMONDINO F., SPERA M. G., NOCERINO E., MENNA F.,
NEX F.: State of the art in high density image matching. The Photogram-
metric Record 29, 146 (2014), 144–166.

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Proceedings of the Fifth Eurographics Symposium on Geometry
Processing (2007), SGP ’07, pp. 109–116.

[SC17] SAWHNEY R., CRANE K.: Boundary first flattening. ACM Trans.
Graph. 37, 1 (2017).

[SCD∗06] SEITZ S. M., CURLESS B., DIEBEL J., SCHARSTEIN D.,
SZELISKI R.: A comparison and evaluation of multi-view stereo recon-
struction algorithms. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2006), IEEE Computer
Society, pp. 519–528.

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R.,
LISCHINSKI D.: Bounded-distortion piecewise mesh parameteri-
zation. In Proceedings of IEEE Visualization (2002), IEEE Computer
Society, pp. 355–362.

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J., HOPPE H.:
Signal-specialized parametrization. In Proceedings of the 13th Euro-
graphics Workshop on Rendering (2002), EGRW ’02, Eurographics As-
sociation, pp. 87–98.

[SH02] SHEFFER A., HART J. C.: Seamster: inconspicuous low-
distortion texture seam layout. In Proceedings of IEEE Visualization
(2002), IEEE Computer Society, pp. 291–298.

[SHR16] SORKINE-HORNUNG O., RABINOVICH M.: Least-squares
rigid motion using SVD, 2016. Technical note.

[SPR∗07] SHEFFER A., PRAUN E., ROSE K., ET AL.: Mesh parame-
terization methods and their applications. Foundations and Trends R© in
Computer Graphics and Vision 2, 2 (2007), 105–171.

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O.,
KOVALSKY S. Z., LIPMAN Y.: Geometric optimization via composite
majorization. ACM Trans. Graph. 36, 4 (2017).

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free
boundaries. ACM Trans. Graph. 34, 4 (2015).

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.: Tex-
ture mapping progressive meshes. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (2001),
SIGGRAPH ’01, Association for Computing Machinery, pp. 409–416.

[SWB98] SLOAN P.-P. J., WEINSTEIN D. M., BREDERSON J.: Impor-
tance driven texture coordinate optimization. Computer Graphics Forum
17, 3 (1998), 97–104.

[SWG∗03] SANDER P. V., WOOD Z. J., GORTLER S. J., SNYDER J.,
HOPPE H.: Multi-chart geometry images. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
(2003), SGP ’03, Eurographics Association, p. 146âĂŞ155.

[Tar16] TARINI M.: Volume-encoded uv-maps. ACM Trans. Graph. 35,
4 (2016).

[TCS03] TARINI M., CIGNONI P., SCOPIGNO R.: Visibility based meth-
ods and assessment for detail-recovery. In Proceedings of IEEE Visual-
ization (2003), IEEE Computer Society, pp. 457–464.

[Tut63] TUTTE W. T.: How to draw a graph. Proceedings of the London
Mathematical Society 3, 1 (1963), 743–767.

[YLT19] YUKSEL C., LEFEBVRE S., TARINI M.: Rethinking texture
mapping. Computer Graphics Forum 38, 2 (2019), 535–551.

[Yuk17] YUKSEL C.: Mesh color textures. In Proceedings of High Per-
formance Graphics (2017), HPG ’17.

[ZMT05] ZHANG E., MISCHAIKOW K., TURK G.: Feature-based sur-
face parameterization and texture mapping. ACM Trans. Graph. 24, 1
(2005), 1–27.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

78

