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Abstract 11 

Shell egg quality and freshness are traditionally assessed by destructive laboratory-level 12 

methods, thus restricting the possibilities to be easily guaranteed in the industrial chain. Non-13 

destructive techniques are therefore of paramount importance, giving accuracy, speed, and 14 

instantaneous results. Among these techniques, spectroscopy is promising because it would 15 

allow the development of on-line applications for shell egg grading, with clear benefits for 16 

both industries and consumers. However, there are still few works in the literature about this 17 

topic. Thus, this review presents recently published (years 2015-2020) applications of 18 

spectroscopy methods (i.e., VIS-NIR, NIR, Raman, microwaves, hyperspectral imaging, 19 

pulsed IR thermography) to the non-destructive assessment of shell egg quality and freshness, 20 

with the aim of boosting the research in this field giving some directions for the fulfilment of 21 

industrial needs. Indeed, spectroscopic techniques have been proven to be useful tools for the 22 

evaluation of shell egg quality and freshness. The advances in instrumentation and data 23 

analysis allow to predict shell egg quality by non-destructive, fast, and environmentally 24 

friendly approaches. However, the industrial implementation still requires robust calibration 25 

transfer to simplified hand-held systems for low-cost and easy use. 26 

 27 

Keywords: VIS-NIR, NIR, Raman, dielectric spectroscopy, hyperspectral imaging, pulsed IR 28 

thermography. 29 

  30 



3 
 

1. Introduction 31 

Eggs are extremely important in human diet because they represent a cheap source of high-32 

quality proteins and easily digestible fats, besides representing important ingredients for the 33 

food industry thanks to their technological properties (i.e., foaming, gelling, emulsifying). 34 

Unfortunately, eggs are highly perishable and quality deterioration occurs during storage, 35 

distribution, sale, and processing, altering physical, chemical, nutritional, and sensory 36 

properties. Egg quality is a general term including all the characteristics that can affect 37 

consumers’ acceptability and preference. For egg grading, both external and internal 38 

parameters are commonly considered, such as shell features (e.g., cleanliness, strength, 39 

texture, and shape), albumen viscosity, and yolk shape and firmness. The interior egg quality 40 

begins to deteriorate just after laying through many complex changes, including albumen 41 

thinning, pH increasing, weakening and stretching of the vitelline membrane, and increase in 42 

water content of yolk. Thus, freshness plays a major role in the quality perception and 43 

consumers usually perceive variability in freshness as a lack of quality (Hisasaga et al., 2020; 44 

Karoui et al., 2006). Therefore, the determination of specific parameters for the evaluation of 45 

egg freshness and quality has been the major challenge of the last century (Stadelman & 46 

Cotterill, 1995).  47 

Several methods have been developed for the assessment of egg quality and a distinction can 48 

be made between destructive and non-destructive methods. Among destructive methods, the 49 

most widely used parameters for the determination of egg quality are the shell strength and 50 

thickness, the internal air cell size, the albumen/yolk ratio, the albumen viscosity, height, and 51 

pH, the yolk colour and shape, and the strength of the vitelline membrane (Karoui et al., 2006; 52 

Sharaf Eddin et al., 2019; Stadelman & Cotterill, 1995). Shell strength and thickness are 53 

significantly correlated and associated to egg viability during carriage and storage. These 54 

quality parameters are mainly affected by hen breed, age, and nutrition. Fragile eggs not only 55 
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lead to economic loss, but also increase the risk of cracking with subsequent bacterial 56 

contamination (Sharaf Eddin et al., 2019). Air cell is formed by the separation of the shell 57 

membrane (i.e., the inner and the outer) at the blunt end of an egg, because of the egg content 58 

shrinkage during cooling after laying. It enlarges continuously during storage, due to water 59 

evaporation and carbon dioxide escape through the eggshell (Stadelman & Cotterill, 1995). It 60 

is affected by egg weight and storage conditions. Air cell height is the only quantitative egg 61 

freshness parameter considered by the European Union regulation (Commission Regulation 62 

No 589/2008; Karoui et al., 2006). A visible sign of internal quality loss is the albumen 63 

thinning mainly due to changes in the ovomucin-lysozyme complex. Albumen freshness is 64 

usually measured in Haugh Units (HU), an index proposed in 1937 that consists in measuring 65 

the height of the thick albumen at 1 cm from the yolk, avoiding chalazae, by means of a 66 

micrometre mounted on a tripod. A suitable equation allows then the conversion in HU, also 67 

considering the egg weight. HU decrease with storage time as a consequence of albumen 68 

thinning (Stadelman & Cotterill, 1995). Another index related to egg freshness is pH. The 69 

albumen pH of newly laid eggs ranges between 7.6 and 8.5. During storage, it increases as a 70 

function of environmental conditions due to a loss of carbon dioxide through the shell pores 71 

(Karoui et al., 2006). Several changes occur also in the yolk, such as colour modification and 72 

shape deformation. Colour is an important acceptability factor to consumers and colour 73 

preferences are different across countries (Sharaf Eddin et al., 2019). Changes in shape of the 74 

yolk are mainly related to weakening of the vitelline membrane and they can be assessed 75 

through the Yolk Index (YI), calculated as the ratio between the yolk height and width 76 

(Stadelman & Cotterill, 1995), or by the Yolk Coefficient (YC), expressed as the ratio 77 

between the yolk weight and height (Abdanan Mehdizadeh et al., 2014).  78 

The advantage of destructive analyses is that the measurements are directly performed on the 79 

egg fraction of interest, thus providing more reliable data, but they are time-consuming, 80 
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require skilled operators, and can only be applied at laboratory level, thus disregarding the 81 

industrial urgent need for fast and reliable methods for the egg quality assessment. 82 

Several studies have been recently focused on the evaluation of different non-destructive 83 

techniques for the rapid and reliable determination of quality and freshness of intact food 84 

products. One of the most researched field has been the dairy sector, for which Karoui & De 85 

Baerdemaeker (2007) presented an overview of different spectroscopic applications including 86 

Near Infrared (NIR), Mid Infrared (MIR), and Front Face Fluorescence (FFF) spectroscopy, 87 

as well as stable isotope and Nuclear Magnetic Resonance (NMR). Indeed, these 88 

spectroscopic methods guarantee null/low sample preparation and reduce analysis time and 89 

costs. Since a huge amount of data is usually generated by these techniques, multivariate 90 

statistical methods (i.e., chemometrics) are fundamental for signal elaboration, in order to 91 

extract the interesting information (Chen et al., 2019).  92 

NIR spectroscopy has been extensively applied for rapid quality assessment in diverse food 93 

product chains. Recent comprehensive reviews report success of this technique in assessing 94 

quality parameters in meat (Berri et al., 2019; Dixit et al., 2017), fish (Cheng & Sun, 2017), 95 

and dairy (Pu et al., 2020) products. In the horticultural field, NIR spectral range is often 96 

associated with visible spectral region (i.e., VIS-NIR), leading to successful applications for 97 

the in-line inspection of agro-food products under semi-industrial conditions (Cortés et al., 98 

2019). Furthermore, technological advances facing size miniaturization, cost reduction, and 99 

data analysis are making NIR spectroscopy easily applicable on process lines (Antequera et 100 

al., 2021). Raman spectroscopy struggles in food quality applications, due to the presence of 101 

many interfering artefacts created by the complex matrices. However, new strategies, such as 102 

the Surface Enhanced Raman spectroscopy, improved sensitivity, selectivity, and 103 

reproducibility in the determination of quality parameters and contaminants (Lin & He, 2019). 104 

Terahertz spectroscopy, covering a very small range of the electromagnetic spectrum between 105 
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the microwave and infrared regions, has been widely used in the medical field, but novel 106 

applications have been recently discussed for quality control both in the agricultural and food 107 

industries, as well described in the review by Afsah-Hejri et al. (2019). Similarly, microwave 108 

dielectric spectroscopy demonstrated how low-power analytical methodology, based on 109 

electromagnetic field in the 0.3–300 GHz frequency range, could be useful for different 110 

applications in the food industry thanks to the capability of differentiating materials of 111 

different composition (Blakey & Morales-Partera, 2016). 112 

Analyses of intact foods have been promoted also by coupling spectral and spatial 113 

information using Hyperspectral Imaging (HSI) systems. A relevant number of works has 114 

been published about the application of HSI systems for food quality evaluation, considering 115 

meat (Antequera et al., 2021), fish (Cheng & Sun, 2017), dairy (Dufour, 2011), and 116 

horticultural products (Lu et al., 2020). In most cases, HSI demonstrated to be a reliable tool 117 

also for industrial applications. Infrared thermography has been less implemented in food 118 

studies, but active thermography, i.e., the generation of a thermal contrast between target and 119 

background by an energy source, is drawing attention in food quality control. The few 120 

published works in the field have been recently discussed in the review by Ferreira (2020). 121 

Based on the above-mentioned promising applications, researchers have evaluated potential 122 

of spectroscopic techniques also in the egg field, considering both shell eggs and egg products 123 

(Grassi et al., 2018). The main challenge is of course the possibility to unravel shell egg 124 

characteristics without breaking the eggs. Thus, this review discusses the recent works about 125 

spectroscopy applications for the non-destructive evaluation of shell egg freshness and 126 

quality. The considered papers (published in 2015-2020) are summarized in Table 1 and 127 

commented hereafter following a technique-wise scheme. 128 

 129 

2. VIS-NIR and NIR spectroscopy 130 
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Interesting applications of transmission VIS-NIR spectroscopy (from 300 to 1100 nm; Fig. 1) 131 

for the non-destructive assessment of egg quality and freshness were proposed by Dong et al. 132 

(2017a, 2017b, 2018a, 2018b). Spectra were acquired with a fibre probe placed directly on the 133 

equatorial region of eggs, reduced in the range 480-960 nm, and pretreated with different 134 

methods including Savitzky-Golay smoothing (SG), Multiplicative Scatter Correction (MSC), 135 

and Standard Normal Variate (SNV). Partial Least Square Regression (PLSR) was used to 136 

build prediction models for eggshell thickness, air chamber diameter, and pH of albumen and 137 

whole egg. In the case of eggshell thickness (Dong et al., 2017b), 70 intact, white-shelled 138 

eggs were analysed, including 52 samples in the calibration set and 18 samples in the 139 

prediction set. The best correlation coefficients obtained in calibration (rc) and prediction (rp) 140 

(MSC-treated spectra) were 0.86 and 0.84, respectively, with a Root Mean Square Error in 141 

Calibration (RMSEC) and Prediction (RMSEP) of 0.01 mm, over a 0.270-0.378 mm range of 142 

shell thickness measured by a vernier calliper in the equatorial region. For the air chamber 143 

diameter (Dong et al., 2018b), 90 brown-shelled eggs were considered, split into a calibration 144 

set of 68 eggs and a prediction set of 22 samples. The air chamber diameter, measured by a 145 

vernier calliper after shelling, ranged from 15.82 to 35.32 mm. The best PLSR model was 146 

obtained with MSC-treated spectra, with a rc value of 0.87 and a RMSEC value of 2.13 mm, 147 

and rp, RMSEP values of 0.85 and 2.14 mm, respectively. Albumen and whole egg pH are 148 

considered freshness markers. Indeed, albumen pH increases during egg storage because of 149 

the gaseous exchanges with ambient air through shell pores, and the water and mineral 150 

migration between albumen and yolk through vitelline membrane. Prediction models were 151 

built by Dong et al. (2017a) on 178 white-shelled eggs stored for different periods (up to 3 152 

weeks) under controlled temperature and Relative Humidity (RH) conditions (30°C, 65% 153 

RH). During storage, pH changed from 8.08 to 10.11 for albumen and from 7.06 to 8.76 for 154 

whole egg. In this case, the reduced spectral range was 550-850 nm. For albumen pH, the 155 
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PLSR model developed with SNV-preprocessed spectra got the best correlation coefficient in 156 

prediction (rp = 0.923), with a RMSEP of 0.17. The whole egg pH model yielded a lower 157 

prediction accuracy, with a rp of 0.752 and a RMSEP of 0.27, maybe due to the smaller 158 

variation in pH data.  159 

Similar results for the air chamber height prediction were obtained by Aboonajmi et al. 160 

(2016), applying VIS-NIR spectroscopy to 300 eggs stored in different conditions 161 

(temperatures of 25 and 5 °C, with RH of 40% and 75% respectively, up to 30 days). Spectral 162 

data were corrected for both multiplicative and additive effects due to scattering, reduced in 163 

dimension by applying the Principal Component Analysis (PCA), and then elaborated by an 164 

Artificial Neural Network (ANN) algorithm (i.e., radial basis function) internally validated by 165 

cross-validation (CV). Values of coefficient of determination (R2) in CV were 0.844 and 166 

0.835 for the eggs stored at 5 and 25 °C, respectively. No information about predictive errors 167 

were reported. The authors also measured the HU, obtaining R2 of 0.767 and 0.745 in CV. 168 

The observed differences between the room and cold temperature datasets were ascribed to 169 

the albumen viscosity change, which can have affected the results. Thus, potential of the 170 

spectroscopic technology for a rough screening was demonstrated, but further research on the 171 

optic fibre used are suggested. Of course, also the combination of data in a single model and 172 

an external validation can contribute to a higher robustness of the proposed procedure. 173 

Indeed, Akowuah et al. (2020) encouraged the development of a predictive model for HU and 174 

marked date of lay considering different storage conditions, because they observed that HU of 175 

eggs stored at low temperature were not directly correlated with storage time (at least in the 176 

limited period of their measurements). Thus, in order to provide consumers with the real 177 

length of storage, information about the environment conditions is important. In their study, 178 

120 brown-shelled eggs were used, stored under cold (4 °C) and ambient temperature (28 °C) 179 

up to 20 days and analysed with a handheld NIR device working in the range 740-1070 nm. 180 
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After MSC pretreatment, classification models were developed for the two storage 181 

temperatures applying the Linear Discriminant Analysis (LDA) and dividing samples in four 182 

classes based on storage duration. An average correct classification rate in prediction of 96% 183 

and 100% was obtained for cold and ambient storage, respectively. For predicting the storage 184 

duration, the authors developed also a PLS model, reaching rp values of 0.89 and 0.91 for 185 

ambient and cold storage, respectively, with RMSEP of 3 and 2.5 days. 186 

The same handheld NIR spectrometer was already used by Coronel-Reyes et al. (2018) for the 187 

determination of egg storage time (up to 21 days), considering only room temperature (23 °C, 188 

90% RU) and a total of 30 eggs. Several preprocessing methods and ANN algorithms were 189 

tested and cross-validated. The best model was obtained by SG preprocessing and an ANN 190 

with ten neurons in one hidden layer, achieving in prediction a R2 of 0.873 and a RMSECV of 191 

1.97 days. Even if the considered number of samples was very small, the work showed the 192 

potential of a portable and low-cost NIR device that can be even connected to a smartphone 193 

for a rapid response about egg freshness. 194 

The potential of VIS-NIR spectroscopy in investigating shell egg internal quality was studied 195 

also for the evaluation of yolk viscosity. Apparent yolk viscosity in lightly heated shell eggs 196 

was targeted in the study of Kuroki et al. (2017) as this parameter is an important quality 197 

attribute related to textural preference and usage suitability to several dishes. The egg 198 

albumen begins denaturing at a lower temperature than the yolk, thus increasing turbidity and 199 

possibly masking the variation in transmittance spectra due to increment in yolk viscosity. In 200 

this study, 88 white-shelled eggs were cooked by far-infrared heating, under seven different 201 

conditions identified with levels from 1 to 7 as a function of the heat intensity. Then, the 202 

samples were stored overnight at 20 °C and the transmittance spectra were acquired in three 203 

points along the equatorial region by an optic fibre in the 588-1084 nm range. After spectra 204 

acquisition, the samples were broken and the apparent yolk viscosity was measured with a 205 
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portable falling-needle viscometer, registering a range of approximately 200-600000 mPa s. 206 

Before multivariate analysis, spectra were pretreated using SG and the second derivative (d2). 207 

A PCA was used to investigate the relations between the spectral variation of whole shell 208 

eggs and the degree of cooking. It was demonstrated that 85% of the spectral variation of the 209 

heated shell eggs resulted from change in the interaction between water and ovotransferrin in 210 

egg white. A model for the prediction of yolk viscosity was subsequently developed by PLSR, 211 

obtaining a R2
CV value of 0.81 with a RMSECV of 0.49 log mPa·s. The model was then 212 

judged as “usable for sample screening”. A variable selection was then performed by applying 213 

the Martens uncertainty test, obtaining an “excellent predictive model” with R2
CV = 0.89 and 214 

RMSECV = 0.37 log mPa·s. The selected wavelengths were in the range 600-850 nm, and the 215 

authors demonstrated that those features did not contain the information about thermal 216 

gelation of egg albumen. Thus, the model obtained after variable selection was considered 217 

robust and independent from the egg white gelation status. However, an external validation of 218 

the model was not carried out. 219 

Any change in specific instrument or sample orientation/variety/colour used for model 220 

development might influence predictive abilities and results. For instance, Dong et al. (2018a) 221 

evaluated the egg orientation effect during non-destructive measurements by means of VIS-222 

NIR spectroscopy. For this purpose, transmission spectra (340-1030 nm) were acquired from 223 

both the equatorial and blunt region of 91 white-shelled eggs before the destructive evaluation 224 

of HU, YI, and albumen pH. A PLSR was employed for modelling the freshness parameters, 225 

after SG, MSC, SNV, first and second derivative pretreatments on the spectra. The results 226 

obtained from the equatorial region showed higher correlation coefficients in prediction 227 

compared to those of the blunt end (i.e., 0.881 vs. 0.813 for HU, 0.855 vs. 0.848 for YI, and 228 

0.888 vs. 0.857 for albumen pH), with lower RMSEP (i.e., 7.720 vs. 9.576 for HU, 0.034 vs. 229 

0.039 for YI, and 0.147 vs. 0.126 for albumen pH). These results might be explained by the 230 
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presence of the air chamber in the blunt end, which may affect spectra collection; moreover, 231 

the eggshell has more homogeneous texture and thickness in the equatorial region. 232 

Eggshell colour can also play an important role in spectral results, mainly when the visible 233 

region is included in the analysis. For this reason, many studies on egg freshness evaluation 234 

involve only white-shelled eggs, possibly because brown-shelled eggs have limitations due to 235 

the interference of spectral bands. However, it could be advisable to consider both the shell 236 

egg types to assess spectroscopic method reliability on a larger scale. Eggshell colour is 237 

mainly related to the hen breeds and the main pigment comes from protoporphyrin IX in 238 

haemoglobin. Eggs with different colours can show no obvious differences in nutritional 239 

value or composition. Thus, some authors tried different approaches to manage differences 240 

linked to shell colour. For instance, Dong et al. (2019) developed predictive models for 241 

albumen pH considering both white- and brown-shelled eggs. A total of 192 eggs, 96 from 242 

White Leghorns hens and 96 from Bantam hens, were purchased and then stored under 243 

controlled conditions (30 °C, 60% RH) up to three weeks, in order to promote pH changes 244 

(from 8.24 to 9.76). Eggs were sampled every two days, carrying out both non-destructive 245 

VIS-NIR (340-1030 nm) analysis and destructive measurements of albumen pH. After 246 

combining the Mahalanobis distance with PCA in order to eliminate outliers, the 167 247 

remaining spectra were pretreated with different methods (SG, MSC, SNV, first and second 248 

derivatives), and PLSR models were developed separately or jointly for the eggs of the two 249 

hen breeds. For the White Leghorn eggs, the best prediction model was obtained with MSC 250 

pretreatment, resulting in rp = 0.907 and RMSEP = 0.123. Similar results were obtained also 251 

for Bantam eggs, with rp = 0.947 and RMSEP = 0.115. However, prediction of albumen pH 252 

for the eggs obtained by the two hen breeds exchanging predictive models was not reliable, 253 

resulting in low rp (0.6-0.7) and high RMSEP (0.5-0.8), maybe related to the different 254 

eggshell colour. The issue was solved by an updated global calibration considering all the 255 
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eggs together and applying a slope/bias correction, thus obtaining a rp of 0.908 and a RMSEP 256 

of 0.133. The work demonstrated that the variability related to different egg types should be 257 

considered in the model calibration to obtain good prediction ability. 258 

NIR spectroscopy can also be applied to authenticity issues. For instance, Chen et al. (2019) 259 

explored the combination of NIR spectroscopy, Joint Mutual Information (JMI) variable 260 

selection, and Data Driven-based Class-Modelling (DDCM) for non-destructive 261 

discrimination of eggs laid by hens reared in a natural environment (named “native eggs”) 262 

from eggs obtained in two different industrial systems (“feed eggs”). A total of 122 samples 263 

were considered and analysed by NIR spectroscopy (10000–4000 cm-1), using an optic fibre 264 

probe in reflectance mode. After SNV pretreatment, the variable selection based on JMI 265 

algorithm picked out 20 informative variables over the 1557 original wavenumbers. The 266 

DDCM algorithm was then applied for class-modelling, dividing samples in calibration and 267 

test sets. The results showed that when “native eggs” were the target class, sensitivity in 268 

calibration was 93.3%, while sensitivity and specificity in prediction were 100% and 98.8%, 269 

respectively. The authors considered the model satisfactory. However, due to the limited 270 

number of analysed samples that can strongly affect classification model performance, they 271 

suggested further research in the field of egg authentication. 272 

 273 

3. Raman spectroscopy 274 

Raman spectroscopy (Fig. 2) has found limited applications in non-destructive evaluation of 275 

egg freshness and quality. Liu et al. (2020) proposed Raman spectroscopy to detect in a 276 

simple, fast, and non-destructive way cuticle modifications, correlated to freshness 277 

parameters. Indeed, the egg cuticle is a protein layer covering eggshell surface, which 278 

deteriorates with storage time and can thus indicate egg freshness. Raman spectra (100–3000 279 

cm-1) of 125 Hy-Line Brown eggs stored under controlled conditions (20 °C, 40% RH) up to 280 
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59 days were collected on the top (pointed area), bottom (blunt area), and equatorial regions, 281 

with a 6 mm distance between the probe and the eggshell surface. HU, YI, albumen pH, and 282 

air chamber height and diameter were analysed by the common destructive methods. Different 283 

preprocessing algorithms were applied to Raman spectra: SG, normalization (NL), first and 284 

second derivatives, baseline correction (BL), SNV, MSC, and denoise. Afterwards, PLSR 285 

models were developed for all the freshness indicators, using 80% of the samples as the 286 

calibration set and 20% as the prediction set. Good results were obtained for HU, albumen 287 

pH, and air chamber dimensions, with rp ranging from 0.807 to 0.895. YI was not 288 

satisfactorily predicted, reaching a maximum value of rp of 0.540 with spectra transformed in 289 

second derivative. This result can be due to a weak relationship between the changes in 290 

eggshell surface and yolk. Moreover, an evaluation of the best acquisition area was carried 291 

out, demonstrating that the prediction performance of the PLSR model established by the top 292 

Raman spectrum was relatively better for the considered freshness parameters, increasing 293 

values of rp (0.830-0.935). This can be due to the absence of an air chamber in the top of the 294 

egg, leading to a constant contact of the egg content with the eggshell. In order to increase the 295 

adaptability of the models and maximize Raman spectroscopy application, other influencing 296 

factors should be considered, such as breed, hen age, and rearing systems. 297 

 298 

4. Dielectric spectroscopy 299 

Few attempts to apply dielectric methods (Fig. 3) for non-destructive measurement of various 300 

quality indices of shell eggs have been recently published (Akbarzadeh et al., 2019; Soltani et 301 

al., 2015; Soltani & Omid, 2015). Akbarzadeh et al. (2019) aimed to develop a microwave 302 

spectroscopy approach based on a waveguide and network analyser instrument for the non-303 

destructive prediction of several egg freshness indices, including air chamber height, thick 304 

albumen height, HU, albumen pH, and YC. White-shelled eggs (244 samples) were used, 305 
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stored at room temperature (25 °C) up to 24 days. The average reflection and transmission 306 

spectra were obtained in the 0.9-1.7 GHz microwave range, immediately before the 307 

destructive evaluation of freshness parameters. Then, regression and classification models 308 

were developed and validated, applying different chemometric methods. Generally, the return 309 

loss reflection spectra gave the best predictive models for all quality indices, except for 310 

albumen pH, with a Residual Prediction Deviation (RPD) over 2. In particular, RPD was 311 

close to 3 for the air chamber height. RPD is the ratio of standard deviation to RMSEP and it 312 

is used as a performance index of the developed models. Higher RPD values represent strong 313 

calibration models since they are obtained with RMSEP lowering and standard deviation 314 

increasing. Hence, RPD values higher than 2 or 3 indicate good or excellent calibrations, 315 

respectively. When ANN was used for regression purposes, the best predictive models were 316 

obtained considering different input spectra. Anyway, also with this algorithm, RPD values 317 

were higher than 2 for all the freshness parameters, except for pH albumen (RPD = 1.83). 318 

Good results were obtained also in classification by applying the Soft Independent Modelling 319 

of Class Analogy (SIMCA) or the ANN algorithm. Considering six different classes of 320 

freshness, the best discrimination power was provided by the return loss reflection spectra, 321 

with a total accuracy of 100%. In conclusion, despite the good results obtained, the authors 322 

highlighted the necessity to develop a more economical system, since the network analyser 323 

used was expensive, and to implement the technique for on-line applications. 324 

The range of radio frequency (40 kHz-20 MHz) was investigated by Soltani & Omid (2015) 325 

and Soltani et al. (2015) in order to build a robust model for non-destructive classification of 326 

eggs based on freshness. In the work by Soltani & Omid (2015), several machine learning 327 

techniques were coupled with dielectric spectroscopy, including ANN, Support Vector 328 

Machine (SVM), Bayesian Networks (BN), and Decision Tree (DT). Moreover, a 329 

Correlation-based Feature Selection (CFS) was applied to spectra, thus reducing the size of 330 
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feature vector from 387 to 24. A total of 150 white-shelled eggs were used (i.e., 110 samples 331 

in the calibration set and 40 samples in the prediction set), stored for different periods (up to 332 

24 days) at 20 °C and 35% RH. All the machine learning techniques resulted in 100% 333 

classification accuracy, except for DT that reached 87.5%. ANN, SVM, and DT were applied 334 

also in regression, in order to predict the air cell height. Good performances were calculated 335 

for all the developed models, but the lowest errors were obtained with a Meta-Super-Peer DT 336 

(RMSEP = 1.043 mm). 337 

In the work by Soltani et al. (2015), a Multilayer Perceptron Feedforward Neural Network 338 

was applied, combined with Levenberg-Marquardt algorithm for error minimization. 339 

Considering HU, YI, yolk/albumen ratio, and yolk weight as quality factors of eggs (287 340 

white-shelled eggs, stored at 20 °C and 35% RU up to 24 days) the following R2 in validation 341 

were achieved: 0.998, 0.998, 0.998, and 0.994, respectively. In prediction mode, the mean 342 

absolute percent errors obtained were 5.41, 6.84, 8.79, and 4.24% for HU, YI, yolk/albumen, 343 

and yolk weight, respectively. 344 

 345 

5. Hyperspectral Imaging 346 

Coupling spectral and spatial information can be a successful strategy for non-destructive 347 

evaluation of food quality on industrial lines. Different works recently demonstrated the 348 

potential of HSI (Fig. 4) as a rapid online system for the egg classification based on freshness. 349 

Yao et al. (2020) proposed a solution implementing VIS-NIR-HSI for egg classification based 350 

on HU. They measured 188 eggs at three freshness grades, acquiring images in the 400–1000 351 

nm spectral range and using a Region of Interest (ROI) of 32 × 32 pixel from the centre of the 352 

samples. An average spectrum was then calculated for each sample and different variable 353 

selection strategies were adopted. Among them, the iteratively retains informative variables 354 

algorithm, based on binary matrix shuffling filter, in combination with genetic algorithm gave 355 
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the most promising classification accuracy for the classification models developed by SVM. 356 

Indeed, the calibration and prediction classification accuracies were 99.29 and 97.87%, 357 

respectively. 358 

Similarly, Suktanarak & Teerachaichayut (2017) proposed the use of reflectance NIR-HSI for 359 

prediction of HU. The samples (91 eggs) were divided into 7 groups as a function of storage 360 

time (up to 21 days) at 25 °C. NIR-HSI data were acquired in reflectance mode (wavelength 361 

range, 900-1700 nm), considering a ROI of 50 x 90 pixel at the centre of each egg image. An 362 

average spectrum was calculated for each sample and used for PLSR modelling. The model 363 

was calibrated considering 58 eggs and tested for prediction by using the other 33 samples. 364 

An excellent performance in prediction was reached by SNV spectral pretreatment, with a R2
P 365 

of 0.85, a RMSEP of 6.29 HU, and a RPD of 3.07. Furthermore, the authors proposed a pixel 366 

by pixel distribution maps of HU, thus giving the possibility to evaluate egg freshness by a 367 

simple visual inspection according to an intensity scale. 368 

Different factors can affect HSI results, such as the incident light angle and the number of 369 

wavelengths. Dai et al. (2020) studied the influence of incident angles on the accuracy of egg 370 

HU prediction. Evaluating 350 eggs, and considering scattering, transmission, and mixed 371 

hyperspectral images, they found that the accuracy was higher (up to 100%) with scattering 372 

images and inversely proportional to the incident angle. In particular, the best classification 373 

model for egg freshness prediction was developed by merging multiple weak classifiers (i.e., 374 

Discriminant Analysis Classifier, K-Nearest Neighbour and Random Forest) into a strong 375 

classifier by Stacking Ensemble Learning. The model was based on feature wavelengths 376 

extracted by Successive Projections Algorithm (SPA) from spectra collected with 0° incident 377 

light and transformed by MSC. Also Zhang et al. (2015) applied a wavelength optimization 378 

by SPA, thus selecting only thirteen features in the range 380–1010 nm to predict HU based 379 

on a Support Vector Regression model. Wavelength selection increased R2
p from 0.85 to 0.87, 380 
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while reducing RMSEP from 4.33 to 4.01 HU. Although only a small improvement was 381 

obtained, the reduction of the wavelengths paves the way to the construction of simpler and 382 

cheaper NIR-HSI systems, suitable also for industrial applications. Moreover, the authors 383 

demonstrated that HSI can be useful in discovering internal defects, such as scattered yolk 384 

and the presence of air bubbles, with an accuracy in prediction of 90.0 and 96.3%, 385 

respectively. 386 

NIR-HSI was proposed also to predict S-ovalbumin content (Fu et al., 2019), which is highly 387 

correlated with storage time and has low natural variability. It is a promising and significant 388 

shell egg freshness index, generated during storage from ovalbumin, the most abundant 389 

protein of eggs. The conversion of ovalbumin into the more heat stable S-ovalbumin is 390 

affected by pH and temperature, but it does not change depending on breed, hen age, and 391 

nutritional status, thus showing high repeatability (Huang et al., 2012). A total of 108 brown-392 

shelled eggs stored up to 41 days at 22 °C and 65% RU were analysed in transmission mode 393 

with a wavelength range of 300–1100 nm (Fu et al., 2019). In this case, an average spectrum 394 

was calculated considering as ROI the entire egg area. Spectra were pretreated by a min-max 395 

normalisation. Furthermore, a variable selection strategy was implemented by SPA in order to 396 

consider a reduced number of wavelengths (i.e., 12) related to S-ovalbumin content. The 397 

PLSR and Multiple Linear Regression (MLR) models were developed using two-thirds of the 398 

samples (i.e., 72 eggs), selected using the joint x-y distance method, for calibration, and the 399 

remaining samples (i.e., 36 eggs) for the prediction step. The S-ovalbumin fraction analysed 400 

by the classical chemical method had a range of about 20-100%. The best PLSR model gave a 401 

rp of 0.87, a RMSEP of 0.14%, and a RPD of 1.87. Even better model performances were 402 

obtained by MLR with a rp of 0.91, a RMSEP of 0.12%, and a RPD of 2.35. Furthermore, a 403 

visualisation of S-ovalbumin fraction distribution was proposed by a distribution map.  404 
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Raman Hyperspectral Imaging (RHSI) has been also applied to the non-destructive evaluation 405 

of egg quality. In particular, a recent study by Joshi et al. (2020) applied Raman spectroscopy 406 

and RHSI to the identification of “fake eggs”. Cases of imitation or “fake food” materials are 407 

a major economic fraud for both the food industry and the final consumer. These products are 408 

obtained by the incorporation of lower quality or cheaper alternative ingredients that in some 409 

cases are not edible nor safe for consumption. The case of fake eggs is only one of the major 410 

food frauds of the last few years, prepared using harmful additives, with no nutritional value 411 

and difficult to identify by eye. Raman spectroscopy in the 1800-600 cm-1 range and RHSI in 412 

the 1500-390 cm-1 range were able to identify differences linked to the materials used in the 413 

preparation of fake eggs (i.e., sodium alginate, tartrazine dye, calcium chloride, gypsum 414 

powder, and paraffin wax). In addition, RHSI had the advantage of speed, because a large 415 

number of samples can be scanned at one time. In this study, 40 samples (20 real and 20 fake) 416 

of shell eggs, albumen, and yolk were analysed and divided in calibration set (24 samples) 417 

and validation set (16 samples). A PLS-Discriminant Analysis (PLS-DA) was used for a 418 

classification after MSC preprocessing. For all the types of sample considered, a perfectly 419 

accurate (100%) discrimination between real and fake samples was obtained. Moreover, the 420 

fluorescence corrected egg images, generated by selecting in the acquired RHSI images a 421 

single band of the chemical of interest (i.e., the Raman peak at 1295 cm-1), provided a simple 422 

visualization method for the distinction of real and fake samples.  423 

In conclusion, the different approaches indicated that hyperspectral imaging technology could 424 

be a feasible solution for the detection of freshness and quality of shell eggs, offering the 425 

possibility to develop rapid and simple visualization methods for online screening. 426 

 427 

6. Pulsed infrared thermography 428 
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Pulsed infrared thermography (Fig. 5) is another approach that merges spatial and spectral 429 

information. Freni et al. (2018) proposed a methodology for eggs freshness assessment based 430 

on active thermography by means of pulsed thermal stimulation in reflection. The authors 431 

irradiated samples by means of a xenon flash, which raised up the temperature of the egg of 432 

less than 1 °C. The generated thermograms were recorded by means of an IR camera working 433 

in the 36000-51000 nm range and equipped with a synchronization unit that permitted to 434 

trigger the acquisition with the generated pulse. Eighteen eggs were stored up to 20 days in a 435 

climatic chamber (28 ° C, 30% RH) and tested every day by acquiring the heating and cooling 436 

profiles. Two thermograms were recorded, corresponding to the two orthogonal sides of the 437 

eggs (i.e., frontally and laterally to the dull pole). The IR images clearly showed the air 438 

chamber at the dull pole; moreover, they allowed to immediately identify possible anomalies 439 

in the egg structure that are not visible to the naked eye, thus providing a powerful tool for 440 

checking egg quality. The thermal images were then preprocessed to reach a proper air 441 

chamber segmentation by applying the Wiener filter and the top hat operator followed by 442 

morphological opening and closure calculations. From the processed images it was possible to 443 

calculate the relative increment of air chamber size during storage. The soundness of the 444 

approach relies on the difference in thermal propagation, so that the air chamber appears as an 445 

area of different temperature with respect to the liquid part of the egg. However, as suggested 446 

also by the authors, a higher number of samples considering higher variability should be 447 

tested to validate the reliability of the approach; moreover, prediction models should be 448 

developed based on multivariate approaches. 449 

 450 

7. Conclusions 451 

This review demonstrates that spectroscopic techniques, combined with chemometrics, are 452 

useful tools for the evaluation of shell egg quality and freshness. The recent advances in 453 
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instrumentation and data analysis allowed to develop non-destructive, fast, and 454 

environmentally friendly approaches. However, all the reviewed studies were carried out at a 455 

laboratory level and sometimes only a limited number of samples were analysed. Moreover, 456 

many studies did not validate the predictive models with an external test set, thus not 457 

confirming the robustness of the calibration. Therefore, there are still some challenges to face 458 

for an industrial implementation, such as the use of a large number of samples considering as 459 

many sources of variation as possible (e.g., hen breed, hen age, rearing systems, storage 460 

conditions), a robust calibration transfer to simplified handheld systems for low-cost and easy 461 

use, a reliable on-line set-up of the proposed approaches overcoming possible issues related to 462 

the fastness of the industrial lines. Thus, much research work is still needed in order to 463 

develop non-destructive methods for the shell egg quality evaluation able to satisfy industrial 464 

requirements and this can be done only with a strict cooperation of the scientific and 465 

industrial world. 466 
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Figure Legends 620 

Fig. 1. Block scheme of VIS-NIR spectroscopy. 621 

 622 

Fig. 2. Block scheme of Raman spectroscopy. 623 

 624 

Fig. 3. Block scheme of dielectric spectroscopy. 625 

 626 

Fig. 4. Block scheme of hyperspectral imaging systems. 627 

 628 

Fig. 5. Block scheme of pulsed infrared thermography. 629 
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Table 1. 

Spectroscopy techniques applied to the evaluation of quality and freshness of shell eggs. 

Analytical technology Egg parameter Number of samples 

(eggs) 

Predictive algorithm Accuracy of the best models 

obtained for each algorithm 

Reference 

VIS-NIR spectroscopy Eggshell thickness 70 

(52, C; 18, P) 

PLSR rC = 0.86, rP = 0.84 Dong et al. (2017b) 

Air chamber diameter 90 

(68, C; 22, P) 

PLSR rC = 0.87, rP = 0.85 Dong et al. (2018b) 

Air chamber height 

Haugh Units 

300 

(no test set) 

ANN (RBF) Air chamber height: 

R2
C = 0.941, R2

CV = 0.844 (5 °C) 

R2
C = 0.918, R2

CV = 0.835 (25 °C) 

Haugh Units: 

R2
C = 0.898, R2

CV = 0.767 (5 °C) 

R2
C = 0.871, R2

CV = 0.745 (25 °C) 

Aboonajmi et al. (2016) 

Haugh Units 

Yolk index 

Albumen pH 

91 

(68, C; 23, P) 

PLSR Equatorial region: 

Haugh Units:  

rC = 0.897; rP = 0.881 

Yolk Index:  

rC = 0.903; rP = 0.855 

Albumen pH: 

rC = 0.936; rP = 0.888  

Dong et al. (2018a) 

Albumen pH 80 White Leghorns 

(53, C; 27, P) 

87 Bantam  

(58, C; 29, P) 

PLSR White Leghorns 

rC = 0.918, rP = 0.907 

Bantam 

rC = 0.955, rP = 0.947 

Dong et al. (2019) 

Albumen pH 

Whole egg pH 

178 

(133, C; 45, P) 

PLSR Albumen pH: 

rC = 0.943, rP = 0.923  

Whole egg pH: 

rC = 0.776, rP = 0.752 

Dong et al. (2017a) 

     

Apparent yolk viscosity 88 

(no test set) 

PLSR R2
C = -, R2

CV = 0.89 Kuroki et al. (2017) 
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NIR spectroscopy 

 

Marked day of lay 120 

(90, C; 30, P) 

PLSR 

 

rC = 0.83; rP = 0.89 (28 °C) 

rC = 0.86; rP = 0.91 (4 °C) 

Akowuah et al. (2020) 

  LDA Accuracy P = 100% (28 °C) 

Accuracy P = 96% (4 °C) 

Egg storage time 30 

(21, C; 9, P) 

ANN R2
C = 0.865, R2

CV = 0.873 Coronel-Reyes et al. (2018) 

Native eggs/feed eggs 112 DDCM Sensitivity P = 100% 

Specificity P = 98.8% 

Chen et al. (2019) 

Raman spectroscopy Air chamber height  

Air chamber diameter 

Haugh Units 

Albumen pH 

 

125 

(100, C; 25, P) 

PLSR Air chamber height: 

rc = 0.828, rp = 0.830 

Air chamber diameter: 

rc = 0.903, rp = 0.915 

Haugh Units: 

rc = 0.944, rp = 0.925 

Abumen pH: 

rc = 0.945, rp = 0.935 

Liu et al. (2020) 

Dielectric spectroscopy Air chamber height 

Thick albumen height 

Haugh Units 

Albumen pH 

Yolk Coefficient 

244 

(196, C; 48, P) 

  Air chamber height: 

R2
C = 0.900, R2

P = 0.893 

Thick albumen height: 

R2
C = 0.839, R2

P = 0.826 

Haugh Units 

R2
C = 0.814, R2

P = 0.804 

Albumen pH 

R2
C = 0.787, R2

P = 0.779 

Yolk Coefficient 

R2
C = 0.883, R2

P = 0.869 

Akbarzadeh et al. (2019) 

Freshness 244 

(196, C; 48, P) 

SIMCA Accuracy P = 100% 

Air cell height 150 

(110, C; 40, P) 

ANN 

SVM 

DT 

rP ANN = 0.817 

rP SVM = 0.920 

rP DT = 0.906 

Soltani & Omid (2015) 

Haugh Units 

Yolk/Albumen 

Yolk weight 

Yolk Index  

287 

(124, C; 163, P) 

FFNN Haugh Units: 

R2
C = 0.998, R2

P = 0.998 

Yolk/Albumen: 

R2
C = 0.996, R2

P = 0.998 

Soltani et al. (2015) 
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 Yolk weight 

R2
C = 0.994, R2

P = 0.994 

Yolk Index: 

R2
C = 0.994, R2

P = 0.998 

VIS-NIR-HSI 

 

Haugh Units 188 

(141, C; 47, P) 

IRIV-GA-SVM Accuracy P = 97.87% Yao et al. (2020) 

Haugh Units 350 

(200, C; 150, P) 

SPA-SEL Accuracy up to 100% Dai et al. (2020) 

Haugh Units 

Scattered yolk 

Air bubbles 

645 

(200, C; 150, P) 

SPA-SVR Haugh Units: 

R2
C = 0.89, R2

P = 0.87 

Scattered yolk: 

Accuracy = 90% 

Air bubbles: 

Accuracy = 96.3% 

Zhang et al. (2015) 

S-ovalbumin content 108 

(72, C; 36, P)  

PLSR 

MLR 

PLSR: 

rC = 0.929, rP = 0.875 

MLR: 

rC = 0.922, rP = 0.911 

Fu et al. (2019) 

NIR-HSI Haugh Units 91 

(58, C; 33, P) 

PLSR R2
C = 0.91, R2

P = 0.85 Suktanarak & 

Teerachaichayut (2017) 

RHSI Identification of fake eggs 120  

(72, C; 48, P) 

PLS-DA Accuracy = 100% Joshi et al. (2020) 

Pulsed infrared 

thermography 

Air chamber 18 

(no test set) 

- - Freni et al. (2018) 

VIS-NIR, Visible and Near-Infrared; NIR, Near-Infrared; NIR-HIS, Near-Infrared Hyperspectral Imaging; VIS-NIR-HIS, Visible and Near-Infrared 

Hyperspectral Imaging; RHSI, Raman Hyperspectral Imaging; C, calibration; P, prediction; PLSR, Partial Least Squares Regression; LDA, Linear Discriminant 

Analysis; RBF, Radial Basis function; ANN, Artificial Neural Network; SVM, Support Vector Machine; DT, Decision Tree; DDCM, Data Driven-based Class-

Modelling; FFNN, Feedforward Neural Network; SIMCA, Soft Independent Modelling of Class Analogy; SPA-SEL, Successive Projection Algorithm-

Stacking Ensemble Learning; SPA-SVR, Successive Projection Algorithm-Support Vector Regression; MLR, Multiple Linear Regression; r, coefficient of 

correlation; CV, Cross-Validation; RPD, Residual Prediction Deviation; R2, coefficient of determination.
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Figure 1 

 

 

 

Figure 1 - Color version for online only 
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Figure 2 

 

 

 

Figure 2 - Color version for online only 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

Figure 5 - Color version for online only 
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 Recent applications of spectroscopy to egg quality assessment are reviewed. 

 Spectroscopic techniques are useful tools for egg quality and freshness evaluation. 

 The industrial implementation still presents some challenges to be faced. 
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