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ABSTRACT (ESS) is a branch of the ML in which each pixel of the segmeated
ject holds a semantic meaning, and can be integrated intBARES
to improve the explainability of the detected objects, amaffer
roads conditions conclusion to the drivers [8].

XAl-powered models are associated with unsupervised ilegirn
(UL) to visualize the hidden structure of datal[9, 1]. AEs amass
of UL methods that are able to generate and visualize dadacee
dimensionality, and perform other ML tasks such as objecbge

Explainable autonomous driving systems (EADS) are emgrggn
cently as a combination of explainable artificial intellige (XAl)
and vehicular automation (VA). EADS explains events, amt-
vironments, and engine operations of an autonomous drixehgc-
ular, and it also delivers explainable results in an ordembnner.
Explainable semantic segmentation (ESS) plays an eskmigdn
building EADS, where it offers visual attention that helps trivers " . . o .
to be aware of the ambient objects irrespective if they aeglsp ”'“‘?”_ll‘]]- AEs comprise ’classuc, de-noising, contrae;tmpar;e,
pedestrians, animals, or other objects. In this paper, wpqze variational-AE (VAE) [1(_) 1_.L]. Mor_eover, the success of AdTshi-
the first ESS model for EADS based on the variational autcgerco ECtUres qu to thg flourishing .Of different sgperwsed Agissiruc-
(VAE), and it uses the multiscale second-order derivathvetsveen tured prediction, |:e.,' ‘semantlc segmentation, such asneeg-
the latent space and the encoder layers to capture the aresaf ~ €L and others [12, 13, 14]. Among all AEs, VAE is regulatgd b
the neurons’ responses. Our model is termed as My#&# and is the variational mference (VI) to optimize the postgnqstdbunon
bench-marked on the SYNTHIA and A2D2 datasets, where it outOf 1arge datasets, which leads to a better generalizatioe. VAES

performs the recent models in terms of image segmentatidriasie have been .Ut”iZEd in the ADS in the absence .Of XA, yyhe_re # ha
been used in the steering contiol[15], pedestrian predidti [1€],

Index Terms— Autonomous Driving System, VAE, XAl, ESS.  trajectory simulation in[17], and anomaly detection for BILE].

1. INTRODUCTION The first work towards explaining the VAE behavior is propbse
in [19], where it generates visual attention to show how theoder
side behaves. Moreover, the proposed attention map istyudu-
plicating the last layer of the encoder, thereafter it scabch feature
point in the filter channels by a global average pooling ofgtedi-
ent of the latent space concerning that layer. Factuakydtawback
4 .y ; of such attention lies in the unfair scaling, i.e., both tedband un-
fields[1,(2). Moreove_r, Al-powered autonorr_]o_us systems_ aizlb related feature points are scaled with the same factor. ©wttter
based on deep learning (DL) models comprising con_volutlne_a- hand, the first work that has been attempted to build the tagten
ral networks (CNN), autoencoders (AEs), generative aavials ¢ yho CNN for ADS is described i [6], where the attention it
networks (GANSs), and Bayesian models [3]. However, theceffe ., 5 eraging the activations a0 images; such attention hides the

tivengss of many recent models and systems are limited U0 oo 0t of the high and low activations, i.e., approximaaéention,
scarcity of explainability; such an explainability tramigls the ac- and is not stable for time-series segmentation

tions and decisions of the learned models to users who @panat To il the gap of explaining VAES in the EADS applications,

develop them. Explalnable art!f|0|al intelligence (XAI)asbranch we propose MgragVAElL, a novel ESS model for EADS applica-
of Al aims to explain the behaviors of the ML modéls [4]. - - .

An autonomous driving system (ADS) is referred to any vehicl tions. Moreover, the Mgrad/AE utilizes the multiscale second-
that can sense the surrounded environment without humamnoton orQer derivative between the latent space and. eaph encmyhxr, !
or with a limited level of supervision. ADS is also able to troh wh|c_h captures _the curvaturc_es of_neurons’ e_tctlvat_lons it hl_ne
engines, visualize objects, detect ak;normal actionsedmhicles mult[scale exp!alnable attention W'thOUt. unfalr .scallrrgiqe(aglng
and acti\l/ate breaks][5] Alyand ML influence ADS by automaly'c’a the flnal attention. Therefore, our contrlputhn is twofo(p) intro-
processing data oﬁeriﬁg instantaneous recommendat@osrec- ducing anovel ESS model for EADS applications, by using tii

' pervised VI and a supervised convolutional AE, diidproposing a

ognizing objects; such objects include pedestrians, tigegclers, - - . : )
and other moving and static objedts[[6, 7]. Explainable momoous novel multi scale_gra_dlent at_tent|on mapping SCheme fc$ Efm
driving systems (EADS) combine XAl and ADS to enhance the veProve EADS a_ppllcatlo_ns usmg_the second-order denvammrgtor.
hicular automation (VA), throughout interpreting sensdaya, men- The rest of this paper is organized as follows. Sedion 2ligts
toring vehicles behaviorls andgsemanticrfll seg mentia t1"1bient the VAE and the proposed explanation methodology. Sekiide-3
objegts [@). In this regar'd the explainablg se?nantic gaegahn scribes the architecture of MgradAE. The experimental results are
= ! given in Sectio . The conclusion and future works are tegan
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of Research within the PRIN program under project HOPE. Veeakhthe 1The source code is available at:

NVIDIA Corporation for the GPU donated. http://1ebil.di.unim.it/ngradvae/index.htm

The rapid advancement of artificial intelligence (Al) andamiae
learning (ML) has lead to the development of Al-powered au-
tonomous systems, which can sense, learn, decide anddnfera
many different applications including computer visiontural lan-
guage processing (NLP), robotics, autonomous driving, athdrs
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2. VAE AND THE EXPLAINABILITY METHODOLOGY
2.1. VAE

VAESs consist of many different encoding and decoding stagbere
each stage represents a different scale of dimensionhtyig con-
tracted or expanded by using learning paramefe(ahered =
{W, B}, W and B are weights and biases, respectively) [17]. The
learning parameters are used to perform many different mgpp-
cluding convolution, dense multiplication, deconvolatiaegular-
ization, etc, by utilizing several sets of representatitmsapture
neurons’ activations [20]. Also, for each setting amongapaeters
0, i.e., after each learning epoch, the gradient of the olitpes-
timated with respect to the input by employing the first-ordé®)
partial derivative to optimally reconstruct or generattada

VAE encompasses two main modules|[1(i):the inference (en-
coder) module that is used to map an image (or d&ta} {z; | z; €
RP i =1,..., N}, Dis the original dimensionalitylp = m x wherebdyag = {éa 0a, fix, 6x, Kz, oz}
n x ¢ which indicates rows, columns, and channel depth, respec-
tively), to a latent spac& = f(X) = {z = f(z;) € R, |i = 2.2. The explainability methodology

1,..., M}. Moreover, the encoder module reduces dimensionalityyeen semantic segmentation models comprise many different

of the data, i.e) < d < D, and itis used to infer the model like- ,4ing and decoding blocks to map data from the domain of the
lihood P(X16) [10]. (i) The generation (decoding) module that is original image to the corresponding masks [12, 13]. Moreaveu-
utilized to reconstruct the original dafé from the latent spac#. rons with different parametet$. , 6,) are employed to optimally fit
For a given dataX € R”, the encoding module creates a mappingmodels, where at each learning epoch the gradient that mesathe
f+R” — R, while the decoding module creates an inverse mapinstantaneous rate of change among the model parametersais m
pingg : RY — R”, which generates an approximation of the data:sured, by utilizing the first-order partial derivatidebetween each

X = g(Z;04) [21]. Similarly to AEs, VAE is regulated to find the pixel in the segmented mask with respect to the input imagg [2

Epochs
>

Fig. 1: The neurons activations and gradient over epochs.

reparameterized latent distribution follows a unit Gaassi

Loysp = min[Liec + KL(P[|Q)] @

optimal set of parameteréd, 6,) that achieve a better generalization
[14], and to attain the minimum reconstruction ldss.:

Lycc =min || X — (f 0 g) X ||z 1)

{6,043

whereE, represents the reconstruction error metric which can bge is used as?2i. —
IL.

computed by reconstruction cross-entropl, divergence, mean
square error (MSE), Frobenius norm,@rdivergencel[9].

VI is utilized to regulate the VAE, where two different lossare
optimized simultaneously for a better generalization [THe VI is
a Bayesian method that approximates an intractable postaver
a large dataset, throughout approximating the probahilgsities
by optimization. The VAE's encoder approximates the pastelis-
tribution Q(Z|X), which identifies the distributional shape of the
latent spaceZ according to the original dat¥. Moreover, the VAE
is characterized b@)(Z|X) optimization; such an optimization af-
fects the distribution of latent space to follow a Gaussian distri-
bution with a definite mean (which reflects the Gaussian’s center),
and standard deviation (which reflects the Gaussian’s shape).

Practically, the prior distribution of the latent spa@€Z) is con-
sidered (simply by duplicating the unit Gaussian distiifnutof th
original data manifold?(X)); subsequently, the pridP(Z) and the
approximated distributio(Z|X) are matched by utilizing the KL
divergencel[22]. The KL divergence is always positive anditeto
zero if and only if P and@ are almost equal in the distribution, and
itis mathematically defined &SL(P||Q) = X, P(z) log ggfg The
variational process is known as the reparameterizatiok, tand it
can be obtained by perturbirgwith a small noise:, thereafter di-
recting the optimizer to enforce the AE to reconstruct tha dan-
cerning the distribution oK. Moreover, the reparameterization trick
augments the generalization, where it produces differéesititol-
tions to be compared witk(Z) as in duplicating data [11].

Eventually, the VAE optimizes the reconstruction Id&s..
through minimization in accordance to Eqdfl (1), and it i® apti-
mized to minimize the distributional loss of the latent sphetween
Q(Z|X) andP(Z) usingKL(P||Q), that reflects which extent the

Considering a VAE with a single encoding layer; and a latent
layer Z, the first gradient betweefi and L., is estimated according
the partial derivative of each neuron activatigras a‘fi] . Moreover,
if an additional layerL.. lies betweenL.; and Z, then the chain
o= G2e2 [24]. The result of all derivations
gives the required rate of changes to updateGiven a period of
time, the neuron activations are changing; capturing saciations
draws an attention map that gives an insight into how the areur

respond among different inputs, and it is obtained by camnsid
the derivative of the gradient, i.€2? partial derivativegi% [25].
el

Visually, four pixels of an image with their associated roes
activations are illustrated in Fifg] 1, where the activatiane given
according to the non-linear ReLU functions [26] (the metfsoehlid
for other types of activations). The® gradient is the slope (ma-
genta dashed lines) at any point in the curves (blue curvd®re
the derivative of the gradient interprets how the curvesvarged
during a time (the red and green points). As it is observethfro
Fig.[, the gradient of activations can be stationary dudrmgriod
of the learning time, i.e., the"? derivative around the green points
is ~ 0, however, it can vary at a different period of time, i.e., #ié
derivative around the red pointsisor < 0. Accordingly, utilizing
the 2" derivative which measures how th& gradient of the acti-
vations of the neurons are changing, is able to capture thpdeal
behaviors of the neurons (as in deriving the acceleratiom §peed)
which reflects the curvatures of learned representations.

Due to the VI, the latent spacg hides many different represen-
tations that are generated to regularize the VAE; such septations
assist in building ESS attention utilizing the behaviorta heurons’
activations. To build a visual attention map, our MgredlE aggre-
gates all multiscale derivatives of the gradient of theriatayer Z
concerning each encoding layer, which represents a diffemale of
dimensionality. For a better visual explanation, our peggbatten-
tion map is enforced to follow the original mask distributidsy min-
imizing the reconstruction and KL losses between the recocted
mask, attention map, and original mask, simultaneously.
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Fig. 22 The Mgrad VAE block diagram.
3. Mgrad:VAE 4. EXPERIMENTAL RESULTS

. : To show the performance of our proposed MgM&E, we used a
Fig.[2 shows our proposed MgradAE, where it encompasses en- . . )
co%er decoder agd gttentiongmodules. Jointly, the erﬁ)mmkthe collection of SYNTHIA [28] and A2D2[[2D] datasets. Specifiga

; i ! 5600 samples are categorized to the corresponding semantseslas

decoder include three stages of down-scaling (convolatioeurons that h b loved. M the dataset partititietiai
with a stride of2) and up-scaling (de-convolutional neurons with a ; athave been employed. Vioreover, the dataset parti an-

stride of2), respectively. Moreover, the MgradAE visually ex- ;nSQWan?tLestln_g _sutl)zetts Cqmpllest\;\]m'.’ftl: 2_5_pr0t0((:jotl, "?"75% a:g
plains the learned representations utilizil§ gradient attention at o OTthe original data size are the franing and testing St )
each encoding scale, i.e., for each encoder's layer thetebavia spectively. For the sake of computation, in the qualitatimalysis,

corresponding visual attention map that reflects expldlibaht that the Mgrad VAE considers an input layer of the sizeld#8 x 256 x 3,

layer, and each attention is enforced to follow the maskidigion yvhere the output layer (.)f the S'Z.e.mg X 256 x 1. For all exper-
to help to contract the representations to the mapped mask. imental works, we consider a minibatch sizel6f and600 epochs

with a learning rate; = 0.001, where the; is decreased eveiy00
Moreover, for each layer, the tensor that holds all partsive- g rate e i

. L oo > SR epoch by a factor of0~2.
tives of the gradient is re-scaled for sake of optimizationmiatch
the mask size. Thereafter, all attention maps are aggeegateé  4.1. Qualitative analysis

fused with theLq,_, layer (d» is the total number of the decoder's oy Mgrag VAE visually explains the learned representations at the
layers); such a combination is considered as a novel formh@f t heyrons activations level through the attention mappinigere it
residual learning [27], which enforces the Mgs&E to learn the  qngiders tha* derivative of the gradient (i.e., 189 order deriva-
residual of mapping between the images and masks by usirtithe e of neurons activations) between the latent spaand the en-
gradient attention. Consequently, besides the expldibabf the coder layers. For each encoding layer, it produces a teastiocate
Mgrad VAE, it also assists in mask reconstruction by employing theg| partial derivatives, and the final attention map can beiokd by
curvatures of actlvgtlpns that are fused to Fhe decodgromuugly, concatenating and aggregating (see Fig. 2) all correspgridnsors
the Mgrad VAE optimizes two losses by using Adam [23] as: by using different methods including mean, addition, cdution,
) ) etc. Fig[3 shows the corresponding tensor unfolding (ofraagie
Lntgradsvae = min[Lvae + | X — Ongraa(Z, Le; )] (3)  from SYNTHIA dataset) of the attention that is obtained frime
last encoding layeL.,, which represents the last encoding scale as
where the first loss is obtained from the vanilla VAEI[11] tisatle-  a function of16 filters depth.
scribed at Eqn[{2), and the second loss is the reconstnucis be- Furthermore, Fid.]4 depicts the final aggregated attentiail o
tween the original mask and the aggregated attention attivetian  encoding layers, where it shows how our model can visualbjagx
module (see Fid.12). Furthermomy;y..q reflects the2®d deriva-  the global characteristics of the learned representatibras early
tive parameters between the latent spdceoncerning all encoder stage {.,). Moreover, it is also able to show the local character-
layersL.,, i.e., for each layer, there will be a corresponding tensoristics among representations that are captured from theyfaieed
of the size of that layer to allocate all partial derivativasd the features in the depth layers(, ).
final tensor holds the multiscale attention. Additionathe model Fig.[H shows different examples from the SYNTHIA testing set
is trained to minimize the loss between each mapped imagé&sand ground-truth (GT) masks, reconstructed masks, and thattte
corresponding segmentation mask, and it also optimizetosisehe- maps obtained from our MgradAE. As it can be noticed from
tween each attention map that is obtained at a differene sgih Fig. [4 and Fig[h, all attention maps which are obtained by our
the same mask; such an optimization enforces all encoderdag  Mgrad, VAE are contracted to the ground truth mask distribution
contract to the same data, and it compensates the encodmthit  (target domain), and they jointly utilize the multiscalteation map-
is raised from down-scaling the dimensionality in the ddptfers. ping (attention at each layer) to build a complimentary mapat
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Fig. 4. The multiscale attention of our proposed MgrsdE, where
GT represents the ground truth mask.

Fig. 5: Examples from the SYNTHIA testing set, where the orig-
inal images, GT masks, reconstructed masks, and the Mgadtl
attention maps are illustrated from left to right, respeyi.

better visual explainability. AUC-ROC SYNTHIA A2D2
To assess the semantic structure qualitatively, we empley t Reconstructed mask$  81.50% 95.44%
SSIM index [30] for both datasets. Moreover, we report theae Attention maps 83.20% 95.36%

tic similarities between the ground-truth masks, the @poading

reconstructed masks, and the attention maps in TAble 1. Table 22 AUC-ROC of the reconstructed masks and the attentions.

Sl e e SN TN over, we summarize the AUC-ROC metric between the GT masks
Reconstructed masky 97.57% f 60.38% and the reconstructed masks among all models in Table 3.
Attention maps 96.47% 55.71%

. AUC-ROC SYNTHIA A2D2

Table 1. SSIM of the reconstructed masks and the attentions. Deep VAE[17] 79,6007 TS0,
As it can be noticed from Tablg 1, the MgeAME produces Xception [31] 67.43% 95.19%

an attention map that preserves a similar SSIM index for ¢lsen- Our Mgrad > VAE reconstruction 81.50% 95.44%
structed mask by the decoder, which confirms our methodcogly Our Mgrad 2 VAE attention 83.20% 95.36%

reflects the high quality of the produced attentions. Table 3: AUC-ROC comparison with recent deep models.

4.2. Quantitative analysis As it can be seen from TaHlé 3, our proposed MgkéE model
Table[2 reports the pixel-wise predictive performance af pww-  outperforms all other models in reconstructing masks ateshéons.
posed MgragVAE, where we consider the average area under théMoreover, although the reconstruction module of our mosléyp-

receiver operator characteristic curve (AUC-ROC) indexclvire-
flects an aggregated measure of each pixel classificatiamazc
Moreover, we consider the same experimental setup thapéstesl
in sectior{ 4. For sake of numerical stability, the depth efdltput
layer has been adapted frar@8 x 256 x 1t0 128 x 256 x 3.

As it can be observed from Talilé 2, our proposed model offers

high performance at the pixel-level classification for bibit recon-
structed masks and attention maps. Moreover, our atteméapping
method outperforms the reconstruction obtained from treodier
side in terms of pixel-level classification in the SYNTHIAtedset.

4.3. Recent work comparison
In this section, we compare our proposed MgN&E model with

ical to the Deep VAEI[[11], the reconstruction performancetha
Mgrad, VAE is better than[[11] byl.90% and1.39% for the SYN-
THIA and A2D2 datasets, respectively, because of the rakbiu
sion between the decoder and attention modules of our model.

5. CONCLUSIONS

We proposed an explainable VAE model termed as the (M/tag)
to be utilized for XAl and EADS applications. Our model usks t
multiscale second-order derivative of the neurons’ atitiva of
the latent space concerning all other encoding layers. e
it captures the curvature of the learned representatiorsfeo a
better visual explainability of the VAE’s behavior througttention
mapping. Our proposed model outperforms all related degmee-

the recent deep learning models, where we consider the d&Ep V tation models in the quantitative analysis. In future worke plan

[11], and the Xception model [31] that has been built basethen
U-net architecture [13] and trained on ImageNet datasét [a@re-

to investigate the XAl in harsh environments and rough waath
conditions, where the ambient includes rain, snow, dusgt, étc.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

6. REFERENCES

Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese-Vi
cenzo Piuri, and Fabio Scotti, “A survey on unsupervised gen
erative models for exploratory data analysis and repratient
learning,” Acm computing surveys (csug021.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, aigglG
Macesanu, “A survey of deep learning techniques for au-
tonomous driving,” Journal of Field Roboticsvol. 37, no. 3,
pp. 362-386, 2020.

Alejandro Barredo Arrieta, Natalia Diaz-Rodrigueiavier
Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado; Sal
vador Garcia, Sergio Gil-Lopez, Daniel Molina, RicharerB
jamins, et al., “Explainable artificial intelligence (xaLon-
cepts, taxonomies, opportunities and challenges toward re
sponsible ai,"Information Fusionvol. 58, pp. 82-115, 2020.

David Gunning and David Aha, “Darpa’s explainable acidi
intelligence (xai) program,”’Al Magazine vol. 40, no. 2, pp.
44-58, 2019.

(17]

(18]

(19]

(20]

Junqging Wei, Jarrod M Snider, Junsung Kim, John M Dolan,[21]

Raj Rajkumar, and Bakhtiar Litkouhi, “Towards a viable au-
tonomous driving research platform,” Rroc of Intelligent
Vehicles Symposium (1/2013.

(22]
Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong&
“Deepdriving: Learning affordance for direct perceptiarail-
tonomous driving,” inProc. of ECCV 2015. 23]
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anim
Lopez, and Vladlen Koltun, “CARLA: An open urban driving
simulator,” inProc. of robot learning2017. [24]
A. Genovese, V. Piuri, F. Rundo, F. Scotti, and C. Spamjgin
“Pedestrian/cyclist distance estimation from a single irgh [25]
age: A cnn-based semantic segmentation approachPrdo.
of Industrial Technology (ICIT 20212021.
Mohanad Abukmeil, Stefano Ferrari, Angelo Genovesey-Vi [26]

cenzo Piuri, and Fabio Scotti, “On approximating the non-
negative rank: Applications to image reduction,” Rnoc. of
CIVEMSA 2020.

Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese;- V

(27]

cenzo Piuri, and Fabio Scotti, “Unsupervised learning from[28]

limited available data byp—NMF and dual autoencoder,” in
Proc. of ICIP, 2020.

Diederik P. Kingma and Max Welling, “Auto-encoding iear
tional bayes,” inProc. of ICLR 2014.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio &4a,
Nasser Kehtarnavaz, and Demetri Terzopoulos, “Image seg-
mentation using deep learning: A surveyarXiv preprint
arXiv:2001.055662020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox;néd:
Convolutional networks for biomedical image segmentgtion

in Proc. of Medical image computing and computer-assisteo[s

intervention 2015.

Yoshua Bengio, Aaron Courville, and Pascal Vincent,efiR
resentation learning: A review and new perspectivdg§EE

29]

0]

Trans. on Pattern Analysis and Machine Intelligeneel. 35, [31]
no. 8, pp. 1798-1828, 2013.
Alexander Amini, Wilko Schwarting, Guy Rosman, Bramdo (32]

Araki, Sertac Karaman, and Daniela Rus, “Variational ae for
end-to-end control of autonomous driving with novelty dete
tion and training de-biasing,” iRroc. of IROSIEEE, 2018.

[16] Atanas Poibrenski, Matthias Klusch, Igor Vozniak, aBlakis-

tian Muller, “M2p3: multimodal multi-pedestrian path plie-
tion by self-driving cars with egocentric vision,” iaroc. of
ACM Symposium on Applied Computii2§20.

Xinyu Chen, Jiajie Xu, Rui Zhou, Wei Chen, Junhua Famgl a
Chengfei Liu, “Trajvae: A variational autoencoder model fo
trajectory generation,” Neurocomputingvol. 428, pp. 332—
339, 2021.

Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo
Tonella, “Misbehaviour prediction for autonomous driving
systems,” inProc. of ICSE 2020.

Wengian Liu, Runze Li, Meng Zheng, Srikrishna Karanam,
Ziyan Wu, Bir Bhanu, Richard J Radke, and Octavia Camps,
“Towards visually explaining variational autoencodersijh
Proc. of CVPR2020.

Pierre Baldi, “Autoencoders, unsupervised learnamy] deep
architectures,” irProc. of Unsupervised and Transfer Learning
workshop 2012.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov, “Redgc
the dimensionality of data with neural networkSgiencevol.
313, no. 5786, pp. 504-507, 2006.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra, “Stochastic backpropagation and approximate infere
in deep generative models,” Rroc. of ICML, 2014.

Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” ifProc. of ICML, 2014.

William F Ames, Numerical methods for partial differential
equations Academic press, 2014.

Kai Fan, Ziteng Wang, Jeff Beck, James Kwok, and Kather-
ine Heller, “Fast second order stochastic backpropagdion
variational inference,” ifProc. of NIPS2015.

Vinod Nair and Geoffrey E Hinton, “Rectified linear ugiim-
prove restricted boltzmann machines,Hroc. of ICML, 2010.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun,
“Deep residual learning for image recognition,” Hroc. of
CVPR 2016.

Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabil-
lalonga, Bogdan Raducanu, Hamed Habibi Aghdam, Mikhail
Mozerov, Antonio M Lopez, and Joost van de Weijer, “Tempo-
ral coherence for active learning in videos, Rroc. of ICCVW
20109.

Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavie
Ricou, Rupesh Durgesh, Andrew S Chung, Lorenz Hauswald,
Viet Hoang Pham, Maximilian Muhlegg, Sebastian Dorn,
et al., “A2d2: Audi autonomous driving dataset,arXiv
preprint arXiv:2004.063202020.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli, “Image quality assessment: from error visiilid
structural similarity,” IEEE Trans. on image processingol.

13, no. 4, pp. 600-612, 2004.

Francois Chollet, “Xception: Deep learning with deptke
separable convolutions,” iAroc. of CVPR2017.

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hintdtm-
agenet classification with deep convolutional neural netabd
Proc. of NIP$2012.



	 Introduction
	 VAE and the explainability methodology
	 VAE
	 The explainability methodology

	 Mgrad2VAE
	 Experimental results
	 Qualitative analysis
	 Quantitative analysis
	 Recent work comparison

	 Conclusions
	 References

