
TOWARDS EXPLAINABLE SEMANTIC SEGMENTATION
FOR AUTONOMOUS DRIVING SYSTEMS BY MULTI-SCALE VARIATIONAL ATTENTION

Mohanad Abukmeil‡, Angelo Genovese‡, Vincenzo Piuri‡, Francesco Rundo†, and Fabio Scotti‡
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ABSTRACT

Explainable autonomous driving systems (EADS) are emerging re-
cently as a combination of explainable artificial intelligence (XAI)
and vehicular automation (VA). EADS explains events, ambient en-
vironments, and engine operations of an autonomous drivingvehic-
ular, and it also delivers explainable results in an orderlymanner.
Explainable semantic segmentation (ESS) plays an essential role in
building EADS, where it offers visual attention that helps the drivers
to be aware of the ambient objects irrespective if they are roads,
pedestrians, animals, or other objects. In this paper, we propose
the first ESS model for EADS based on the variational autoencoder
(VAE), and it uses the multiscale second-order derivativesbetween
the latent space and the encoder layers to capture the curvatures of
the neurons’ responses. Our model is termed as Mgrad2VAE and is
bench-marked on the SYNTHIA and A2D2 datasets, where it out-
performs the recent models in terms of image segmentation metrics.

Index Terms— Autonomous Driving System, VAE, XAI, ESS.

1. INTRODUCTION

The rapid advancement of artificial intelligence (AI) and machine
learning (ML) has lead to the development of AI-powered au-
tonomous systems, which can sense, learn, decide and interact for
many different applications including computer vision, natural lan-
guage processing (NLP), robotics, autonomous driving, andothers
fields[1, 2]. Moreover, AI-powered autonomous systems are build
based on deep learning (DL) models comprising convolutional neu-
ral networks (CNN), autoencoders (AEs), generative adversarial
networks (GANs), and Bayesian models [3]. However, the effec-
tiveness of many recent models and systems are limited due tothe
scarcity of explainability; such an explainability translates the ac-
tions and decisions of the learned models to users who operate and
develop them. Explainable artificial intelligence (XAI) isa branch
of AI aims to explain the behaviors of the ML models [4].

An autonomous driving system (ADS) is referred to any vehicle
that can sense the surrounded environment without human control,
or with a limited level of supervision. ADS is also able to control
engines, visualize objects, detect abnormal actions, drive vehicles,
and activate breaks [5]. AI and ML influence ADS by automatically
processing data, offering instantaneous recommendations, and rec-
ognizing objects; such objects include pedestrians, trees, bicyclers,
and other moving and static objects [6, 7]. Explainable autonomous
driving systems (EADS) combine XAI and ADS to enhance the ve-
hicular automation (VA), throughout interpreting sensorydata, men-
toring vehicles behaviors, and semantically segmenting the ambient
objects [4]. In this regard, the explainable semantic segmentation
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(ESS) is a branch of the ML in which each pixel of the segmentedob-
ject holds a semantic meaning, and can be integrated into theEADS
to improve the explainability of the detected objects, and to offer
roads conditions conclusion to the drivers [8].

XAI-powered models are associated with unsupervised learning
(UL) to visualize the hidden structure of data [9, 1]. AEs area class
of UL methods that are able to generate and visualize data, reduce
dimensionality, and perform other ML tasks such as object recog-
nition [10]. AEs comprise classic, de-noising, contractive, sparse,
variational-AE (VAE) [10, 11]. Moreover, the success of AEsarchi-
tectures led to the flourishing of different supervised AEs for struc-
tured prediction, i.e., semantic segmentation, such as Seg-net, U-
net, and others [12, 13, 14]. Among all AEs, VAE is regulated by
the variational inference (VI) to optimize the posterior distribution
of large datasets, which leads to a better generalization. The VAEs
have been utilized in the ADS in the absence of XAI, where it has
been used in the steering control [15], pedestrian prediction in [16],
trajectory simulation in [17], and anomaly detection for ADS [18].

The first work towards explaining the VAE behavior is proposed
in [19], where it generates visual attention to show how the encoder
side behaves. Moreover, the proposed attention map is builtby du-
plicating the last layer of the encoder, thereafter it scales each feature
point in the filter channels by a global average pooling of thegradi-
ent of the latent space concerning that layer. Factually, the drawback
of such attention lies in the unfair scaling, i.e., both related and un-
related feature points are scaled with the same factor. On the other
hand, the first work that has been attempted to build the attention
of the CNN for ADS is described in [6], where the attention is built
by averaging the activations of100 images; such attention hides the
effects of the high and low activations, i.e., approximatedattention,
and is not stable for time-series segmentation.

To fill the gap of explaining VAEs in the EADS applications,
we propose Mgrad2VAE1, a novel ESS model for EADS applica-
tions. Moreover, the Mgrad2VAE utilizes the multiscale second-
order derivative between the latent space and each encoder layer,
which captures the curvatures of neurons’ activations to build the
multiscale explainable attention without unfair scaling or averaging
the final attention. Therefore, our contribution is twofold: (i) intro-
ducing a novel ESS model for EADS applications, by using the unsu-
pervised VI and a supervised convolutional AE, and(ii) proposing a
novel multi-scale gradient attention mapping scheme for ESS to im-
prove EADS applications using the second-order derivativeoperator.
The rest of this paper is organized as follows. Section 2 highlights
the VAE and the proposed explanation methodology. Section 3de-
scribes the architecture of Mgrad2VAE. The experimental results are
given in Section 4. The conclusion and future works are reported in
Section 5.

1The source code is available at:
http://iebil.di.unimi.it/mgradvae/index.htm
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2. VAE AND THE EXPLAINABILITY METHODOLOGY

2.1. VAE

VAEs consist of many different encoding and decoding stages, where
each stage represents a different scale of dimensionality that is con-
tracted or expanded by using learning parametersθ (where θ =
{W,B}, W andB are weights and biases, respectively) [17]. The
learning parameters are used to perform many different mapping in-
cluding convolution, dense multiplication, deconvolution, regular-
ization, etc, by utilizing several sets of representationsto capture
neurons’ activations [20]. Also, for each setting among parameters
θ, i.e., after each learning epoch, the gradient of the outputis es-
timated with respect to the input by employing the first-order (1st)
partial derivative to optimally reconstruct or generate data.

VAE encompasses two main modules [11]:(i) the inference (en-
coder) module that is used to map an image (or data)X = {xi |xi ∈
R

D, i = 1 , . . . , N}, D is the original dimensionality (D = m ×
n × c which indicates rows, columns, and channel depth, respec-
tively), to a latent spaceZ = f(X) = {zi = f(xi) ∈ R

d, | i =
1 , . . . , M}. Moreover, the encoder module reduces dimensionality
of the data, i.e.,0 < d < D, and it is used to infer the model like-
lihoodP (X|θ) [10]. (ii) The generation (decoding) module that is
utilized to reconstruct the original datãX from the latent spaceZ.
For a given dataX ∈ R

D , the encoding module creates a mapping
f : RD → R

d, while the decoding module creates an inverse map-
ping g : Rd → R

D, which generates an approximation of the data:
X̃ = g(Z; θ̂d) [21]. Similarly to AEs, VAE is regulated to find the
optimal set of parameters (θ̂e, θ̂d) that achieve a better generalization
[14], and to attain the minimum reconstruction lossLrec:

Lrec
{θ̂e, θ̂d}

= min ‖X − (f ◦ g)X‖2Er (1)

whereEr represents the reconstruction error metric which can be
computed by reconstruction cross-entropy,β- divergence, mean
square error (MSE), Frobenius norm, orβ- divergence [9].

VI is utilized to regulate the VAE, where two different losses are
optimized simultaneously for a better generalization [11]. The VI is
a Bayesian method that approximates an intractable posterior over
a large dataset, throughout approximating the probabilitydensities
by optimization. The VAE’s encoder approximates the posterior dis-
tribution Q(Z|X), which identifies the distributional shape of the
latent spaceZ according to the original dataX. Moreover, the VAE
is characterized byQ(Z|X) optimization; such an optimization af-
fects the distribution of latent spaceZ to follow a Gaussian distri-
bution with a definite meanµ (which reflects the Gaussian’s center),
and standard deviationσ (which reflects the Gaussian’s shape).

Practically, the prior distribution of the latent spaceP (Z) is con-
sidered (simply by duplicating the unit Gaussian distribution of th
original data manifoldP (X)); subsequently, the priorP (Z) and the
approximated distributionQ(Z|X) are matched by utilizing the KL
divergence [22]. The KL divergence is always positive and tends to
zero if and only ifP andQ are almost equal in the distribution, and
it is mathematically defined asKL(P‖Q) = ΣxP (x) log P (x)

Q(x)
. The

variational process is known as the reparameterization trick, and it
can be obtained by perturbingσ with a small noiseǫ, thereafter di-
recting the optimizer to enforce the AE to reconstruct the data con-
cerning the distribution ofX. Moreover, the reparameterization trick
augments the generalization, where it produces different distribu-
tions to be compared withP (Z) as in duplicating data [11].

Eventually, the VAE optimizes the reconstruction lossLrec

through minimization in accordance to Eqn. (1), and it is also opti-
mized to minimize the distributional loss of the latent space between
Q(Z|X) andP (Z) usingKL(P‖Q), that reflects which extent the

Fig. 1: The neurons activations and gradient over epochs.

reparameterized latent distribution follows a unit Gaussian:

LθVAE
= min[Lrec +KL(P‖Q)] (2)

whereθVAE = {θ̂e, θ̂d, µ̂X , σ̂X , µ̂Z , σ̂Z}.

2.2. The explainability methodology

Deep semantic segmentation models comprise many differenten-
coding and decoding blocks to map data from the domain of the
original image to the corresponding masks [12, 13]. Moreover, neu-
rons with different parameters(θe, θd) are employed to optimally fit
models, where at each learning epoch the gradient that measures the
instantaneous rate of change among the model parameters is mea-
sured, by utilizing the first-order partial derivative∂ between each
pixel in the segmented mask with respect to the input image [23].

Considering a VAE with a single encoding layerLe1 and a latent
layerZ, the first gradient betweenZ andLe1 is estimated according
the partial derivative of each neuron activationzi as ∂zi

∂Le1
. Moreover,

if an additional layerLe2 lies betweenLe1 andZ, then the chain
rule is used as∂zi

∂Le1
= ∂zi

∂Le2

∂Le2

∂Le1
[24]. The result of all derivations

gives the required rate of changes to updateθ. Given a period of
time, the neuron activations are changing; capturing such variations
draws an attention map that gives an insight into how the neurons
respond among different inputs, and it is obtained by considering

the derivative of the gradient, i.e.,2nd partial derivative∂2zi
∂L2

e1

[25].

Visually, four pixels of an image with their associated neurons
activations are illustrated in Fig. 1, where the activations are given
according to the non-linear ReLU functions [26] (the methodis valid
for other types of activations). The1st gradient is the slope (ma-
genta dashed lines) at any point in the curves (blue curves),where
the derivative of the gradient interprets how the curves arevaried
during a time (the red and green points). As it is observed from
Fig. 1, the gradient of activations can be stationary duringa period
of the learning time, i.e., the2nd derivative around the green points
is≈ 0, however, it can vary at a different period of time, i.e., the2nd

derivative around the red points is> or < 0. Accordingly, utilizing
the2nd derivative which measures how the1st gradient of the acti-
vations of the neurons are changing, is able to capture the temporal
behaviors of the neurons (as in deriving the acceleration from speed)
which reflects the curvatures of learned representations.

Due to the VI, the latent spaceZ hides many different represen-
tations that are generated to regularize the VAE; such representations
assist in building ESS attention utilizing the behavior of the neurons’
activations. To build a visual attention map, our Mgrad2VAE aggre-
gates all multiscale derivatives of the gradient of the latent layerZ
concerning each encoding layer, which represents a different scale of
dimensionality. For a better visual explanation, our proposed atten-
tion map is enforced to follow the original mask distribution, by min-
imizing the reconstruction and KL losses between the reconstructed
mask, attention map, and original mask, simultaneously.



Fig. 2: The Mgrad2VAE block diagram.

3. Mgrad2VAE

Fig. 2 shows our proposed Mgrad2VAE, where it encompasses en-
coder, decoder, and attention modules. Jointly, the encoder and the
decoder include three stages of down-scaling (convolutional neurons
with a stride of2) and up-scaling (de-convolutional neurons with a
stride of2), respectively. Moreover, the Mgrad2VAE visually ex-
plains the learned representations utilizing2nd gradient attention at
each encoding scale, i.e., for each encoder’s layer there will be a
corresponding visual attention map that reflects explainability at that
layer, and each attention is enforced to follow the mask distribution
to help to contract the representations to the mapped mask.

Moreover, for each layer, the tensor that holds all partial deriva-
tives of the gradient is re-scaled for sake of optimization to match
the mask size. Thereafter, all attention maps are aggregated and
fused with theLdn−1

layer (dn is the total number of the decoder’s
layers); such a combination is considered as a novel form of the
residual learning [27], which enforces the Mgrad2VAE to learn the
residual of mapping between the images and masks by using the2nd

gradient attention. Consequently, besides the explainability of the
Mgrad2VAE, it also assists in mask reconstruction by employing the
curvatures of activations that are fused to the decoder. Accordingly,
the Mgrad2VAE optimizes two losses by using Adam [23] as:

LMgrad2VAE = min[LVAE + ‖X − θMgrad(Z,Lei)‖
2
Er] (3)

where the first loss is obtained from the vanilla VAE [11] thatis de-
scribed at Eqn. (2), and the second loss is the reconstruction loss be-
tween the original mask and the aggregated attention at the attention
module (see Fig. 2). Furthermore,θMgrad reflects the2nd deriva-
tive parameters between the latent spaceZ concerning all encoder
layersLei , i.e., for each layer, there will be a corresponding tensor
of the size of that layer to allocate all partial derivatives, and the
final tensor holds the multiscale attention. Additionally,the model
is trained to minimize the loss between each mapped image andits
corresponding segmentation mask, and it also optimizes theloss be-
tween each attention map that is obtained at a different scale with
the same mask; such an optimization enforces all encoder layers to
contract to the same data, and it compensates the encoding loss that
is raised from down-scaling the dimensionality in the depthlayers.

4. EXPERIMENTAL RESULTS

To show the performance of our proposed Mgrad2VAE, we used a
collection of SYNTHIA [28] and A2D2 [29] datasets. Specifically,
5600 samples are categorized to the corresponding semantic classes
that have been employed. Moreover, the dataset partition tothe train-
ing and testing subsets complies with75 : 25 protocol, i.e.,75% and
25% of the original data size are the training and testing subsets, re-
spectively. For the sake of computation, in the qualitativeanalysis,
the Mgrad2VAE considers an input layer of the size of128×256×3,
where the output layer of the size of128 × 256 × 1. For all exper-
imental works, we consider a minibatch size of16, and600 epochs
with a learning rateη = 0.001, where theη is decreased every100
epoch by a factor of10−2.

4.1. Qualitative analysis
Our Mgrad2VAE visually explains the learned representations at the
neurons activations level through the attention mapping, where it
considers the1st derivative of the gradient (i.e., the2nd order deriva-
tive of neurons activations) between the latent spaceZ and the en-
coder layers. For each encoding layer, it produces a tensor to allocate
all partial derivatives, and the final attention map can be obtained by
concatenating and aggregating (see Fig. 2) all corresponding tensors
by using different methods including mean, addition, convolution,
etc. Fig. 3 shows the corresponding tensor unfolding (of an image
from SYNTHIA dataset) of the attention that is obtained fromthe
last encoding layerLe4 , which represents the last encoding scale as
a function of16 filters depth.

Furthermore, Fig. 4 depicts the final aggregated attention of all
encoding layers, where it shows how our model can visually explain
the global characteristics of the learned representationsat an early
stage (Le1 ). Moreover, it is also able to show the local character-
istics among representations that are captured from the fine-grained
features in the depth layers (Le4 ).

Fig. 5 shows different examples from the SYNTHIA testing set,
ground-truth (GT) masks, reconstructed masks, and the attention
maps obtained from our Mgrad2VAE. As it can be noticed from
Fig. 4 and Fig. 5, all attention maps which are obtained by our
Mgrad2VAE are contracted to the ground truth mask distribution
(target domain), and they jointly utilize the multiscale attention map-
ping (attention at each layer) to build a complimentary map for a



Fig. 3: The2nd order derivative unfolding ofZ with respect toLe4 .

Fig. 4: The multiscale attention of our proposed Mgrad2VAE, where
GT represents the ground truth mask.

better visual explainability.
To assess the semantic structure qualitatively, we employ the

SSIM index [30] for both datasets. Moreover, we report the seman-
tic similarities between the ground-truth masks, the corresponding
reconstructed masks, and the attention maps in Table 1.

SSIM Index SYNTHIA A2D2
Reconstructed masks 97.57% 60.38%

Attention maps 96.47% 55.71%

Table 1: SSIM of the reconstructed masks and the attentions.

As it can be noticed from Table 1, the Mgrad2VAE produces
an attention map that preserves a similar SSIM index for the recon-
structed mask by the decoder, which confirms our methodologyand
reflects the high quality of the produced attentions.

4.2. Quantitative analysis
Table 2 reports the pixel-wise predictive performance of our pro-
posed Mgrad2VAE, where we consider the average area under the
receiver operator characteristic curve (AUC-ROC) index which re-
flects an aggregated measure of each pixel classification accuracy.
Moreover, we consider the same experimental setup that is reported
in section 4. For sake of numerical stability, the depth of the output
layer has been adapted from128× 256× 1 to 128× 256× 3.

As it can be observed from Table 2, our proposed model offers
high performance at the pixel-level classification for boththe recon-
structed masks and attention maps. Moreover, our attentionmapping
method outperforms the reconstruction obtained from the decoder
side in terms of pixel-level classification in the SYNTHIA dataset.

4.3. Recent work comparison
In this section, we compare our proposed Mgrad2VAE model with
the recent deep learning models, where we consider the deep VAE
[11], and the Xception model [31] that has been built based onthe
U-net architecture [13] and trained on ImageNet dataset [32]. More-

Fig. 5: Examples from the SYNTHIA testing set, where the orig-
inal images, GT masks, reconstructed masks, and the Mgrad2VAE
attention maps are illustrated from left to right, respectively.

AUC-ROC SYNTHIA A2D2
Reconstructed masks 81.50% 95.44%

Attention maps 83.20% 95.36%

Table 2: AUC-ROC of the reconstructed masks and the attentions.

over, we summarize the AUC-ROC metric between the GT masks
and the reconstructed masks among all models in Table 3.

AUC-ROC SYNTHIA A2D2
Deep VAE [11] 79.60% 94.05%

Xception [31] 67.43% 95.19%

Our Mgrad 2VAE reconstruction 81.50% 95.44%

Our Mgrad 2VAE attention 83.20% 95.36%

Table 3: AUC-ROC comparison with recent deep models.

As it can be seen from Table 3, our proposed Mgrad2VAE model
outperforms all other models in reconstructing masks and attentions.
Moreover, although the reconstruction module of our model is typ-
ical to the Deep VAE [11], the reconstruction performance ofthe
Mgrad2VAE is better than [11] by1.90% and1.39% for the SYN-
THIA and A2D2 datasets, respectively, because of the residual fu-
sion between the decoder and attention modules of our model.

5. CONCLUSIONS
We proposed an explainable VAE model termed as the (Mgrad2VAE)
to be utilized for XAI and EADS applications. Our model uses the
multiscale second-order derivative of the neurons’ activations of
the latent space concerning all other encoding layers. Moreover,
it captures the curvature of the learned representations tooffer a
better visual explainability of the VAE’s behavior throughattention
mapping. Our proposed model outperforms all related deep segmen-
tation models in the quantitative analysis. In future works, we plan
to investigate the XAI in harsh environments and rough weather
conditions, where the ambient includes rain, snow, dust, fog, etc.
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