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Abstract 34 

The present experiment used untargeted metabolomics to investigate the short-term metabolic 35 

changes induced in wheat seedlings by the specialized metabolite umbelliferone, an allelochemical. 36 

We used 10 day-old wheat seedlings treated with 104 µM umbelliferone over a time course 37 

experiment covering 6 time points (0 h, 6 h, 12 h, 24 h, 48 h, and 96 h), and compared the metabolomic 38 

changes to control (mock-treated) plants. Using gas chromatography mass spectrometry (GC-MS)-39 

based metabolomics, we obtained quantitative data on 177 metabolites that were derivatized (either 40 

derivatized singly or multiple times) or not, representing 139 non-redundant (unique) metabolites. Of 41 

these 139 metabolites, 118 were associated with a unique Human Metabolome Database (HMDB) 42 

identifier, while 113 were associated with a Kyoto Encyclopedia of Genes and Genomes (KEGG) 43 

identifier. Relative quantification of these metabolites across the time-course of umbelliferone 44 

treatment revealed 22 compounds (sugars, fatty acids, secondary metabolites, organic acids, and 45 

amino acids) that changed significantly (repeated measures ANOVA, P-value < 0.05) over time. 46 

Using multivariate partial least squares discriminant analysis (PLS-DA), we showed the grouping of 47 

samples based on time-course across the control and umbelliferone-treated plants, whereas the 48 

metabolite-metabolite Pearson correlation revealed tightly formed clusters of umbelliferone-derived 49 

metabolites, fatty acids, amino acids, and carbohydrates. Also, the time-course umbelliferone 50 

treatment revealed that phospho-L-serine, maltose, and dehydroquinic acid were the top three 51 

metabolites showing highest importance in discrimination among the time-points. Overall, the 52 

biochemical changes converge towards a mechanistic explanation of the plant metabolic responses 53 

induced by umbelliferone. In particular, the perturbation of metabolites involved in tryptophan 54 

metabolism, as well as the imbalance of the shikimate pathways, which are strictly interconnected, 55 

were significantly altered by the treatment, suggesting a possible mechanism of action of this natural 56 

compound. 57 

Keywords: metabolomics, gas chromatography mass-spectrometry, elicitation, polar, time-course, 58 

phytotoxicity, allelochemicals. 59 

 60 

 61 

Introduction 62 

Allelopathy is a complex ecological phenomenon, and refers to the direct and/or indirect effects of 63 

one organism (plant, insect, etc.) on another through the production and release of specialized 64 
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chemical compounds into the environment [1]. Due to the complexity of interpretation and analysis, 65 

the elucidation of allelopathy using chemical signatures is a challenge which requires expertise in 66 

diverse scientific fields, and the use of multidisciplinary tools and approaches [2]. In recent years, to 67 

unravel the ecological roles of specialized metabolites, rapid advancements have made use of –omics 68 

techniques and/or targeted and untargeted metabolic profiling of plant materials [3-6]. Techniques 69 

such as transcriptomics, proteomics, and metabolomics allow simultaneous analysis of the total 70 

molecular and biochemical constituents of a given sample [7]. In allelopathy studies, the use of 71 

metabolomics as an analytical technique allows identification and quantification of both primary and 72 

specialized metabolites in complex samples [8, 9]. Moreover, metabolomics is a useful tool in 73 

understanding the response to biotic and abiotic stress, for the determination of complex pathways of 74 

primary and specialized metabolite biosynthesis, and providing a broader understanding of biological 75 

activity and mode of action of critical specialized metabolites [6, 10]. In fact, metabolomics as a 76 

technique best represents the molecular phenotype, since it directly reflects the underlying 77 

biochemical activity and state of cells, tissues, and organism, being closest to the functional 78 

phenotype [11]. 79 

Among noteworthy allelochemicals, coumarins, which derive from the lactonization of o-80 

hydroxycinnamic acid, is a class of specialized metabolites that are widely distributed in the plant 81 

kingdom, and they are synthesized by almost all higher plants [12], playing a pivotal role in both 82 

plant communication and defense [13]. One coumarin, umbelliferone, so named because of its wide 83 

occurrence within the Umbelliferae family, is an extremely biologically active compound widely 84 

distributed in the plant kingdom (Asteraceae, Rutaceae, Acanthaceae, and Hydrangeaceae, among 85 

others) [14]. Umbelliferone accumulates and is released to the environment through volatilization and 86 

root exudation [15-17]. The critical ecological role of umbelliferone has been demonstrated in several 87 

studies. For example, Minamikawa et al. [18] showed that umbelliferone production is induced in 88 

response to infection by plant pathogens. Similarly, it was noted, in the medicinal plant Chamomilla 89 

recutita, that under abiotic and biotic (powdery mildew Erysiphe cichoracearum) stress conditions, 90 

umbelliferone concentration increased to an extreme degree [19]. Those results suggest that this 91 

specialized metabolite could play a pivotal role in some plants as a first line of defense. This 92 

hypothesis was further confirmed by studies from Yang et al. [20], which highlighted its ability to 93 

suppress the Ralstonia solanacearum-induced wilting disease process by reducing fungi colonization 94 

and proliferation, and by Hamerski et al. [21], who demonstrated that extract of fungal cell wall acts 95 

as elicitor in Amni majus, increasing umbelliferone production. Umbelliferone is also involved in 96 

plant defense against herbivores, acting as a repellent interfering with the bitter gustatory receptor 97 

neurons of fruit flies [22]. Finally, it has been shown that umbelliferone determined the chemotactic 98 
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movement of Rhizobium and Agrobacterium across chemical gradients towards lower levels of 99 

inhibitors and higher levels of potential nutrients [23]. Concerning its phytotoxic potential, several 100 

studies have demonstrated that this molecule strongly affects both plant growth and development, 101 

inducing reactive oxygen species (ROS) accumulation, chlorophyll degradation, alteration of root 102 

morphology, and ROS-induced programmed cell death [24-26]. Moreland and Novitzy [27] found 103 

that umbelliferone, at relatively high concentrations, inhibits functions in isolated chloroplasts and 104 

mitochondria, whereas Einhellig [28] demonstrated that concentrations of umbelliferone that reduce 105 

Glycine max seedling growth also decreased leaf water potential, stomatal conductance, and the 106 

transpiration ratio. 107 

Although several evidence regarding umbelliferone phytotoxicity are reported in the bibliography, 108 

such information is quite dated and does not unveil the metabolic pathways altered by the molecule. 109 

Moreover, it is widely known that allelochemicals could have a multi-target effect leading to a series 110 

of cascade effects, finally resulting in the inhibition of plant growth and/or plant death. Therefore, to 111 

identify their mode of action, it is important to focus attention on time-course experiments that 112 

evaluate the short term effects of these chemicals. This approach could lead to identifying the primary 113 

metabolic pathways affected. The main purpose of this study was to evaluate the short-term effect of 114 

umbelliferone on seedlings of durum wheat (Triticum durum) – a crop species often employed in 115 

phytotoxicity experiments due to its sensitivity to phytotoxins [29] – in order to identify the impact 116 

of this molecule on plant metabolism. 117 

 118 

2. Materials and Methods 119 

2.1. Chemicals and Reagents 120 

Methanol for GC-MS SupraSolv® (1.00837), chloroform for GC-MS SupraSolv® (1.02432), N-121 

Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) ≥98.5% (69479), pyridine ≥99% (270407), 122 

methoxyamine hydrochloride 98% (226904), umbelliferone 99% (H24003), ribitol ≥99% (A5502), 123 

and alkanes mixture C10-C40 (68281) were acquired from Sigma Aldrich (Italy).  124 

 125 

2.2 Plant growth conditions and elicitor treatments 126 

Durum wheat (Triticum durum L. cv. Opera) seeds were germinated in Petri dishes (9 cm) in a growth 127 

chamber at 25°C, 70% humidity, with a photoperiod of 16 / 8 (light / dark), and light intensity of 90 128 

mol m-2 s-1 supplied by a cool white fluorescent lamp (Polylux XL FT8, 55W 8440). Immediately 129 
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after germination, uniform seedlings were transferred to a 4.5 L hydroponic system and grown in a 130 

modified Hoagland solution formulated as follows: KNO3 (10 mM); MgSO4 (100 µM); CaSO4 (400 131 

µM); KCl (5 µM); K2SO4 (200 µM); K H2PO4 (175 µM); H3BO3 (2.5 µM); MnSO4 (0.2 µM); ZnSO4 132 

(0.2 µM); NaMoO4 (0.05 µM); CuSO4 (0.05 µM); Fe-EDTA (200 µM). The solution was changed 133 

every other day and continuously oxygenated using an air bubble stone. 134 

 135 

2.2.1 Dose-response curve 136 

After the first true leaf formation (10 d from germination), wheat seedlings (a pool of 30 seedlings 137 

per replicate and treatment) were selected for uniformity in growth, and were transferred into 138 

continuously oxygenated hydroponic solutions enriched with different concentrations of 139 

umbelliferone: 0, 12.5, 25, 50, 100, 200, and 400 µM. After 10 days of treatment, the whole plants 140 

were collected, dried in an oven at 40°C, and weighed to monitor changes in total fresh weight (FW). 141 

Umbelliferone was first dissolved in ethanol (0.1%, w/v) and then poured into the nutrient solution 142 

prepared in deionized water. The same amount of ethanol was added to the mock treatments (control), 143 

and the experiment was replicated five times (n = 5). 144 

 145 

2.2.2 Short-term effect of umbelliferone treatment 146 

To study the short-term effects of umbelliferone on the wheat metabolome, seedlings (a pool of 10 147 

seedlings per replicate, time point, and treatment) were grown for 10 days and were then treated with 148 

104 µM of umbelliferone (the ED50 concentration was calculated from a dose-response curve). Plant 149 

materials were collected after 0 h (T0), 6 h (T1), 12 h (T2), 24 h (T3), 48 h (T4), and 96 h (T5) of 150 

umbelliferone treatment, and a parallel set of control plants (mock treated with same volume of 151 

ethanol as previously described) with the same time points. In order to avoid metabolic fluctuations 152 

induced by plant circadian rhythms, all the treatments were applied in order to allow plant collection 153 

at the same hour of the day (12:00) (i.e., plants belonging to treatment T1 were treated at 06:00, T2 154 

at 00:00, and so on). After collection, the plant materials were immediately snap frozen for 155 

metabolomic studies. The experiment was replicated five times (n = 5). 156 

2.3. Metabolite extraction and sample derivatization 157 

Plant materials were collected at the middle of the light period, and whole plants were immediately 158 

snap frozen in liquid nitrogen to quench the endogenous metabolism. Freshly homogenized (100 mg) 159 

plant material was obtained from each biological sample (plant) and replicates. These were 160 

transferred to 2 mL microcentrifuge round bottom screw cap tubes (Eppendorf). Extraction was done 161 

by adding 1400 µL of methanol (at -20°C) and vortexing for 10 s after addition of 60 µL ribitol (0.2 162 
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mg/mL stock in ddH2O) as an internal quantitative standard for the polar phase. Samples were 163 

transferred in a thermomixer at 70C and were shaken for 10 min (950 rpm) and were then further 164 

centrifuged for 10 min at 11000 g. The supernatants were collected and transferred to glass vials 165 

where 750 µL CHCl3 (-20°C) and 1500 µL ddH2O (4°C) were sequentially added. All the samples 166 

were vortexed for 10 s and then centrifuged for another 15 min at 2200 g. Upper polar phase (150 167 

µL) for each replicate was collected, transferred to a 1.5 mL tube and dried in a vacuum concentrator 168 

without heating. Before freezing and storing at -80°C, the tubes were filled with argon and placed in 169 

a plastic bag with silica beads (to avoid moisture and hydration during short-term storage). Before 170 

derivatization, stored samples were placed in a vacuum concentrator for 30 min to eliminate any trace 171 

of humidity. Then, 40 µL methoxyamine hydrochloride (20 mg/mL in pyridine) was added to the 172 

dried samples, which were then incubated for 2 h in a Thermomixer (950 rpm) at 37C. 173 

Methoxyaminated samples were then silylated by adding 70 µL of MSTFA to the aliquots. Samples 174 

were further shaken for 30 min at 37C. Derivatized samples (110 µL) were then transferred into 175 

glass vials suitable for the GC/MS autosampler for analysis. 176 

 177 

2.4. GC-quadrupole/MS analysis 178 

The derivatized extracts were injected into a TG-5MS capillary column (30 m x 0.25 mm x 0.25 µm) 179 

(Thermo Fisher Scientific, Waltham, MA, USA) using a gas chromatograph apparatus (Trace GC 180 

1310, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a single quadrupole mass 181 

spectrometer (ISQ LT, Thermo Fisher Scientific, Waltham, MA, USA). Injector and source were set 182 

at 250°C and 260°C, respectively. One µl of sample was injected in splitless mode with a helium flow 183 

of 1 mL/min using the following programmed temperature: isothermal 5 min at 70°C followed by a 184 

5°C/ min ramp to 350°C and a final 5 min heating at 330°C. Mass spectra were recorded in electronic 185 

impact (EI) mode at 70 eV, scanning at 40-600 m/z range, scan time 0.2 s. Mass spectrometric solvent 186 

delay was settled as 9 min. Pooled samples that served as quality controls (QCs), n-alkane standards, 187 

and blank solvents (pyridine) were injected at scheduled intervals for instrumental performance, 188 

tentative identification, and monitoring of shifts in retention indices (RI).  189 

2.5 GC/MS Analysis and data acquisition 190 

2.5.1 GC/MS data analysis using MS-DIAL  191 

Raw data (.RAW) from the single quadrupole instrument was converted to .mzML format with the 192 

MSConvertGUI from ProteoWizard. MS-DIAL, with open source publicly available EI spectra 193 
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library, was used for raw peaks extraction, and the data baseline filtering and calibration of the 194 

baseline, peak alignment, deconvolution analysis, peak identification, and integration of the peak 195 

height were essentially followed as described [30]. An average peak width of 20 scans and a minimum 196 

peak height of 1000 amplitudes was applied for peak detection, and a sigma window value of 0.5, EI 197 

spectra cut-off of 5000 amplitudes was implemented for deconvolution. For identification, the 198 

retention time tolerance was 0.2 min, the m/z tolerance was 0.5 Da, the EI similarity cut-off was 60%, 199 

and the identification score cut-off was 80%. In the alignment parameters setting process, the 200 

retention time tolerance was 0.5 min, and retention time factor was 0.5. For MS-DIAL data 201 

annotations, we used publicly available libraries (both positive and negative) for compound 202 

identification, based on the mass spectral pattern as compared to EI spectral libraries such as NIST 203 

Mass Spectral Reference Library (NIST14/2014; National Institute of Standards and Technology, 204 

USA; with EI- MS data of 242,466 compounds), the MSRI spectral libraries from Golm Metabolome 205 

Database [31] available from Max-Planck-Institute for Plant Physiology, Golm, Germany 206 

(http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html), MassBank [32], and MoNA (Mass Bank 207 

of North America, (http://mona.fiehnlab.ucdavis.edu/).For metabolite annotation and assignment of 208 

the EI-MS spectra, we followed the metabolomics standards initiative (MSI) guidelines for metabolite 209 

identification [33], i.e., Level 2: identification was based on spectral database (match factor >80%) 210 

and Level 3: only compound groups were known, e.g. specific ions and RT regions of metabolites. 211 

 212 

2.6 Statistical analyses  213 

For metabolomic experiments, standard statistical analyses (summary statistics) were performed 214 

using the statistical software R (Version 3.5.3, http://www.R-project.org) [34, 35]. Normalized 215 

(internal standard), transformed (log2), imputed, and scaled peak areas representative of relative 216 

metabolite amounts were obtained using DeviumWeb [36], and are presented in tables and figures. 217 

Values reported in all tables and text are presented as means, and differences were considered 218 

significant when P < 0.05 (nominal P-values).  219 

The FW responses to different doses of umbelliferone were evaluated by a nonlinear regression model 220 

using a log-logistic equation, largely employed in phytotoxicity screenings [37] that allowed to 221 

estimate the ED50 parameter, the dose required to reduce 50% of the total response. The ED50 value 222 

was then used as the key concentration for the short-term metabolomics experiments. 223 

 224 

2.6.1 Univariate analysis 225 

ANalysis Of VAriance (ANOVA) was performed using R. Hierarchical clustering analysis (HCA) 226 

using average linkage clustering was performed on Pearson distances from the metabolite abundance 227 

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://mona.fiehnlab.ucdavis.edu/
http://www.r-project.org/
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data, using PermutMatrix [38]. For heat maps, data were normalized using the z-scores of the intensity 228 

counts for each of the metabolites under the peak areas.  229 

 230 

2.6.2 Multivariate analysis 231 

Exploratory multivariate analysis was done using R (version 3.6.1). The sample-sample distance 232 

clustering was obtained via package Pheatmap, using Pearson correlation and default parameters. The 233 

exploratory interactive MDS plots were done with the Glimma package. Other various dimension 234 

reduction analysis via principal component analysis (PCA) of overall, separate control, and treated 235 

data was performed with the FactoMineR and factoextra packages. PCA and partial least-squares 236 

discriminant (PLS-DA) analyses were performed using the DeviumWeb package [39], where the 237 

output consisted of score plots to visualize the contrast between different samples and loading plots 238 

to explain the cluster separation. Data were scaled with unit variance, without any transformation. 239 

Partial least-squares discriminant analysis (PLS-DA) was used to highlight differences between the 240 

metabolic phenotypes at six time points (0 h, 6 h, 12 h, 24 h, 48 h, and 96 h). 241 

 242 

2.7 Time-course analysis of control and umbelliferone-treated metabolomes 243 

For short time series metabolomics data analysis, we used the Short Time series Expression Miner 244 

(STEM) tool [40], originally used for short microarray time series experiments (3–8 time points for 245 

>~80% of the datasets). The novel STEM clustering takes advantage of the few time points in a 246 

dataset, and it first selects a set of distinct and representative temporal expression profiles (i.e., model 247 

profiles), where these model profiles are independent of data. The clustering algorithm then assigns 248 

each feature (i.e., metabolite) passing the filtering criteria to the model profile that most closely 249 

matches the feature’s abundance profile as determined by the correlation coefficient, and determines 250 

which profiles have a statistically significant higher number of features assigned using a permutation 251 

test. STEM was used as a Java implementation with a graphical user interface, available at 252 

http://www.cs.cmu.edu/~jernst/st/ for clustering the metabolite accumulation patterns according to 253 

time points. For our analysis, we used the following criteria: no additional normalization of the data; 254 

0 added as the starting point; number of model profiles = 20; maximum unit change in model profiles 255 

between time points = 3. To explain the model profiles, we used an expression of -1 for decreased 256 

levels of a metabolite, 0 for unchanged levels of a metabolite, and 1 for increased levels of a 257 

metabolite. For instance, a model profile with an expression of -1, -1, 0, 1, 1, 0 represents decreased, 258 

decreased, unchanged, increased, increased, and unchanged levels of a given set of metabolites for 259 

the 6 time points in the given model profile.  260 

 261 

http://www.cs.cmu.edu/~jernst/st/
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2.8 Pathway enrichment and clustering analysis 262 

Pathway enrichment analysis was performed at MetaboAnalyst (www.Metaboanalyst.ca) [41], and 263 

Chemical Translation Service (CTS: http://cts.fiehnlab.ucdavis.edu/conversion/batch) was used to 264 

convert the common chemical names into their Kyoto Encyclopedia of Genes and Genomes (KEGG), 265 

Human Metabolome Database (HMDB), CAS, PubChem Compound ID (CID), LipidMAPS IDs and 266 

InChiKeys identifiers.  267 

 268 

2.9 Data sharing 269 

The raw datasets and the metadata obtained from the GC-EI-MS platform have been deposited at the 270 

Metabolomics Workbench (Study ID: ST001056, http://dx.doi.org/10.21228/M81M4X). 271 

 272 

3. Results and Discussion  273 

 274 

3.1 Dose response curve based on wheat biomass production in response to umbelliferone  275 

The dose response curve built on the variation of wheat fresh biomass (FW), in response to increasing 276 

doses of umbelliferone (0-400 µM), pointed out a significant dose-dependent phytotoxic effect (Fig. 277 

1). The lowest concentration (12.5 µM) did not affect plant growth. At 25 µM, a 17% reduction of 278 

biomass was observed, and the reduction reached 82% at the highest concentration (400 µM). The 279 

non-linear regression fit of FW raw data determined an ED50 value of 104 µM. Inhibitory effects of 280 

umbelliferone to plants such as Festuca rubra, Medicago sativa and Lactuca sativa have been 281 

reported [17, 42]. Based on the optimized umbelliferone concentration, we designed the experiment 282 

to investigate the metabolomic changes in seedlings exposed to 6 h, 12 h, 24 h, 48 h, and 96 h of 283 

umbelliferone treatment, as compared with the controls (mock treated) (Figure 2). 284 

 285 

3.2 Cataloging the wheat seedling metabolome  286 

Using GC-MS, we obtained quantitative data on 177 metabolites that were derivatized (either 287 

derivatized singly or multiple times) or not, representing 139 non-redundant (unique) metabolites. Of 288 

these 139 metabolites, 118 were associated with a unique HMDB identifier, while 113 were 289 

associated with a KEGG identifier. The derivatized metabolites included sugars (monosaccharides, 290 

http://www.metaboanalyst.ca/
http://cts.fiehnlab.ucdavis.edu/conversion/batch


10 
 

disaccharides), sugar alcohols, sugar acids, dipeptides, organic acids, amino acids, phosphates, 291 

polyamines, purines, and pyrimidines, while the non-derivatized metabolites included fatty acids, 292 

among others. We also captured several known secondary / specialized metabolites such as phenolic 293 

compounds (polyphenols and flavonoids), i.e., pyrocatechol, protocatechuic acid, chlorogenic acid, 294 

pyrogallol, homovanillate, sinapaldehyde, catechin, caffeine, and myricetin; and others, such as 295 

phytol and quinolinic acid. We also captured the modified (metabolized) forms of umbelliferone, i.e., 296 

4-methylumbelliferone and psoralen. These metabolites belonged to 50 different KEGG-based 297 

metabolic pathways (Supplementary Figure 1), with the top pathways belonging to arginine and 298 

proline metabolism, glutathione metabolism, aminoacyl-tRNA biosynthesis (all P-value < 0.05), 299 

taurine and hypotaurine metabolism, tryptophan metabolism, beta-alanine metabolism, isoquinoline 300 

alkaloid biosynthesis, phenylalanine, tyrosine and tryptophan metabolism, alanine, aspartate and 301 

glutamate metabolism (all P-value < 0.1), and indole alkaloid biosynthesis, among others 302 

(Supplementary Figure 2).  303 

 304 

3.3 Impact of umbelliferone on wheat metabolome 305 

 Umbelliferone is an extremely biologically active coumarin widespread in the Umbelliferae family, 306 

but also in other genera, in plant families such as Asteraceae, Rutaceae, Acanthaceae, and 307 

Hydrangeaceae [14]. A huge body of research has clearly demonstrated that application of 308 

umbelliferone can lead to phytotoxic effects, thereby affecting both plant growth and development 309 

[24, 26-28]. We performed a one-way ANOVA on each compound, to test if at least one level of time 310 

had a mean average significantly different form the rest. There are 22 significant compounds (sugars, 311 

fatty acids, secondary metabolites, organic acids, and amino acids) with p-value lower than 0.05 312 

(Table 1). To control for false positive findings, a False Discovery Rate (FDR) was applied to the 313 

nominal p-values; 7 compounds (sugars: maltose, xylulose, ribose, 6-deoxyglucose) were still 314 

significant after the FDR correction.  315 

 316 

3.4 Time-course profiling of umbelliferone treatment (quantitative)  317 

To understand the time-course-dependent changes in metabolite accumulation patterns across the 318 

treatment groups in this complex study design, we started with a clustering analysis. Using short time-319 

series expression miner (STEM) analysis, we interrogated the time-course changes of the metabolites 320 
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for further analysis. The metabolite abundances for 177 metabolites across the 6 time points were put 321 

into 20 model clusters, which revealed differential accumulation of metabolites for control and 322 

umbelliferone-treated groups of plants, as a function of time. In the case of the control plants, the 323 

most significant model cluster (number 10, with 18 metabolites, P-val, 2E-3) showed a 0, 1, 0, 1, -1, 324 

1 pattern (where 0 is no change, 1 is increase, and -1 is decrease) for the six time-points in the study 325 

[0 h (T0), 6 h (T1), 12 h (T2), 24 h (T3), 48 h (T4), and 96 h (T5)]. These 18 metabolites were sugars 326 

(fucose, maltose, trehalose, and xylulose), organic acids (isohexonic acid, tranexamic acid, and 327 

aconitic acid), amines (pyridoxamine, tryptamine), ribulose 1, 5-bisphosphate, 3-indoleacetonitrole, 328 

etc. (Figure 3 A, B). In the case of umbelliferone-treated plants, the most significant model cluster 329 

(number 9, with 13 metabolites, P-val, 4E-4) showed a 0, 1, -1, -1, 1, -1 pattern for the six time-points 330 

in the study. These 13 metabolites were sugars (trehalose, xylulose, melibiose, and rhamnose), 331 

organic acids (ascorbic acid, pimelic acid, quinolic acid, and aconitic acid) polyamines (putrescine 332 

and spermidine), etc. (Figure 3 C, D).  333 

 334 

3.5 Multivariate and clustering analysis reveal metabolites 335 

 336 

Secondly, we performed both supervised and unsupervised multivariate analyses as feature extraction 337 

strategies, to maximize variance in the data using strongly correlated variables. We first performed 338 

an unsupervised analysis, which explained ~40–43% of the variability in data using the first 2 PCs, 339 

either in all samples grouped together, only control sample groups, or umbelliferone groups 340 

(Supplementary Figure 8A-C). However, the time points did not cluster well, which points to the 341 

non-independent samples which are not well handled by PCA, the small feature space of 177 342 

metabolites, and too many treatments (6 time points x 2 treatments), leading to possible 343 

multicollinearity issues, displaying more artifacts than a true biological picture. Following the lack 344 

of clustering in the PCA, we performed PLS-DA separately for both control and umbelliferone 345 

treatment groups, where time-point based groupings were observed. Using supervised PLS-DA 346 

analysis for all the samples (all time points, control and umbelliferone treated plants) and the blanks 347 

(B), we showed that the first two components explained variations from the T0, 6 h, 12 h, 24 h, 48 h, 348 

and 96 h time points; components 1 and 2 alone explained ~45% of the variation (Figure 4A). For 349 

the control and umbelliferone-treated plants, the first two components (1 and 2) helped explain ~14% 350 

and ~15% of the variations, respectively (Figures 4B, C). The co-clustering of time points (i.e., 6 h 351 

with 96 h) could point to interesting biological phenomena, such as the appearance of two peaks, one 352 

in very short-term defense response and another sustained one later. These are speculations, and 353 
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would be very difficult to validate further using metabolomics experiments and the premises of this 354 

study. 355 

 356 

Using metabolite-metabolite (Pearson) correlation, we monitored the clusters of metabolites. Among 357 

secondary metabolites, we found that 3-indoleacetonitrile (an auxin, from tryptophan metabolism), 358 

psoralen and 4-methylumbelliferone (both umbelliferone derivatives), and 2-coumaric acid were 359 

highly correlated (Supplementary Figure 3, 4), indicating their possibly coordinated biosynthesis 360 

and regulation. Similarly, tight clusters were observed for fatty acids (Supplementary Figure 5), 361 

groups of amino acids (Supplementary Figure 6), and carbohydrates (Supplementary Figure 7). A 362 

recent study that looked at various polyphenols across diverse species observed that umbelliferone 363 

and kaempferol are quantitatively associated with each other, while there was a positive correlation 364 

of epicatechin with umbelliferone and kaempferol [43].  365 

 366 

In order to identify the metabolites responsible for the discrimination among the metabolomic 367 

profiles, the VIP scores were used to select those with the most significant contributions in a PLS-368 

DA model, thus as a measure of a variable’s importance in the PLS-DA model. VIP scores are a 369 

weighted sum of PLS weights for each variable, and measure the contribution of each predictor 370 

variable to the model [44]. The VIP statistic indicates the importance of the metabolites in 371 

differentiating the study groups (umbelliferone treatment times, i.e., 0 h, 6 h, 12 h, 24 h, 48 h, 96 h) 372 

in multivariate space. The compounds exhibiting the higher VIP scores are the more influential 373 

variables. Our VIP analysis revealed that the metabolites with high VIPs were phospho-L-serine, 374 

maltose, dehydroquinic acid, pyrocatechol, tryptamine, and serotonin, among others (Figure 5). 375 

Thus, the biochemical changes induced by umbelliferone treatment may support mechanistic 376 

explanations of the plant metabolic responses induced by this coumarin compound. In particular, as 377 

highlighted by the VIP scores reported (Figure 5), several metabolites involved in both shikimate 378 

and tryptophan pathways were significantly altered by the treatment. Among them, fluctuations in 379 

dehydroquinic acid abundances during all the treatments are noteworthy, where the highest values 380 

were recorded at 12 h and 96 h. Dehydroquinic acid represents the first carbocyclic intermediate of 381 

the shikimate pathway, which undergoes five further enzymatic steps in the remainder of the 382 

shikimate pathway to yield chorismic acid, a precursor to tyrosine, phenylalanine, tryptophan, and 383 

some vitamins [45]. Interestingly, pyridoxamine (vitamin B6) was significantly altered by the 384 

umbelliferone treatment; it reached highest abundance at 24 h of treatment, dropped after 48 h, and 385 

increased again at 96 h; it is an essential coenzyme with a high antioxidant potential [46]. Moreover, 386 

pyridoxamine in the presence of ATP is converted by the pyridoxal kinase in pyridoxal 5'-phosphate, 387 
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which is strictly connected to the enzyme tryptophan synthetase, an enzyme that catalyses the final 388 

two steps in the biosynthesis of tryptophan [47]. The tryptophan synthetase, typically found as a α2β2 389 

tetramer, catalyses the irreversible condensation of indole and serine to form tryptophan in a pyridoxal 390 

5'-phosphate-dependent reaction [48]. In addition, the conversion of tryptophan to indole acetic acid 391 

leads to the formation of glutamate, which is one of the pyridoxamine precursors [49]. It is therefore 392 

conceivable that, as detailed below, the umbelliferone-triggered perturbation of the tryptophan 393 

metabolism might be on the basis of the observed pyridoxamine accumulation pattern over time. It is 394 

also possible that the fluctuation in pyridoxamine content is attributable to the conversion into their 395 

derivatives, namely pyridoxal, pyridoxal 5‐phosphate, and pyridoxamine [50], involved in many 396 

other cellular functions, which were simply not detected / quantified in our metabolomics 397 

experiments. Among the metabolites involved in tryptophan biosynthesis, phospho-L-serine [51] was 398 

characterized by the highest VIP score, pointing to a significant increase in concentration over time. 399 

This molecule has a pivotal role in plants under environmental stresses, as an upregulation of several 400 

genes involved in this pathway were observed during abiotic stresses such as salinity, cold, and flood, 401 

indicating its importance in supplying serine under environmental stresses [52]. Moreover, the 402 

phosphorylated pathway might be essential to provide the amino acid serine for the synthesis of 403 

tryptophan, the common precursor for the biosynthesis of indole acetic acid (IAA) [53]. Interestingly, 404 

in our experiments, significant variations in IAA and tryptamine (indole-alkaloid) content, an 405 

intermediate in IAA biosynthesis, were observed. In fact, both metabolites were significantly elicited 406 

by the umbelliferone treatment. Alteration in IAA biosynthesis and distribution, driven by 4-407 

methylumbelliferone (an umbelliferone derivative), was previously observed by Li et al. [25] in 408 

Arabidopsis seedlings. In particular, they observed that the exogenous application of 4-409 

methylumbelliferone (125 µM for 22 days) led to reduced primary root growth, the formation of 410 

bulbous root hairs, and an increase in the number of lateral roots. The authors also uncovered an 411 

accumulation of 4-methylumbelliferyl-β-D-glucoside, derived from UDP-glycosyltransferase 412 

mediated transformation of umbelliferone in roots and upregulation of several UDP-413 

glycosyltransferase genes, which were supportive for a well-orchestrated mechanism devoted to the 414 

detoxification of umbelliferone in plants. During our experiments, the presence of both 4-415 

methylumbelliferone and psoralen, umbelliferone derivatives, was detected in umbelliferone-treated 416 

plants, suggesting that the umbelliferone was internalized and metabolized by the seedlings. 417 

Studies of several other species have proven that both umbelliferone derivatives can act as 418 

phytoalexins themselves; they can protect plants from both biotic and abiotic stresses, and/or can 419 

induce reduction in growth and development [25, 54-56]. Therefore, it cannot be excluded that the 420 

reduction in plant growth observed during the dose response curve could also be due to the 421 
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accumulation of umbelliferone derivatives. Recent studies of Psoralea corylifolia, treated with 422 

psoralen elicitors and precursors, demonstrated that there is a negative correlation between psoralen 423 

accumulation and cell growth [57]. Furthermore, psoralen accumulation in plants, as well as other 424 

specialized metabolites, play a pivotal role in protecting plants from several other stresses [57], and 425 

the observed plant growth reduction is probably due to the redistribution of plant energies in the 426 

activation of (specialized) biosynthetic pathways involved in detoxification and/or protection from 427 

oxidative stress, instead of the biosynthesis of (primary) metabolites fundamental for growth.  428 

Despite its role as an intermediate in auxin biosynthesis, it has been suggested that tryptamine could 429 

play an important role during both biotic and abiotic stress. It has been observed, for example, that 430 

barley leaves irradiated with UV light were accumulating high levels of tryptamine. Moreover, its 431 

induction was also observed to occur in response to plant pathogenic fungi infection, suggesting that 432 

it could act as a plant defense metabolite [58]. On the other hand, tryptamine accumulation was 433 

accompanied by a reduction in serotonin content. It has been widely reported that in graminaceous 434 

species the enzyme tryptamine 5-hydroxylase is involved in serotonin biosynthesis, catalyzing the 435 

conversion of tryptamine to serotonin [59, 60]. Kang et al. [61] demonstrated that the exogenous 436 

application of tryptamine to tissues of rice seedlings induced a dose-dependent increase in serotonin, 437 

accompanied by a parallel increase in tryptamine 5-hydroxylase enzyme activity. At the same time, 438 

the same tissues grown in the presence of tryptophan did not show any significant increase in 439 

serotonin. Therefore, it can be speculated that tryptamine accumulation, followed by the reduction in 440 

serotonin content, could be due to an umbelliferone-induced reduction of tryptamine 5-hydroxylase 441 

activity. Serotonin, which plays a pivotal role in plant growth regulation and in plant response to both 442 

biotic and abiotic stress [62], and psoralen, are considered to be phytoalexins with antioxidant 443 

properties involved in plant defense [55]. 444 

 445 

Limitations of the study 446 

Our study has several limitations. First, separating sample preparations based on separate analysis of 447 

shoots and roots, or leaf analysis, would have provided more spatial information on organ- and plant 448 

part-specific metabolic changes, which may have confounded the analysis in this whole seedling 449 

analysis approach. Secondly, the overall feature space (i.e., the number of metabolites) is also very 450 

limited. Our current total metabolites quantified (p = 177) is roughly three times the overall sample 451 

size (n = 53). Hence, the data is limited in dimensionality. These metabolites are also highly correlated 452 

both at intra- and inter-group levels, limiting the overall variance contributions. High correlations can 453 

also contribute to multicollinearity. All of these factors, taken together, limit the overall results and 454 
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interpretations of the current study. Lastly, techniques other than mass-spectrometry-based analysis, 455 

i.e., additional orthogonal technique such as liquid chromatography-mass-spectrometry (LC-MS) 456 

with wider metabolic coverage and less complex sample preparations steps (i.e., drying and 457 

derivatization), may have been helpful in the identification and relative quantification of various 458 

metabolites belonging to more numbers of pathways, and capturing multiple secondary metabolites 459 

involved in plant stress metabolic responses. 460 

 461 

4. Conclusions  462 

This study clearly shows the system-wide metabolomic changes in wheat seedlings in response to 463 

umbelliferone treatment. Although this molecule has been studied extensively, this is the first time a 464 

short-term experiment using sub-lethal concentrations has been carried out. This untargeted 465 

metabolomics approach allowed us to identify the system-wide metabolic responses activated by the 466 

plants to deal with this phytotoxic compound. Among them, one of the first responses activated by 467 

plants was the internalization of umbelliferone into its derivative psoralen. In addition, umbelliferone 468 

induced a system-wide change through the dysregulation of metabolites involved in the shikimate 469 

pathways, as well as in tryptophan and tryptamine metabolism. This study provides new insights into 470 

the early response of plants to this specialized metabolite. Thus, taken together our work can be used 471 

as a reference for further studies aimed at clarifying its mode of action. 472 
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Table 1. One-way ANOVA results showing the effect of umbelliferone over the time-course 654 

study.  655 

Metabolites  P-Values Class 

Maltose 1.83E-07 Sugar 

Phosphorylcholine 4.02E-07 Sphingolipid 

beta-Sitosterol 0.0001 Lipid 

Xylulose 0.0001 Sugar 

Ribose 0.0002 Sugar 

Pyrocatechol 0.0002 Alcohol (catechol) 

6-deoxyglucose 0.0015 Sugar 

5-Dehydroquinic acid 0.0026 Alicyclic acid 

Myricetin 0.0029 Flavonol 

Trans-Aconitate 0.0044 Tricarboxylate 

Digalacturonic acid 0.0068 Glycan 

Spermine 0.0107 Amine 

Palmitic acid 0.0112 Fatty acid 

D-Panose 0.0197 Sugar 

Tyrosine 0.0217 Amino acids 

Isohexonic acid 0.0235 Carboxylic acid 

Indoleacetic acid 0.0273 Carboxylic acid 

Tryptamine 0.0299 Alkaloid 

3-Nitro-L-Tyrosine 0.0313 Nitrated amino acid 

3-Amino-2,3-dihydrobenzoic acid 0.0335 Carbocyclic acid 

Trehalose 0.0359 Sugar 

Hypotaurine 0.0467 Sulfinic acid 

 656 

 657 

 658 
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 660 

Figure 1: Dose-response curve evaluated on a FW base of Triticum durum cv. Opera seedlings treated 661 

for 10 days with different doses (0, 12.5, 25, 50, 100, 200, 400 µM) of umbelliferone. Data were 662 

analyzed through one-way ANOVA using LSD as post hoc (P ≤ 0.05). ED50 (µM) value was 663 

calculated through a log-logistic equation fitting the total FW data gotten from seedlings treated with 664 

different doses of the allelochemical. The curve pointed out a significance level of P < 0.001. Bars 665 

indicate standard deviation. n=5.  666 

 667 
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 668 

Figure 2. Schematic diagram displaying the experimental design, platform and software tools used 669 

for the analysis of metabolomic changes in wheat seedlings subjected to umbelliferone elicitation. 670 

 671 
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 672 

Figure 3. Time course changes in the control and umbelliferone treated wheat seedlings. (A) 673 

Model profiles displaying the time-sensitive changes in metabolite abundance in control plants; (B) 674 

Metabolite abundance profile in model # 10 (statistically significant) in control plants; (C) Model 675 

profiles displaying the time-sensitive changes in metabolite abundance in umbelliferone-treated 676 

plants; (D) Metabolite abundance profile in model # 9 (statistically significant) in umbelliferone-677 

treated plants. In panels A and C, the number in the upper left on each model profile designates the 678 

model number (out of total 20 models generated), and the number in the bottom left on each model 679 

profile is the statistical significance of the model. n=5. 680 
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 682 

Figure 4. Multivariate (PLS-DA) analysis of the metabolomic changes. (A) PLS-DA displaying 683 

the separation of blank samples (B) from the rest of the samples showing system robustness; (B) PLS-684 

DA showing clusters of various time points in control plants; (C) PLS-DA showing clusters of various 685 

time points in umbelliferone-treated plants. n=5. 686 
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 693 

Figure 5. Top 15 metabolites (variables) based on VIP scores from PLS-DA analysis for each 694 

umbelliferone treatment time points (0 h, 6 h, 12 h, 24 h, 48 h, 96 h). The x-axis shows the correlation 695 

scores whereas the y-axis corresponds to the metabolites identified. Color bars show median intensity 696 

of variable in the respective group. n=5. 697 
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Supplementary Materials  713 

 714 

Supplementary Figure 1. Visual display of the coverage of metabolites quantified using our GC-715 

MS platform for this metabolomics investigation. (KEGG-based metabolite mapped onto the KEGG 716 

metabolic pathway map (blue dots represent the mapped metabolites quantified in our study).  717 

 718 

 719 

 720 
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 721 

Supplementary Figure 2. KEGG-based pathway enrichment analysis displaying the wheat seedling 722 

metabolome as covered using our GC-MS platform. Pathway names: 1-Glutathione metabolism, 2-723 

Arginine and proline metabolism, 3-Amino acyl-tRNA biosynthesis, 4-Taurine and hypotaurine 724 

metabolism, 5-Tryptophan metabolism, 6-beta-Alanine metabolism, and 7-Isoquinoline alkaloid 725 

biosynthesis.  726 
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 730 

Supplementary Figure 3. High Pearson (metabolite-metabolite) correlation of umbelliferone-731 

derived metabolites and polyphenol metabolism-derived metabolites.  732 
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 734 

Supplementary Figure 4. High Pearson (metabolite-metabolite) correlation of umbelliferone-735 

derived metabolites with other quantified metabolites in the study. 736 
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 738 

 739 

Supplementary Figure 5. High Pearson (metabolite-metabolite) correlation of fatty acids.  740 
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 747 

Supplementary Figure 6. High Pearson (metabolite-metabolite) correlation of amino acids.  748 
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 750 

Supplementary Figure 7. High Pearson (metabolite-metabolite) correlation among carbohydrates.  751 
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 756 

Supplementary Figure 8. Unsupervised principal component analysis (PCA) displaying the first 2 757 

PCs for (A) all samples (control + Umbelliferone treatment) and time points together, (B) Control 758 

samples and time points, and (C) Umbelliferone treatment samples and time points. 759 


