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Touchless Palmprint and Fingerprint
Recognition

Ruggero Donida Labati, Angelo Genovese, Vincenzo Piuri, and Fabio Scotti

Abstract Biometric systems based on hand traits captured using touchless acquisition
procedures are increasingly being used for the automatic recognition of individuals
due to their favorable trade-off between accuracy and acceptability by users. Among
hand traits, palmprint and fingerprints are the most studied modalities because they
offer higher recognition accuracy than other hand-based traits such as finger texture,
knuckle prints, or hand geometry. For capturing palmprints and fingerprints, touch-
less and less-constrained acquisition procedures have the advantage of mitigating
the problems caused by latent prints, dirty sensors, and skin distortions. However,
touchless acquisition systems for palmprints and fingerprints face several challenges
caused by the need to capture the hand while it is moving and under varying illumina-
tion conditions. Moreover, images captured using touchless acquisition procedures
tend to exhibit complex backgrounds, nonuniform reflections, and perspective distor-
tions. Recently, methods such as adaptive filtering, three-dimensional reconstruction,
local texture descriptors, and deep learning have been proposed to compensate for
the nonidealities of touchless acquisition procedures, thereby increasing the recogni-
tion accuracy while maintaining high usability. This chapter presents an overview of
the various methods reported in the literature for touchless palmprint and fingerprint
recognition, describing the corresponding acquisition methodologies and processing
methods.

1 Introduction

Biometric systems based on hand characteristics are widely used in both private
and governmental applications. The main reasons for their popularity are their high
accuracy, simplicity of use, low cost for hardware devices, compatibility with govern-
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mental and forensic applications, and availability of ad-hoc techniques for protecting
the privacy of biometric data [16,36]. The main biometric traits that can be extracted
from a hand are the palmprint [56], fingerprints [80], hand geometry [2], finger tex-
ture [1], knuckle prints [62], hand veins [124], and finger veins [102]. Among these
traits, palmprints and fingerprints are the ones characterized by the most mature
technologies and are the most widely used in real-world applications [51].

Traditionally, palmprint and fingerprint recognition systems require the user to
touch a sensor platen to acquire a biometric sample. However, the touch-based
acquisition process presents several disadvantages:

» the acquired samples can exhibit nonlinear and unpredictable distortions due to
the skin deformations induced by touching a surface;

* touching a sensor previously used by unknown persons can present hygiene issues;

* to obtain samples of sufficient quality, users should be trained in the proper way
to apply pressure to the acquisition surface; and

* the quality of the acquired samples can deteriorate over time due to the accumu-
lation of grease and dirt released by the hands of users on the sensor platen.

To overcome the mentioned problems and to enhance the usability and acceptabil-
ity of palmprint- and fingerprint-based biometric systems, the research community
has proposed various technological solutions for realizing touchless biometric sys-
tems based on cameras placed at a distance from the biometric trait to be captured.
The design of such touchless acquisition systems faces several challenges due to
the need to capture the hand while it is moving and under varying illumination
conditions. Furthermore, touchless samples exhibit relevant differences with respect
to those collected through touch-based acquisition. In particular, images captured
touchlessly (Fig. 1) tend to exhibit complex backgrounds, nonuniform reflections, and
perspective distortions. Therefore, touchless palmprint and fingerprint recognition
systems need to adopt different techniques compared with touch-based technologies
for all modules of the biometric recognition chain [51].

Touchless palmprint and fingerprint recognition systems can be designed for
heterogeneous application contexts, present important differences in their acquisition
setups, use two-dimensional (2-D) or three-dimensional (3-D) data, use dedicated
preprocessing algorithms, and be based on different feature extraction and matching
methods. Their accuracy and robustness have recently increased considerably by
virtue of the introduction of deep learning (DL) techniques into every step of the
computational chain.

This chapter presents a review of the state of the art in touchless palmprint and
fingerprint recognition systems from a technological point of view. Specifically, it
describes recent acquisition methods, preprocessing techniques, and feature extrac-
tion and matching methods developed for touchless biometric systems based on
palmprints and fingerprints. To the best of our knowledge, this is the first literature
review providing a systematic analysis of touchless technologies for both palmprint
and fingerprint recognition, elucidating their differences and commonalities. While
most recent surveys in the literature have focused only on either 2-D or 3-D ap-
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Fig. 1 Positions of the palmprint and fingerprints in a touchless acquisition of a hand.

proaches [24,30,94], this work considers both 2-D and 3-D technologies, offering a
detailed and comprehensive review.

The chapter is organized as follows. Sec. 2 analyzes touchless palmprint recog-
nition technologies. Sec. 3 reviews touchless fingerprint recognition systems. Sec. 4
concludes the work.

2 Palmprint Recognition

The palm is defined as the region of the palmar side of the hand that extends from
the wrist to the base of the fingers (Fig. 1). In this region, the skin covering the hand
is of the same type as the skin that covers the fingertips and therefore possesses
several distinctive characteristics that enable high-accuracy biometric recognition
[38]. Compared to fingerprints, palmprints have the advantages that they can be
captured even using low-cost acquisition devices with a low resolution (< 100 dpi),
they enable high-accuracy recognition even in the case of damaged hands (e.g., the
hands of manual workers or elderly people) since biometric recognition algorithms
can exploit features at different levels of detail, and their acquisition is generally
well accepted by users, who regard palmprints as less-invasive biometric traits than
fingerprints or irises [27,36, 65, 66, 89].
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Fig. 2 Outline of the biometric recognition process based on touchless palmprint acquisition.

Because of the high usability and favorable user acceptability commonly asso-
ciated with palmprint recognition, several recent biometric recognition approaches
based on the palm consider the use of touchless and less-constrained acquisition
procedures, without the need for a fixed position of the hand or a requirement to
touch any surface [3,38,55,64,85, 134].

In this section, we present the most recent approaches for touchless palmprint
recognition, detailing the acquisition procedure, preprocessing algorithms, and meth-
ods for biometric feature extraction and matching. Specifically, the recognition pro-
cedure of a touchless palmprint recognition system usually consists of the following
phases: i) acquisition, ii) preprocessing, and iii) feature extraction and matching.
Fig. 2 shows the outline of the recognition process.

2.1 Acquisition

The purpose of the acquisition phase is to capture a 2-D image or 3-D model of
the hand in which the details of the palmprint are sufficiently visible to perform
biometric recognition (Fig. 3). However, unlike for fingerprints, there is no standard
set of features for palmprints, and various acquisition systems have been proposed
that capture different types of details at different resolutions. Therefore, there is
no standard set of requirements for palmprint acquisition devices. For this reason,
most public palmprint databases that are currently available have been captured with
different devices and feature high variability in terms of image resolution, dynamic
range, and quality [27].

Another drawback of palmprint databases is that the majority of the methods
proposed in the literature describe the collection of datasets containing a limited
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Fig. 3 Examples of touchless palmprint acquisition: (a) a 2-D image captured with an off-the-
shelf webcam and a controlled background and (b) a 3-D model computed using a multiple-view
acquisition setup. In both cases, although the details of the fingerprints are not visible, the features
of the palmprint (e.g., the principal lines) are visible.

number of samples that have not been made public, and therefore, these datasets do
not enable the research community to assess the validity of acquisition methodologies
by comparing the accuracy of different recognition algorithms [38]. In this section,
we do not consider such approaches; instead, to provide the research community
with an overview of the most significant acquisition methods in the literature, we
consider only the approaches for which a public database has been made available
on the internet.

Based on the approaches described in the literature, it is possible to classify the
current methods for touchless palmprint acquisition based on the dimensionality of
the processed samples. In particular, we can distinguish approaches based on 2-D
images from approaches based on 3-D models [38].

2.1.1 Two-Dimensional Approaches

Touchless palmprint recognition methods based on 2-D images use acquisition setups
that do not require contact of the palm of the hand with any surface. However, some
acquisition systems may use partially constrained setups, in which the back of the
hand must be placed against a fixed support. In contrast, other acquisition systems
use less-constrained setups that do not require the hand to touch any surface [38].
The acquisition setups used for 2-D touchless palmprint recognition usually include
a charge-coupled device (CCD) camera, an enclosure to guide the position of the
hand, and an illumination source. Depending on the wavelengths of the illumination
used, these acquisition methods can be divided into two categories: i) methods based
on visible light and ii) multispectral methods.

Visible-light acquisition methods include the approach proposed in [47], which
describes a touchless acquisition procedure with a controlled background and con-
trolled illumination, in which the user places the back of the hand against a fixed
surface inside an enclosure. A method with a similar acquisition procedure is de-
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scribed in [10], which proposes an ad hoc device for capturing the palm of a user
while the back of the hand rests on a fixed surface. An enclosure is also used in
the approach described in [113]. However, in this case, the hand does not touch any
surface, and the enclosure is used only to restrict the placement of the hand inside
the field of view and depth of focus of the camera. In contrast to [10,47, 113], the
method described in [8] does not consider either an enclosure or controlled illumi-
nation, and proposes a database in which the samples are captured with uncontrolled
rotations of the hand. However, the back of the hand is placed against a fixed surface.
The method described in [59,93] considers a similar acquisition procedure used to
collect a database from people of different ethnicities, occupations, and ages. While
the majority of touchless palmprint databases consider a controlled background, the
methods described in [87,115,138] are based on a procedure for capturing palmprint
samples with uncontrolled backgrounds under visible light using a smartphone. The
corresponding samples exhibit high variation in terms of pose, rotation, and distance
from the camera. A similar database is described in [82, 86], with the difference
that the images are collected from the internet rather than directly captured by the
authors.

Multispectral acquisition methods use illuminators at different wavelengths, with
the purpose of enhancing different details of the skin. One example is the method
described in [9], which relies on a uniform illumination setup composed of six
different illuminators ranging from violet to near-infrared wavelengths. In contrast
to [9], the approach proposed in [116] involves a simpler acquisition setup, consisting
of one visible-light illuminator and one infrared illuminator. The infrared illuminator
is obtained by replacing the infrared filter in an off-the-shelf webcam with a visible-
light filter.

2.1.2 Three-Dimensional Approaches

Touchless palmprint recognition methods based on 3-D models, similar to those
based on 2-D images, use acquisition setups that do not require contact of the palm
of the hand with any surface. Their main advantage over methods based on 2-D
images is the possibility of reconstructing a 3-D model of the hand that describes
the position and orientation of the hand in a 3-D metric space. By using such a
3-D model, it is possible to measure and compensate for variations in the distance
and rotation of the hand, which do not need to be fixed, allowing less-constrained
acquisition compared with the acquisition setups for 2-D images [21]. Another major
advantage is the possibility of using information derived from the 3-D model as ad-
ditional biometric features, thus increasing the recognition accuracy [30]. However,
the acquisition setups for 3-D models are more complex than those for 2-D images
since they require devices that are able to determine the position of the hand in 3-D
space. More specifically, methods based on 3-D models can be divided into two cat-
egories: i) methods based on laser scanners and ii) approaches using multiple-view
acquisitions [38].
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Fig. 4 Example of a hand image, with the extracted valley points, the corresponding reference
system, and the resulting region of interest (ROI) of the palmprint.

Methods based on laser scanners include the approach proposed in [55, 110]. In
this approach, the reflection of an illumination beam on the surface of the hand is
first detected, and triangulation is then applied to determine the position of the hand
and reconstruct the 3-D model. The illumination and background conditions are
both controlled. The approach described in [54, 111] uses the same acquisition setup
described in [55] and additionally introduces a method of increasing the recognition
accuracy by compensating for the pose and orientation of the hand at the moment of
acquisition.

Approaches using multiple-view acquisition setups include the method proposed
in [38]!, which describes a two-view acquisition setup composed only of red-green-
blue (RGB) cameras and visible-light illuminators. Notably, while laser scanners
enable high-accuracy 3-D reconstruction, the devices are expensive and possibly
difficult to obtain. In contrast, the method described in [38] is able to capture two
synchronized images of the hand and then reconstruct a 3-D model of the palm using
only off-the-shelf components, with a precision sufficient to enable high-accuracy
biometric recognition.

2.2 Preprocessing

The purpose of the preprocessing phase is to extract the region of interest (ROI) of the
palmprint from a touchless hand sample (Fig. 4). In most methods in the literature,

Thttps://homes.di.unimi.it/genovese/3dpalm/
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this phase is divided into four steps: i) segmentation of the hand, ii) extraction of
valley points, iii) computation of the ROI, and iv) enhancement.

The purpose of the hand segmentation step is to remove the background from
the captured sample. This step differs depending on whether the background is
controlled or uncontrolled. In the case of a controlled background, the majority of
palmprint recognition approaches use algorithms based on gray-level thresholding or
edge detection, such as the method described in [37]. In the case of an uncontrolled
background, most methods in the literature apply segmentation procedures designed
to isolate skin-color pixels in an RGB image [43, 63, 84]

The purpose of valley point extraction is to establish a reference system for the
subsequent extraction of the ROI, and this step is usually performed by analyzing the
local minima of the contour of the segmented hand [14, 84]. For example, in Fig. 4,
the ring-little finger valley and the index-middle finger valley are used as reference
points to extract the palmprint ROI. However, methods that analyze local minima
are robust only for hands with all fingers separated. To compensate for this problem
and enable successful valley point extraction in the case of poor separation between
fingers, the method proposed in [48] extends the algorithms described in [14,84] by
adding a step based on edge detection.

The aim of ROI computation is to extract a square region capturing the details
of the palmprint, and this step is performed by using the extracted valley points
to robustly estimate a reference system on the hand (as shown in Fig. 4). Different
methods in the literature have considered variants of such reference systems based
on the database and the procedure used to extract the features. For example, the
procedure described in [3] extracts a rectangular ROI that spans most of the actual
palm area by considering the ring-little finger valley and the index-middle finger
valley. Recently, methods reported in the literature have been increasingly relying
on the use of DL and convolutional neural networks (CNNs) because of their ability
to automatically learn data representations by processing the spatial relationships
between pixels in an image [40]. In particular, CNNs have been used for the automatic
preprocessing of touchless hand images, as in the method described in [82], which
extracts the ROI by using a CNN trained on the positions of landmarks.

Finally, palmprint images may be enhanced to increase the visibility of the details
used for recognition; however, the enhancement step is seldom performed in the
methods reported in the literature, especially with the growing popularity of methods
based on machine learning and, in particular, DL. In fact, DL methods based on
CNNs can automatically learn a filter structure that can be optimally adapted to each
image, as in the approach proposed in [37]. However, the study described in [133]
does present an enhancement method for palmprint samples and demonstrates that
a particular range of image sharpness levels is correlated with a higher recognition
accuracy.
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2.3 Feature Extraction and Matching

The purpose of the feature extraction and matching phase is to process the ROI to
extract a discriminant representation of the individual and then match the extracted
representation to determine the identity associated with the palmprint sample. Tra-
ditionally, methods for feature extraction and matching can be divided into line-
based, texture-based, subspace-based, coding-based, and local-texture-descriptor-
based methods [56]. However, recent approaches are increasingly relying on DL,
while line-based, texture-based, and subspace-based approaches are less commonly
studied [27,37]. Therefore, to offer the research community useful insight into the
most studied research directions, this chapter will focus on coding-based, local-
texture-descriptor-based, and DL-based methods.

2.3.1 Coding-Based Approaches

In methods based on coding, the feature extraction step is performed by first using
a set of filters to process the image, quantizing the magnitude or phase of the
response for each pixel, and finally encoding the results to compute a biometric
template. Then, this template is matched using procedures based on the Hamming
distance [38]. Based on the type and number of filters used to process the image,
coding-based methods can be divided into three categories: i) methods based on a
single orientation, i) methods based on multiple orientations, and iii) methods based
on 3-D shapes. Table 1 presents an overview of such methods.

Methods based on a single orientation encode only one orientation for each
pixel in an image. For example, the PalmCode approach [131] uses a single Gabor
filter to process the image and then encodes the response for each pixel. Improving
on PalmCode, the competitive code method [139] uses several Gabor filters with
different orientations to process the image and then, for each pixel, encodes only
the index of the filter corresponding to the minimum magnitude response. Such
encoding creates a map of the main orientations of the palmprint lines in the image.
Similar coding-based methods have subsequently been proposed in the literature to
further increase the recognition accuracy by improving the set of filters as well as the
coding scheme, such as the double-orientation code [29] and robust line orientation
code [53] methods.

Methods based on multiple orientations, in addition to considering the principal
orientation of each palmprint line, also consider secondary orientations at each
pixel to compute the biometric template. For example, the binary orientation co-
occurrence vector approach [41] encodes the responses of all Gabor filters for each
pixel. Similarly, for each pixel, the neighboring direction indicator (NDI) method [33]
encodes both the principal orientation and the relations with the orientations of
neighboring regions. More recently, the robust competitive code approach [127]
has been proposed by combining the competitive code algorithm with the NDI
approach. Specifically, the robust competitive code method consists of encoding,
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Table 1 Summary of coding-based approaches for palmprint recognition

Year Method Class Approach
PalmCode i) Single Uses a single Gabor filter to process the image, then
2003 g . - :
[131] orientation encodes the magnitude response for each pixel.
. Uses a modified finite Radon transform (MFRAT)
2008 Robu§t line i) Single to filter the image, encodes the most relevant re-
orientation code orientation sponse for each pixel, and matches encodings based
[53] on pixel-to-area comparison.

Uses multiple Gabor filters with different orienta-
tions to filter the image, computes the encoding

2010 Compﬁl’?gv]e code olr)iesnlllfilsn for each pixel as a number indicating the filter for
- which the minimum response is obtained, and per-

forms matching using the angular distance.
Uses multiple Gabor filters with different orienta-
Double-orientation ) Single tions to filter the image, encodes numbers indicating
2016 code orien la%ion the two most representative filters for each pixel, and
[29] then performs matching using the nonlinear angular

distance.

Binary orientation ii) Multiple Uses multiple Gabor filters with different orienta-
2009 co-occurrence vector orientati(l))ns tions to filter the image, then performs encoding for
[41] each pixel by considering the responses of all filters.
Uses multiple Gabor filters with different orienta-
Neighboring ii) Multiple tions to filter the image, then computes the encoding
2016 direction indicator orientations for each pixel by considering both the orientation

[33] of the most relevant filter and the relations with the
orientations in adjacent regions.

Uses multiple Gabor filters with different orienta-
tions to filter the image, encodes the representation

2018 thust ii) Multiple by considering the orientation of the filter with the
competitive code orientations most relevant response as well as the weighted re-
[127] sponses for adjacent regions, and then matches the
representation using the angular distance.
Applies surface interpolation to local areas, com-
2011 SurfaceCode iii) 3-D shape putes a shape index for each pixel, and encodes the

1351 results using 4 bits for each pixel.

for each pixel, the most relevant orientation and a weighted combination of the
orientations in adjacent regions.

Methods based on 3-D shapes encode the 3-D shape of a palmprint. For example,
the SurfaceCode approach [55] applies surface interpolation to the point cloud
obtained using a laser scanner; then, for each pixel, it computes a shape index
describing the local 3-D model and encodes the result using 4 bits.

2.3.2 Local-Texture-Descriptor-Based Approaches

Recent methods for touchless palmprint recognition have widely considered local
texture descriptors since they have been proven to be robust to local variations in
rotation, translation, scale, and illumination [12, 129], which are more likely to be
present in touchless samples than in samples captured using a touch-based procedure
[37]. Therefore, methods based on local texture descriptors are better suited than
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coding-based methods for achieving high-accuracy recognition based on palmprint
samples captured using touchless acquisition procedures [27]. Specifically, recent
approaches for touchless palmprint recognition based on local texture descriptors
involve computing, for each local region of the ROI image, a blockwise histogram
describing the orientations of the lines on the palm [67,77, 134]. Then, a biometric
template is computed by concatenating all of these blockwise histograms, thereby
obtaining a global feature descriptor for the whole image. Finally, various distance
measures (e.g., the Euclidean or chi-squared distance) are used to compare different
templates generated in this way [5]. Approaches based on local texture descriptors
can be divided into three categories: i) methods using general-purpose descriptors
applied to palmprint images, ii) methods using texture descriptors encoding the
main orientation for each pixel, and iii) methods using texture descriptors encoding
multiple orientations for each pixel. Table 2 presents an overview of such methods.

Methods using general-purpose descriptors consider local texture descriptors
that have been previously proposed in the literature and apply them for touchless
palmprint recognition, such as the local binary patterns (LBP) descriptor [119], the
scale-invariant feature transform (SIFT) [125], the local directional patterns (LDP)
descriptor [28], the histograms of oriented gradients (HOG) descriptor [52], and the
local tetra patterns (LTrP) descriptor [67].

Methods using texture descriptors encoding the main orientation for each pixel,
in contrast to methods using general-purpose descriptors, rely on local texture de-
scriptors designed especially for palmprint recognition, such as the histograms of
oriented lines (HOL) descriptor [52], which is a variant of the HOG descriptor
based on Gabor filters, or the modified finite Radon transform (MFRAT), to better
enhance the palmprint lines. Similarly, the collaborative representation competitive
code (CR-CompCode) method [134] is a modification of the competitive code ap-
proach [139] in which a technique of computing a template based on blockwise
histograms is introduced and then a sparse representation classifier [135] is used to
compare templates.

Methods using texture descriptors encoding multiple orientations for each pixel, in
contrast to methods that encode a single orientation for each pixel, consider a feature
descriptor that encodes multiple orientations. For example, the local line directional
patterns (LLDP) descriptor [77] is an extension of the LDP descriptor [50] that
computes the line responses at each pixel using several Gabor filters with different
orientations or the MFRAT. Then, both the minimum and maximum responses are
encoded for each pixel, the corresponding blockwise histograms are calculated, and
a distance measure is used to compare the resulting templates. Improving on the
LLDP descriptor, the local multiple directional patterns (LMDP) descriptor [28]
considers multiple dominant directions for each pixel, the confidence associated
with each direction, and the relations with directions in adjacent regions. Similarly,
the discriminant direction binary code (DDBC) [31] considers different directions
by using a filter-based approach to compute the convolution differences between
neighboring directions and then learns a feature mapping to project the convolution
results into a feature vector. To further improve the accuracy by gaining insight into
which directions are the most representative, the local discriminant direction binary
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Table 2 Summary of local-texture-descriptor-based approaches for palmprint recognition

Year Method Class Approach
SIFT Combines the scale-invariant feature transform
2014 125 i) General purpose (SIFT) for feature extraction with random sample
[125] consensus (RANSAC) for filtering outliers.
Uses the local binary patterns (LBP) descriptor to
LBP . . -
2006 119 i) General purpose ~ compute a template, then performs matching using
[119] an AdaBoost classifier.
HOG . Uses the histograms of oriented gradients (HOG)
2014 [52] ) General purpose descriptor to compute a template.
LDP Applies the local directional patterns (LDP) de-
2016 i) General purpose scriptor to compute a template, then matches the
[28] . . .
template using the chi-square distance.
2017 LTrP i) General purpose Uses the local tetra patterns (LTrP) descriptor to
[67] compute a template.
HOL ii) Texture descriptors  Uses a variant of the HOG descriptor to preprocess
2014 50 encoding the main the input image by applying either Gabor filters or
(521 orientation the MFRAT.
. . Uses a combination of competitive code with block-
ii) Texture descriptors . .
CR-CompCode K . wise histograms to compute a template, then per-
2017 encoding the main X . .
[134] . . forms matching using a sparse representation clas-
orientation .
sifier.
Computes the most relevant orientation for each
iii) Texture pixel by using either Gabor filters or the MFRAT,
LLDP . - . . .
2016 descriptors encoding  creates a template by encoding the corresponding
[77] . . . . e
multiple orientations  responses, and then performs matching using either
the Manhattan distance or the chi-square distance.
Uses an encoding scheme that considers multiple
iii) Texture . R . .
LMDP . X . relevant orientations for each pixel as well as their
2016 descriptors encoding . X . .
[28] . . - confidence and the relations with neighboring re-
multiple orientations P
gions.
Computes the most relevant orientation for each
jii) Texture pixel by using either Gabor filters or the MFRAT,
LMTrP " A . then extracts the derivatives at each pixel in both the
2017 descriptors encoding . . L . .
[67] . . . = horizontal and vertical directions while also consid-
multiple orientations . . X X
ering adjacent pixels to account for the thickness of
the lines.
DDBC iii) Texture Uses a filter-based approach to compute local con-
2019 31 descriptors encoding  volutions for different directions, then learns a fea-
B multiple orientations  ture mapping to extract a feature vector.
LDDBP iii) Texture Applies a method based on a combination of LBP
2020 32] descriptors encoding  and an analysis of the most discriminative directions

multiple orientations

for each pixel.

pattern (LDDBP) approach [32] is based on an analysis of the discriminative power
of each different direction in combination with the LBP descriptor. In contrast to the
majority of the methods of class iii), which achieve increased accuracy by encoding
the most representative orientations, the local microstructure tetra patterns (LMTrP)
descriptor [67] improves the recognition accuracy by considering the line thickness
at each pixel in addition to describing the different local orientations.
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Table 3 Summary of DL-based approaches for palmprint recognition

Year Method Class Approach
AlexNet, . . Uses pretrained CNNs to extract features, then clas-
2018 VGG-16, VGG-19 ) Pretrained CNNs g0 Sy o) using a support vector machine (SVM).
[109]
AlexNet . . Uses pretrained CNNs to extract features, then clas-
2018 [97] {) Pretrained CNNs sifies the feature vectors using an SVM.
AlexNet, /i) CNNG fine-tuned Uses a CNN based on the AlexNet architecture,
2016 discriminative almprint images trained using a loss function that considers the sep-
index learnin on palmprint images aration between i d i tor distributi
g genuine and impostor distributions.
[106]
C-LMCL ii) CNNGs fine-tuned Uses a CNN'based on the ResNet' architecture, Wllh
2020 137 on palmprint images 2 loss function designed for uniformly clustering
[137] paimp 85 feature vectors of different classes.
('ioogL‘faI\_Iet, ii) CNNs fine-tuned U'sgs a CNN l?asefi on the q?ogLeNet ar;}n}foture_,
2020 adversarial o trained using a technique based on adversarial met
S on palmprint images . .
metric learning ric learning.
[138]
EE-PRNet /i) CNNGs fine-tuned Uses a CNN tralped to segment and classAlfy palm-
2020 L _ print images using an end-to-end learning algo-
[82] on palmprint images .
rithm.
PCANet i) CNN trained on Uses a CNN in which the filters are l;arr}ed using
2017 33 almprint imaees an unsupervised procedure based on principal com-
(83] paimp! 868 ponent analysis (PCA).
PalmNet iii) CNN trained on Uses a CNN in which lh§ filters are lear'ned and
2019 37 almprint images adapted to the database using an unsupervised pro-
371 paimp et cedure based on Gabor analysis and PCA.
2019 FusionNet iii) CNNs trained on ~ Uses PCANet for the fusion of palmprint and inner
[39] palmprint images finger texture features.

13

2.3.3 Deep-Learning-Based Approaches

Currently, the majority of approaches for pattern recognition, including biometric
systems, consider techniques based on DL and CNNs [105]. Approaches using CNN's
are capable of extracting knowledge from data affected by noise, such as perspective
distortions and local changes in rotation, translation, and scale, which are typical of
biometric samples captured using touchless or less-constrained procedures [15,19].
Moreover, CNNs can adapt to samples captured in heterogeneous environments [18].
Because of the advantages of DL for biometric recognition, several approaches in the
literature consider CNNss for touchless and less-constrained palmprint recognition
[37,82,83,97,106]. These approaches usually involve applying a CNN to ROl images
to extract discriminative features and then computing a distance measure to compare
the resulting templates. DL-based approaches for touchless palmprint recognition
can be divided into three categories: i) methods using pretrained CNNSs, ii) methods
using CNNs fine-tuned on palmprint images, and #ii) methods using CNNs trained
on palmprint images. Table 3 presents an overview of such methods.

Methods using pretrained CNNs extract features from palmprint images using
CNNs previously trained on a general-purpose dataset, such as the method introduced
in [109], which compares the results obtained using AlexNet [57], VGG-16, and
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VGG-19 [103]. Then, this method uses a support vector machine (SVM) to perform
classification. A similar procedure is described in [97] for recognizing the palmprints
of newborns as captured using a touchless acquisition procedure.

Methods using CNNs fine-tuned on palmprint images also rely on pretrained
CNNs, but only after these CNNs have been fine-tuned on palmprint images. Such
methods adapt the pretrained neural models to palmprint samples and can achieve a
greater recognition accuracy than methods using only pretrained CNNs. For example,
the work proposed in [106] starts from a CNN architecture based on the AlexNet
model and then trains the CNN using a loss function based on the separation between
genuine and impostor scores. Similarly, the centralized large margin cosine loss (C-
LMCL) method proposed in [137] uses a CNN based on the ResNet architecture
[44] and introduces a loss function designed to uniformly cluster classes in the
feature space by separating the feature vectors of different individuals while ensuring
that the feature vectors of the same individual remain close to each other. The
work described in [138] extends this concept by introducing a CNN based on the
GoogleNet architecture [107], trained using a technique based on adversarial metric
learning, with the purpose of further improving the division of templates in the feature
space in accordance with their classes. Rather than using segmented ROIs, the work
proposed in [82] describes EE-PRNet, a CNN based on the VGG-16 architecture
fine-tuned to directly process touchless hand images, extract the palmprint ROI, and
then perform individual classification.

Methods using CNNs trained on palmprint images rely on training CNNs from
scratch on palmprint images. In particular, the approach described in [83] considers
PCANet [7], a CNN trained using an unsupervised procedure based on principal
component analysis (PCA). This method uses PCANet to extract a feature vector
from the palmprint ROI and then classifies the resulting template using an SVM.
Similarly, PalmNet?, proposed in [37], is a CNN in which the filters are learned
using an unsupervised procedure based on Gabor analysis and PCA. Gabor analysis
is performed to preliminarily select the Gabor filters that are best adapted to the
palmprint images based on the palm size, rotation, and scale. The filters are then
further adapted to the images using a PCA-based procedure. PCANet is also used in
FusionNet? [39], which fuses the feature vectors obtained by applying PCANet to
both palmprint and inner finger texture image regions.

3 Fingerprint Recognition

Fingerprints are reproductions of the surface pattern of the fingertip epidermis.
This pattern is a characteristic sequence of interleaved ridges and valleys, usually
considered unique for each individual. Biometric systems based on touchless fin-
gerprint samples attempt to perform recognition by extracting and processing the

2http://iebil.di.unimi.it/palmnet/index.htm
3http://iebil.di.unimi.it/fusionnet/index.htm
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Fig. 5 Outline of the biometric recognition process based on touchless fingerprint acquisition.

discriminative information present in traditional fingerprint images from touchless
finger images [94] or 3-D models acquired using touchless technologies [22, 26].
Compared with palmprints, fingerprints offer the following advantages: users are
frequently more familiar with this biometric recognition approach since fingerprint
recognition systems are the most mature and widely used biometric technologies [80],
and touchless fingerprint recognition technologies can produce templates compatible
with existing governmental and investigative databases, such as those adopted in the
Automated Fingerprint Identification System [81].

With the aim of designing systems that are more usable and acceptable than
traditional touch-based technologies for fingerprint recognition, several recent stud-
ies have focused on touchless and less-constrained acquisition procedures, which
can be based on either the integrated cameras in mobile devices [24] or dedicated
acquisition systems [58].

In this section, we present the most recent approaches for touchless fingerprint
recognition, describing state-of-the-art methods designed for every step of the bio-
metric recognition process. The recognition procedure of a touchless fingerprint
recognition system usually consists of the following phases: i) acquisition, ii) pre-
processing, and iii) feature extraction and matching. Fig. 5 shows the outline of the
recognition process.

3.1 Acquisition

The purpose of the acquisition phase is acquire an image, a 3-D model of the last
finger phalanx, or a 3-D model of the ridge pattern with sufficient distinguishability
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Fig. 6 Examples of touchless fingerprint acquisition: a) a single image acquired using a smartphone
with uncontrolled background and illumination conditions, b) a 3-D model of the finger shape, and
¢) a 3-D model of the ridge pattern.

of the distinctive characteristics to allow biometric recognition to be performed (Fig.
6).

The approaches proposed in the literature for acquiring touchless fingerprint sam-
ples exhibit important differences in terms of finger placement guides, the number
of cameras, illumination techniques, and the use of either uniform or uncontrolled
backgrounds. Therefore, there is no standard approach, and the types of acquisition
constraints imposed depend on the application scenario for which the biometric
system has been designed.

In the following, we divide state-of-the-art touchless fingerprint acquisition tech-
niques into approaches based on 2-D images and approaches based on 3-D mod-
els [26].

3.1.1 Two-Dimensional Approaches

The state-of-the-art approaches designed for the acquisition of 2-D samples can be
divided into three main groups: i) methods for acquiring a single image using a frontal
illumination source, ii) approaches designed to compensate for the nonidealities of
single touchless images using hardware solutions, and iii) multimodal acquisition
approaches.

Methods for acquiring a single image using a frontal illumination source are the
most common ones. They can be based on heterogeneous kinds of cameras, such
as the integrated cameras in smartphones [24], webcams [92], cameras designed for
industrial applications [23], and consumer cameras [39]. Various constraints may
also be imposed during the acquisition process depending on the scenario for which
the biometric system is designed. Depending on the acquisition constraints, the fol-
lowing classes of acquisition setups can be distinguished: a) setups for collecting
single fingerprints with controlled finger positioning as well as controlled back-
ground and illumination conditions [17], b) setups for collecting single fingerprints
with uncontrolled finger positioning but controlled background and illumination
conditions [112], ¢) setups for collecting single fingerprints with uncontrolled finger
positioning as well as uncontrolled background and illumination conditions [96], d)
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setups for collecting multiple fingerprints with controlled finger positioning but un-
controlled background and illumination conditions [46], and e) setups for collecting
multiple fingerprints with uncontrolled finger positioning as well as uncontrolled
background and illumination conditions [13].

Approaches designed to compensate for the nonidealities of single touchless im-
ages using hardware solutions are based on more complex and expensive acquisition
setups than methods for acquiring a single image using a frontal illumination source.
The approaches pertaining to this class can be divided into methods of compen-
sating for perspective rotations, increasing the depth of field, and mitigating the
detrimental effects of damaged finger skin. To compensate for perspective rotations,
some studies have investigated capture devices capable of acquiring the nail-to-nail
finger surface by means of rotating line scan cameras [90]. Other approaches rely on
capturing multiple images from different viewpoints to compute a fingerprint image
representing the complete ridge pattern by means of image stitching techniques [11].
To increase the depth of field of traditional cameras and thus enhance the ability of
biometric systems to process fingerprint images acquired from nonfrontal positions,
some studies have investigated the use of digital variable-focus liquid lenses [114].
To mitigate the detrimental effects of damaged finger skin, some systems are able
to capture ridge patterns in the internal layers of the finger by using a red-light
illumination source placed against the back of the fingernail [100].

Multimodal acquisition approaches are designed to acquire heterogeneous bio-
metric traits using a single hardware device. For example, there are methods for
simultaneously acquiring fingerprints and finger vein patterns [90, 118] as well as
handheld embedded devices that can capture multiple touchless fingerprints and face
images [123].

3.1.2 Three-Dimensional Approaches

The advantage of 3-D acquisition systems compared with 2-D acquisition systems
is that they can capture additional information, thereby overcoming some of the
problems related to perspective distortions, providing additional data for processing,
and enhancing the compatibility between touchless and touch-based technologies.
However, 3-D acquisition systems also require more complex and expensive hardware
than 2-D acquisition technologies.

Systems for 3-D fingerprint acquisition can be divided into two classes: i) systems
that acquire models describing the 3D shape of the finger and ii) systems that acquire
models describing the 3-D characteristics of the ridge pattern.

Systems that acquire models describing the 3D shape of the finger are usually
based on multiple-view acquisition setups and use multiple images acquired from
different viewpoints to compute the 3-D coordinates of corresponding points in the
images by applying the triangulation principle. Most of these methods require the
use of guides for finger placement to control the orientation of the finger in 3-D
space [74,91]. However, there are also methods that are able to acquire 3-D samples
on the move, without any guide for finger placement [23]. The 3-D reconstruction
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process requires a search for corresponding pairs of points in the images, which
can be performed using correlation-based strategies [23] or methods of computing
denser representations by using more complex feature sets [73,75].

Systems that acquire models describing the 3-D characteristics of the ridge pat-
tern have the advantage of collecting additional information that can be used for
feature extraction and matching. However, they usually acquire multiple frames over
time and thus require the use of finger placement guides to keep the finger still
for the required acquisition time. Systems that acquire models describing the 3-D
characteristics of the ridge pattern can be based on various techniques: photomet-
ric stereo 3-D reconstruction, ultrasonic sensors, structured light imaging, or laser
sensing. Systems based on photometric stereo 3-D reconstruction capture multiple
images under variable lighting conditions from a fixed viewpoint [70, 126, 136].
Such a reconstruction system assumes that the finger is illuminated only by the light
sources of the sensor itself. Ultrasonic sensors may be used to acquire either 3-D or
2-D models of the internal skin layers [49]. Technologies for 3-D fingerprint acqui-
sition based on ultrasonic sensors are currently in the prototype stage [78, 98], and
there are not yet any studies on complete biometric recognition systems based on
this technology. Systems based on structured light imaging project successive light
patterns of different frequencies onto the finger. A fixed camera is used to acquire a
set of images, which are then processed to estimate the shape of each single pattern
and compute the distance of every point in the field to determine its deformation
with respect to the original pattern [72,120,121]. Laser sensing permits accurate 3-D
reconstruction with limited processing resources. As an example, the 3-D fingerprint
reconstruction systems presented in [34,35] use a laser line scanner to estimate the
depth of the ridges.

3.2 Preprocessing

The touchless fingerprint recognition systems reported in the literature exhibit im-
portant differences in the preprocessing phase, which can be due to the acquisition
techniques used or to the application scenario for which a system has been de-
signed. Nevertheless, it is possible to distinguish six main computational tasks: i)
segmentation, ii) texture enhancement, iii) 3-D model enhancement, iv) resolution
normalization, v) compensation of perspective deformations, and vi) mapping of 3-D
models to 2-D images.

The purpose of segmenting a touchless fingerprint sample is to remove the back-
ground and select an ROI corresponding to the last phalanx of a single finger. The
segmentation methods presented in the literature differ depending on whether the
acquisition system uses a fixed or uncontrolled background. In the first case, it is
often possible to use general-purpose segmentation approaches, such as thresholding
techniques [112] or background subtraction [6]. In the second case, segmenting the
finger region is a more challenging task and requires more complex techniques, such
as skin detection algorithms [4,99] or methods based on CNNs [68,79]. In the case
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of acquisitions of multiple fingers, the segmentation task requires separating every
finger, frequently using image processing algorithms based on edge detectors [13].

The purpose of texture enhancement is to reduce noise and improve the distin-
guishability of the distinctive characteristics of the ridge pattern. This task can be
performed by both 2-D and 3-D touchless fingerprint recognition systems that acquire
samples using CCD cameras. The enhancement techniques for touchless fingerprint
images can be divided into two classes: algorithms that enhance the visibility of
the ridges using reduced computational resources and methods that compute an en-
hanced representation of the ridge pattern similar to those obtained from touch-based
images. Techniques of the first class usually increase the contrast between ridges and
valleys using algorithms such as Wiener filtering [96] and adaptive histogram equal-
ization [112]. Techniques of the second class are more computationally expensive
and usually consist of a noise reduction algorithm and a method for enhancing the
ridge pattern [76,99,104]. Some methods for computing ridge pattern images similar
to touch-based samples can also be performed in a single computational step, for
example, using a bank of wavelets [4].

The purpose of 3-D model enhancement is to reduce the presence of noise and
outliers. Systems designed to reconstruct the 3-D finger shape frequently refine the
computed point clouds by applying techniques for approximating the finger shape
as a 3-D surface. Some techniques approximate the finger shape as a previously
defined shape [74]. Other methods perform noise reduction by approximating the
finger shape using thin plate splines [23]. Recent studies have obtained remarkable
results using binary quadratic functions [132]. Systems designed to reconstruct the
3-D ridge pattern adopt fewer assumptions on the finger shape, and the preprocessing
phase frequently consists of the application of frequency filters [120].

Resolution normalization may be necessary to enable accurate biometric recog-
nition since most state-of-the-art matchers require samples of fixed resolution. In
touchless fingerprint recognition systems based on 3-D models and in systems based
on 2-D samples that impose a fixed placement of the finger, the sample resolution is
known a priori. In contrast, 2-D touchless systems that do not impose any constraint
on finger placement frequently need to estimate and normalize the image resolution.
This task can be performed by imposing a constant size for each finger [92], assum-
ing that the ridge frequency is constant for each finger [104], or identifying the thick
valley between the intermediate phalanges and proximal phalanges to estimate the
finger size [96].

The aim of compensating for perspective deformations is to mitigate the detrimen-
tal effects of 3-D rotations of the finger samples. Methods in the literature estimate the
finger pose from a single touchless fingerprint image [21,104,130] and subsequently
apply compensation techniques based on synthetic 3-D models approximating the
finger shape [21, 108].

Methods for mapping 3-D models to 2-D images attempt to enhance the com-
patibility between 3-D touchless fingerprint recognition systems and touch-based
technologies. The mapping process may consist of unwrapping the 3-D models to
obtain 2-D images similar to rolled fingerprints [42,42,95,101,120,121] or may use
geometrical models to compensate for both the perspective deformations of touch-
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less samples and the nonlinear deformations introduced by touching an acquisition
surface [69]. Unwrapping approaches can be further classified into parametric and
nonparametric methods. Parametric methods use geometrical shapes that are known
a priori to approximate the finger shape. They can convert the coordinates of a finger-
print into cylindrical coordinates [42], apply local conversions in polar coordinates
by using sets of rings [120], or perform conversion into cylindrical coordinates fol-
lowed by a refinement algorithm [121]. Nonparametric methods use more complex
techniques that aim to preserve the distances between distinctive points of the ridge
pattern. They can be based on various heuristics [42, 101] and include algorithms
intended to enhance the compatibility with touch-based fingerprint databases by
simulating the pressure of the finger on the acquisition sensor [95].

3.3 Feature Extraction and Matching

The goal of the feature extraction and matching phase is to extract distinctive char-
acteristics from the fingerprint samples and compute the result of the recognition
process. Most touch-based fingerprint recognition systems are based on minutiae
features and are designed for identity verification [80]. Similarly, most studies on
touchless fingerprint recognition rely on minutiae points. There also exist methods
based on different features as well as machine learning approaches and DL strategies.

3.3.1 Minutiae-Based Approaches

The minutiae are distinctive points of the ridge pattern corresponding to bifurcations
and terminations of the ridges [80]. Feature extraction and matching approaches
based on minutiae features can be divided into three classes: i) methods designed
for touch-based samples, ii) methods designed for 2-D touchless samples, and iii)
methods designed for 3-D touchless samples. Table 4 presents an overview of such
methods.

Methods designed for touch-based samples are the most commonly used ap-
proaches in touchless fingerprint recognition systems based on both 2-D and 3-D
samples. Specifically, many touchless systems adopt commercial feature extractors
and matchers designed for touch-based samples [88], achieving impressive accu-
racy [104]. Open-source libraries designed for touch-based samples, such as the
National Institute of Standards and Technology Biometric Image Software (NIST
NBIS) [122], can also achieve satisfactory performance [20] when applied to en-
hanced representations of ridge patterns obtained from touchless images.

Methods designed for 2-D touchless samples attempt to overcome the nonideali-
ties specific to touchless fingerprint images. Some minutiae extractors for touchless
samples have been designed based on DL strategies [108]. Furthermore, minutiae
matchers designed for touchless fingerprint images have been reported based on
genetic algorithms [128] and artificial neural networks [25].
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Table 4 Summary of minutiae-based approaches for fingerprint recognition

21

Year Method Class Approach
Since Neurotechnology dli ;;Ai?;?(:r Is the most widely used software development kit
1998 VeriFinger touci»base d for feature extraction and matching of touchless fin-
[88] samples gerprint samples (commercial software).
i) Methods Is a software development kit that can achieve satis-
2007 NIST NBIS designed for factory performance when applied to enhanced rep-
[122] touch-based resentations of ridge patterns obtained from touch-
samples less images (open-source software).
Uses a 3-D-based method to compensate for per-
D inuti ii) Methods spective distortions, applies a deep neural network
esigned for 2- to extract minutiae without any preprocessing, an
2020 eep lrglsnu iae desiened for 2-D A ith . d
[108] touchless samples  performs matching using a method designed for
touch-based samples.
2020 Genetic matcher de:‘;) ﬁgzt?;d;_]) Uses genetic algorithms to match minutiae-based
[108] & templates.
touchless samples
2011 Neural matcher deé;) rl]\é[ztl;:rdzs_D Uses artificial neural networks to compare pairs of
[25] S1E minutiae.
touchless samples
iii) Methods Compensates for perspective deformations of 2-D
2016 Neural matcher desiened for 3-D images by computing the best matching score ob-
[23] S18 tained by applying a set of 3-D rotations to a 3-D
touchless samples
”model of the probe sample.
2015 Neural matcher delslilé i\;[;tf}:) (;d;_D Is a minutiae-based matcher that compares minutiae

[60] coordinates in 3-D space.

touchless samples

Methods designed for 3-D touchless samples attempt to achieve improved recog-
nition accuracy compared to 2-D minutiae-based approaches. One approach consists
of compensating for the perspective deformations of 2-D images by computing the
best match score obtained by applying a set of 3-D rotations to a 3-D model of the
probe sample [23]. To exploit the additional information provided by 3-D fingerprint
models, some biometric systems use matching algorithms that compare the minu-
tiae coordinates in 3-D space [60]. In this case, a pair of minutiae is considered to
correspond if the Euclidean distance between their 3-D coordinates in the spatially
aligned samples is less than a certain threshold and if the differences between their
angles in 3-D space are less than certain fixed values.

3.3.2 Approaches Based on Non-Minutiae Features

In the literature, there are some biometric recognition approaches designed for touch-
less fingerprint recognition systems that use features different from minutiae points
to achieve accurate results in heterogeneous application scenarios. Specifically, these
biometric recognition approaches can be divided into the following classes: i) meth-
ods based on algorithmic matchers, ii) methods based on computational intelligence
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Table 5 Summary of approaches based on non-minutiae features for fingerprint recognition

Year Method Class Approach
i) Methods based  Uses level zero features (such as local texture pat-
Level zero features P . X
2011 61 on algorithmic  terns) and performs matching by using the Ham-
[61] matchers ming distance operator.
i) Methods based  Uses Speeded-Up Robust Features (SURF) to com-
SURF S ;
2015 112 on algorithmic ~ pute a template and performs matching by evaluat-
(2] matchers ing corresponding pairs of points.
1) Methods t?ased Uses a set of Gabor filters to compute biometric
Local Gabor filters ~ on computational . N
2007 . . templates and performs matching by using an SVM
[45] intelligence .
S classifier.
techniques
i) Methods l?ased Uses the LBP and local gradient code (LGC)
LBP and LGC on computational N ‘
2016 . . descriptors to compute a template and performs
[117] intelligence - . K e
s matching by using a nearest neighbor classifier.
techniques
. l:)il I\c/loertriwdtin'?iiztlj Uses scattering networks to compute a template and
2015  Scattering networks A on computatt performs matching by using a random forest classi-
[99] intelligence fier
techniques ’
o ) l:’:l l\c/l‘i;hoizgzzzcll Uses scattering networks to compute a template and
2017  Scattering networks B . ”P performs matching by using trained machine learn-
(791 inte 1gence ing classifiers.
techniques
Deep feat " iii) Methods Uses a competitive coding algorithm in conjunction
2018 cep edlgre vector based on DL with a residual network and performs matching by
[13] strategies using the Hamming distance operator.
Partial fi int iii) Methods Performs the matching of partial fingerprints with
2018 artia gggerprm S based on DL 3-D fingerprint acquisitions by using multiple
[68] strategies Siamese CNNs.
c d . iii) Methods Performs cross-domain matching between touch-
2019 ross—7 lomam based on DL less and touch-based samples by using multiple
71 strategies Siamese CNNs.
Pore extraction iii) Methods Uses multiple CNNs to estimate and refine pore
2018 based on DL . :
[18] . coordinates.
strategies

techniques, and iii) methods based on DL strategies. Table 5 presents an overview
of such methods.

Methods based on algorithmic matchers exhibit relevant differences depending
on the application scenario for which they have been designed. Some methods
are designed to perform biometric recognition based on low-resolution touchless
fingerprint images using level zero features, such as local texture patterns, which
are matched by using the Hamming distance operator [61]. Another method consists
of computing Speeded-Up Robust Features (SURF) and evaluating the number of
corresponding pairs of points [112].

Methods based on computational intelligence learn distinctive characteristics of
samples with the aim of overcoming the nonidealities that can detrimentally affect
touchless samples, such as perspective distortions, reflections, and low visibility of
the ridge patterns. Some of these methods are based on feature extractors applied for
heterogeneous machine learning applications, such as sets of local Gabor filters [45],



Touchless Palmprint and Fingerprint Recognition 23

or a combination of the LBP and local gradient code (LGC) descriptors [117].
Other methods are based on more descriptive feature extractors such as scattering
networks [79, 99], which are filter banks of wavelets able to compute distinctive
representations that are stable with respect to local affine transformations.

Methods that rely on DL strategies use feature extraction functions learned and
optimized for touchless fingerprint samples. Some methods use feature extractors
learned by deep neural networks to compare touchless samples, such as the recog-
nition method presented in [13], which uses a competitive coding algorithm in
conjunction with a residual network to extract templates that are compared us-
ing the Hamming function. There are also studies on matching partial fingerprints
with 3-D fingerprint acquisitions by using multiple Siamese CNNs [68]. Multiple
Siamese CNNs are also used to perform cross-domain matching between touchless
and touch-based samples [71]. Deep neural networks can also be used to analyze ul-
trathin details of the fingertip (pores, incipient ridges, and local ridge characteristics).
For example, the method described in [18] estimates and refines pore coordinates by
using multiple CNNs.

4 Conclusions

Palmprints and fingerprints are the most commonly used hand characteristics for
biometric recognition. Recent studies have introduced accurate touchless technolo-
gies that offer enhanced usability, acceptability, hygiene, and robustness to grease
and dirt compared with traditional touch-based technologies.

This chapter has presented a literature review on touchless palmprint and finger-
print recognition systems, focusing on the technological perspective. In particular, it
has analyzed every phase of the biometric recognition chain, considering acquisition
systems, preprocessing techniques, and feature extraction and matching methods.
This review has focused on both two- and three-dimensional technologies, high-
lighting recent advances enabled by computational intelligence approaches and deep
neural networks.

From the presented analysis of the state of the art, it is evident that deep neural
networks enable marked improvement in the robustness and accuracy of touchless
palmprint and fingerprint recognition systems. However, there are still open problems
to be solved in order to develop highly usable and accurate systems that are fully
compatible with touch-based biometric databases.
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