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Abstract 

Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. 

Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue 

oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably 

present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have 

been partially elucidated. Indeed, each patient’s circulatory condition is shaped by the complex interplay 

between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of 

infection and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by 

different combinations of various pathophysiological processes, so the presence of a given hemodynamic 

pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin 

administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of 

clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly 

extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy 

volunteer and the experimental model. Numerous microcirculatory derangements might exist in the septic 

host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the 

micro- circulation might account for the limited success of therapeutic interventions targeting typical 

hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, 

physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, 

however our defective diagnostic tools preclude its clinical recognition. 
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Didactic Synopsis 

1. The hemodynamic modifications during sepsis and septic shock do not follow a common 

pattern in all patients. Moreover, in a given patient, the hemodynamic pattern changes as a 

function of time and interventions. 

2. In humans, bacterial lipopolysaccharide in small doses triggers a systemic inflammatory 

reaction with a hyperdynamic pattern similar to that found in many septic patients. 

3. Even if cardiac output is initially increased during infection, as an adaptation to the increased 

metabolic requirements, hypovolemia, either absolute or relative, and cardiac dysfunction may 

eventually lead to a fall of cardiac output.  

4. Arterial pressure control may be lost despite an elevated cardiac output, due to: 

a. the inability of the vessels to vasoconstrict, 

b. and possibly malfunction of the central circuits responsible for pressure maintenance.  

5. Microcirculatory alterations, elicited by bacterial products or by the dysregulated response of 

the host, may be present despite a preserved macrocirculation. 

6. Blood flow distribution is markedly disturbed in sepsis and microcirculatory blood flow is often 

unable to match tissue metabolic demands, despite possibly increased blood flow towards the 

whole organ. This can be due to: 

a. disruption of the endothelium. 

b. imbalance between vasodilatory and vasoconstrictive substances. 

c. hyporeactivity of vascular smooth muscle cells to regulatory stimuli such as 

catecholamines. 

d. cellular rheological disturbances and microvascular thrombosis. 

7. Disruption of the endothelial barrier may lead to tissue edema. 

 

Didactic Legends 
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Figure 1. This figure illustrates the relation between central venous pressure (CVP) and cardiac index 

(CI) in 46 septic shock patients coming from the medical wards without vasopressor therapy studied by 

Winslow and coll. (581). Both very high and very low values of CVP and CI were recorded, mirroring the 

variety of hemodynamic patterns which can be found in sepsis. A previous study by McLean (310) 

suggested that in early septic shock the main determinant of the hemodynamic pattern is the volemic 

status of the patient at the onset of bacteremia. If the patient is hypovolemic, CVP and CI are low, if 

normovolemia is present, CVP and CI are both elevated. This kind of relation between CVP and CI was 

not confirmed by the study of Winslow and coll. Looking at the graph no proportionality between CVP and 

CI is seen. Although the volemic status is, beyond doubt, one of the determinants of the hemodynamic 

pattern in septic shock patients, it is not the only one, and many other factors, with a different weight in 

different patients, condition the cardiovascular performance.  

Figure 2. Guyton's equilibrium diagram graphically shows that, at steady state, central venous 

pressure (CVP) and cardiac output (CO) depend on the characteristics of the heart and the pulmonary 

circulation, represented by cardiac function curves, and on the characteristics of the systemic circulation, 

represented by venous return curves. This figure illustrates various venous return curves. In all cases 

venous return curves are straight lines with a negative slope and a X intercept corresponding to mean 

systemic filling pressure (Pmsf). However, the physical meaning of the slope is dependent on the model 

used to interpret these curves. If the peripheral circulation is modeled as an arterial compliance (Ca), 

arterial resistance (Ra), venous compliance (Cv) and venous resistance (Rv) in series as in panel A, the 

slope of the venous return curve is inversely proportional to the sum of Rv and of the product of Ra times 

the ratio between Ca and Ca+Cv. As Ca<<Cv, the relative weight of Ra is smaller than that of Rv. Systemic 

vascular resistance (SVR) is Ra+Rv. Because Ra>>Rv, it follows that the fall of SVR which may occur in 

sepsis does not necessarily imply a clockwise rotation of the venous return curve. In panel A a 50% 

isolated reduction of Ra causes the expected clockwise rotation of the venous return curve from VRC1 to 

VRC2. In contrast, the venous return curve rotates counterclockwise from VRC1 to VRC3 if an even 

greater fall of Ra is accompanied by an increase of Rv. In both cases (VRC2 and VRC3) SVR is reduced 

relative to VRC1. In panel B the systemic circulation is modeled as two compartments in parallel, each 

made by an arterial resistance (Ra), vascular compliance (C) and venous resistance in series (Rv). 
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Subscript number identifies the compartments. Compartment 2 has a greater compliance than 

compartment 1. If arterial resistances change in way so that the fractional perfusion of the compliant 

compartment (Fc) decreases, the slope of the venous return curve increases (from VRC1 to VRC2). If Fc 

increases, the slope of the venous return curve decreases (from VRC1 to VRC3). Thus, a change of 

blood flow distribution induced by bacterial products or by the response of the host is potentially able to 

markedly change the functional characteristics of the systemic circulation. 

Figure 3. This figure illustrates, in terms of Guyton's equilibrium diagram, the elementary 

hemodynamic alterations induced by sepsis which may take place in the systemic circulation (panel A, B 

and C) and some of their possible combinations (panel D, E and F). The cardiac and venous return curve 

representing a healthy subject are indicated with thin lines (operating point C). Thick lines are used to 

indicate the modifications of the cardiac and venous return curves elicited by sepsis (operating point S). 

Cardiac output (CO) and central venous pressure (CVP) can be low, normal, or high depending on the 

combined effects of bacterial products on the cardiac and venous return curves or of the response of the 

host. 

Figure 4. This figure illustrates the relation between the rate of norepinephrine infusion and mean 

systemic filling pressure (Pmsf), resistance to venous return index (RVRI), and systemic venous resistance 

index (SVRI), that is the resistance to venous return and systemic vascular resistance normalized by body 

surface area, in stable postoperative cardiac surgery patients (○) and resuscitated septic shock patients 

(●), obtained by pooling data from unrelated studies performed separately with the same technique (305, 

306, 404). It is evident that for a given rate of norepinephrine infusion Pmsf, RVRI and SVRI are less in 

septic shock patients than in post-surgery patients, indicating refractoriness of vessels to the action of 

catecholamines. The intercepts with the Y axis, obtained by extrapolation, correspond to the Pmsf, RVRI 

and SVRI which would have been measured without vasopressors. When no norepinephrine is given, Pmsf 

and SVRI are less in septic shock patients than in post-surgery patients. Considering the greater amount 

of fluids received by septic patients, it is likely that the difference in terms of Pmsf shown by the upper 

panel between non-septic and septic patients underestimates the difference that would be present without 

resuscitation. In contrast to the obvious difference in terms of SVRI seen without norepinephrine between 

non-septic and septic patients, RVRI appears similar. Admittedly, the paucity of data available and the 
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arbitrariness of the extrapolation process prevent any firm conclusion. However, if these findings were 

confirmed by further research, they would suggest a different effect of sepsis on pre-capillary and post-

capillary resistance vessels.  

Figure 5. This figure illustrates, in terms of Guyton’s equilibrium diagram, the effects of bacterial 

lipopolysaccharide (LPS) on the heart and systemic circulation. The cardiac and venous return curves 

existing before LPS administration are represented by continuous lines. Their intersection is point A, the 

operating point of the system. Broken lines show the effects of endotoxin. In healthy volunteers, without 

fluid loading, LPS causes an increase of cardiac output (CO) at constant (506) or decreased (322, 326) 

central venous pressure (CVP). The former possibility is shown by operating point E, which univocally 

implies a counterclockwise rotation of the cardiac function curve (from CFCc to CFCe). In contrast, several 

changes of the venous return curve compatible with an operating point at E are possible. The most likely 

possibility is a decrease of resistance to venous return (RVR) without (VRCe 1) or with (VRCe 2) a 

concomitant decrease of mean systemic filling pressure (Pmsf) (panel A). Panel B shows the unlikely 

possibility of an increase of Pmsf. 

Figure 6. This figure illustrates an indirect method to estimate glycocalyx thinning in the sublingual 

microcirculation in vivo. The method is based on the assessment of red blood cells deviation from the 

central flow toward the endothelial cells, a parameter thought to reflect the extent of red blood cells 

penetration in the glycocalyx. A series of sequential images of a selected portion of sublingual 

microcirculation are captured (A) by a sidestream darkfield camera, which visualizes red blood cells 

flowing in the vessels. 10 µm-spaced section (green) are drawn perpendicular to microvessels long axis 

(red) (B). Sections unsuitable for analysis (yellow), because of insufficient contrast, are discarded (C).  

For each section, the distribution of red blood cells in time is analyzed, yielding median red blood cells 

column width (E), and perfused diameter (F). The perfused boundary region (PBR) is then calculated as 

half the difference between the two (the concept is depicted on D). This method takes advantage of the 

fact that the outer part of the glycocalyx tends to exclude flowing red blood cells (but not stationary ones), 

which therefore gather toward the center of the microvessel. As penetration of red blood cells in the 

glycocalyx is also a function of red blood cells velocity and deformability, it is unlikely that PBR is 
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univocally determined by glycocalyx thickness. From (282) with permission under the terms of the 

Creative Commons Attribution License. 

Figure 7. The left part of this figure illustrates the relation between left ventricle volume and end-

systolic pressure, that is the end-systolic pressure volume relation (ESPVR). This relation is 

approximately linear, and characterized by a volume-axis intercept, Vo, that is left ventricle end-systolic 

volume at zero transmural pressure, and by a slope, called end-systolic elastance (Ees), a robust preload-

independent index of contractility. The end-diastolic pressure volume relation (EDPVR) is the curved line 

close to the volume axis. The actual end-systolic volume and pressure present when the left ventricle is 

coupled with the arterial vessels is graphically identified by the intersection between ESPVR and end-

systolic pressure-stroke volume relation (ESPSVR), a straight line with a volume intercept corresponding 

to the end-diastolic volume, and a slope, called arterial elastance (Ea), corresponding approximately to 

the product of systemic vascular resistance and heart rate. 

The right part of the figure shows the external work (EW) made by the left ventricle during each beat, 

corresponding to the area within P-V loop trajectory (A-B-C-D-A), and end-systolic elastic potential energy 

(PE), the area between ESPVR and EDPVR to left of EW. Total oxygen consumption of the ventricle is 

given by the oxygen consumption in unloaded conditions plus an amount proportional to EW+PE. From 

(477), with permission. 

Figure 8. This figure illustrates the relation between left ventricle volume and pressure at the end of the 

diastole, when myocardium is relaxed (end-diastolic pressure volume relation, EDPVR). The physiological 

range is indicated by the dotted lines. In this range diastolic elastance of the ventricle, that is the ratio 

between pressure and volume changes, is very small for low diastolic volumes but increases 

progressively as end-diastolic volume is increased. Below the lower limit of the physiological range, 

transmural pressure is negative, indicating a tendency of the ventricle to expand. From (79) with 

permission. 

Figure 9. This figure illustrates the effects of endotoxin administration in healthy volunteers on the 

relation between muscle sympathetic nervous activity (MSNA) and mean arterial pressure (MAP) (panel 

A), and on the relation between heart rate and MAP (panel B). Changes of MAP were induced by sodium 

nitroprusside, a vasodilator, and phenylephrine, a vasopressor. Measurements were repeated before (∆) 
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and after placebo (∇), and before (□) and after (■) endotoxin. Placebo does not affect the relation 

between MAP and MSNA or the relation between MAP and HR. To the contrary, endotoxin rotate the 

MAP-MSNA relation downward, showing a decreased modulation of MSNA in front of MAP changes. 

Moreover, after endotoxin HR appears completely independent of MAP. From (465), with permission.  

Figure 10. This figure illustrates the feedback circuit responsible for the baroreflex (only its 

orthosympathetic part is considered). A perturbation (Pd) of arterial pressure (AP) is sensed by carotid 

and aortic baroreceptors and this information is transmitted to the vasomotor center of the medulla 

oblongata. The vasomotor center modulates sympathetic nervous activity (SNA) in order to attenuate the 

perturbation. Physiologically, the reflex operates in closed loop conditions (panel A), meaning that the 

parameter sensed by baroreceptors is the same parameter which is modified by changes in SNA. If the 

pressure sensed by baroreceptors is artificially isolated from systemic arterial pressure (panel B), then it 

is possible to separately characterize the two parts of the circuit in terms of a) relation between pressure 

sensed by the baroreceptors (independent variable) and SNA (dependent variable) (mechanoneural arc 

or central arc), and b) relation between SNA (independent variable) and arterial pressure (dependent 

variable) (neuromechanical arc, or peripheral arc). The operating point of the system is the combination of 

arterial pressure and SNA which is compatible with both the central and peripheral arc (panel C). From 

(464), with permission. 

Figure 11. This figure illustrates the effect of bacterial lipopolysaccharide administration (60 μg kg
-1

) to 

anesthetized, vagotomized and mechanically ventilated Sprague-Dawley rats in terms of baroreflex 

characteristics assessed in open-loop conditions. Despite striking changes of the neural (panel B) and 

peripheral arcs (panel C), the total baroreflex arc changes modestly (panel A), because the effect of a 

greater sympathetic nervous activity (SNA) at any given carotid sinus pressure (CSP) (neural arc, panel 

B) are blunted by a lower arterial pressure (AP) at any given SNA (peripheral arc, panel C). From (523), 

with permission under the terms of the Creative Commons Attribution License. 

Figure 12. This figure illustrates the effect of bacterial lipopolysaccharide administration (60 μg kg
-1

) to 

anesthetized, vagotomized and mechanically ventilated Sprague-Dawley rats on the operating point of 

the baroreflex using a baroreflex diagram (SNA: sympathetic nervous activity; CSP: carotid sinus 

pressure; AP: arterial pressure). As time passes after lipopolysaccharide injection, the neural arc 
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progressively shifts rightwards, and the peripheral arc downwards, so the operating point moves from a 

(baseline) to b at 1 hour and to c at 2 hours, showing a progressive increase of SNA with little change of 

AP. From (523), with permission under the terms of the Creative Commons Attribution License. 
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Introduction 

The use of word ‘sepsis’ dates back to ancient Greece, where it was used to describe “the 

decomposition of animal, or vegetable, or organic material” (160). It soon evolved to become a medical 

term, portraying the ‘worst case scenario’ of infections (or what became later known to be an infection). 

As such, the meaning of the term sepsis adapted to our knowledge about the pathophysiology of severe 

infection. In Corpus Hippocraticum, sepsis was regarded as a biological decay, occurring mainly in the 

colon and releasing dangerous principles that could potentially lead to “auto-intoxication” (160). For 

centuries, the focus was on the pathogen, taking the form of miasmata in Roman years, animacules in the 

early years of microscopy and finally Louis Pasteur’s germs (160). Since its inception, sepsis was 

considered interchangeable with infection, neglecting entirely the host response. The idea that our own 

immune machinery might be responsible for the complicated course of infections was conceptualized in 

the second half of the previous century (519), being the fruit of basic research on host response, the 

discovery of cytokines (160) and the dawn of intensive care medicine. 

An American College of Chest Physicians / Society of Critical Care Medicine Conference held on 

August 1991 developed a definition to accommodate this new way of thinking (60). They defined sepsis 

as the systemic inflammatory response to infection, which might be accompanied by multiple organ 

system dysfunction (60). A set of clinical criteria, namely Systemic Inflammatory Response Syndrome 

(SIRS) criteria, was proposed for bedside recognition (60). However, in recent years it was felt that the 

meaning of sepsis neither depicted our current knowledge nor met our expectations (558). Specifically, 

basic research had shown that sluggish immune responses were associated with equally unfavorable 

outcomes compared to excessive ones (61). Additionally, it was quoted that sepsis – as it was defined – 

diverged from what clinicians consider as a “really bad infection”, by being too sensitive. An expert group 

redefined sepsis as a life-threatening multiorgan dysfunction arising from a dysregulated host response to 

infection and proposed a set of bedside criteria for its detection, known as the Sepsis-3 criteria (489). 

According to recent research, on a global scale there were around 50 million incident cases and 11 

million sepsis-related fatalities in 2017, a number corresponding to 1 in 5 deaths worldwide (449). Even 

though several lines of evidence suggest that sepsis mortality is decreasing (162, 323, 449), the burden 
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of the disease remains significant, especially in less developed parts of the world (449). Even in wealthy 

nations, though, the impact is considerable. In a recent US report, sepsis was the primary diagnosis of 

patients requesting emergency medical services, surpassing typical out-of-hospital crises, such as acute 

myocardial infarction and stroke (481), and is cited as the immediate cause in 1 every 3 hospital deaths 

or terminal exits to hospices (437). 

Hemodynamic alterations in response to infection, in the form of septic shock, were first recognized in 

the 19
th
 century in the works of both Laennec and Boise (9). However, it was not until the second half of 

the 20
th
 century that the advent of endotoxin and cytokines, the development of reliable experimental 

animal models and the introduction of invasive hemodynamic monitoring in the clinical arena led to an 

abrupt expansion of our knowledge (211). It is our current understanding that the distinction between 

uncomplicated infection, infection with multi-organ dysfunction (i.e. sepsis by Sepsis-3) and septic shock 

is shaped by the extent of the hemodynamic alterations that are elicited in response to the pathogen. 

Indeed, even in the absence of clinically evident shock, multi-organ dysfunction is considered an issue of 

impaired tissue oxygenation, the latter being frequently the victim of a deranged microcirculation (12). 

Thus, current thinking implies there is no sepsis without macro or microcirculatory alterations. In clinical 

practice, however, cardiovascular failure is frequently defined by the level of arterial pressure or the dose 

of vasopressors administered but, even then, almost 2/3 of patients with sepsis are affected (556). 

In this essay, the cardiovascular responses during sepsis are reviewed. For didactic purposes, the 

issue is primarily approached through the alterations that pertain to macrocirculatory parameters. 

Consequently, the vague borders between macro- and microcirculation are crossed, and the reader is 

gradually introduced to microcirculatory responses. Finally, the heart’s response to the septic insult is 

analyzed with some emphasis being put on the echocardiographic evaluation of cardiac physiology during 

sepsis. 

Variety of hemodynamic patterns in early septic shock 

Earlier studies revealed a wide spectrum of hemodynamic patterns in septic shock patients early in the 

course of the disease before treatment (310, 554, 579), but attempts to categorize patients into well-

defined groups characterized by definite clusters of hemodynamic alterations proved difficult. At one end 
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of the spectrum, circulation could be hyperdynamic, with high cardiac index (CI) coupled with low to 

normal systemic vascular resistance (SVR), but, at the other end, circulation could be hypodynamic, with 

a low CI coupled with normal to high SVR. In a series of 56 septic shock patients MacLean and coll. 

noted that central venous pressure (CVP) and volemia were elevated in hyperdynamic patients, but 

reduced in hypodynamic ones (310). These findings led the Authors to hypothesize that the 

hemodynamic response to the septic insult was primarily determined by the pre-existing volemic status: if 

the intravascular volume at the onset of bacteremia was normal or high the hyperdynamic response 

prevailed, if it was reduced, hypodynamic shock occurred. A similar wide range of CVP values in septic 

shock patients was reported by Wilson and coll., who also noted that CVP response to fluid infusion 

varied widely, apparently without relation to the pre-infusion CVP value (579). In the hyperdynamic septic 

shock patients studied by Villazon and coll. oxygen consumption (  O2) was decreased with a marked 

reduction of arterial-venous difference in oxygen content (C(a-v)O2). In contrast, septic patients without 

shock presented a normal or elevated   O2 (554). 

Some of the findings reported by these studies were confirmed by later works, while some others were 

not. The presence of a hyperdynamic hemodynamic pattern in some septic shock patients (2, 112, 577, 

580, 200, 280, 310, 366, 397, 398, 404, 475) or a hypodynamic one in some others (423, 552) has been 

repeatedly confirmed.  s suggested by  illa  n and coll.,   O2 is increased during sepsis and declines 

during the progression of the disease to septic shock (2, 260). To the contrary, the association found by 

McLean and coll. (310) between low CI and low CVP was not confirmed by subsequent studies (579, 

581), suggesting that the low CVP measured by McLean and coll. in septic hypodynamic patients was 

probably related to the occurrence of severe volume depletion prior to the septic episode, but the 

hypodynamic pattern can occur even with a normal intravascular volume. Indeed, Wilson and coll. (579) 

found no clear relation between CI and CVP in septic patients, even after patients with liver disease or 

under vasopressors were excluded from the analysis. If any, CI tended to decrease with increasing CVP, 

though not significantly (ΔCI/ΔC P=-0.18 L min
-1

 m
-2

 mmHg
-1

, R=0.26, P=0.13). Figure 1 shows the 

relation between CVP and CI assessed by Winslow and coll. (581) in a cohort of 46 septic shock patients: 

again no grouping is apparent, and CI decreases not significantly with increasing C P (ΔCI/ΔC P=-0.07 

L min
-1

 m
-2

 mmHg
-1

, R=0.17, P=0.25). 
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Equally diverse are the hemodynamic phenotypes in the pediatric population with septic shock. 

Reports describing the evolution of pediatric septic shock in its initial stages are lacking. Ceneviva and 

coll., using right heart catheterization, studied 50 consecutive patients with fluid-refractory septic shock 

and distinguished 3 hemodynamic profiles. The most frequent (58%) was characterized by low CI and 

high SVRI, to be followed by high CI-low SVRI and low CI-low SVR phenotypes, in equal proportions 

(92). These finding were in general accordance with the work of Pollack and coll. (415) and were later 

confirmed by other investigators, using non-invasive techniques (71, 124). 

Several factors are potentially involved in the extreme variability of the reported cardiovascular 

response to sepsis in humans. 

Sepsis frequently occurs in subjects with pre-existing diseases, who are often already hospitalized and 

under treatment, and the therapy the patients received before the occurrence of septic shock, particularly 

the amount of fluids administered, is usually not reported (396). Moreover, some time may be necessary 

for the recognition of the infection. As a result, a study population may be composed of patients with 

different underlying diseases, who received an unknown therapy and who come under observation after a 

variable time from the onset of the infection. 

The multitude of microorganisms responsible for sepsis, and the different ways they come in contact 

with the host, are additional factors potentially able to condition the hemodynamic response of the 

cardiovascular system, because different pathogens may induce different patterns of immune and 

inflammatory mediators (343), which in turn may have different effects on hemodynamics. 

However, in humans clear evidence that the hemodynamic response depends on the microorganism 

responsible of the infection is lacking, in line with the idea that the major determinant of the final 

hemodynamic state is the host response to bacterial products, rather than the specific characteristics of 

bacterial products themselves. Earlier works suggested that the hyperdynamic pattern arises more 

commonly in gram-negative than in gram-positive sepsis (51, 189), but this has not been confirmed in 

studies examining later stages of the disease in adults (3, 397, 577, 581) and in children (124). The 

possibility that aggressive fluid resuscitation and vasoactive drugs have obfuscated eventual differences 

in the hemodynamic patterns originally present, however, still exists. 
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In animals models some differences were noted between the cardiovascular effects of endotoxins from 

different bacteria or from different strains of the same bacterium, but overall the differences were not 

striking (110, 115, 300, 327, 365). 

More importantly, bacterial products or mediators released in response to bacterial products are able to 

alter the functional properties of the different parts of the cardiovascular system at various degrees, and 

the final result depends on the magnitude of the functional changes of the different parts at any given 

time. Besides changing the rheological properties of the blood, sepsis can affect the vascular 

compartment by changing the permeability of the vascular walls, the tone of vascular smooth muscle and 

its responsiveness to intrinsic or extrinsic regulatory mechanisms. Absolute or effective hypovolemia can 

result from sepsis-induced fluid extravasation and relaxation of the capacitance vessels, respectively. 

Vasodilation can cause a decrease of arterial and venous resistances and, possibly, when it affects the 

vascular resistance of the different organs at various degrees, changes of the distribution of blood flow. 

Both the systolic and diastolic function of the heart can be abnormal, because of a decrease of 

contractility and an impaired diastolic relaxation. Finally, the control systems in charge of circulatory 

homeostasis maintenance appear to be altered. 

Representation of sepsis-induced elementary hemodynamic alterations on 

Guyton's equilibrium diagram 

Sepsis-induced hemodynamic alterations can be fruitfully visuali ed in terms of Guyton’s equilibrium 

diagram (192). In this representation, the functional characteristics of the right heart, pulmonary 

circulation and left heart are depicted by cardiac function curves, which show the relation between the 

preload of the right ventricle, indexed by CVP (independent variable), and the output of the left ventricle, 

CO (dependent variable). On the same diagram venous return curves, also called vascular function 

curves (287), show the functional characteristics of the systemic circulation, displaying the relation 

between CO (independent variable) and CVP (dependent variable). The CVP-axis intercept of a venous 

return curve corresponds to the mean systemic filling pressure (Pmsf), that is the ratio between stressed 

volume and the compliance of the systemic circulation. In symbols: 
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Pmsf=
  ,sys- us,sys

Csys
       (1) 

where VB,sys, Vus,sys and Csys are the intravascular volume, the unstressed volume and the compliance 

of the systemic circulation, respectively. The analog parameter for the pulmonary circulation is mean 

pulmonary filling pressure (Pmpf) defined as the stressed volume of the pulmonary circulation (VB,pul-Vus,pul) 

divided by its compliance (Cpul). In symbols 

Pmpf=
  ,pul- us,pul

Cpul
       (2) 

Mean circulatory filling pressure (Pmcf), “the pressure that would be measured at all points in the entire 

circulatory system if the heart were stopped suddenly and the blood were redistributed instantaneously in 

such a manner that all pressures were equal" (192), is given by 

Pmcf=
CsysPmsf

 CpulPmpf

Csys Cpul
 

  - us

Ctot
     (3) 

where VB, Vus and Ctot are blood volume, unstressed volume and compliance of the whole circulation. 

In dogs, Pmpf exceeds Pmcf by ~3 mmHg (199), while Pmsf is just slightly less than Pmcf, because of the 

greater compliance of the systemic relative to the pulmonary vascular bed (192, 445, 446). Blood 

distribution between the systemic and pulmonary circulation is determined by the elastic properties of the 

circuits and by the contractility of the left and right hearts. A decrease of right heart contractility relative to 

that of the left heart causes translocation of blood from the pulmonary to the systemic circulation, 

decreasing Pmpf relative to Pmsf. A decrease of left heart contractility relative to that of the right heart has 

opposite effects (304). 

The slope of a venous return curve is minus the reciprocal of the resistance to venous return (RVR) and 

its physical meaning is heavily dependent on the model which is used to interpret it (178). If the venous 

return curve is interpreted in the context of a model made of in-series resistances and compliances (193, 

536), RVR is the cumulative resistance of the systemic circulation weighted by systemic compliances 

according to their distribution (193). In symbols: 

   =
  C         C  ...        ... n Cn

C  C  ... Cn
    (4) 

where R and C are the resistance and the compliance of each part of the systemic circulation 

numbered from the venae cavae to the aorta. In a simpler model in which the systemic circulation is 
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represented by an arterial compliance (Ca), arterial resistance (Ra), venous compliance (Cv) and venous 

resistance (Rv) in series (192), RVR is given by 

   = v  a
Ca

Ca Cv
      (5) 

For a discussion of different in series model, see (178). Examples of venous return curves are shown 

in Figure 2 (panel A). Variation of the slope of the venous return curves are proportional to the changes 

of SVR only if both Ra and Rv change proportionally. If it is not so, the changes of SVR tend to mirror 

those of Ra, and the changes of RVR those of Rv. 

In models made by in series elements, as those considered until now, no redistribution of blood flow 

can occur. To take into account this possibility, the cardiovascular system should be represented with 

elements in parallel. Caldini and coll. (84) used a two-compartments model to analyze the effects of 

epinephrine administration on the systemic circulation of dogs studied with a constant-flow, right-heart-

bypass preparation. Each compartment was in parallel with the other and characterized by three 

elements in series: an arterial resistance (Ra), a vascular compliance (C) and a venous resistance (Rv). 

The distribution of the blood flow is dependent on the resistance offered by one compartment (Ra+Rv) 

relative to the other. As Ra is much greater than Rv, the relative magnitude of precapillary resistances in 

the two compartments is a primary determinant of blood flow distribution. Similarly to Guyton’s model, in 

Caldini's model the relation between CVP and CO (the venous return curve) is linear, and its intercept 

with the CVP axis is Pmsf. The reciprocal of the slope of the venous return curve is minus the sum of the 

products of the fractions (F) of blood flow in the two compartments times venous resistance, weighted by 

compliances, that is  

   =
  C  v    C  v 

C  C 
      (6) 

In panel B of Figure 2 different venous return curves have been calculated using reported data for a 

dog (84). The slope of venous return curves increases if the fraction of blood flow to the non-compliant 

compartment increases. It is evident that the slope of venous return curves may heavily change without a 

concomitant variation of SVR. 
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Whatever the model used to interpret the characteristics of venous return curves, the intersection 

between the vascular and cardiac function curves represents the only equilibrium point possible for the 

whole cardiovascular system. 

The elementary hemodynamic alterations induced by sepsis are represented in panels A, B and C of 

Figure 3. 

Sepsis-induced fluid extravasation or relaxation of capacitance vessels causes Pmsf to decrease, 

shifting the venous return curve to the left. In the absence of change in the cardiac function curve, the 

new equilibrium point will move from C (control condition) to S (sepsis), with a decrease of both CVP and 

CO (Figure 3, panel A). 

Vasodilation of resistance vessels does not affect Pmsf, but decreases RVR, causing a clockwise rotation 

of the venous return curve. In these settings both CVP and CO will increase relative to the control 

condition (Figure 3, panel B). A similar change of the venous return curve can take place if redistribution 

of blood flow from a compliant to a non-compliant compartment occurs. 

Sepsis-induced myocardial dysfunction causes the cardiac function curve to rotate clockwise, 

decreasing CO but increasing CVP (Figure 3, panel C). 

Note that hypotension may be present in all these situations, due to the fall of SVR or CO in a variable 

degree. 

If these alterations are combined, the numbers of hemodynamic patterns further increase (Figure 3, 

panels D, E and F), and the final hemodynamic pattern which will emerge in a given patient depends on 

the predominant alterations at a given time. The simultaneous presence of effective hypovolemia and 

myocardial dysfunction may further decrease CO but normalize CVP (Figure 3, panel D). A concomitant 

myocardial dysfunction and vasodilation increases CVP in the presence of low CO (Figure 3, panel E). 

When myocardial dysfunction is modest and vasodilation involves both resistance and capacitance 

vessels, both CO and CVP may be even normal (Figure 3, panel F). 

Cardiovascular changes in LPS-treated healthy volunteers and during the 

progression from infection-triggered systemic inflammatory response to septic 

shock 
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The observation of the natural history of the disease is made difficult, or even impossible, by the time it 

takes to recognize the presence of sepsis, and by its dynamic and rapidly progressive nature, which 

warrants a prompt intervention. That’s why data regarding hemodynamics in resuscitated patients with 

septic shock are abundant, but much less information is available regarding the transition from infection-

triggered systemic inflammatory response to sepsis and septic shock. Moreover, until recently, 

assessment of hemodynamic measurements required placement of instruments which are associated 

with measurable morbidity and mortality (94), and are not indicated for routine use. Finally, research in 

this field is impeded by the difficulty of reproducing the features of the human disease in experimental 

animal models (149, 440). This markedly limits the possibility to use the information gathered in animal 

experiments to understand sepsis in humans, and warrants extreme caution when therapies, developed 

in animal models, are translated into clinical interventions, as suggested by the impressive number of 

failed clinical trials (440). 

With so many confounding factors, to define the natural history of the cardiovascular septic response is 

an extremely challenging task, and it should not be surprising that contradicting opinions exist in the 

literature. At one end there is the belief that septic shock starts hyperdynamic (179, 555), on the other 

that the hyperdynamic pattern is a consequence of volume expansion (207, 423).To this regard, some 

useful hints can be obtained from the studies investigating the effects of bacterial products in healthy 

humans, in particular endotoxin. 

Hemodynamics after endotoxin administration in healthy humans 

In humans and in animals the host reaction to bacterial products has been experimentally studied by 

administering low doses of purified typhoid vaccine (67) or bacterial endotoxin (352, 506). This topic has 

been extensively reviewed elsewhere (26, 169, 297, 582). Lipopolysaccharide (LPS) is the main 

biologically active component of endotoxin, a part of the outer cell membrane of gram-negative bacteria. 

Its administration to healthy human volunteers has been used as a model of systemic inflammatory 

reaction. Injection of a dose as low as 2 ng kg
-1

 in healthy volunteers is able to elevate body temperature, 

heart rate (HR) and white blood cell count (85) enough to meet three of the four SIRS criteria (60, 286), 

that is 1) temperature >38°C or <36°C, 2) HR >90 beats per minute, 3) respiratory rate >20 breaths per 
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minute or PaCO2 <32 mmHg, and 4) white blood cell count > 12,000 mm
-3

, <4,000 mm
-3

, or >10% 

immature (band) forms. Additionally, LPS triggers the release of proinflammatory and anti-inflammatory 

cytokines, like TN α, IL-6, IL-8, IL-10, and of counter-regulatory hormones, as cortisol and epinephrine 

(85). Many, but not all, of these findings are commonly seen in septic shock patients (1, 562) and in 

different animal models of sepsis (141, 196, 246, 255, 434, 527). 

The administration of LPS to previously healthy humans or animals to simulate septic and septic shock 

conditions has been criticized (149, 167, 440). Indeed, it is unlikely that a purified toxin, produced by a 

single class of microorganisms (gram-negative bacteria), and administered as a bolus or by constant 

infusion, can fully simulate the complex effects of the intermittent release of exogenous substances within 

the host, as it happens in sepsis. Even if LPS injection triggers changes of plasma cytokines and 

hormones similar to those obtained in more realistic septic models, for example cecal ligation and 

puncture (CLP), the kinetic and magnitude of cytokine production and release are different (434). To this 

regard, consensus guidelines recommended against the use of LPS challenge as a model of sepsis (291, 

384). 

However, the hemodynamic pattern observed in humans after LPS administration is evocative of that 

of many septic patients. Moreover, a condition closely resembling septic shock can be induced in humans 

by sufficient amounts of LPS. The effects of the self-administration of 1 mg Salmonella minnesota 

endotoxin in a human subject were described in a case-report (111). This dose is 3750 times higher than 

the usual dose of 4 ng kg
-1

 administered to healthy human subjects. At admission to the emergency 

department, 2 hours after endotoxin injection, the subject had profound hypotension (42/20 mmHg), 

which persisted after aggressive volume expansion (~4L) and dopamine infusion. Invasive hemodynamic 

measurements performed 9 hours after the admission, during treatment with fluids, dopamine and 

norepinephrine, showed low systemic vascular resistance index (SVRI) (10 mmHg L
-1

 min m
2
), elevated 

CI (5.0 L min
-1

 m
-2

) together with reduced pulmonary wedge pressure (PWP) (3 mmHg). Clearly, 

treatment preceded the hemodynamic measurements, so it is impossible to say if CI was elevated before 

fluid expansion. However, the decrease of SVRI described is of such magnitude that cannot be explained 

by the effect of fluid infusion alone (264). Before discharge, the patient developed disseminated 

intravascular coagulation, abnormalities suggestive of mild organ dysfunction and non-cardiogenic 
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pulmonary edema. Twelve hours after the injection, serum endotoxin concentration was very low (38 pg 

ml
-1

) and decreased thereafter, despite profound hypotension, indicating that presence of endotoxin in the 

blood is not a necessary condition for septic shock to persist. Indeed, endotoxin is found in the blood in 

~40% of septic shock patients. In ~60% of patients, endotoxin is not detected even with repeated 

sampling (114). 

Humans are extremely sensitive to the effects of endotoxin relative to other species, and the dose 

administered to healthy volunteers (2-6 ng kg
-1

) is several orders of magnitude smaller than the doses 

routinely used in animal experimental studies (149). Clearly, the dose administered to experimental 

animals is selected as to induce fully developed shock with multiorgan dysfunction, while that given to 

humans causes just transient hemodynamic impairment without profound hypotension. However, if the 

dose given to mice and humans is titrated in order to produce a comparable effect in terms of plasma IL-

6, mice still requires a much larger dose (250 times greater) (102). 

Moser and coll. (352) administered 0.45 g of LPS in 10 healthy males without previous fluid loading 

(the weight of the subjects was not reported, if a weight of 70 kg is assumed, the dose should have been 

around 6 ng kg
-1

). LPS injection was followed by a ~30 minutes prodromal phase in which body 

temperature remained invariant. After that, temperature rose sharply during the following 2 hours (chill 

phase), reaching a peak at about 3 hours (flush phase) to decline later (defeverscence phase). The 

increase of temperature was rather variable in each individual. Arterial pressure did not change during the 

prodromal and chill phase but decreased by 14% during the flush phase. Hypotension appeared despite a 

marked increase of CO, indicating a proportionally greater fall of SVR. The increase of CO took place 

because of accelerated HR, as stroke volume (SV) remained unchanged or declined. The fall of MAP and 

SVR was not paralleled by a concomitant decrease of mean pulmonary artery pressure (PAP) and 

pulmonary vascular resistance (PVR), which increased and remained unchanged, respectively. Note that 

in this study CVP and PWP were not systematically measured (PWP was measured in 6 subjects only) 

and assumed to be zero to calculate SVR and PVR. As the difference between PAP and PWP can be 

modest, this procedure might have overestimated PVR. 

A similar dose of LPS (4 ng kg
-1

), given to 9 healthy volunteers, had comparable effects, causing 

progressive hypotension despite increasing CI (506). At 3 hours from LPS administration, CVP was 
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unchanged. At the same time point, PAP and PWP were not different from control values, suggesting, 

together with the increase of CI, a decrease of PVR. Surprisingly, at each time point pulmonary vascular 

resistance index (PVRI) was not statistically different between control subjects (who received saline) and 

subjects who received LPS. The limited number of experimental subjects and the extreme variability of 

PVRI (360) may account for this paradoxical finding. In another study using similar protocol and 

techniques, LPS actually decreased both CVP (-49%) and PWP (-36%) at 3 hours leaving PAP 

unaffected. PVRI tended to increase but not significantly (322). 

These hemodynamic effects of endotoxin appears to be dose dependent, as hypotension may not 

ensue if lower doses are administered in healthy volunteers (152, 335). Note that the described 

hemodynamic changes take place without significant changes of pH or arterial saturation. C(a-v)O2 

remains constant (352) or tends to decrease (322).   O2 increases after LPS administration (322, 352), but 

is not correlated to body temperature, indicating that the increased metabolic demands are not univocally 

determined by the febrile reaction (352). Indeed, prevention of the temperature rise with ibuprofen does 

not abolish the rise of   O2 (322). 

The studies above clearly show that 4-6 ng kg
-1

 of LPS in healthy human subjects are able to induce a 

hyperdynamic state characterized by a tendency for hypotension, a markedly decreased SVR and 

elevated CO at constant (352, 506) or decreased preload (322, 326). As it will be discussed, contractility 

is increased (326) or unchanged at 3 hours (506), and, at 5 hours, unaltered (326) or depressed in the 

presence of volume loading (265, 322, 506). 

Hemodynamic changes during the transition from infection-triggered systemic inflammatory 

response to septic shock 

The few prospective studies unraveling the natural history of the disease suggested that an early 

hemodynamic alteration in a consistent number of septic patients is a decrease of SVR. Robinson and 

coll. (441) studied 18 patients without hepatic or cardiac diseases undergoing transurethral resection or 

cystoscopy, procedures at risk for septic complications. After the procedure 5 patients developed a 

positive limulus assay and one experienced infection by gram-positive bacteria. SVR decreased in all 6 

patients. In 3 patients CI increased, in 2 remained constant and in 1 decreased, so that, overall, mean CI 
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was unchanged. In only two patients did MAP fell below 75 mmHg. In a similar study performed by 

Gunnar and coll. before and after genitourinary instrumentation (189), the patients who developed gram-

negative bacteremia displayed a greater decrease of SVR and increase of CI than those who developed 

gram-positive bloodstream infection. Similar results were reported by Blain and coll. (51). However, in the 

study by Gunnar and coll. (189) on patients with established shock, opposite results were reported: those 

with gram-positive infections had a greater CO and lower SVR than those with gram-negative infections, 

prompting the Authors to hypothesize a time-dependent effect of endotoxin, i.e. early vasodilation with 

late cardiac depression. 

More recently, CI and SVRI have been measured with non-invasive pulse contour analysis before any 

treatment in 127 patients presenting at the emergency department with systemic infection (371). Patients 

were, on average, normotensive (MAP 80±20 mmHg). Most of them (57%) had a high CI (4.0±0.6 L min
-1

 

m
-2

) and reduced SVRI (20.7±4.4 mmHg L
-1

 min m
2
), but in a considerable percentage (39%) CI was low 

(2.5±0.5 L min
-1

 m
-2

) and SVRI elevated (32.5±6.5 mmHg L
-1

 min m
2
). Chronic heart failure was more 

prevalent in the second than in the first group (32 versus 11%). Few patients (4%) presented with 

markedly reduced CI (1.4±0.8 L min
-1

 m
-2

) and extremely increased SVRI (70.6±18.5 mmHg L
-1

 min m
2
). 

These studies clearly indicate that different hemodynamic patterns coexist during the early part of the 

course of the infection, when arterial pressure is still kept well inside the physiological range. 

Many patients present with elevated CO and low SVR, but not all. By itself, a decrease of SVR and an 

increase of CO is not specific of sepsis but can be a physiological adaptation to an increase of   O2. In a 

landmark study of Kreymann and coll. resting metabolic rate was increased (+50±14%) during infection 

and relatively declined in the presence of sepsis (+24±12%) or septic shock (+2±24%). Similarly to what 

happens in healthy subjects after LPS injection (352), temperature elevation was not correlated to the 

increase of resting metabolic rate (260). 

Even if, in the absence of a pre-existing cardiac disease, CO is normal or elevated at the beginning of 

the septic process, decreases of the effective intravascular volume and worsening of cardiac function can 

cause CO to fall. In a series of 18 patients in septic shock with hyperlactatemia (5.9 mmol L
-1

) who 

received just 0.7 L of fluids in the preceding 8 hours, Rackow and coll. (423) found normal SVR (14.2 

mmHg L
-1

 min) and low-normal CI (2.49 L min
-1

 m
-2

). Nine of these patients had a pre-existing cardiac 
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disease, but CI was also reduced (2.24 L min
-1

 m
-2

) if only patients without pre-existing cardiac disease 

were considered. The reduction of CI was due to low stroke volume index (SVI) (24.9 ml m
-2

) in the 

presence of increased HR (101 beats min
-1

) and was associated with normal CVP (5.7 mmHg) and PWP 

(6.5 mmHg), suggesting a combined vascular and cardiac dysfunction. A fall of CI (from 4.38±1.57 to 2.83 

L min
-1

 m
-2

) was observed by Kreymann and coll. in a small sample of patients resuscitated with colloids 

up to a CVP of 12 mmHg or a PWP of 15 mmHg during the progression from sepsis to septic shock (260). 

The decrease of CI was paralleled by a decline of   O2.  

More recently Guarracino and coll. studied a series of 55 septic patients before volume expansion who 

received just a small amount of fluids (up to 250 ml) during instrumentation (186). All patients were 

hypotensive (MAP<65 mmHg) and had a serum lactate concentration greater than 2 mmol L
-1

 (the group 

average was 5.1 mmol L
-1

). CI was low (2.1±0.1 L min
-1

 m
2
), right atrial pressure (RAP) was at the upper 

reference limit (7.6±1.4 mmHg) and SVRI, calculated using the mean values of MAP, RAP and CI, was 

23.6 mmHg L
-1

 min m
2
, at the lower limit of reference range. 

In both the study of Rackow and coll., and of Guarracino and coll. (186, 423) the preload of the right 

ventricle was normal or at the upper reference limit, indicating that cardiac dysfunction is in part 

responsible of the low CI early in the course of the disease. 

In summary, it is likely that early in the course of sepsis hemodynamic pattern can be hyper- or 

hypodynamic. The initial hyperdynamic pattern can be regarded as an adaptative response to the 

increased metabolic requirements and progress towards a hypodynamic one as effective hypovolemia, 

and cardiac dysfunction develop. However, if cardiac dysfunction elicited by bacterial products or 

mediators produced during the host response is prominent, the hypodynamic pattern prevails. After 

volume loading, the hyperdynamic pattern is commonly reported (2, 112, 475, 577, 580, 200, 280, 310, 

366, 381, 397, 398, 404). 

Effects of sepsis on intravascular volume and on capacitance vessels 
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Absolute hypovolemia 

Absolute hypovolemia may be present in septic shock patients because of poor fluid intake or a 

precedent fluid loss, secondary to the underlying disease or previous surgical procedure (22, 310). 

Inappropriate polyuria may further reduce intravascular volume (103). Additionally, alterations of 

endothelial permeability may lead to extravasation of plasma fluid to the interstitial space. 

A significant relation between total blood volume and CI has been reported by Weil (572), showing that 

a low CI is associated with a low intravascular volume and higher mortality. Similar observations were 

already reported by McLean and coll. (310). It is possible that this inverse relation between intravascular 

volume (or cardiac output) and mortality reflected incomplete resuscitation and cardiovascular support, 

because more recently a very high mortality has been reported in septic shock patients with high CI and 

markedly reduced SVRI (552). 

In healthy volunteers, small doses of LPS (2 ng kg
-1

) do not change systemic microvascular 

permeability, measured as transcapillary escape rate of I
125

-albumin, venous occlusion strain-gauge 

plethysmography or bioelectrical impedance (542), but this does not rule out that larger doses, or 

prolonged exposure time may elicit a change of microvascular permeability, as suggested by the 15 L 

cumulative fluid balance measured in 72 hours from the autointoxication with 1 mg of endotoxin in a 

laboratory worker as previously described (111). 

It is well known that acute respiratory distress syndrome (ARDS), a frequent complication of septic 

shock, is characterized by an increase of pulmonary capillary permeability (11). However, less information 

is available regarding permeability of systemic capillaries in septic shock humans, despite the fact that the 

occurrence of generalized edema is not rare. This issue has been addressed by measuring colloid 

osmotic pressure in lymph or edema fluid from subcutaneous tissue (ΠE) and in serum (ΠS) in 35 critically 

ill patients with severe generalized edema, 16 with sepsis and 19 without (135). ΠS was similar in septic 

and non-septic patients ( 4.6± .  versus  5.8±3.4 mmHg, respectively), while ΠE and the ratio ΠE/ΠS 

were higher in the former (2.4±0.7 mmHg and 0.165±0.0.052) than in the latter group (1.3±0.7 mmHg and 

0.084±0.048). It is possible that capillary hydrostatic pressure was greater in septic than in non-septic 

patients due to fluid resuscitation. This possibility however cannot explain these results because an 
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increase of the driving pressure leading to extravasation would dilute interstitial fluid, reducing ΠE and 

ΠE/ΠS. 

An increased microvascular water permeability has been found in hyperdynamic septic shock patients 

without overt generalized edema using a venous congestion plethysmograph (101). Briefly, with this 

technique an inflatable cuff is placed around the leg and the volume changes of the calf are estimated by 

changes of its cross-section. When the cuff is inflated quickly with a certain pressure (Pcuff), there is a fast 

volume increase of the calf (Δ a) reflecting the distension of vessels of the local circulation followed by a 

progressive slow volume increase secondary to increased filtration (Jv). Filtration capacity (Kf) is given by 

the ratio between ΔJv and ΔPcuff for Pcuff greater than isovolumetric venous pressure (Pvi), the cuff 

pressure at which filtration is balanced by reabsorption (163). Septic shock and control critically ill patients 

were studied after resuscitation and stabilization. Kf was markedly greater in septic (6.6±0.4 10
-3

 ml min
-1

 

100 ml of tissue
-1

 mmHg
-1

, KfU) relative to non-septic patients (3.5±0.3 KfU). By itself, a change of Kf may 

reflect a change of permeability, of the surface area available for exchange or both. Thus, an enhanced 

recruitment of previously unperfused capillaries is an alternative explanation of the increased Kf 

measured in septic patients. As local capillary recruitment was not assessed in this study, a definitive 

conclusion is not possible. Relative to healthy volunteers or acutely ill patients without sepsis, septic 

patients with preserved CI have a lower proportion of sublingual perfused small vessels (118), as it 

happens for skeletal muscles and small bowel mucosa vessels in CLP rat models (146, 269). If the 

patients studied by Christ and coll. (101) had a similar decrease of perfused vessels despite the much 

larger CI, the measured Kf would reflect a marked increase of small vessels permeability. 

Alterations of vascular permeability in sepsis have been investigated using animal models. A 

progressive loss of intravascular volume has been documented in dogs treated with endotoxin (409). In 

sheep, infusion of Pseudomonas strains causes the protein content of the lymph from the lungs to 

increase (73, 74). Similar effects can be obtained in the same animal model administering LPS (72). In a 

porcine model, LPS administration caused hemoconcentration (207). 

It is difficult to define the impact of the sepsis-induced increased permeability in terms of absolute 

hypovolemia during early sepsis or septic shock, as studies directly assessing intravascular volume after 

careful selection of participants are lacking. Intravascular volume was measured in earlier studies, but 
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patients with pre-existing hypovolemia for reasons unrelated to the septic process were not excluded 

(310). 

It is likely that absolute hypovolemia secondary to fluid extravasation is not prominent in the majority of 

septic shock patients early in the course of the disease, as the expected hemoconcentration is rarely 

evidenced. Indeed, hematocrit is usually normal at presentation (564). In a recent study (233), Jansma 

and coll. measured hemoglobin concentration in 296 patients with sepsis or septic shock and in 320 

patients without sepsis admitted to the ED. Patients with conditions potentially able to affect hemoglobin 

concentration, like previous blood losses, surgical interventions, anemia, hematological malignancies, 

were excluded from the study. Hemoglobin concentration was, on average, normal (~ 14 g dL
-1

) and 

similar in septic and control patients. Also, the fraction of patients with hemoconcentration was similar in 

both groups (2-3%). However, the interpretation of these results is not straightforward, as in sepsis the 

absolute amount of red blood cells (RBC) can decrease, due to either increased clearance secondary to 

cell membrane alterations or decreased production consequent to a concomitant renal dysfunction or 

bone marrow suppression (5, 21, 36, 407). It is thus possible that absolute hypovolemia is actually 

present, but the simultaneous decrease of red cell volume and plasma volume keeps hemoglobin 

concentration and hematocrit invariant. The administration of large amounts of fluids during resuscitation 

contributes to the fall of hemoglobin concentration usually seen later in the disease (233). 

In resuscitated septic patients, intravascular volume has been found similar to that of critically ill non-

septic controls, but in the former patients interstitial water is increased relative to the latter, suggesting an 

alteration of vascular permeability (460). 

In conclusion, in septic patients, vascular permeability is increased, likely late in the clinical course of 

the disease. The exact role of this phenomenon in shaping hemodynamics is still to be determined. 

Relative hypovolemia 

During sepsis excessive vasodilation of capacitance vessels may lead to relative (or effective) 

hypovolemia. Effective volemia can be fruitfully quantified in terms of Pmsf or Pmcf (445, 446). However, 

quantitative data in humans are scanty. This is a problem because species-specific responses to bacterial 
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products are frequently reported, and extrapolation of results obtained with animal research to humans is 

at best difficult. 

In humans assessment of Pmsf by the stop-flow technique is feasible only in particular situations (236, 

468). Three alternatives methods are available (576). The first method takes advantage of the effect of 

intrathoracic pressure on CO in mechanically ventilated patients during several post-inspiratory pauses. 

At different lung volumes, pairs of CVP and CO values are recorded, and the regression line is 

extrapolated at zero flow yielding the so called Pmsf-hold (305). Alternatively, on the assumption that the 

same value of intravascular pressure after equilibration would be measured by stopping the flow in the 

whole body or in a representative part of it, Pmsf can be assessed as the intravascular pressure present 

after ~30 s from the rapid inflation of a cuff placed around the arm at a pressure level above systolic 

pressure (Pmsf-arm). Finally, Pmsf has been estimated in terms of mean systemic filling pressure analogue 

(Pmsa). It should be underlined that this parameter is an empirical estimate of Pmsf, which is calculated 

from three parameters, MAP, CVP and CO, using coefficients set on the assumption of a fixed ratio 

between arterial and venous compliance and resistance (400). All these assumptions can be violated in 

sepsis, so it is unlikely that values of Pmsa actually reflect absolute Pmsf in this condition.  

A study comparing the three methods in postoperative cardiac surgery patients found no differences 

between Pmsf-hold and Pmsf-arm (19.7±3.9 versus 18.4±3.7 mmHg) but a substantially lower Pmsa 

(14.7±2.7 mmHg) (307). Note that the values of Pmsf-hold and Pmsf-arm are greater than those measured 

with the stop-flow technique both in animals (178, 193, 194) and humans during cardioverter/ defibrillator 

implantation (236, 468), and moribunds (435). The reason for this discrepancy is unclear: in part, it may 

be related to the different case-mix and the different treatments patients received before measurements 

were made (307), but a recent study directly comparing Pmsf-hold and Pmsf measured with a stop-flow 

technique in pigs, confirmed that Pmsf-hold overestimates Pmsf, at least in some conditions (44). A study in 

dogs showed that Pmsa is able to track the changes of intravascular volume, but changes of Pmsa were 

systematically less than those of Pmsf assessed independently using cardiopulmonary interactions (283). 

Pmsf has never been measured in healthy volunteers before and after LPS administration and its 

eventual changes cannot be deduced from available data. 
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During early sepsis, before resuscitation, Pmsf has been assessed in terms of Pmsa only (186). The 

average value found (13 mmHg) is somewhat lower than that measured in non-septic patients (91, 191). 

However, doubts about the ability of Pmsa to reflect Pmsf and the lack of a control group prevent a definitive 

conclusion. After volume expansion performed according to Surviving Sepsis Guidelines (SSG) (30 mL 

kg
-1

 saline solution) (438) Pmsa increased (up to 15 mmHg), as expected. These 2 mmHg probably 

underestimate the true increase of Pmsf, as a previous study showed that the changes of Pmsa are ~50% of 

the concomitantly measured changes of Pmsf-hold (307). 

Pmsf-hold has been assessed in septic shock patients with normal CI (3.28±0.76 L min
-1

 m
-2

) and CVP 

(8±4 mmHg) only after volume loading and treatment with two levels of norepinephrine infusion (0.19 and 

0.30 μg kg
-1

 min
-1

) (404). Pmsf-hold increased with increasing dose of norepinephrine (from 26±10 to 

33±12 mmHg) as expected. These values are higher than those measured in postoperative cardiac 

surgery patients with the same technique (305). In order to get rid of the confounding effect of different 

treatments in Figure 4 Pmsf-hold, resistance to venous return index (RVRI) and SVRI measured in 

postoperative cardiac surgery patients (305, 306) and in septic shock patients (404) have been 

represented as a function of the rate of norepinephrine infusion. Assuming a linear relation between 

norepinephrine infusion rate and Pmsf-hold, the intersection between the regression line and the Y-axis 

gives the value of Pmsf-hold that would have been measured without norepinephrine infusion (Figure 4, 

upper panel). This value is somewhat lower in septic shock patients (13.9 mmHg) than in post cardiac 

surgery patients (15.8 mmHg), despite the presumably greater amount of fluids received by septic shock 

patients. These values are likely to be qualitatively but not quantitatively valid, because Pmsf-hold is known 

to overestimate Pmsf (44). Pmsf has also been measured in septic ICU patients immediately after death, 

and found not different from that measured in the other categories of ICU patients (435), however it is 

likely that eventual differences in Pmsf were obfuscated by the terminal condition of the patients and the 

prolonged treatments they received before the exitus. 

Overall, these studies suggest that Pmsf is reduced during early septic shock, but the extent of the 

reduction cannot be easily defined, as this parameter has never directly measured before treatment, 

expect in the form of Pmsa. 
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The third determinant of Pmsf, together with total intravascular volume and unstressed volume is 

vascular compliance [see equation (1)]. Vascular compliance has been characterized in human patients 

with sepsis both at the level of the skeletal muscle circulation (23, 24) and of the whole circulation (499). 

At both levels, vascular compliance has been found reduced. This is surprising, because the major effect 

of active venoconstriction is believed to be a reduction of the unstressed volume, and not stiffening of the 

vessels (178). Additionally, stiffening of the vascular bed should result in an increase of Pmsf, and some 

evidence suggests that Pmsf is decreased in many septic patients. 

When assessed at the level of the forearm using a plethysmographic technique, before volume 

expansion and vasopressor treatment, Astiz and coll. (24) found that a marked decrease of vascular 

compliance in septic shock patients relative to septic patients without shock and non-septic subjects. 

Moreover, the volume of the forearm increased less in septic shock patients when the pressure in the 

occlusion cuff was risen to 30 mmHg. This kind of response is not specific of sepsis, as an increase of 

vascular elastance has been measured with similar techniques in other pathological conditions, as heart 

failure or severe anemia (483). The Authors interpreted these findings as evidence for increased venous 

tone in early sepsis, related to orthosympathetic and hormonal stimulation together with alterations of 

vascular responsiveness (362). However, equating vascular elastance with venous tone is not warranted, 

as the change of unstressed volume secondary to venous smooth muscle activation is preponderant over 

the changes of elastance (446). One may speculate that the results obtained by Astiz and coll. (23, 24) 

were the result of an increase of unstressed volume, shifting the pressure-volume relation of forearm 

capacitance vessels to the left and moving the operating point closer to the flat part of the curve with 

increased elastance, so that a smaller additional volume could be accommodated by rising cuff pressure. 

Total effective vascular compliance (Ctot), assessed as the ratio between the changes of total blood 

volume (Δ ) and the changes of C P (ΔC P) before and after a 6 min infusion of 450 ml of iso-osmotic 

and iso-oncotic gelatin (499), has been found decreased in septic patients relative to non-septic patients 

(68±17 ml mmHg
-1

 versus 99±18 ml mmHg
-1

), independently of concomitant treatment with vasoactive 

drugs. However, in these settings Δ /ΔC P equals Ctot only if CO remains constant (178), and CO 

increased after volume infusion in both non septic and septic patients. In this case, Δ /ΔC P 

overestimates Ctot by an amount proportional to the slope of the cardiac function curve (ΔCO/ΔC P) and 
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to 1/RVR. While ΔCO/ΔC P was similar in the two groups,  VR was not measured. If the latter parameter 

was substantially less in septic than non-septic patients, this would have resulted in a greater ΔC P in 

septic relative to non-septic patients, potentially accounting for part of the measured difference in Ctot. 

In animal studies, the response in terms of Pmsf is not uniform, and probably depends on the species 

investigated and on experimental conditions. In dogs, endotoxin (1 mg kg
-1

) rapidly (~30 min) shifts the 

venous return curve leftwards, indicating a decrease of Pmsf. As blood volume does not change 

immediately and as the slopes of the relations between Pmsf and blood volume are relatively constant, the 

decrease of Pmsf should be due to an increase of unstressed volume, rather than to a change of blood 

volume or total compliance (409). 

In pigs, Pmsf measurements during endotoxemia provided different results relative to those found in 

dogs. Hiesmayr and coll. (207) administered endotoxin at a dose of 5 μg kg
-1

 per hour for one hour, and 2 

μg kg
-1

 per hour for the following 6 hours. After 5 hours from the beginning of endotoxin infusion Pmsf was 

increased from 8.1±1.9 to 9.9±3.2 mmHg, despite a concomitant rise of hemoglobin concentration 

probably reflecting a decrease of intravascular volume. On the assumption that total intravascular volume 

was reduced by ~20%, as suggested by the rise of hemoglobin concentration, a substantial active 

decrease of unstressed volume or a decrease of total vascular compliance or a combination of both 

should have taken place in order for Pmsf to rise. Active venoconstriction is suggested by the concomitant 

marked increase of SVR, which maintained normotension despite a fall in CO. Note that this 

hemodynamic pattern is markedly different from that seen in healthy humans treated with LPS (322, 352, 

506) or in many hyperdynamic septic patients (101, 147, 394). In pigs, acute pulmonary hypertension 

may limit the output of the right ventricle and cause, together with a preload decrease presumably 

secondary to venous pooling, CO to fall, especially if the rate of LPS administration is elevated (313). One 

may wonder if these differences are due to the proportionally greater dose of LPS given to the 

experimental animals relative to humans, but this is not the case, because in the same porcine model 

lower doses of LPS fail to elicit an hyperdynamic response (207). If, in pigs, the rate of endotoxin infusion 

is increased ( 0 μg kg
-1

 for two hours), the animals become unable to compensate completely for the 

decrease of CO by increasing SVR, which does not change relative to pre-endotoxin level, and 

hypotension develops. At the same time, the inability to modulate the tone of vascular smooth muscle 
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becomes manifest also at the level of capacitance vessels, and Pmsf, instead of increasing as when a 

lower dose of endotoxin is administered, remains unchanged or decreases slightly (from 10.8±1.6 to 

9.7±1.7 mmHg) (313). 

Blood pooling or venous pooling is a poorly defined term which has been used to generically indicate 

pooling of blood in the peripheral parts of the circulation. It can be secondary to an increase of unstressed 

volume or to an increase of venous resistances, especially in the splanchnic bed. Indeed, the latter 

possibility takes place acutely in dogs when very high doses of endotoxin are administered. In this 

species 3-5 mg of endotoxin cause a fall of CI in front of unchanged or decreased inferior vena cava 

pressure together with a rise of portal vein pressure, indicating blood trapping in the hepatic circulation 

(52, 212, 571). These findings have, however, not been reproduced in other animal sepsis models, and 

probably are not prominent in septic patients. In a study by Kuida and coll. no significant increase in 

splanchnic blood after endotoxin infusion was found in cats, monkeys and rabbits (263). Similarly, Ujhelyi 

and coll. found no splanchnic blood pooling in septic swine using Tc
99m

-labelled erythrocytes and 

radionuclide imaging (537). The reasons for these discrepancies are unclear and in part species-specific: 

besides the dose of endotoxin administered, the modality of administration seems important, as in dogs 

administration of endotoxin as a bolus or slow infusion triggers markedly different hemodynamic 

responses (109, 110). 

In conclusion, while some evidence suggests a decrease of Pmsf in septic patients which is partially 

counteracted by fluid-loading, little is known about the changes of this parameter during the course of the 

disease. Translation of the results obtained in animal models to humans is risky at best, due to the variety 

of responses assessed in different animal species and in different experimental conditions. 

Effects of sepsis on resistance vessels  

In terms of Guyton’s equilibrium diagram, the increase of CO at constant or decreased C P observed 

in LPS-treated healthy volunteers (326, 352, 506) implies a change of both the functional properties of the 

systemic circulation and of the heart. In Figure 5 the equilibrium point before the LPS injection is point A 

corresponding to a CO of 5.5 L min
-1

 and a CVP of 5 mmHg. After the injection, CO increases up to 10 L 

min
-1

 and CVP does not change, so the equilibrium point shifts from point A to point E. Note that an 
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increase of CO is not usually present in endotoxemic animal models (90, 153, 188, 207, 237, 313, 523, 

584), unless fluids are administered (70, 100, 313), severely limiting the utility of animal models to 

understand LPS-induced hemodynamic changes in humans. 

The new condition is possible only if the cardiac function curve rotates counterclockwise (from CFCc to 

CFCe). Several factors are potentially responsible for this phenomenon. Arterial vasodilation usually 

occurs after LPS administration in healthy humans (322, 326, 352, 506), and the decrease of the 

afterload to the left ventricle may contribute to elevating CO at a given CVP (222). Contractility itself can 

be modified by bacterial products or substances produced by the host in response to the infection, or by 

reflex activation. The changes of contractility are discussed in the section "Effects of sepsis on heart 

function". HR increases both after LPS administration (152, 465, 506) and in septic conditions (2, 24, 200, 

231, 234, 398, 423, 554, 577). A concomitant cardiac dysfunction (506) is not excluded by a 

counterclockwise rotation. If LPS depresses the contractility of the myocardium, its influence should have 

been more than compensated by the concomitant decrease of afterload and the increase of nervous and 

hormonal stimulation. 

Several different venous return curves are compatible with a new equilibrium point at point E. At least 

in theory, there can be an isolated decrease of the RVR with constant Pmsf (VRCe1), a decrease of RVR and 

Pmsf (VRCe2) or no change (or increase) of RVR with increased Pmsf (VRCe3). In physiological conditions, 

modulators of the vascular tone, as the orthosympathetic system, affect both the arterial and venous side 

of the circulation (178), even if the extent of the response is quantitatively different (241, 334). For this 

reason, the decrease of SVR, which has been measured after LPS (352, 506), is suggestive of a 

decrease of RVR, but not probative. If the systemic circulation is represented by an arterial compliance 

(Ca), arterial resistance (Ra), venous compliance (Cv) and venous resistance (Rv) in series, SVR is just 

Ra+Rv, but RVR is given by equation (5). Unless the changes of Ra cause redistribution of CO away from 

the compliant compartment (312, 340), a fall of Ra is expected to have a much smaller effect on RVR than 

a fall of Rv, and consequently on CO (314) (Figure 2). Unfortunately, RVR and Pmsf have not been 

measured in healthy humans after LPS administration, and, even if a decrease of RVR is likely, it is not 

possible to say which possibility takes place. 
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Data relative to RVR in septic patients are scanty. In untreated patients with sepsis or septic shock 

venous return curves have been built estimating Pmsf in terms of Pmsa but the lack of a control group 

prevents any firm consideration regarding the specific effects elicited by sepsis on the venous return 

curve (186). 

Persichini and coll. measured RVR with the inspiratory holds method in 16 resuscitated septic shock 

patients at two different rates of infusion of norepinephrine (404). A decrease of the rate of infusion from 

0.30 to 0. 9 μg kg
-1

 min
-1

 led to a similar decrease of RVRI and SVRI (from 6.5 to 5.2 mmHg L
-1

 min m
2
, -

17%, from 25.3 to 21.0 mmHg L
-1

 min m
2
, -20%, respectively). By itself, a decrease of RVR tends to 

increase CI, but CI fell from 3.47 ± 0.86 to 3.28 ± 0.76 L min
-1

 m
-2

 due to a proportionally greater decrease 

of Pmsf. In the absence of a control group, these results can be tentatively compared with those obtained 

by Maas and coll. using the same technique in 16 stable postoperative cardiac surgery patients (306). A 

decrease of the rate of infusion of norepinephrine from 0.08 to 0.04 μg kg
-1

 min
-1

 caused RVRI and SVRI to 

decrease, the former from 9.7 to 6.6 mmHg L
-1

 min m
2
, -32%, and the latter from 48.0 to 35.7 mmHg L

-1
 

min m
2
, -26%. By looking at Figure 4, it is evident that the rate of rise of Pmsf, RVRI and SVRI with 

increasing norepinephrine is markedly less for septic shock patients than for post cardiac surgery 

patients. Extrapolation of the regression lines indicates that, without vasopressors, in fluid-resuscitated 

septic shock patients SVRI is lower than in post-surgery patients but, surprisingly, RVRI is similar. 

Admittedly, the paucity of data available and the arbitrariness of the extrapolation process prevent any 

firm conclusion. However, if these findings were confirmed by further research, they would suggest a 

different effect of sepsis on precapillary and postcapillary resistance vessels. 

The interpretation of the hemodynamic events triggered by LPS injection in healthy subjects or by 

sepsis in patients is further complicated if parallel elements are used to describe the cardiovascular 

system. Indeed, a marked increase of the slope of the venous return curve can take place if the fraction of 

blood flow to the compartment with the greater compliance decreases relative to the fraction of blood flow 

to the compartment with the lower compliance, even if SVR does not change appreciably (84). Such an 

occurrence is potentially able to contribute to the increase of blood flow, which is seen in healthy subjects 

after LPS administration or in hyperdynamic septic patients, but only limited and partially conflicting 

information is available (182). 
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The increase of plasma concentrations of epinephrine and norepinephrine which has been measured 

in healthy subjects after LPS (335, 465) or in septic patients (16, 40, 185, 285) is potentially able to 

change blood flow distribution. If the increase of circulating catecholamines caused vasoconstriction in 

the splanchnic circulation but vasodilation in the skeletal muscles in humans as it happened in the dogs of 

Caldini and coll. (84), the consequent redistribution of blood flow towards the non-compliant compartment 

would increase the steepness of the venous return curve. 

However, vascular response to catecholamines is impaired in the presence of endotoxin (50, 411) or in 

sepsis (Figure 4), and this, together with the known interspecies differences (169), prevents any 

prediction concerning the effects of epinephrine on blood flow distribution in humans. 

Vascular tone is also modulated by local orthosympathetic activity. Indeed, muscle sympathetic nerve 

activity (SNA) decreases after 4 ng kg
-1

 LPS administration in humans (465): if splanchnic SNA was not 

decreased proportionally, this would result in a blood flow redistribution similar to that described by 

Caldini and coll. (84). Contrary to this idea, a study conducted on healthy volunteers receiving ~4 ng kg
-1

 

of E. coli endotoxin showed that splanchnic blood flow increases by ~ 90% after LPS administration 

peaking at 3 hours after the injection, while indexes of leg blood flow were unchanged (152). It should be 

noted that in this study no hypotension was observed, and cardiac output was not measured, so the 

comparison between these results and those previously reported (352, 506) is not straightforward. 

In patients with a normodynamic septic shock (CI 3.7±0.5 L min
-1

 m
-2

) the percentage of forearm blood 

flow to CO was similar to that found in non-septic critically ill patients with similar CO (CI 3.6±0.2 L min
-1

 

m
-2

) (23). A similar percentage was measured in septic shock patients with a hyperdynamic circulation (CI 

5.5±0.6 L min
-1

 m
-2

) (22). Another study found no difference in terms of percentage of CO perfusing the 

splanchnic circulation between critically ill and hyperdynamic septic patients (112). In severe sepsis 

patients with hypotension (MAP 65±12 mmHg) and hyperdynamic circulation (CI 5.0±1.9 L min
-1

 m
-2

), 

perfusion to skeletal muscles, as indexed by tibialis anterior, was decreased relative to non-septic 

patients with a smaller CI (4.1±1.2 L min
-1

 m
-2

), arguing against a redistribution of blood flow to the non-

compliant compartment (366). 

In summary, what happens to the distribution of blood flow in LPS-treated or septic humans is still 

unclear. If redistribution to the splanchnic compartment actually takes place, as suggested for LPS-
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treated healthy subjects by (152) and for hyperdynamic patients by (366), the slope of venous return 

curve should decrease and CO fall. As CO is actually increased, either the effects of blood flow 

redistribution to the splanchnic compartment are more than compensated by the fall of arterial and 

particularly of venous resistances, or by an increase of Pmsf. Alternatively, redistribution can take place not 

between different organs but at the level of different parts of the microcirculation. The increase of plasma 

lactate after LPS injection in healthy subjects (335) or in septic patient with an elevated central oxygen 

saturation (168) is suggestive of this possibility, but whether this mechanism has an important role in 

shaping hemodynamics is still to be determined. 

Regarding RVR and Pmsf, the information gathered in animal studies cannot be directly translated to 

humans, due to the different effects of endotoxin in different species and the variety of experimental 

settings. 

In a pig model characterized by normotension and decreased CO, endotoxin infusion (5 µg·kg
-1

 h
-1

 for 

the first hour and 2 µg·kg
-1

 h
-1

 for 6 hours) markedly raised RVR (from 5.7±1.2 to 13.3±5.7 mmHg L
-1

 min) 

together with Pmsf (from 8.1±1.9 to 9.9±3.2 mmHg) and SVR (from 63±12 to 128±43 mmHg L
-1

 min) (207), 

suggesting a reflex compensation to maintain normotension in front of a fall of CO. A greater dose of 

endotoxin ( 0 μg kg
-1

 for two hours) without concomitant fluid-loading in the same animal species 

produced hypotension without changes of RVR and SVR, as if reflex activation was no longer able to 

compensate for the marked reduction of CO (313). 

Similar changes of SVR and RVR can take place if arterial and venous resistances changes by the 

same proportion (assuming that compliances are invariant). Interestingly, in the study of Hiesmayr and 

coll. (207) the changes of SVR paralleled those of RVR after endotoxin administration (+108 and +135%, 

respectively) and fluid infusion (-29 and -28%, respectively). Similarly, both SVR and RVR did not change 

significantly with greater doses of endotoxin in the same animal species (313). When LPS (1 mg kg
-1

) was 

administered to dogs which had received an unspecified amount of fluids, SVR and RVR decreased on 

average by 51 and 25%, respectively (409). If parallel changes of SVR and RVR take place also in 

humans, the fall of SVR previously described implies a concomitant decrease in RVR. However, when 

endotoxin ( 0 μg kg
-1

 h
-1

) was administered to pigs together with enough fluids to keep right atrial 

pressure (RAP) at 5 mmHg, SVR fell (from 29.8±6.4 to 12.9±1.9 mmHg ml
-1

 min) and RVR did not change 
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significantly (from 1.7±0.5 to 1.4±0.2 mmHg ml
-1

 min) (313). In the same preparation N
w
-nitro-L-methyl 

ester (L-NAME) increases SVR more than RVR both in the presence (+294 and +129%, respectively) and 

in the absence (+196 and +107%, respectively) of fluid-loading. In another study from the same group, L-

NAME elicited similar effects (117). Overall, these experimental studies warn against the assumption that 

changes of SVR are always paralleled by similar changes of RVR. 

The Microcirculation in Sepsis 

Introduction 

Historically, sepsis research and management have focused on monitoring and reversing 

macrocirculatory alterations. Nevertheless, the correction of parameters such as MAP and CI often fails to 

resolve or even prevent organ dysfunction. Indeed, a recent study highlighted that many septic shock 

patients, after fluid resuscitation, present an impairment in oxygen use, rather than a macrocirculatory 

defect of oxygen transport (168). Additionally, fluid loading and vasopressors do not seem able to restore 

microcirculatory parameters late in the disease, irrespective of changes of MAP and CI (41, 281, 319, 

383). In some animal models vasopressors might even exacerbate local blood flow regulation 

disturbances (259, 279). For these reasons, in the last decades, focus has shifted towards the 

microcirculation, which appears markedly altered both in humans and in animal models. Regarding the 

functional aspects of the microcirculation, see (288, 419). 

Distribution of microcirculatory perfusion in sepsis 

Our ability to visualize the human microcirculation in vivo was severely limited until the development of 

hand-held vital microscopes (HVMs) in the 1990s. Orthogonal polarization spectral imaging (OPS) first, 

and then sidestream dark-field (SDF) imaging and incident dark field illumination (IDF) have gathered a 

lot of interest amongst researchers (223, 224). De Backer and coll. took advantage of OPS to evaluate 

sublingual microcirculation in terms of perfused large (diameter >20 µm) or small vessels (diameter <20 

µm) in subjects without sepsis and in septic patients. With this technique vessels can be visualized only if 

they contain RBC (183). These Authors found a significant decrease of the density of small vessels in 
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septic patients, suggesting that some of the vessels were collapsed. Moreover, the proportion of perfused 

small vessels in these subjects was reduced, due to the increase number of nonperfused or intermittently 

perfused vessels. Finally, the heterogeneity of the distribution of blood flow in the different areas 

visualized was almost two times greater in septic patients relative to healthy volunteers, potentially 

contributing to oxygen extraction impairment (565). Survivors demonstrated a higher portion of perfused 

vessels compared to non-survivors (118). Other studies using the same technique, confirmed these 

findings (55, 456, 531). 

A critical point of this approach to the study of the microcirculation is whether the changes of sublingual 

microcirculation in sepsis reflect those of more important sites, as splanchnic microcirculation. Some 

animal studies provided an acceptable correlation between alterations in the sublingual and gut 

microcirculation (157, 548), but not always (131). In humans the alterations of sublingual microcirculation 

during sepsis do not reflect those of the splanchnic circulation during early sepsis or in response to fluid 

challenges (55, 134). In clinical practice, HVM techniques, which are relatively time-consuming and 

require considerable expertise in image interpretation, have not gained wide acceptance, despite the 

prognostic value of sublingual microcirculation monitoring (456, 524) and the possibility to use changes of 

sublingual microcirculation as a surrogate markers of fluid resuscitation responsiveness (531). 

In line with human studies investigating sublingual microcirculation, animal studies have consistently 

shown significant microcirculatory alterations in sepsis. Lam and coll. applied intravital microscopy to 

assess the microcirculation of an extensor digitorum longus muscle preparation in CLP rats, and found 

36% reduction of perfused capillary density, a 265% increase in stopped-flow capillaries and an increased 

spatial distribution heterogeneity of perfusion (269). This kind of alterations has also been assessed in the 

ileal mucosa of anesthetized pigs after P. aeruginosa infusion (229) and in the cerebral microcirculation of 

sheep after intra-abdominal injection of autologous feces (514). Interestingly, in the latter study, changes 

in functional capillary density appeared before the decline of MAP, supporting the notion that 

microcirculatory dysfunction occurs before the onset of macrocirculatory derangements. 

The differential behavior of the different parts of the microcirculation in septic conditions has been 

assessed in animal studies only. 
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In skeletal muscle microcirculation, larger arterioles constrict and smaller arterioles dilate during sepsis 

in hyperdynamic (105, 106, 298) and hypodynamic rat models (53, 105, 298). In the latter condition, 

smaller arterioles’ diameter may also not change (53). In these preparations, venules’ diameter is 

invariant (105, 106, 298) or transiently decreases in hypodynamic animals (298). The different behavior of 

larger and smaller arterioles may be related to the different factors controlling the diameter of these 

vessels, that is neurohumoral signals for larger and local signals for smaller arterioles. Interpretation of 

these findings is problematic because in these hyperdynamic models MAP does not fall as in septic 

patients, but remains stable (298) or increases (105, 106). In hypodynamic models, MAP falls transiently 

(298) or for a more extended period (53, 105) but usually with an increase of SVR (105), indicating that 

control of vascular tone is in part maintained. Moreover, local metabolic activity is usually not assessed, 

and it is therefore difficult to figure out which part of the response is adaptative. Indeed, in a presumably 

hypodynamic model, arteriolar behavior during endotoxemia was indistinguishable from that observed 

after a hemorrhage producing a similar hypotension (53). Endotoxin does not seem able to change 

directly smooth muscle tone in larger murine arterioles, as local exposure to endotoxin does not elicit a 

change in diameter. To the contrary vasoconstriction appears when endotoxin is administered 

systemically (172). Substances produced by vascular segments upstream likely contribute to the 

modulation of arteriolar tone in sepsis. In the same study, larger arterioles’ vasodilation was triggered 

when arterioles were perfused with endotoxin with an aortic segment placed upstream. Interestingly, 

endothelium-derived nitric oxide (NO) or prostaglandins were not the vasodilators responsible for the loss 

of basal tone, because the vasodilatatory response persisted when the upstream vessel (an aortic 

segment) was stripped of the endothelium or treated with a cyclooxygenase inhibitor (172). A similar 

dependence of larger arterioles’ tone on upstream released factors in endotoxemic conditions has been 

demonstrated in an ex-vivo human cremaster muscle preparation (87). 

The response of the microcirculation to sepsis in animal models appears markedly heterogeneous and 

partially dissociated from changes of regional perfusion. In awake rats, Whitworth and coll. described 

“progressive arteriolar constriction” in the microcirculation of ileum during hyperdynamic sepsis induced 

by live E. coli infusion, which led to a gradual reduction of microvascular blood flow (575). Blood flow to 

the ileal mucosa, measured with microspheres, decreased also in a presumably hypodynamic model 
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(anesthetized rats injected with 10 mg kg
-1

 of LPS). In these experiments no significant microcirculatory 

perfusion changes in other intestinal compartments were detected (254). In anesthetized mechanically 

ventilated pigs, in which sepsis was induced by fecal peritonitis, the relation between microcirculatory flow 

(measured with laser doppler flowmeters) and the regional flow (measured with ultrasound flowmeters) 

has been assessed during the hypodynamic phase and after fluid resuscitation (hyperdynamic phase). 

CO and superior mesenteric artery blood flow similarly fell and increased during the hypodynamic and 

hyperdynamic phase. During the hypodynamic phase, relative to regional perfusion, microcirculatory 

blood flow was decreased in the pancreas, increased in the jejunum, and unchanged in stomach, liver, 

colon and kidney. In contrast, after fluid resuscitation microcirculatory flow increased less than regional 

blood flow at the level of pancreas, liver, colon and kidney (208).  

The pulmonary microcirculation during sepsis has received a lot of attention due to its involvement in 

acute lung injury and ARDS. Blood flow distribution is regulated at this level by hypoxic vasoconstriction, 

the impairment of which may contribute to the deterioration of gas exchange. Indirect evidence for 

hypoxic vasoconstriction impairment in human sepsis is given by the similar distribution of perfusion in 

septic ARDS patients and in healthy controls (474). Similarly, in anesthetized, intubated sheep, ventilated 

with a constant tidal volume of 10 ml/kg, 5 cmH2O PEEP and FiO2 of 1.0, infusion of E. coli LPS does not 

change perfusion distribution, and hypoxemia is larger than expected from the loss of aerated tissue, 

suggesting that hypoxic vasoconstriction is not effective in reducing ventilation perfusion mismatch (148). 

Apparently in humans blunting of hypoxic vasoconstriction is not characteristic of ARDS patients, 

occurring also in patients with pulmonary edema due to cardiac or renal failure (474). The specific effect 

of bacterial products on hypoxic vasoconstriction has been dissected in a mouse model. In normal mice, 

occlusion of the left mainstem bronchus causes diversion of blood flow to the right lung secondary to an 

increase of left lung vascular resistance, a phenomenon which is markedly blunted after 10 mg kg
-1

 E. coli 

endotoxin administration. This behavior cannot be attributed to the presence of edema, which was absent 

in LPS-treated mice (539). The molecular mechanisms responsible for hypoxic vasoconstriction have 

been recently reviewed (132, 181). 

The microcirculation of the kidney is also impaired in sepsis, but significant controversy exists 

regarding the exact cause of sepsis-induced acute kidney injury despite normal or even increased organ 
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blood flow, especially during hyperdynamic sepsis (275). A study by Lankadeva and coll. in sheep 

revealed some intriguing information on the subject. Fiber optic probes in the renal medulla and cortex of 

the animals allowed monitoring of local tissue perfusion and tissue oxygen tension. After E. coli infusion, 

medullary blood flow and oxygenation decreased by ~50%, despite a 67% increase in total renal blood 

flow. On the other hand, blood flow and tissue partial oxygen tension increased in the cortex. Even more 

surprisingly, medullary blood flow and oxygen tension were further reduced with norepinephrine 

administration (279). 

Overall, in septic patients and animal models, sepsis causes a reduction of perfused microvessels 

together with heterogeneous spatial distribution of perfusion, involving different organs to various 

degrees. These microcirculatory abnormalities are only partially related to changes of macrocirculatory 

parameters. 

The described microcirculatory alterations originate at multiple levels. Together with malfunctioning of 

intrinsic and extrinsic regulatory mechanisms, activation of the clotting cascade, and alterations in red 

blood cell and white blood cell deformability lead to capillary “clogging”, creating capillary areas with zero 

or intermittent flow, further hampering local perfusion-demand matching. The concomitant dysfunction of 

endothelial glycocalyx may lead through an increase of permeability to interstitial edema, further 

worsening gases and nutrient exchange between the tissues and the blood. 

Disturbances of intrinsic mechanisms regulating the microcirculation in sepsis 

Under normal conditions, microcirculatory blood flow is tightly regulated to achieve adequate perfusion 

of tissue cells through adjustments of arteriolar smooth vascular muscle tone. Smooth muscle tone is 

controlled by a number of mechanisms, based on mechanical (stress and strain), metabolic and 

neurohumoral signals (427). During sepsis these mechanisms may fail, producing a condition which is 

indicated with the poorly defined term vasoplegia, and which often manifests clinically as hypotension due 

to abnormally low SVR despite the maintenance of normal or even increased CO (271). Vasoplegia 

includes phenomena such as reduced vascular smooth muscle tone, alterations in vasomotion and, 

finally, reduced response to nervous, hormonal and pharmacological stimulation, believed to be triggered 

by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns 
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(PAMPs) (271). The loss of microcirculatory regulation is thought to eventually lead to the clinical 

presentation of refractory septic shock. 

Alterations of the intrinsic mechanisms regulating microvascular blood flow during sepsis in humans 

have been assessed in terms of reactive hyperemia, that is the transient rise in local blood flow which 

follows tissue ischemia. Briefly, perfusion to a part of the body (upper or lower limb) is interrupted using a 

cuff inflated at a suprasystolic pressure for 3-5 minutes, and the increase of blood flow upon deflation of 

the cuff is compared with the preinflation value. Perfusion can be assessed directly by plethysmography 

(21, 24) and laser Doppler flowmetry (366), or indirectly by near-infrared spectroscopy (NIRS) (127). 

Applying an air plethysmograph to the forearm Astiz and coll. found a reduced hyperemic response in 

septic shock patients with reduced pre-occlusion perfusion before fluid resuscitation (24) and in 

hyperdynamic septic shock patients (21). In the latter study however, peak blood flow after the occlusion 

was comparable to that of healthy volunteers, and the reduced increment was largely due to a greater 

pre-occlusion blood flow in septic patients. Using laser Doppler flowmetry the hyperemic response was 

found reduced at the level of tibialis anterior muscle (366) and of the skin (586). Similar results were 

obtained by NIRS at the thenar skeletal muscle (127). 

As reactive hyperemia is mediated by multiple mechanisms (485), it is not possible to identify on the 

base of these experiments which regulatory mechanism is impaired and to what extent. The finding of 

Neviere and coll. (366) of a similar rate of increase of blood flow immediately after the release of the 

occlusion in septic and non-septic subjects suggests that myogenic regulation, believed to be responsible 

of the initial phase of the hyperemic response, is somewhat preserved. 

Animal studies confirmed to some extent the alterations of microcirculatory regulation observed in 

septic patients. The ability of the microcirculation to adapt to local tissue oxygen level in sepsis was 

investigated using a hind limb extensor digitorum longus muscle preparation in a fluid-resuscitated CLP 

mouse model. Red blood cells and oxygen supply rate were heterogeneously distributed, with some 

capillaries exhibiting very high RBC and oxygen supply rate, while others were flow-stopped. The 

response time within hypoxic capillaries was three-fold greater in CLP mice relative to sham animals. This 

regulation disturbance was associated with a decrease of RBC O2-dependent ATP efflux, a local adaptive 

mechanism in areas of hypoxia that allows for upstream vasodilation, presumably through NO-mediated 



 42 

smooth muscle relaxation (38). In a larger animal model (pigs), hemorrhage caused gut capillary transit 

time heterogeneity to decrease in control animals, but to increase in the presence of endotoxemia, 

impairing oxygen extraction (217). 

Several factors can play a role in the genesis of these alterations. In the last decades research has 

focused on the endothelium, as dysfunction of these cells is potentially able to explain many of the 

microcirculatory findings in sepsis through multiple mechanisms. 

Cell-to-cell electrical signaling in sepsis 

Cell-to-cell electrical communication allows an electrical signal to spread bidirectionally in the 

endothelial monolayer, so that a stimulus on a particular part of the microcirculation can elicit its effects at 

some distance (conducted response) and trigger a coordinated response. Indeed, when a vasodilator that 

does not trigger a conductive response is used on a daughter arteriole, the effect on parent arterioles and 

therefore local blood flow is minimal. Conversely, when vasodilation is induced together with a conducted 

response, blood flow increases substantially because of vasodilation of the parent arteriole together with 

the non-stimulated daughter arteriole (267). In vitro and in vivo animal experiments have shown that 

endotoxin is able to reduce intercellular electrical coupling through a tyrosine kinase-dependent 

mechanism, so to decrease the conducted response triggered by direct electrical stimulation (534). 

Conduction of electrical signals at the level of smooth muscle and endothelial cells contributes to the 

genesis of “vasomotion”, periodic oscillations in microvascular tone that are autonomously generated 

from within the vascular wall (417). The functional purpose of these oscillations remains almost as elusive 

as their mechanism. Indeed, some lines of evidence suggest that vasomotion exerts a protective role 

during periods of ischemia (227, 448). As such, one would expect vasomotion to be increased in septic 

states. In the jejunum of endotoxemic pigs the frequency of oxygen partial pressure oscillations increased 

relative to control animals in front of a decrease of mucosal tissue oxygen tension (387). In humans 

published data are too scanty to attempt any generalization: Young and Cameron found an increased 

amplitude of skin blood flow oscillations at 0.1-0.15 Hz frequencies using laser Doppler flowmetry in 

septic patients (586), but Neviere and coll. with the same technique did not observe any vasomotion in 

the skeletal muscle of septic patients, despite being present in control subjects (366). 
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Nitric oxide in sepsis 

A number of vasoactive substances are produced by endothelial cells, including vasodilators  and 

vasoconstrictors (413). For the purposes of this review, special attention will be given to NO, since NO is 

believed to play a pivotal role in the pathophysiology of sepsis-induced microcirculatory dysfunction, 

being potentially able to affect a plethora of microvascular processes, among which microvascular tone, 

vascular permeability, erythrocyte deformability, leukocyte adhesion, platelet aggregation and formation 

of microthrombi, and unresponsiveness to vasoactive drugs (4, 36, 37, 249, 262, 393, 557). For more 

information regarding the physiology of NO, see (56, 126, 150, 350). 

NO production has been assessed by total plasma concentration of nitrogen oxides, [NOx]p, including 

nitrates (NO3
-
) and nitrites (NO2

-
) (353). Doses of endotoxin between 2 and 4 ng kg

-1
 administered to 

healthy volunteers do not elicit a change of [NOx]p (6, 203, 493), but tend to increase urinary excretion of 

NOx (203). In septic shock patients [NOx]p are usually elevated relative to healthy controls, unless sepsis 

develops post-trauma (18, 40, 486, 490, 505, 518, 583, 123, 128, 143, 166, 176, 203, 228, 373). The 

amount of NOx measured in patients is however usually smaller than that measured in rodent models 

(165, 521). An increase of [NOx]p in septic patients does not necessarily imply an increased production of 

NO, as may also be due to a decrease of urinary clearance (563). Some studies suggested that elevation 

of [NOx]p is the result of increased NO synthesis (18, 123, 143, 583), but others were unable to measure 

an increase of the production rate (302, 553). 

Exhaled NO increases after 2 or 4 ng kg
-1

 of endotoxin in healthy volunteers (493) and in endotoxemic 

animal models (333, 501). Probably it is produced locally, because is not accompanied by an elevation of 

[NOx]p (333, 493) and increases when pulmonary blood flow is reduced (501). In septic shock patients 

without respiratory tract infection exhaled NO is not different relative to control subjects without systemic 

inflammation, despite increased [NOx]p in the former group. To the contrary, exhaled NO is higher in 

patients in whom sepsis originated from a pulmonary infection (518). In ARDS patients, despite the 

existence of an inflammatory process, exhaled NO is decreased (69). The discrepancy between these 

results and those collected in healthy volunteers may be related to the multiple determinants of NO 

recovered in exhaled air, especially in mechanically ventilated subjects, including hypoxia, hypercapnia, 
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volume and composition of the fluid lining lower airways, prostaglandins, and direct damage to small 

airway epithelial cells producing NO (108).  

In humans little is known about the tissues responsible for the production of NO appearing as NOx in 

the blood, and about the modality with which NO is produced. Cells of the immune system are likely 

responsible for part of the increase, because NO synthase activity in PMN isolated from septic shock 

patients is elevated, especially in those patients with three or more dysfunctional organs (177), and NO 

production from blood mononuclear cells is increased (428). However, a report provided evidence of 

reduced expression of mRNA for inducible (iNOS) and endothelial NO synthase (eNOS) in peripheral 

blood mononuclear cells and mesenteric arterial smooth muscle (429). As the amount of synthases 

actually produced was not quantified, and NO production not measured, it is not possible to say if these 

cells were producing the extra amount of NO expected or not, as production of NO depends also on the 

availability of substrate, for example arginine, which can be increased due to increased membrane 

transport (428). Two studies suggested overproduction of NO by mesenteric arteries from septic patients 

(502, 533), in line with a vascular origin of NO. No human data however are available to identify with 

certainty if the NO so produced comes from endothelial or smooth muscle cells or both. In an in vitro 

model, bovine aortic endothelial cells, after only one minute incubation with endotoxin, produced a 

substance able to decrease platelet aggregation, presumably NO, indicating that endothelial cells are a 

potential source of NO during endotoxemia (459). However, no change of NO production was found in 

another study upon acute exposure to endotoxin in the same cells (359). Conversely, in the same study, 

incubation with endotoxin for 1 hour caused NO production to decrease in a dose dependent manner. In 

another study, 4 hours after the injection of 10 mg kg
-1

 and 2 mg kg
-1

 endotoxin in rats and rabbits, 

respectively, contraction of isolated aortic rings induced in vitro by phenylephrine and angiotensin II was 

reduced, independently of the presence of endothelium, and the normal contractile response was 

restored by treatment with N
G
-nitro-L-arginine, a NOS inhibitor (540). Wang and coll., using a rat CLP 

model, showed a markedly depressed vasodilatatory response to acetylcholine in large arterial vessels 

and, indirectly, in the microcirculation of intestine at 5 and 20 hours from sepsis induction, despite an 

unchanged response to nitroglycerin (567). Apart from indicating that increased basal NO production may 

be one of the factors involved in blunting of vasoconstrictive response, these results raise the question of 
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whether a significant part of the excess of NO is not produced by endothelial cells, rather by the smooth 

muscle. Also an in vitro study provided a similar suggestion (311). 

On the base of animal models, it has been hypothesized that iNOS is overexpressed during sepsis 

(431). Indeed, bacterial products and sepsis-induced mediators as IL-1, IL-6, TNF, IFN-γ, in various 

combinations, are known to induce iNOS expression in different tissues, including smooth muscle cells 

and hepatocytes (350). The resulting uncontrolled, calcium-independent NO synthesis would lead to 

vasodilation and unresponsiveness to vasoconstrictors (120, 225, 522). Moreover, differential expression 

of iNOS would cause inappropriate vasodilation of particular vascular beds which would become 

overperfused relative to others, with the consequent formation of functional shunts (349, 436). 

Not all animal models are consistent with this hypothesis. In an endotoxemic rat model the changes of 

iNOS activity and [NOx]p appear partially dissociated from the changes of vascular reactivity and total 

peripheral conductance (165, 512). Moreover, in carefully controlled laboratory experiments on small and 

large mammals, endotoxin causes exhaled NO to rise after an interval (30-100 min) (218, 333, 493, 501), 

which is too short for iNOS transcription and translation, a process which takes several hours (388). 

Indeed in a porcine model, after a 2 hours infusion of 10 µg kg
-1

 h
-1

 endotoxin, iNOS was undetectable in 

lung, liver, kidney, diaphragm, ventricles, aorta and vena cava (333). 

Evidence of increased iNOS expression in humans during sepsis is scarce. In isolated hepatocytes 

cytokinic stimulation can induce calcium and calmodulin independent production of NOx (372), and iNOS 

mRNA has been detected in a number of human tissues (202, 242, 303, 330, 392, 432, 457), but this 

does not necessarily imply that iNOS is produced in big amounts in sepsis. iNOS or its mRNA do not 

increase in the plasma after administration of 1-2 ng kg
-1

 of E.coli endotoxin to healthy volunteers (411). 

iNOS mRNA increases in urinary cells from healthy subjects after LPS injection and in septic patients 

(203). However, while this report provides some evidence of a possible association between renal iNOS 

induction and proximal tubular injury during sepsis, it sheds no light on whether iNOS is also induced in 

other tissues, or whether that induction has hemodynamic and microcirculatory consequences. In septic 

patients expression of iNOS appears compartmentalized at the site of inflammation (15). 

It is not therefore surprising that attempts to manipulate NO production in human sepsis have been 

made both aiming to reduce (296, 569) and to increase NO bioavailability (49, 54, 251, 301, 530). For a 
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recent review of these studies see (270). Up to date, these attempts were unsuccessful to restore a 

normal microcirculation or to decrease mortality. 

A phase II trial with non-selective nitric oxidase inhibitor, N
G
-methyl-L-arginine, showed earlier 

resolution of shock and a trend toward improved outcome (29, 569), but a multicenter, randomized, 

placebo-controlled, double-blind phase III study testing the same molecule, in similar but not identical 

conditions, was prematurely discontinued because of increased mortality in the treatment arm (296). N
G
-

methyl-L-arginine, besides reducing [NOx]p, increased SVR while reducing the requirements for 

vasoconstrictive drugs. Note that the latter result does not imply that responsiveness to catecholamines 

was restored, because N
G
-methyl-L-arginine acts as a vasoconstrictor also in healthy volunteers (541). 

The patients treated with the drug exhibited an excess of mortality related to decreased cardiac output, 

cardiac failure, and cardiogenic shock. 

A generalization of these results is a daring task, as the relation between the different models with the 

in vivo condition is often difficult to establish. There is abundant evidence that the intrinsic regulation of 

the microcirculation is abnormal in sepsis, but the exact combination of the mechanisms responsible is 

yet to be defined with precision in human sepsis and in experimental models. 

Disturbances of extrinsic mechanisms regulating the microcirculation in sepsis 

In septic patients, nervous and hormonal stimulation is elevated despite normal or reduced SVR, as 

indicated by high levels of circulating catecholamines, aldosterone and renin (16, 40, 185, 285). 

Moreover, the rate of increase of SVR with increasing catecholamine infusion is generally smaller in 

septic than in non-septic patients (Figure 4). Indeed catecholamine-resistant, refractory hypotension is an 

early cause of death in septic patients (138). 

Vascular hyporeactivity to various agents is not a specific feature of sepsis, as it arises also in other 

pathological conditions, as during vascular decompensation associated with hemorrhagic shock (525). 

Indeed, vasodilatatory shock may appear as a late event whenever shock is severe and long-lasting 

(274). 

The response of arterial and venous vessels to several vasoactive substances has been studied in 

human endotoxemic models. After 4 hours from the injection of a small dose (1 or 2 ng kg
-1

) of E. coli 
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endotoxin in healthy volunteers, systolic blood pressure (SBP) increased less than in control subjects 

during phenylephrine infusion (4 µg kg
-1

 h
-1

). At the level of the forearm, LPS blunted norepinephrine-

induced vasoconstriction and acetylcholine-induced vasodilation, while the effects of glyceryl trinitrate and 

N
G
-methyl-L-arginine were unchanged (411). An antioxidant, vitamin C, restored in this model a normal 

response to acetylcholine (412). In a different human model, in which a systemic inflammatory response 

was generated by Salmonella typhi vaccine, the vasodilatatory response of forearm blood flow to 

endothelium-dependent vasodilators, acetylcholine and bradykinin, was similarly blunted. Again, the 

effects of endothelium-independent vasodilators (verapamil and nitroglycerin) were unchanged (210). In 

another study, investigating dorsal hand veins, local application of endotoxin at a concentration of 20 ng 

mL
-1

 had no effect on resting vein size, which probably was maximal in those experimental conditions, but 

markedly attenuated norepinephrine-induced vasoconstriction up to 3 hours from endotoxin exposure. 

Endotoxin also abolished vasoconstriction induced by deep breath, an effect mediated by an increase of 

orthosympathetic tone (42). Neither locally applied N
G
-methyl-L-arginine or pretreatment with a 

cyclooxygenase inhibitor restored norepinephrine-induced vasoconstriction. Conversely, pre-treatment 

with hydrocortisone prevented endotoxin-induced hyporesponsiveness (50). 

These experiments clearly show that endotoxin can induce vascular hyporeactivity in arteries and in 

veins, blunting the effects of nervous and hormonal stimulation, but do not allow definite conclusion 

regarding the mechanisms mediating this effect. Restoration of the vasoconstrictive effects of 

norepinephrine on a dorsal hand vein by hydrocortisone, but not by cyclooxygenase or NO synthase 

(NOS) inhibitors suggests that, at the level of the veins, prostaglandins or NO hyperproduction were not 

directly responsible for the refractoriness to the effect of norepinephrine. Indeed, a human in vitro study 

showed that LPS induces NO overproduction, blunting the vasoconstrictor response to phenylephrine, in 

internal mammary arteries, but not in saphenous veins, in which hyporesponsiveness to vasoconstrictors 

is induced by a NO-independent mechanism (520). Interestingly, an experimental study using a porcine 

endotoxemic model suggested that N
G
-methyl-L-arginine partially restores arterial but not venous 

responsiveness to norepinephrine (117). These human studies also indicate that in endotoxemic 

conditions vascular smooth muscle responds normally to vasodilators like NO and calcium-agonists, but 

not to vasoconstrictive agents as catecholamines. 
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In resuscitated septic shock patients, phenylephrine increases MAP less than in healthy subjects, a 

phenomenon partially reversed by administration of 50 mg hydrocortisone (40). In this study there was no 

correlation between the parameters characterizing the phenylephrine-MAP relation and plasma renin, 

aldosterone and norepinephrine/epinephrine levels, suggesting that vascular hyporeactivity was unrelated 

to nervous or hormonal hyperstimulation. In another study, septic shock patients with decreased adrenal 

reserve showed hyporesponsiveness to norepinephrine (13). 

Vascular hyporesponsiveness to catecholamines in septic conditions has been described in different 

animal models, including mice (239, 240), rats (28, 33, 213), rabbits (540), cats (401), sheep (48), and 

pigs (68, 117). Similarly, blunting of angiotensin-induced vasoconstriction is a common finding in different 

animal models (27, 77, 86, 278, 467, 516). A reduced response to vasopressin in experimental sepsis 

models is not a universal finding. In some studies the vasoconstrictor response to vasopressin was 

preserved (7, 33, 43), but in others not (140, 214, 467). Importantly, responsiveness of vessels of septic 

animals to vasopressin and its time-course appear dependent on the regional circulation which is 

investigated (516), In septic patients plasma levels of vasopressin are usually reduced (273), and 

vasopressin has been proposed as an additional therapeutic agent in these subjects (451). 

Multiple mechanisms, reviewed in (274, 482), are implicated in vascular hyporeactivity. Besides 

inactivation of catecholamines by superoxide (308), at the level of the membrane α1-adrenergic receptors 

have consistently been shown to be downregulated during the late phases of sepsis in human 

hepatocytes from septic patients (221) and in murine LPS and CLP models (240, 331, 470). This 

downregulation is mediated via sepsis-associated pathways including relative adrenal insufficiency (320, 

538) and promoter activity suppression at the transcriptional level by proinflammatory cytokines (470). 

Abnormal hyperpolarization of vascular smooth muscle cells seems to be another contributing factor. A 

number of different potassium channels, calcium-activated, voltage-dependent, inward rectifier and ATP-

sensitive, appear to play a role (266). Activation of these channels due to reduced intracellular ATP, local 

acidosis, circulating sepsis-associated molecules (atrial natriuretic peptide, calcitonin gene–related 

peptide, and adenosine), and electrical stimuli via gap-junction through the endothelium, leads to 

increased potassium efflux, hyperpolarization and inhibition of voltage-dependent Ca
2+

 channels opening, 

with a net reduction of extracellular calcium influx (180, 422). Alterations in several intracellular pathways 
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that modulate smooth muscle contraction are also responsible for reduced responses to vasoconstrictive 

agents. Rho-associated protein kinase (ROK)-dependent inhibition of myosin light-chain phosphatase 

(MLCP) activity is dampened in CLP mice, leading to reduced vasoconstrictive responses to K
+
, 

thromboxane A2 receptor activation and protein kinase C (PKC) activation (430). Finally, NO may play a 

role, inhibiting smooth muscle contraction via activation of MCLP, and of potassium channels on the 

plasma membrane (17, 58, 357, 422). Moreover, depletion of NO synthase cofactors (L-arginine and 

tetrahydrobiopterin) may cause NO synthase to produce reactive oxygen species as superoxide and 

hydrogen peroxide, forming, together with NO, reactive nitrogen species, as peroxynitrite (385). Hydrogen 

peroxide induces smooth muscle relaxation by activation of soluble guanylate cyclase (338) and by 

hyperpolarizing cell membrane (31, 201). 

Despite the number of experimental works focused on vascular reactivity in sepsis, the interplay of the 

different mechanisms in humans remains poorly understood, as indicated by the limited results of the 

clinical trials attempting to manipulate these mechanisms. Indeed, glucocorticoids, antinflammatory drugs, 

antioxidants, inhibitors of potassium channels and vasopressin were unable to improve survival 

substantially (14, 47, 158, 348, 361, 452, 513, 529, 547, 568). 

Microvascular walls in sepsis 

Bacterial products and molecules produced during the host response may alter several functional 

characteristics of microvascular walls (30). In physiological conditions, endothelium is lined by the 

glycocalyx, a meshwork of membrane-bound proteoglycans and glycoproteins, whose thickness (from 0.5 

to more than   μm) increases with increasing diameter of the vessel (332, 544). Its position at the 

interface between endothelial cells and blood enables it to condition a number of biological functions 

relevant during sepsis, including shear-stress mechanotransduction and shear-dependent vasodilation, 

capillary barrier function, coagulation and regulation of the interactions between immune cells and the 

endothelium. Moreover, in the microcirculation its thickness is in the same order of magnitude of the 

diameter of the vessels, and therefore it can condition local hemodynamics (95, 144, 418–420, 433, 458). 

Although alterations of the glycocalyx is not a phenomenon specific of sepsis, having been detected in 

a number of different pathological conditions (113, 282, 321, 354, 560), its degradation in the 
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experimental settings leads to microcirculatory alterations very similar to those detected in the sublingual 

microcirculation of septic patients (82). 

As direct visualization of the glycocalyx in vivo is technically demanding, glycocalyx shedding can be 

assessed indirectly by measuring plasma levels of syndecan-1 and heparan sulfate, two constituents of 

the glycocalyx whose plasma levels have been found inversely proportional to glycocalyx thickness in an 

hemorrhaged rat model (526). In septic patients, during the first 24 hours of observation, syndecan-1 

levels were markedly increased relative to patients without sepsis after major abdominal surgery or to 

healthy volunteers. Relative to healthy controls, also heparan sulfate was increased during sepsis, but 

less than in post-surgery patients. A relation between systemic inflammation and glycocalyx shedding 

was suggested by the positive correlation between plasma IL-6 and syndecan-1 (500). 

Recently, additional evidence for glycocalyx shedding and thinning in septic patients has been 

gathered via SDF assessment of RBC deviation from the central flow toward the endothelial cells in the 

sublingual microvessels, a parameter called perfusion boundary region (PBR), thought to reflect the 

extent of RBC penetration in the glycocalyx (Figure 6) (447). This method takes advantage of the fact 

that the outer part of the glycocalyx tends to exclude flowing RBC, which therefore gather toward the 

center of the microvessel. As penetration of RBC in the glycocalyx is also a function of RBC velocity (559) 

and deformability (364, 476), it is unlikely that PBR is univocally determined by glycocalyx thickness. 

Plasma components contribute to the formation of the luminal part of the glycocalyx, and a change of 

plasma composition can lead to degradation of this layer (418). Albumin appears important in the 

preservation of the glycocalyx (336), but it is not the only plasma molecule involved (220, 472, 591). 

However, in hypoalbuminemic septic patients, albumin supplementation does not reduce microvascular 

permeability, possibly because the albumin concentration required to maximally reduce permeability is 

quite low (316), and albumin administration to keep a serum albumin level of 30 g L
-1

 do not improve 

survival up to 90 days (83). A matter of concern is the possible damage to the glycocalyx after aggressive 

resuscitation with crystalloids (317, 318). Indeed volume expansion, besides changing plasma 

composition, can trigger the release of atrial and brain natriuretic peptide, mediators able to induce 

glycocalyx shedding (75, 76). 
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An increase in permeability is known to occur in the rat myocardial, liver, intestinal, lung and kidney 

microvasculature after exposure to LPS or in CLP models (170, 190, 219, 277, 585, 593). 

Not only glycocalyx degradation, but also several alterations of endothelial cells have been associated 

with increased permeability and interstitial edema in in vitro and in vivo models of sepsis. Alterations of 

endothelial adherens junctions, mainly consisting of VE-cadherin, is induced by proinflammatory 

cytokines and LPS, impairing VE-cadherin-mediated adhesion (469, 480). Incubation of human 

endothelial cells with TNF-α or LPS results in endothelial disruption, with A disintegrin and 

metalloproteinase domain-containing protein 10 (ADAM10)-mediated production of endothelial cadherin 

fragments (sVE-cadherin) (151). An increase of serum levels of VE-cadherins in septic patients has been 

repeatedly measured (151, 587, 594). 

Another mechanism potentially able to impair the barrier function of the endothelial layer is apoptosis, 

Evidence of endothelial apoptosis in the systemic circulation in in vivo models is scarce, because 

apoptotic endothelial cells rapidly detach from the vessel wall and are quickly cleared by the circulation 

(215). In in vitro models of sepsis, bacterial products may or may not trigger endothelial apoptosis, 

apparently depending on the type of bacterial product, the dose and the cell line used (215). Endothelial 

apoptosis may be also triggered by cytokines produced in response to bacterial products (405, 566). 

Stimulation of pulmonary microvascular endothelial cells in vitro with TNF-α, interferon γ and IL- β 

induces apoptosis with a caspase-dependent mechanism, together with impaired barrier function. Co-

culture with polymorphonuclear cells worsens the impairment of barrier function but apparently does not 

increase endothelial cells apoptosis (566). Recently, endothelial cell death with features consistent with 

cell apoptosis has been directly observed in the pulmonary microcirculation of a CLP murine model using 

intravital microscopy (170, 171). The extent of cell death correlated with impairment of endothelial barrier 

function assessed by albumin leakage (170). Furthermore, shedding of microparticles, i.e. membrane 

fragments from apoptotic cells (endothelial cells, platelets, and leukocytes) exert a proinflammatory and 

prothrombotic effect (159, 375, 376). 

In conclusion multiple mechanisms, among which glycocalyx shedding, disruption of adherens 

junctions and apoptosis may undermine endothelial barrier function, leading to tissue edema, and 

potentially generating local hypoxia by an increase of oxygen diffusion distance (116, 230). 
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Rheology, microthrombosis and immunothrombosis in sepsis 

Alterations of the microvessels walls are not the only responsible for the abnormal state of 

microcirculation in sepsis. Microcirculatory flow may be worsened by abnormal changes of the rheological 

characteristics of the blood: decreased RBC and white blood cell deformability (34), increased RBC 

aggregation (46) and coagulation disturbances may contribute to the impairment of the microcirculation 

(247, 292, 402). 

As erythrocyte diameter in the absence of external forces (~8 μm) exceeds that of smaller capillaries, 

considerable deformability is required for the erythrocyte to flow through the capillaries and deliver 

oxygen to the tissues. During sepsis, the biconcave shape of the erythrocytes may be partially lost, with 

the appearance of echinocytes, disintegrating erythrocytes and erythrocyte aggregates (378). The shape 

of RBC becomes more spherical, and the decrease of surface-to-volume ratio leads to reduction of 

deformability. These changes take place together with a decrease of sialic acid molecules on the 

membrane (406), increasing the tendency to form aggregates during low shear conditions (232). In the 

clinical setting, the aforementioned morphological changes are suggested by an increased erythrocyte 

distribution width, a strong predictor of mortality in septic patients (252, 261, 453). Besides cell geometry, 

erythrocyte deformability is determined by membrane properties, and cytoplasmic viscosity (342, 408), 

which may be altered during sepsis by a number of factors, including 2,3 diphosphoglycerate (511), NO 

(37, 62), intracellular calcium (356, 380) and reactive oxygen species (309, 378, 416). In animal models, 

decreased deformability of RBC leads to macro and microcirculatory dysfunction (276). 

Polymorphonuclear leukocytes also become stiffer and less deformable in septic patients. Activation of 

human polymorphonuclear leukocytes by exposure to inflammatory cytokines (e.g. TNF-a) confers an 

increased cell rigidity (130), possibly impairing their flow in the microcirculation. In animal models this 

process leads to polymorphonuclear leukocytes sequestration in organs like the lung and the liver (129, 

344). Excessive activation of neutrophils leads to the release of granules containing enzymes and 

mediators able to activate endothelial cells and platelets, besides directly injuring the endothelial layer 

(484). 

Widespread activation of platelets and of the coagulation cascade within the microcirculation is thought 

to lead to microthrombosis during sepsis. In healthy volunteers, small amounts of LPS cause platelet 
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activation. When 2-4 ng kg
-1

 LPS are administered to healthy humans, thrombocytes count falls by ~10-

15% at 1-2 hours, independently of the administration of paracetamol, aspirin, heparin or a thrombin 

inhibitor (289, 473, 503, 504). The rapid decline in platelet count can be due to removal of activated 

platelets from the circulation by adhesion to leukocytes or endothelial cells, as suggested by increased 

formation of platelet-leukocyte aggregates (503). 

In a large cohort of septic patients, about 50% experienced thrombocytopenia, defined as a platelet 

count of <150,000 μL
-1

. One of four thrombocytopenic patients presented disseminated intravascular 

coagulation (546). Activated platelets rapidly lose surface P-selectin, a glycoprotein expressed on the 

surface of endothelial cells and platelets (590), which can be recovered in the blood (337). Indeed, a 

strong positive correlation has been found between plasma P-selectin and disseminated intravascular 

coagulation scores in septic patients (351). The tendency for microthrombosis is further enhanced by 

endothelium-mediated activation of the extrinsic coagulation pathway, thrombin formation and 

complement activation (45, 209). Neutrophil extracellular traps (NETs) are web-like chromatin structures 

which are released from neutrophils and act by trapping microbes, blood cells and activating platelets 

(164, 439). Apart from forming an intravascular bactericidal net, this process also triggers intravascular 

thrombosis, through interactions with platelets and enzymes in an immune and thrombotic process, 

described as immunothrombosis (137). 

Effects of sepsis on heart function 

Introduction 

Bacterial products or endogenous substances produced by the host as a response, besides changing 

the coupling conditions between the heart and the vessels, can markedly affect the systolic and the 

diastolic function of the heart. 

In the past, it was common opinion that, in the absence of a pre-existing heart disease, cardiac 

dysfunction becomes prominent only in the later stages of the disease (206, 299, 570). However, a 

number of studies has provided evidence that, at least in a certain number of patients, sepsis-induced 
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cardiac dysfunction has a strong impact on patients’ hemodynamics early at admission (186, 187, 234, 

235, 552). 

Assessment of the systolic and diastolic properties of the heart 

Systolic and diastolic properties of the heart have been fully reviewed elsewhere (104, 494, 561). Here 

we will discuss in brief only some aspects, which will be useful to characterize the effect of sepsis on 

heart function. 

Systolic properties of the heart 

The systolic function of a ventricle can be characterized in the pressure-volume (PV) plane by the end-

systolic pressure volume relation (ESPVR) (79, 454), which shows the univocal relation of ventricular end-

systolic pressure (Pes) and ventricular end-systolic volume (ESV) (Figure 7). Experimentally, it has been 

found that this relation is roughly linear and common for ejecting and isovolumic contractions. Thus, the 

ESPVR is characterized by only two parameters, Ees, that is the slope of ESPVR, and the dead volume 

(V0), that is the volume of the ventricle at end-systole when transmural pressure is zero. The latter 

parameter is not directly measured and is obtained by extrapolation of the regression line describing the 

experimentally measured data points.  

It should be kept in mind that the simplicity of this model can be deceiving, as the ESPVR is not 

completely afterload-independent (25, 155, 328, 495), its shape can deviate from a straight line (81, 243, 

339), and it may be affected by the ventricle size and shape (39, 198). Initially, it was believed that 

changes of the systolic function (or contractility, if all the other determinants of systolic function are 

invariant) are mirrored in the PV plane by changes of Ees only, without large shifts of V0 (455), but later it 

became evident that a change of systolic function can manifest itself as a shift of the ESPVR without a 

change in slope (79, 244, 492, 508).  

The sensitivity of Ees to changes of contractility is modest relative to other indices (245) and in healthy 

humans the inter-subject variability of Ees and especially V0 is considerable. In the 29 healthy subjects by 

Starling (496) Ees was 3.51±1.26 mmHg ml
-1

 (range: 1.65, 5.61 mmHg ml
-1

) and V0 1±23 ml (range: -23, 

81 ml). Somewhat smaller values of Ees (2.3±1.0 mmHg ml
-1

) were measured in another study (97). At 

least in dogs, Ees and even more V0 show a significant intra-subject variability (154). 
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Assessment of Ees requires the measurement of the ESPVR, which can be determined by invasively 

recording the P-V loops corresponding to several heart beats while repeatedly changing the loading 

conditions, by transiently occluding (97) or compressing (59) the vena cava to reduce preload, or by 

pharmacological manipulations of afterload (19, 329, 496). In the last decades methods allowing an 

approximate estimation of the ESPVR on a single-beat base have been published (96, 488, 515), 

potentially obviating the need of manipulation of the loading conditions. However, single-beat methods 

are empirical approximations, as they either assume constant volume-axis intercept, or a V0 equal to zero 

(290), or draw the additional information required for the calculation of Ees from a simulated P-V relation, 

which is based on load-dependent parameters (96, 487, 488, 515). In a carefully controlled laboratory 

study (253), single-beat derived Ees showed small biases relative to the multi-beat assessment of the 

same parameter (from -0.3 to 0.5 mmHg ml
-1

), but the limits of agreement of different single-beat methods 

(±2 SD) spanned from ±2.6 to ±3.8 mmHg ml
-1

, showing an unacceptable lack of precision. 

In clinical studies, Pes is not usually measured directly using a catheter in the left ventricle, but 

estimated through measuring arterial pressure more peripherally, invasively or non-invasively. Pes is then 

approximated to 90% of systolic arterial pressure (SAP), to MAP or to the pressure at the dicrotic notch 

(96, 184, 248, 345, 346). Even if the correlations between all these variables are usually high and biases 

modest (347), it is likely that these successive approximations introduce noise in Pes assessment. 

The need to manipulate preload in order to assess the characteristics of the ESPVR led to the 

substitution of Ees and V0 with surrogate parameters, as the ratio between Pes and end-systolic volume of 

the left ventricle (ESVLV) or end-systolic volume index of the left ventricle (ESVILV) (Pes/ESVLV or 

Pes/ESVILV) and the ratio between SAP and ESVLV or ESVILV (SAP/ESVLV or SAP/ESVILV), practically, 

single points estimates of Ees (89, 368, 425, 491). A common assumption when using these surrogates is 

that V0 is negligible. If V0 equals zero, Pes/ESVLV coincides with Ees. If it is not so, however, errors, 

together with some degree of load-dependence, are introduced (96, 257). 

Due to the difficulty of measuring load-independent indexes of systolic function, a big amount of 

research in sepsis and septic shock has been performed using indices of systolic function which are 

heavily dependent on loading conditions, for example ejection fraction (EF) (245). It is thus useful to 
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briefly review the dependencies of this index, using the conceptual framework of the ESPVR. For an 

exhaustive discussion of this topic see (442). 

On the pressure-volume plane, afterload can be quantified by effective arterial elastance (Ea), the ratio 

between Pes and SV (248, 509, 510). Graphically, Ea is the slope of the line connecting the end-diastolic 

volume (EDV)-zero pressure point with the Pes-ESV point (Figure 7), and corresponds, approximately, to 

the product of SVR and HR (510). When measured invasively in healthy humans by Starling and coll. 

(496), Ea averaged 2.32±0.61 mmHg ml
-1

. 

On the other hand, EF is defined as 
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If V0 is set to zero, equation (7) becomes 
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or 
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It is evident that EF is markedly dependent on arterial load (Ea), besides contractility (Ees) and that if V0 

is assumed to be negligible, the information provided by EF is equivalent to that provided by Ea/Ees, a 

parameter used to assess ventricular-arterial coupling. 

Other load-independent indices of systolic function, apart from Ees and V0, are the slope and intercept 

of the relationship between EDV and stroke work (SW) (173) (preload-recruitable SW), and of the 

relationship between the maximum change of intraventricular pressure with time (dP/dtmax) and EDV (293, 

294). These indices, however, have not been used in human sepsis studies. 

Apart from left ventricle fractional shortening (FS) and EF derived from left ventricular (LV)-trace, a 

number of echocardiographic parameters have been developed for non-invasive assessment of LV 

systolic function. 

Tissue Doppler imaging (TDI)-derived peak systolic mitral annular velocity (Sm) reflects LV longitudinal 

shortening during systole. In an animal model, Sm displayed a stronger correlation with dP/dtmax than did 

EFLV (478). According to theoretical and experimental analysis, Sm is a coupling parameter positively 
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affected by preload and contractility, and negatively affected by afterload (535). The degree of its 

afterload dependence in clinical settings is somewhat controversial, with some studies supporting Sm 

dependence on afterload (63, 205, 377) and some afterload-independence (10, 57, 390). 

Myocardial performance index (MPI) of LV uses measurements from mitral inflow and left ventricular 

outflow Doppler tracings, i.e. isovolumic contraction time (IVCT), ejection time (ET), isovolumic relaxation 

time (IVRT) and is calculated as: 

    
         

  
      (10) 

Systolic dysfunction prolongs IVCT and shortens ET. At least in pigs, MPI is also dependent on loading 

conditions (98, 197) and dissociated from Ees (98). 

Mitral annular plane systolic excursion (MAPSE), an M-mode index standing for the linear distance of 

mitral systolic movement towards the LV apex, shows a significant decrease in patients with septic shock 

and might be a more sensitive marker of LV systolic failure than EF (592). 

Speckle tracking is a recently developed echocardiographic tool, which evaluates LV deformation over 

time, tracking user-selected regions of the myocardium (“speckles”). During systole, the LV shortens 

along the longitudinal and circumferential dimensions, while its wall thickens in the radial dimension. 

Strain is a measure of myocardial deformation of a segment in relation to its original dimension and it is 

expressed as a percentage. Global longitudinal strain (GLS) and global circumferential strain (GCS) 

respectively express LV longitudinal shortening and LV circumferential shortening. In septic pediatric 

patients, strain imaging detected subtle changes in LV systolic function prior to overt decline of EF (35). 

Boissier et al. showed that a reduced GLS is inversely correlated with afterload indices in septic shock 

patients (57). 

Two-dimensional (2D) strain analysis cannot illustrate rotational motion of the ventricles because it 

perceives ventricular structure in only two dimensions. However, myocardial fibers display a complex 

spatial orientation and contract simultaneously in different axes. Three-dimensional (3D) is a novel 

echocardiographic modality assessing LV surface deformation in three dimensions. Recently, parameters 

obtained with this technology have been compared with invasively assessed indexes of contractility as Ees 

and dP/dt with promising results (284). 
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Diastolic properties of the heart 

The diastolic properties of the cardiac chambers can be described in both static and dynamic terms. 

The static properties of the ventricles have been characterized by the end-diastolic pressure volume 

relation (EDPVR) (79, 104), which represents the relation between the pressure and the volume at the 

end of the diastole, in the relaxed state. Below a certain residual volume (the volume of the chamber at 

zero transmural pressure) the chamber recoils outward, but for most of the physiologic volume range the 

ventricles recoil inward (Figure 8). Above residual volume, pressure increases with volume roughly 

exponentially, causing ventricular diastolic stiffness (dP/dV) or compliance (dV/dP) to be markedly 

volume-dependent (8). In humans the ratio between the diastolic filling pressure and ventricular volume 

has been used as a rough estimate of the passive elastic properties of the ventricle (506). However, 

because of the non-linear shape of EDPVR, any single-point estimate of diastolic compliance cannot 

correspond to the elastance of the ventricle at a given ventricular end-diastolic volume. More recently, 

single-beat methods has been developed to characterize diastolic ventricular properties (424, 517). 

In healthy subjects compliance of the right ventricle is maximal at low-normal filling volumes, and 

decreases very fast at higher volumes as the filling limit is approached (424). At comparable volumes the 

left ventricle is stiffer than the right (517), and the shape of its EDPVR is markedly curvilinear in the whole 

volume range (403). 

The EDPVR has never been assessed in septic shock patients. In rats made septic by intraperitoneal 

injection of fecal slurry, EDPVR shifted to the left and rotated counterclockwise, indicating an increase of 

the stiffness of the left ventricle and a decrease of its residual volume (145). Diastolic stiffening of the left 

ventricle has been noted also in anesthetized rabbits 36 hours after treatment with LPS (600 µg kg
-1

) (32). 

During the isovolumic phase of the diastole and part of the ejection phase the ventricle relaxes, and 

this dynamic behavior contributes to diastolic performance. The time-constant of ventricular relaxation 

during the isovolumic phase of diastole can be measured invasively (573). When an intraventricular 

catheter is not available, this parameter can be estimated by echocardiography (466). 

TDI-derived early diastolic mitral annulus velocity (e’) and the ratio of the peak trans-mitral inflow 

velocity in early diastole (E) to e’ (E/e’) are the most commonly used markers of L  diastolic function 

(363, 379). Irrespective of its clinical usefulness (295), it should be underlined that E/e’ is just a surrogate 
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for more physiologically robust indices of diastolic function, and its alterations cannot be directly related to 

alterations of the EDPVR or relaxation properties of the myocardium (532). 

Cardiac effects of endotoxin in healthy volunteers 

In an attempt to eliminate the many confounding factors present in patients with clinical sepsis and to 

avoid the interspecies differences which characterize animal models of sepsis, cardiac function has been 

investigated in healthy humans. The results of these studies were not completely consistent. 

Two studies, one by Mathru and coll. (326) using transthoracic echocardiography, and one by 

Suffredini and coll. (506) using right heart catheterization and radionucleotide cineangiography, assessed 

cardiac function in healthy volunteers after 3 hours from the administration of 4 ng kg
-1

 of LPS without 

fluid loading. LPS triggered the expected hyperdynamic state, with a decrease in MAP (14-18% of 

baseline) and an increase in CI (53-66%). Left preload decreased in one case (326) and remained 

unchanged in the other (506). EF of the left ventricle (EFLV) was increased in both studies (6-9%). As 

EFLV is loosely dependent on preload but markedly dependent on afterload (245), it is impossible to say, 

on this base only, if systolic function was enhanced, unchanged or depressed. According to Mathru and 

coll., velocity of circumferential fiber shortening (VCFc), endocardial wall systolic velocities measured by 

TDI and SAP/ESVILV were markedly increased, suggesting enhancement of systolic function. To the 

contrary, the small decrease of stroke work index of the left ventricle (SWILV) measured by Suffredini and 

coll. at the same time point is suggestive of deterioration of systolic function, because SWILV is relatively 

independent of afterload (which was decreased) and dependent on preload, which, estimated by PWP, 

was unchanged. Overall, both studies did not detect any clue of diastolic dysfunction at 3 hours. In both 

studies, no diastolic enlargement of the left ventricle was seen (326, 506). Additionally, IVRT and time 

constant for left ventricular relaxation were unchanged. 

At 5 hours, in the absence of fluid loading, SAP/ESVILV and EFLV returned to control values while VCFc 

remained somewhat elevated. Also, endocardial wall systolic velocities remained elevated. IVRT and time 

constant for left ventricular relaxation were not different from control values (326). 

After 3 hours from LPS administration, Suffredini and coll. infused 2 L normal saline during the next 2 

hours. CVP, PAP, and PWP increased similarly in LPS-treated and in control subjects and similarly 
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declined towards baseline values when the infusion was stopped. To the contrary, in LPS-treated 

subjects but not in control subjects, MAP, after a transient increase concomitant with volume expansion, 

continued to decline, and at 6 hours it had decreased by 20%. This occurred because of a reduction in CI 

together with persistently low SVR. In the last part of the experimental period, EFLV and SWILV were 

depressed relative to controls, as was the ratio between peak systolic pressure and ESVILV. Moreover, 

end-diastolic volume index of the left ventricle (EDVILV) was increased in LPS-treated relative to control 

subjects. The latter finding should be taken carefully, as the difference in EDVILV between control and 

LPS-treated subjects at baseline (on average 13 ml m
-2

) was similar to the increase of the same 

parameter due to LPS and fluid infusion (on average 16 ml m
-2

). In other words, the change of EDVILV due 

to LPS was of the same order of magnitude as the natural variability of the parameter. Actually, a more 

recent study did not confirm the increase of EDVILV at the same time point after the same saline infusion 

protocol (322). 

The effects of LPS on healthy subjects were also investigated during aggressive volume loading (265). 

In these experiments 4 ng kg
-1

 of LPS were administered immediately before the infusion of 1 L hr
-1

 for 3 

hours and the additional infusion of 0.5 L hr
-1

 for 2 hrs. Relative to placebo, LPS at 3 hours caused a 

marked increase of CI together with a proportional fall of SVR, so that MAP was unchanged. The CI 

elevation was accounted for mostly by the increase of HR. During the next 2 hours, CI declined but 

remained elevated relative to baseline. SVRI did not rise proportionally, so MAP fell. Relative to baseline 

and placebo, EDVILV was decreased at 3 and 5 hours. Conversely, ESVILV fell at 3 hours and returned to 

baseline at 5 hours. Indexes of contractility like EF, VCFc, SAP/ESVILV and Pes/ESVILV were increased at 

3 and depressed at 5 hours. 

The problem in assessing the effects of LPS on heart function in these experimental models is twofold. 

The effects of LPS on the heart are obfuscated by the concomitant increase of orthosympathetic and 

hormonal stimulation which can by itself change both the systolic and the diastolic properties of the 

cardiac muscle. Thus, an eventual depressant action of LPS on myocardium can be evidenced only if 

LPS-induced depression of contractility is greater than the enhancement of the same parameter operated 

by the increase of orthosympathetic and hormonal stimulation. Second, assessment of systolic and 

diastolic properties of the heart is by no means straightforward, because most of the available indices are 
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more or less dependent on the coupling with the circulation (245). A comprehensive discussion on this 

topic can be found in (104). LPS, by changing the characteristics of the systemic circulation, alter the 

coupling between the pump and the vessels, and thus apparently alter cardiac function.  

These problems are highlighted by a recent study in mice (237). Contractility was evaluated by 

conventional estimators, namely EFLV, SWLV and dP/dtmax and by more load-independent indices, that is 

Ees, dP/dtmax normalized by end-diastolic volume of the left ventricle (EDVLV), and maximal Pes in 

percentage of the control value at the same ESVLV. Measurements were done 2, 6 and 20 hours post E. 

coli LPS administration, at doses of 1, 5, 10 or 20 mg kg
-1

. In this model, LPS decreased MAP, increased 

CO and decreased SV. At 2 hours after the injection, preload, indexed by end-diastolic pressure of the left 

ventricle (EDPLV) and EDVLV, was decreased, and afterload, indexed by total effective Ea increased. At 

the same time point EFLV, SWLV and dP/dtmax were depressed, indicating a decrease of contractility. To 

the contrary Ees and dP/dtmax normalized by EDVLV were increased relative to baseline, suggesting an 

increase of contractility, while maximal Pes at iso-ESVLV was unchanged! Actually, LPS while increasing 

Ees also increased V0, so that with increasing doses of LPS the ESPVR was steeper but shifted to the 

right. When the effects of LPS on contractility were assessed using Pes at iso-ESVLV, no change was 

found relative to baseline. Thus the conclusion is that, in this mouse model, LPS does not depress 

contractility; rather it may increase it, as suggested by the increased dP/dtmax normalized by EDVLV, 

possibly due to the effects of enhanced orthosympathetic stimulation (410), or the direct effect of 

increased HR (156). 

Overall, there is no evidence that in the absence of fluid loading 4 ng kg
-1

 of LPS in healthy humans 

depresses systolic or diastolic functions 3 hours after the injection (326, 506). Rather, at this time point 

EF and SAP/ESVILV are increased, but in front of a decreased afterload. At 5 hours, the only study which 

assessed systolic and diastolic functions without concomitant fluid loading found them unchanged, as 

indexed by SBP/ESVILV, isovolumic relaxation time and relaxation time-constant (326). 

Note that, on assumption of a positive V0, SAP/ESVILV should increase with increasing afterload (88). 

The fact that afterload was decreased and SAP/ESVILV increased, suggests an increase of contractility 

(326). However, the assumption of a positive V0 should not be taken for granted because in humans, 
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negative V0 have been measured (496, 515), presumably due to the non-linearity of the ESPVR, and LPS 

has demonstrated the ability to shift V0, at least in an animal model (237). 

In the presence of fluid loading, some clues of systolic dysfunction emerges at 5-8 hours from LPS 

administration (265, 506). To the contrary, strong evidence of LPS induced diastolic dysfunction in 

healthy volunteers is lacking. Interestingly, in dogs TN α, which is produced in humans after LPS 

administration (322, 506), elicits a biphasic effect on contractility, which is not altered by complete β-

adrenergic blockade: an early increase followed by a late decrease (358). At present, it is unknown if TNF 

has a similar effect in humans. 

Cardiac dysfunction in sepsis and septic shock 

The interest in the effects of sepsis on the heart was boosted in the 80s by a series of papers showing 

profound but reversible alterations of both systolic and diastolic functions in septic patients. 

Parker and coll., combining thermodilution with radionuclide cineangiography, studied for 10 

consecutive days 20 septic shock patients, treated, in addition to antibiotics and methylprednisolone, with 

intravenous fluids in order to maintain a PWP of 12-15 mmHg, dopamine in case of persisting 

hypotension and norepinephrine if the required dopamine dose exceeded 20 µg kg
-1

 min
-1

 (397). Thirteen 

patients survived septic shock and 7 died due to refractory hypotension. On average, CI was elevated 

and SVRI was low, more in non-survivors than in survivors. SV was comparable in the two groups. 

Initially, EFLV was markedly depressed in survivors (0.32±0.04) and higher in non-survivors (0.55±0.05). 

EFLV increased back to normal values in survivors (0.55±0.05) at the end of the study (5-10 days later), 

while it did not change until the exitus in non-survivors. In survivors, EDVILV and ESVILV were markedly 

elevated at day 1 and normalized before discharge. In contrast the same parameters were normal in non-

survivors, despite similar end-diastolic filling pressures. These abnormalities were not noted in a control 

group of 32 critical patients without sepsis. On the base of these results, it was proposed that the dilation 

of the left ventricle represents a kind of compensatory response (preload-adaptation) to maintain a normal 

stroke volume in the face of a decrease in contractility (138). Not all these findings were confirmed by 

following studies. 
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As suggested by Parker and coll. (397), systolic dysfunction is a frequent occurrence in septic shock, 

and reductions in EFLV or SWILV (136, 234, 235, 280, 374, 394, 395, 423, 552) or, more recently, Ees 

(186) were consistently reported. Both EFLV or SWILV are load-dependent estimators of contractility (104, 

245, 442). With increasing afterload, EFLV markedly decreases, being almost invariant in a wide range of 

EDVILV, while SWILV is relatively unaffected by afterload, increasing almost linearly with EDVILV. In septic 

shock patients MAP is abnormally low and, because of this, an increase of EFLV would be expected. If 

EFLV falls, it indicates an abnormal contractility. Similarly, a fall of SWILV cannot be attributed to a change 

of the loading conditions if preload remains high because of fluid loading. An increase of HR can cause 

EFLV to decrease, but the reduction of EFLV in septic shock patients is usually greater than expected even 

considering the concomitant tachycardia (139). 

The interplay between heart contractility and arterial load in determining EFLV may also explain part of 

the extreme variability of the prevalence of systolic dysfunction, assessed with this parameter, in septic 

shock patients (from 18 to 65%) (397, 552). The prevalence is apparently greater when patients are 

examined later after the admission, probably reflecting the administration of drugs causing 

vasoconstriction and increasing the afterload of the left ventricle (549, 550). Given the great variability of 

both preload and afterload during septic condition, a load-independent estimator of contractility would be 

very useful for the purpose of characterizing systolic dysfunction. Ees is a good candidate, but for its 

interpretation V0 should also be assessed (78, 79, 442). 

Alterations of EFLV were found to be reversible in survivors not only when EFLV was measured with 

cineangiography (394, 395, 397, 399), but also using echocardiography (235, 551). The association 

between low EFLV and survival found by Parker and coll. (395, 397) was not confirmed by subsequent 

studies (161, 216, 234). The discrepancy between the different studies may be, at least in part, related to 

the variety of hemodynamic patterns present in septic shock patients. The non-survivors of Parker and 

coll. (397) had lower SVRI, despite a greater rate of infusion of norepinephrine than survivors (34.0±13.0 

versus 1.6±1.0 µg min
-1

). On one hand, the more profound refractory vasoplegia of these patients may 

have conditioned the prognosis, and on the other the decrease of afterload may have masked an existing 

systolic dysfunction by causing EFLV to increase (234, 442). 
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Regarding the impressive increase of EDVILV measured by Parker and coll. (up to ~ 135 ml m
-2

 in the 

whole cohort, more than 150 ml m
-2

 in survivors) (397), similar values were measured by the same group 

with the same technique in another study (394). This time, however, EDVILV (and also EDVIRV) was 

abnormally elevated in both survivors and non-survivors. As expected EDVIs returned back to normal by 

the time patients recovered (6-14 days), but, at variance with what previously reported (397), there was a 

concomitant decrease of CVP and PWP, suggesting that at least part of the increase of the ventricular 

end-diastolic dimensions observed at admission could be due to an increased filling pressure, and not to 

a sepsis-induced alteration of the passive mechanical properties of the chambers. A non-significant trend 

towards higher EDVILV in septic shock patients was found in another study exploring the response to fluid 

infusion in patients with sepsis and septic shock using the same radionuclide cineangiography technique 

(374). Before the infusion EDVILV was 90±6, and 109±7 ml m
-2

 in patients with sepsis without shock, and 

patients in septic shock, respectively. The latter value is substantially smaller than those reported (~135 

ml m
-2

) in previous studies (394, 397). 

The hypothesis of preload-adaptation in sepsis was revaluated using transesophageal 

echocardiography by Vieillard-Baron and coll. (552). This group studied 40 septic shock patients, whose 

post-resuscitation hemodynamic profile was hypokinetic (CI<2 L min
-1

 m
-2

, n=7), normokinetic (2<CI<4 L 

min
-1

 m
-2

, n=27) or hyperkinetic (CI>4 L min
-1

 m
-2

, n=6), under hemodynamic support by a vasoactive 

agent and positive-pressure mechanical ventilation. On average, EDVILV was 61±17 ml m
-2

, similar to that 

measured in the same laboratory in 50 healthy volunteers (71±15 ml m
-2

). On the other hand, EFLV was 

49±15%, reduced relative to control values (69±7%). These results confirmed previous works using 

similar techniques, showing a normal left ventricular end-diastolic volume in septic shock patients (234, 

414). It is difficult to reconcile these results with those of Parker and coll. (394, 397). In part, these 

different results may have been a consequence of the different methodologies used to measure EDVILV. 

Thermodilution can overestimate CO (370), particularly at low flows (543). Using radionuclide 

cineangiography, EDVILV is obtained as the ratio between SVI, assessed by the pulmonary catheter as CI 

HR
-1

, and EF. Thus, an overestimation of SVI would lead to an overestimation of EDVILV. However, the 

patients of Parker and coll. with elevated EDVILV had high, not low CI, averaging ~4 L min
-1

 m
-2

 (397). On 
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the other hand, echocardiography, especially if transthoracic, can underestimate ventricular volumes 

(528). 

Other studies, using transthoracic (234, 235, 272) or transesophageal (65, 550) echocardiography 

found increases in left ventricle dimensions in patients with a decreased LVEF relative to those with a 

preserved LVEF, the differences were however much smaller than those initially reported (397). 

In the last decades echocardiography has become a frequently used tool for the evaluation of systolic 

function in septic conditions. Almost 2/3 of patients with sepsis or septic shock were found to have 

echocardiographic evidence of myocardial dysfunction, affecting either LV or RV and either the systolic or 

the diastolic cardiac properties (421). Attempts have been made to associate several echocardiographic 

indices with patient outcome. Regarding EFLV, two recent meta-analyses showed absence of sensitivity 

and specificity in predicting mortality in patients with sepsis and septic shock (462, 479). Among TDI-

derived indices, the average systolic velocity measured at the mitral annulus (Sa) has been shown to 

independently predict mortality in medical ICU patients (574). MPI worsening during the first 24 hours 

after diagnosis of severe sepsis or septic shock was associated with 90-day mortality in 47 medical 

critically ill individuals, even after correcting for severity of illness, fluid and vasopressor use (369). 

Studies investigating the role of GLS as predictor of mortality in septic subjects have yielded conflicting 

results, either positive (93, 367, 389), or negative (121, 226, 382, 589). A 2018 meta-analysis by 

SanFilippo and coll. showed that GLS predicted mortality in septic patients (while at the same time EFLV 

did not) (463). 

Among indices pertaining to the right chambers, a recent meta-analysis, including five studies using 

different techniques, found no significant difference in EFRV and RV end-diastolic dimensions between 

survivors and non-survivors (similar results were obtained for the LV) (216). ESVIRV, however, predicted 

in-hospital mortality in patients with sepsis or septic shock (272). TDI-derived RV peak systolic velocity 

(RV-Sm) was found to be significantly decreased in non-survivors with sepsis (161). More sophisticated 

modalities, such as speckle tracking, have been implemented for evaluation of RV function in septic 

patients. Orde et al. showed that severe reduction of RV free wall strain was an independent predictor of 

6-month mortality in patients with sepsis or septic shock (382). Nevertheless, the contribution of RV in 
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septic cardiomyopathy remains an open field for research, particularly with novel echocardiographic 

modalities. 

Echocardiographic studies provided evidence that diastolic function is also frequently impaired in 

sepsis (64, 65, 231, 355, 414). E/e’ and e’ have been assessed as markers of L  diastolic dysfunction in 

patients with sepsis. A 2015 meta-analysis by SanFilippo and coll. reviewed seven observational studies 

and found that diastolic dysfunction, detected with e’, was significantly associated with mortality in septic 

patients (462), while a later meta-analysis by the same author, including 18 original studies, attributed the 

same property to E/e’ (461). 

In conclusion systolic LV and RV systolic dysfunction is frequently present in septic patients. Diastolic 

dysfunction has never been assessed in terms of EDPVR in patients, but echocardiographic studies 

strongly suggest its impairment. 

The pathogenesis of cardiac dysfunction in sepsis is reviewed elsewhere (324, 450, 588). 

Effects of sepsis on the coupling between the heart and the vessels 

In the last decade, the coupling between the left ventricle and the arterial compartment (ventricular-

arterial coupling, VAC) during sepsis has been characterized in terms of the ratio between Ea and Ees 

(Ea/Ees). 

On theoretical grounds, the relation between Ea and Ees determines the efficiency, that is the ratio 

between the external work produced by the ventricle and its metabolic cost (80, 507) (Figure 7). For a 

given set of conditions, efficiency is expected to be maximal when Ea/Ees=0.5 (80), a value close to that 

measured in healthy subjects (19, 20, 496). A laboratory study on isolated dog hearts showed that 

maximal efficiency remains high in a broad range of Ea/Ees (0.3-1.3), corresponding to EF ranging from 40 

to 80%, indicating that in physiological conditions the ventricle operates in conditions of maximal 

metabolic efficiency, and that only marked deviations of Ea or Ees from normality may cause a substantial 

decline of Ea/Ees (122). For an overview of the limitations of this approach in evaluating ventricular-arterial 

coupling see (99). 

In septic shock patients before (186) and after fluid resuscitation (187) Ea/Ees is abnormally high, 

mainly due to a depressed Ees. It is doubtful that this elevated Ea/Ees can be responsible, on average, for 



 67 

a marked efficiency reduction and therefore a significant rise in the heart energy expenditure, because 

the fall of efficiency at these Ea/Ees values is modest (80, 122). However, the scatter of individual values 

was high, with Ea/Ees reaching values of 2-2.5 (186). Interestingly, in (186) Ees increased by ~16% after 

volume-loading performed according to SSG (438), possibly due to reversal of hypotension, increased 

coronary perfusion and improved heart performance. While this occurrence is possible in septic patients 

before treatment, coronary perfusion does not seem to be a limiting factor in myocardial performance 

after resuscitation (107, 125). 

It should be kept in mind that Ea is a composite parameter, depending both on the characteristics of the 

arterial tree and on heart rate. Only further studies will be able to tell if Ees/Ea provides additional 

information useful to improve the clinical management of septic patients. 

Effects of sepsis on cardiovascular regulation 

Cardiovascular variability is abnormal in sepsis and septic shock, suggesting that in these conditions 

autonomic modulation of cardiovascular parameters is impaired. Heart rate, systolic and diastolic 

pressure variability have been investigated by Annane and coll. in 20 septic patients without or with septic 

shock (16). The results were compared with those collected in normal subjects during passive 70° upright 

tilting, a maneuver known to trigger autonomic and humoral activation. Indeed, upright tilting increased 

norepinephrine, epinephrine, renin and aldosterone plasma concentrations to levels similar to those found 

in patients with septic shock. In contrast to the apparent similarity of orthosympathetic activation, 

suggested by the comparable norepinephrine plasma concentrations, the areas under the curve of HR 

and of diastolic blood pressure power spectrum, and their components at low frequencies were markedly 

decreased in septic and septic shock patients relative to controls. Moreover, the square root of the ratio 

between the low-frequency component of HR and systolic blood pressure, an index of baroreflex 

sensitivity (386), was depressed in septic shock patients relative to tilted healthy subjects. Baro- and 

chemoreflex sensitivities were found depressed in another study (471). 

A decreased variability of HR is not specific of sepsis, as it has been reported in a number of 

pathological conditions, like chronic obstructive pulmonary disease (498) and chronic heart failure (195), 
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or after major surgery (256, 268). Also, the association between depressed heart rate variability (HRV) 

and mortality which has been found in sepsis (119) is not characteristic of this disease (497). 

Similar alterations of HRV appear in normal volunteers after LPS administration (465), even before the 

rise of body temperature (174), suggesting that this experimental model can be valuable in understanding 

how autonomic regulation changes in septic conditions. 

The effects of 4 ng kg
-1

 of E. coli LPS on muscle SNA, HR, and arterial pressure were studied on 14 

volunteers by Sayk and coll. (465). Baroreflex was assessed with incremental doses of sodium 

nitroprusside and phenylephrine. 

After 90 min, endotoxin decreased muscle SNA and increased HR at constant MAP. Interestingly, the 

change of muscle SNA was inversely correlated with serum TNF-α concentration, and directly correlated 

with serum IL-6 concentration. As MAP was unchanged, this reduction of muscle SNA cannot be 

attributed to the baroreflex, unless of a set-point change. In humans, cardiopulmonary receptors plays a 

major role in the control of the vascular resistance of the limbs, presumably by modulating muscle SNA 

(238, 596). However, cardiopulmonary baroreceptors cannot explain the decrease of muscle SNA 

measured by Sayk and coll., because after endotoxin administration to healthy humans CVP remains 

constant (506) or decreases (322, 326), and a reduced stimulation of cardiopulmonary receptors is 

expected, if any, to increase, not to decrease, muscle SNA (315). It appears, therefore, that in humans 

endotoxin is able to modulate autonomic output independently of the information coming from the 

peripheral sensors. 

The ability of LPS or of bacterial products to modulate sympathetic output has been repeatedly 

confirmed in animal models. However, the measured changes of SNA are markedly dependent on the 

species investigated and on the experimental conditions. In cats receiving a dose of 1 mg kg
-1

 of E. coli 

endotoxin, preganglionic SNA of the splanchnic nerve fell, potentially contributing to the concomitant 

hypotension (258). Other studies in rats and sheep showed that visceral SNA increases in septic 

conditions or after treatment with LPS, whether indexed by splanchnic (523, 545), mesenteric (545), 

cardiac or renal (426) sympathetic activity. Notably, the increase of visceral sympathetic activity was 

present whether CO was elevated and SVR reduced (426), or CO was normal or reduced and SVR 

normal or increased (523). Experiments in rats showed that the markedly increased SNA measured after 
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a high dose of LPS (20 mg kg
-1

) is only partially dependent on the concomitant hypotension, pointing to a 

central medullary effect of LPS or mediators triggered by LPS (391, 545). Indeed sympathoadrenal 

activation after LPS (5 mg kg
-1

) occurs in rats even after sinoaortic baroreceptor denervation (595).  

Even if the fall of muscle SNA at constant MAP measured by Sayk and coll. indicates that endotoxin 

affects centrally regulated sympathetic outflow, how overall sympathetic outflow changes remains 

unclear. A decrease of muscle SNA does not immediately imply that overall sympathetic activity is 

reduced. Indeed, at the same time point, circulating norepinephrine concentration was increased about 

six-fold relative to baseline, in front of a two-fold increase of circulating epinephrine, similarly to what 

happens to critically ill patients with systemic infection (16, 185, 285), suggesting an increase, rather than 

a decrease, of overall sympathetic activity. Plasma norepinephrine concentration, by itself, is not a good 

indicator of SNA, as it may change due to both a change of spillover or of clearance, or it may remain 

constant if spillover and clearance change proportionally (142, 175, 578). However, it has been shown 

that in critically ill patients with systemic infection both norepinephrine spillover and clearance are 

elevated (285). If this happened also after LPS injection in healthy volunteers, the measured elevation of 

plasma norepinephrine concentration would be strongly suggestive of an increased overall sympathetic 

activation. In this case, the reduction of muscle SNA implies that SNA is enhanced in another body 

region. Unfortunately, in our knowledge, human data to this regard are not available. It is not impossible 

that bacterial products or substances produced by the body in response to bacterial products cause 

different alterations of the autonomic control of different parts of the body. In sheep intravenous infusion 

of live E. coli induces a progressive increase of cardiac SNA, but an initial fall followed by a progressive 

rise of SNA at the level of the kidney (426). 

When in healthy volunteers the baroreflex was tested with sodium nitroprusside infusion, MAP 

decreased more and muscle SNA increased less post-LPS than post-placebo (Figure 9, panel A), 

suggesting that baroreflex sensitivity had been reduced by endotoxin (465). Generalization of these 

findings to patients in septic conditions is, however, difficult and much depends on whether one assumes 

that muscle SNA reflects overall sympathetic SNA or not. In the former case, these findings suggest that 

LPS-induced disruption of the baroreflex control over vasculature is a potential contributor to the 

hypotension which can develop in septic conditions. In the latter case, little can be said about the role of 
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baroreflex in sepsis, as the central suppression of muscle SNA should be counterbalanced by 

enhancement of SNA somewhere else, and hypotension primarily develops due to refractoriness of the 

vessels to the action of catecholamines. An example of a differential modulation of the baroreflex has 

been provided by experiments in chronically instrumented sheep, in which infusion of E. coli alters the 

range of the baroreflex-mediated changes of cardiac SNA, but not that of renal SNA (426).  

In the human subjects studied by Sayk and coll. endotoxin decreased muscle SNA by 50%, without 

any change of MAP, questioning the role of muscle SNA in the maintenance of MAP in these 

experimental conditions. However, such apparent insensitivity of MAP to a fall of muscle SNA may have 

been due to the concomitant increase of circulating catecholamines, potentially able to cause 

vasoconstriction, as the MAP response to phenylephrine in these subjects was preserved. Muscle 

vasculature may be only secondarily involved in the baroreflex control of arterial pressure in humans 

(315). During common carotid occlusion, limb vasculature resistance does not increase despite a rise of 

MAP (443). To the contrary, visceral vascular resistance appears to be very responsive to arterial 

baroreceptor stimulation (238), suggesting that also in humans SNA is modulated differently in different 

parts of the vasculature. 

Notably, the changes of HR in human volunteers after endotoxin were completely unrelated to MAP 

(Figure 9, panel B) (465). In chronically instrumented sheep, infusion of E. coli increases cardiac SNA in 

the lower and mid part of the arterial pressure range, but at high pressures cardiac SNA is completely 

suppressed, as in the control conditions. Nonetheless, at these pressures HR is two-times greater after E. 

coli administration indicating that, apart from cardiac SNA, other factors, possibly a change of the vagal 

tone or a local effect of the pathogens on the heart, are responsible of the increase of HR measured in 

this experimental model (426). Indeed in vitro and in vivo studies have shown that endotoxin interacts 

with hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, increasing their sensitivity 

to the effect of catecholamines (133, 597). Whether this mechanism is active also in humans remains to 

be elucidated. 

Recently, the baroreflex response after LPS has been characterized in depth in a new analytic 

framework proposed by Sato and coll. (464) using a technique based on the decomposition of the 

feedback loop into a mechanoneural arc (neural arc) and a neuromechanical arc (peripheral arc). The 
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former is characterized by the relation between carotid sinus pressure (CSP) (input) and SNA (output), 

while the latter by the relation between SNA (input) and MAP (output) (Figure 10). In vagotomized, 

mechanically ventilated Sprague-Dawley rats under urethane and α-chloralose anesthesia (523) LPS (60 

μg kg
-1

) caused a time-dependent upward shift of the neural arc with a concomitant increase in the 

amplitude of the operative range. The peripheral arc underwent time-dependent modifications with a 

marked decrease in slope, which at 2 hours was less than half the control value (Figures 11 and 12). 

The operating point thus shifted towards higher SNA without a change of MAP. 

This elegant study clearly shows that a relatively small dose of LPS is able to a) markedly decrease the 

responsiveness of the systemic circulation to sympathetic stimulation, so that for a given SNA a lower 

arterial pressure ensues, and b) reset the baroreflex neural arc, so that for a given MAP SNA is higher 

(Figure 12). 

Regarding point a), several mechanisms are potentially responsible for the time-dependent decrease of 

the slope of the peripheral arc. At 60 min after LPS the slope of the relation between SNA and SVR was 

significantly depressed, suggesting a decrease of the responsiveness of the vasculature to sympathetic 

stimulation (Figure 11). Moreover, the relationship between SNA and CO was unchanged at 60 min but 

shifted downwards at 120 min, presumably due to a decrease of contractility combined with a reduction of 

the stressed volume of systemic circulation (Figure 11). 

The exact reason why LPS resets the baroreflex neural arc upwards is unknown, but upward resetting 

is in line with previously collected evidence. Indeed, bacterial products or endogenous substances 

produced in response to bacterial products can elicit changes at the level of the central nervous system 

inducing sympathoexcitation (204, 250, 325, 545). 

Even if the work of Tohyama and coll. has important limitations (the animals were vagotomized), it is 

significant because it dissects the different factors involved in the alterations of the baroreflex during 

systemic inflammation, showing that the overall effect of LPS is the result of quantitative changes both at 

central and peripheral level. In rats, baroreflex sensitivity measured from the relation between MAP and 

HR during phenylephrine infusion has been found increased after a low dose of LPS (10 µg kg
-1

) (444) 

and decreased after a higher one (325). The dose-dependency of LPS effect on baroreflex may be due to 

different quantitative changes of the neural and peripheral arcs. Time and dose-dependent modifications 
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of the neural and peripheral arcs may be also involved in the complex pattern of response to LPS in rats. 

When E. coli LPS is administered at a dose of 1.6 µg kg
-1

 in rats with precollicular brainstem transection, 

initially MAP is unchanged, CO increases and SVR decreases. After ~1 hour, there is a tendency for CO 

to return to pre-LPS value, SVR increases above baseline, so MAP tends to increase. Note that in this 

model HR is constant and the increase of CO is due to an increase of SV (105). When the dose is 

increased to 10 mg kg
-1

, LPS causes CO to fall despite an increase in HR, SVR to increase, and MAP to 

decrease (341). Even larger doses (30-40 mg kg
-1

) cause a similar cardiovascular response (66, 105), 

together with a fall in CVP (66). 

The work of Tohyama and coll. warns against simple interpretations of the experimental findings, 

clearly showing that endotoxin alters both the control system and the effectors responsible for arterial 

pressure maintenance. The importance of this phenomenon in shaping septic patients’ hemodynamics is 

doubtful, because in humans the effects of vascular hyporesponsiveness seems preponderant. However, 

if modulation of sympathetic output to the various organs is different, as in some animal models, the 

consequences on the macro- and microcirculation may be remarkable. Further research is therefore 

warranted in order to fully characterize how the autonomic control changes in septic conditions and the 

way in which these changes affect the course of the disease. 

Conclusion 

Despite decades of study, key aspects of sepsis are yet to be elucidated. 

The hemodynamics during sepsis is shaped by multiple physiopathological processes going on at the 

same time. Their combinations may be different in different patients and change during the natural course 

of the disease or as a result of the therapy the patients receive. The differences frequently reported 

between human and animal sepsis may be the product of the different relative weight of each pathological 

process in the different species and in the different models. This is not to say that in this field animal 

research is useless. Animal research is still essential to dissect the response to the septic insult in its 

multiple components and in their interactions. However, the pathophysiological processes identified 

should be regarded as mere possibilities, and their effective role in human sepsis should be 

independently assessed before attempts of translation are made. Moreover, animal research is essential 
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in the development of minimally invasive techniques which can be used in septic patients to track the role 

of each pathophysiological process for the identification of relevant therapeutic targets. Most of the 

alterations of the pathophysiological processes seem to be both beneficial and detrimental for the host, 

and their manipulation is at best risky if made disregarding their effective impact in a given clinical 

condition. 

From the perspective of the human cardiovascular system several features of sepsis still remain 

obscure. 

1) Although the existence of several hemodynamic patterns is well-established, work remains to be 

done in order to understand why some patients follow a certain path and others a different one. 

Does this depend on the pathogen, the reaction of the host, or both? Probably the nature of the 

pathogen plays a relatively minor role, since different pathogens trigger the same cytokine cascade 

(365). But if it is so, what genetic patterns condition the response of the host? It is tempting to 

imagine that a low cardiac output appears during sepsis because of a preexisting heart disease. A 

pre-existing cardiac disease may be present in some cases, and, if it is not already known, it may 

be difficult to identify when the patient is in septic conditions. However, this explanation appears 

valid only for a limited number of patients (423). Other vascular factors are involved, but it is still 

difficult to identify the different mechanisms which are operating in any given patient and their 

relative weight in any given patient at any given time. 

2) The vascular changes occurring in septic humans still await for a complete characterization. In 

particular, the understanding of the behavior of the venous side of the systemic circulation is not 

complete, due to the known difficulties in measuring the relevant parameters in this vascular 

compartment. In particular, the venous side of the splanchnic circulation, especially at the level of 

the liver, may play a critical role in shaping the hemodynamic profile. 

a. What are the changes of the venous resistance in the course of the disease?  

b. Does venous resistance change differently in different organs?  

c. What happens exactly to the unstressed volume and the compliance of the capacitance 

veins in the organism as a whole and in the different organs? 
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3) The microcirculation appears overtly important in the genesis of multi-organ dysfunction, and a 

number of alterations of the microcirculation in septic conditions have been highlighted. However, 

much work remains to be done in the relative importance of these disturbances in humans, so that 

their functional significance can be appreciated. 

a. What are the hemodynamic effects of the alterations of the distribution of blood flow in the 

microcirculation in sepsis? 

b. How are these alterations distributed in the different organs? 

c. What is the relative importance of the mechanisms which affect the microcirculation in 

septic patients in the different organs? 

d. To what extent does maldistribution of blood flow in the microcirculation reduce oxygen 

availability to parts of the tissues? 

4) The hypotension which characterizes septic shock obviously points to a defect of the mechanisms 

responsible for the maintenance of arterial pressure. But the specific role, in humans, of the 

malfunction of the neural circuitry responsible for the baroreflex or of the hyporesponsiveness of 

peripheral vessels to nervous or hormonal stimulation is not well characterized. Probably 

hyporesponsiveness plays a major role, but a quantitative assessment is still to be done. Moreover, 

what is the relative importance of these alterations at the level of the different organs? 
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Figure Legends 

Figure 1. Relation between central venous pressure (CVP) and cardiac index (CI) in 46 medical septic 

patients drawn according to the data reported by Winslow and coll. (581). 

Figure 2. Venous return curves built using a model with elements in series (panel A) or in parallel 

(panel B). The arrangement of the different elements is indicated by the inserts. 

For the in-series model, Ra is arterial resistance, Rv venous resistance, SVR systemic vascular 

resistance and RVR resistance to venous return, calculated according to equation (5). In panel A the 

control condition corresponds to VRC1 (Ra, Rv, SVR and RVR are 16.7, 0.8, 17.5 and 1.1 mmHg L
-1

 min, 

respectively). Halving of Ra causes SVR and RVR to decrease to 9.2 and 1.0 mmHg L
-1

 min, respectively 

and rotates clockwise the venous return curve from VRC1 to VRC2. If Ra decreases four times relative to 

its control value but Rv doubles, SVR becomes 5.8 and RVR 1.7 mmHg L
-1

 min, respectively, and the 

venous return curve rotates counterclockwise to VRC3. 

For the in parallel model, Ra is arterial resistance, Rv venous resistance and C compliance. The 

subscripts 1 and 2 refer to the non-compliant and to the compliant compartment, respectively. Fc is the 

percentage of cardiac output (CO) perfusing the compliant compartment. In panel B VRC1 was built using 

published data relative to a dog (84). Calculated SVR is 67 mmHg L
-1

 min. If Ra of the non-compliant 

compartment is halved and that of the compliant compartment is doubled, so that Fc decreases from 54 to 

25%, SVR decreases (57 mmHg L
-1

 min) and the slope of the venous return curve increases (VRC2). If 

Ra of the non-compliant compartment is doubled and that of the compliant compartment is halved, so that 

Fc increases from 54 to 80%, SVR decreases to the same amount as before (57 mmHg L
-1

 min) but the 

slope of the venous return curve decreases (VRC3). 

Figure 3. Equilibrium diagram showing the effects of sepsis-induced absolute or effective hypovolemia 

(panel A), vasodilation of resistive vessels (panel B), myocardial dysfunction (panel C), absolute or 

effective hypovolemia and myocardial dysfunction (panel D), vasodilation of resistive vessels and 

myocardial dysfunction (panel E) and absolute or effective hypovolemia and vasodilation of resistive 
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vessels (panel F). Thin lines correspond to the control conditions, thick lines indicate sepsis-induced 

alterations of the cardiac and venous return curves. Reflex compensation is not shown. 

Figure 4. Relation between the rate or norepinephrine infusion and mean systemic filling pressure 

(Pmsf), resistance to venous return index (RVRI) and systemic vascular resistance index (SVRI) in stable 

postoperative cardiac surgery patients (○) and septic shock patients (●). The values corresponding to 

zero norepinephrine were obtained by extrapolation. Data are from three unrelated studies performed 

separately on cardiac surgery patients (305, 306) and septic shock patients (404). 

Figure 5. Guyton’s equilibrium diagram representing the functional properties of the heart and of the 

systemic circulation of a healthy human subject before and after the injection of LPS. Before the injection, 

the intersection of the cardiac function curve (CFCc) and the venous return curve (VRCc) is at point A. 

After the injection, the equilibrium point moves from point A to point E. An increase of cardiac output (CO) 

without changes of central venous pressure (CVP) implies unequivocally a counterclockwise rotation of 

the cardiac function curve (to CFCe) but is compatible with different modifications of the vascular function 

curve. Or resistance to venous return (RVR) decreases proportionally more than mean systemic filling 

pressure (Pmsf) (panel A), or Pmsf increases proportionally more than RVR (panel B). The measured 

decrease of systemic vascular resistance (SVR) after bacterial lipopolysaccharide (LPS) administration 

suggests (but does not prove) that the possibility shown by panel A is more likely. 

Figure 6. Glycocheck algorithm on endothelial perfused boundary region (PBR) determination and 

microvascular perfusion properties. A) Red blood cells (RBC) are detected through reflection of light 

emitting diodes by hemoglobin. Images captured by the sidestream darkfield camera are sent to the 

computer for quality checks and assessment. The black contrast is the perfused lumen of the vessels. B) 

In each recording, the software automatically places the vascular segments (green), every 10 mm along 

the vascular segments (black contrast). C) After the acquisition, for the analysis, the software undergoes 

several quality checks in the first frame of each recording, to select vascular segments with sufficient 

quality for further analysis. Invalid vascular segments (yellow) are distinguished from the valid vascular 

segments (green). During the whole recording session of 40 frames, the percentage of time in which a 

particular valid vascular segment has RBCs present is used to calculate RBC filling percentage. D) 

Depiction of the concept of glycocalyx thickness by lateral RBC movement is shown here. E) For each 
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vascular segment, the intensity profile is calculated to derive median RBC column width. F) Then, the 

distribution of RBC column width is used to calculate the perfused diameter, median RBC column width, 

and subsequently the PBR. From (282) with permission under the terms of the Creative Commons 

Attribution License. 

Figure 7. Pressure volume (P-V) relations (left) and P-V-area (right). Points at top left corners of loops 

are end-systolic P-V points. Line through points is end-systolic pressure-volume relation (ESPVR), and its 

slope and its volume-axis intercept are Ees and V0 respectively. Effective arterial elastance (Ea) is slope of 

end-systolic pressure-stroke volume relation (ESPSVR). PVA is the area in P-V diagram that is 

circumscribed by ESPVR, end-diastolic P-V relation curve, and systolic segments of P-V trajectory (A-B-

C-D-A, right). External work (EW) is the area within P-V loop trajectory (A-B-C-D-A), and end-systolic 

elastic potential energy (PE) is the area between ESPVR and end-diastolic P-V relation curve to left of 

EW. From (477), with permission. 

Figure 8. The end-diastolic pressure volume relationship (EDPVR) is nonlinear, having a shallow slope 

at low left ventricular (LV) volume range and a steeper slope at higher LV volume range. At 

subphysiological (sub) volumes the EDPVR turns toward negative LV pressures. From (79) with 

permission. 

Figure 9. Correlation between mean arterial blood pressure and muscle sympathetic nervous activity 

(MSNA) (A) or heart rate (B) of the endotoxin (□, preinjection; ■, postinjection) and placebo groups (▵, 

preinjection; ▿, postinjection); (§§P < 0.01). Please note that physiologically the stimulus-response curve 

of the baroreflex is rather sigmoid, not linear. However, linear regression helps to visualize the apparent 

differences of vascular baroreflex-sensitivity (MSNA) and uncoupling of heart rate. The slope, y-intercept 

and regression coefficient (R
2
) of the linear best-fit lines are: A □: y = − .0 73 ×   08.54; R

2
 = 0.993 ; ▪: 

y = −0.7895 ×  80.573; R
2
 = 0.8427; ▵: y = − .8098 ×   84.73; R

2
 = 0.9478; ▿: y = − . 008 ×    8.47; R

2
 

= 0.9928. B □: y = −0.93 5 ×   44.7 ; R
2
 = 0.9756; ▪: y = −0.08 7 ×  9 . 08; R

2
 = 0.0654; ▵: y = − . 49  

× +166.6; R
2
 = 0.9629; ▿: y = − .43   ×    93.89; R

2
 = 0.9628. From (465), with permission. 

Figure 10. Sympathetic arterial baroreflex system in closed-loop (A) and open-loop (B) conditions. Pd 

indicates external disturbance to arterial pressure (AP). In open-loop conditions, relationship between 

baroreceptor pressure (BRP) and sympathetic nerve activity (SNA) and that between SNA and systemic 
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arterial pressure (SAP) can be quantitatively measured. When the two curves characterizing the two 

relationships are plotted on an equilibrium diagram, intersection of the two curves is supposed to be 

operating point of AP and SNA under closed-loop conditions of feedback system (C). From (464), with 

permission. 

Figure 11. Open-loop characteristics of the baroreflex under bacterial lipopolysaccharide (LPS). Open-

loop static characteristics of the total baroreflex arc (A), neural arc (B), peripheral arc (C), CSP to HR 

relationship (D), CSP to SVR relationship (E), CSP to CO relationship (F), SNA to SVR relationship (G), 

and SN  to CO relationship (H) obtained at baseline (dotted line with white circles, ○), and 60 min (thin 

solid line with diamonds, ◊) and   0 min after LPS (thick solid line with black circles, ●). Data are 

expressed as means ± SEM (n = 10). CSP, carotid sinus pressure (mmHg); AP, arterial pressure 

(mmHg); SNA, sympathetic nerve activity (a.u.); HR, heart rate (bpm); SVR, systemic vascular resistance 

(mmHg min ml
-1

); CO, cardiac output (ml min
-1

). From (523), with permission under the terms of the 

Creative Commons Attribution License. 

Figure 12. Baroreflex equilibrium diagram under bacterial lipopolysaccharide (LPS). Averaged 

baroreflex equilibrium diagram at baseline (dotted line with white circle, operating point a), and at 60 min 

(thin solid line with diamond, operating point b) and 120 min after LPS injection (thick solid line with black 

circle, operating point c). SNA, sympathetic nerve activity (a.u.); CSP, carotid sinus pressure (mmHg); 

AP, arterial pressure (mmHg). From (523), with permission under the terms of the Creative Commons 

Attribution License. 
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