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Abstract  1 

This work proposes classification models for the prediction of olive maturity index 2 

based on Fourier Transform-Near Infrared (FT-NIR) spectra of intact drupes. An image 3 

analysis (IA) method was purposely developed for the objective evaluation of the 4 

maturity index. Thirteen cultivars at different ripening stages were harvested along three 5 

years. The reliability of the IA method was confirmed by the highly significant 6 

correlation with the common visual evaluation of maturity index. Classification models 7 

were developed with Partial Least Square-Discriminant Analysis (PLS-DA), using IA 8 

results and FT-NIR spectra of olives collected in diffuse reflectance. Most PLS-DA 9 

models calculated separately for olive origin gave sensitivity and specificity values in 10 

prediction higher than 81%. The global model performed slightly worse (sensitivity, 11 

79%; specificity, 75%), but it is definitely more robust and can provide the olive sector 12 

with a fast, green and non-destructive olive sorting method for the production of high 13 

quality virgin oil. 14 

Keywords: olive quality; maturity index; intact fruit; image analysis; near infrared 15 

spectroscopy. 16 

Abbreviations 17 

AR, Abruzzo Region; CA, Calabria Region; CV, cross-validation; EVOO, extra virgin 18 

olive oil; FN, false negative; FP, false positive; FT-NIR, Fourier Transform-Near 19 

Infrared; IA, image analysis; LV, Latent Variable; NIR, Near Infrared; MI, Maturity 20 

Index; PC, Principal Component; PCA, Principal Component Analysis; PLS-DA, 21 

Partial Least Square-Discriminant Analysis; PR, Apulia Region; ROI, Region of 22 

Interest; SCI, Surface Colorimetric Index; SENS, sensitivity; SPEC, specificity; SR, 23 

Sardinia Region; SNV, Standard Normal Variate; TP, true positive; TN, true negative.  24 
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1. Introduction 25 

The quality of virgin and extra virgin olive oils is strongly related to the physiological 26 

conditions and the ripening stage of the fruits from which they are extracted. In general, 27 

a progressive deterioration of oil quality is observed as fruit ripening progresses, but 28 

different behaviours have been registered in distinct olive cultivars (Camposeo et al., 29 

2013; Garcia et al., 1996). To date, the optimal harvest time has been selected mainly 30 

using traditional approaches and personnel experience rather than scientific criteria 31 

(Garcia et al., 1996), thus making difficult the objective optimisation of the oil quality.  32 

The most common method used to define the optimal harvest time is based on olive 33 

visual inspection (Uceda and Frias, 1975), but other evaluations have been proposed 34 

over the years, such as the measurement of fruit detachment force and fresh weight 35 

(Camposeo et al., 2013), the determination of flesh firmness (Garcia et al., 1996) or 36 

respiration rate (Ranalli et al., 1998), as well as the drupe oil (Allalout et al., 2011; 37 

Correa et al., 2019) and polyphenol (Morelló et al., 2004) content. However, all these 38 

methods are laborious and time-consuming, thus limiting the efficiency of controls and 39 

preventing the possibility to develop in-line applications for the olive oil industries. 40 

In order to overcome these issues and develop rapid, reliable and automatic methods for 41 

the assessment of olive ripening stage, computer vision and near infrared (NIR) 42 

spectroscopy approaches have been recently studied. For instance, Guzmán et al. (2015) 43 

proposed a machine vision system based on the use of infrared and visible images for 44 

the prediction of maturity index of Picual olives determined by a panel of experienced 45 

evaluators. Soto et al. (2018) presented a proposal to automatically determine olive oil 46 

quality parameters by processing images acquired from olive fruits. They tested 84 47 

batches of olives and the image processing was guided by experts’ assessment of fruit 48 
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conditions. Ram et al. (2010) applied image processing to the prediction of oil quantity 49 

in Picual and Souri olives during the ripening season. As for vibrational spectroscopy, 50 

Gracia and León (2011) studied the evolution of oil and moisture content in intact olives 51 

during the maturity process by using a portable NIR device and testing eight Spanish 52 

cultivars. Cayuela and Camino (2010) carried out a similar study, testing the usefulness 53 

of a portable Vis/NIR spectrometer for the prediction of fruit moisture, oil content, fruit 54 

maturity index and oil free acidity of two Spanish olive varieties. Bellincontro et al. 55 

(2012) applied a portable NIR-AOTF (Acousto Optically Tunable Filter) device for the 56 

prediction of the main phenolic compounds (oleuropein, verbascoside, and 3, 4-57 

DHPEA-EDA) and total phenols of three Italian olive cultivars. All these studies 58 

investigated the quality parameters by collecting spectra on the single fruits and 59 

considering only one harvest season. Salguero-Chaparro et al. (2013) analysed 250 60 

samples of intact olives belonging to fifty varieties and harvested in two crop seasons in 61 

order to test a NIR device set on a conveyor belt for the on-line determination of the oil 62 

content, moisture and free acidity. Other similar works were reviewed by Stella et al. 63 

(2015), who concluded that the advantages of NIR spectroscopy over traditional 64 

analytical methods are clear, but the robustness of the developed models is affected by 65 

small datasets. Similarly, Nenadis and Tsimidou (2017) reviewed papers focused on 66 

vibrational techniques addressing quality and authenticity issues of olives and virgin 67 

olive oils and they discussed the need for validation guidelines and open-access spectral 68 

databanks in order to standardize these techniques and use them in the official control. 69 

They also pointed out the importance of the reference analytical methods for the 70 

successful calibration of chemometric models and the reduction of errors. In this 71 

respect, the use of visual inspection evaluations as references for the calibration of olive 72 
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classification models based on maturity index can represent a source of errors 73 

preventing the development of reliable methods. 74 

Thus, the aim of this work was the development of a classification model based on 75 

Fourier Transform-Near Infrared (FT-NIR) spectra of aliquots of intact olives using as a 76 

priori information the olive maturity index objectively evaluated through an image 77 

analysis method purposely developed. A big dataset was used to set up the proposed 78 

methodology, considering thirteen Italian olive cultivars at different ripening stages, 79 

harvested during three crop seasons (from 2016 to 2018), for a total of 303 samples 80 

corresponding to as many olive aliquots. 81 

2. Materials and Methods 82 

2.1. Experimental plan 83 

Olives at different maturity stages were collected from September to December over 84 

three harvesting years (2016, 2017, and 2018). Thirteen cultivars typical of four 85 

different Italian regions were sampled as detailed in Table 1.  86 

<Table 1> 87 

For each sampling time (from T1 up to T5) and cultivar, three sample units (500 g each) 88 

were collected from different labelled trees of the same grove. The Maturity Index (MI) 89 

was evaluated picking olives from the three sample units; furthermore, two aliquots 90 

(100 g each) were withdrawn from each sample unit, to be used for surface colorimetric 91 

index assessment, image analysis, and FT-NIR spectroscopy. A total of 303 aliquots of 92 

olives in adequate hygienic and qualitative conditions were analysed after wiping olive 93 

surface with paper towel. 94 

2.2. Visual assessment of ripening stage 95 



6 
 

2.2.1. Maturity Index 96 

From each olive sample unit, 100 drupes were randomly collected to assess the MI 97 

according to the visual approach proposed by Uceda and Frias (1975). The method 98 

classifies olives in eight classes according to both skin and pulp colour and then MI is 99 

calculated following equation (1): 100 

𝑀𝐼 =  
1

𝑁
 ∑ (𝑖 × 𝑛𝑖)7

𝑖=0      (1) 101 

where i is the class number, ni is the number of olives belonging to the i class, and N is 102 

the total number of considered olives (100). 103 

2.2.2. Surface Colorimetric Index 104 

Each olive aliquot was evaluated by a non-destructive visual assessment of the ripening 105 

stage, considering only the skin colour as reported in Table 2.  106 

<Table 2> 107 

Results were expressed by an index referred as Surface Colorimetric Index (SCI) 108 

calculated according to equation (2): 109 

𝑆𝐶𝐼 =  
1

𝑁
∑ (𝑖 ×  𝑛𝑖)4

𝑖=1       (2) 110 

where i is the class number, ni is the number of olives belonging to the i class, and N is 111 

the total number of considered olives (60). 112 

2.3. Image analysis 113 

Images of each olive aliquot were collected using a flatbed scanner (Scanjet 8300, HP 114 

Inc., Palo Alto, CA, USA) controlled by VueScan software (v. 9.4, 2016, Hamrick 115 

Software, Sunny Isles Beach, FL, USA). The entire aliquot was placed on the scanner 116 

glass and covered with a black box to prevent light losses and avoid noise from the 117 

environment. Two images were acquired for each aliquot, at 600 dpi resolution, with a 118 
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24 bit colour depth and saved in TIFF format; the olives were blended in-between the 119 

two acquisitions. 120 

Images were then elaborated using a Matlab (v. 2016a, Mathworks, Inc., Natick, MA, 121 

USA) routine purposely developed to objectively assess the olive ripening stage. At 122 

first, in order to distinguish olives from background, a Region of Interest (ROI) was 123 

segmented applying the Superpixel algorithm on each RGB channel. The algorithm 124 

performs a simple linear iterative clustering (Achanta et al., 2012) in order to group 125 

pixels into regions with similar intensity values. From a practical point of view, this 126 

algorithm groups together neighbour pixels based on their RGB intensity values and 127 

allows the background removal. An example of the original image and the segmented 128 

one is reported in Fig. 1.  129 

<Figure 1> 130 

The average red channel intensity of the segmented mask, containing only the olive 131 

pixels, was then calculated and used to assign each olive aliquot to a maturity class 132 

(named IA). 133 

2.4. FT-NIR spectroscopy 134 

Each olive aliquot was placed in a glass Petri dish and analysed in diffuse reflectance by 135 

a FT-NIR spectrometer (MPA, Bruker Optics, Milan, Italy) equipped with an 136 

integrating sphere (Fig. 2). Spectra were collected in the whole NIR region (12500 – 137 

4000 cm-1), with a resolution of 8 cm-1 and 32 scans for both sample and background. 138 

Two spectra were collected for each aliquot, blending the olives in-between 139 

measurements. 140 

<Figure 2> 141 
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2.5. Data analysis 142 

Linear correlations between the maturity class indices (i.e. MI vs SCI and SCI vs IA) 143 

were evaluated calculating Pearson correlation coefficients and the corresponding 144 

significance (p-value).  145 

The two FT-NIR spectra collected from each olive aliquot were averaged and organised 146 

in a global dataset. Furthermore, four independent datasets were created according to 147 

olive origin (AR, CR, PR, and SR). Spectra were reduced in the 10500 - 4000 cm-1 148 

range and pre-treated with smoothing, Standard Normal Variate (SNV), and first 149 

derivative, alone or in combination. Before further analyses, spectral data were explored 150 

by Principal Component Analysis (PCA). Then, the maturity classes identified by image 151 

analysis were used as a priori information for the development of classification models 152 

based on Partial Least Square-Discriminant Analysis (PLS-DA). A dataset (206 153 

samples) constructed with aliquots of olives collected in 2017 was used for model 154 

calibration and cross-validation (venetian blinds, ten splits). A test set for external 155 

validation was created merging data collected during 2016 and 2018 (97 aliquots). The 156 

PLS-DA model performance was evaluated by comparing the reference class of each 157 

sample (IA) with the class predicted by the model. The most probable approach was 158 

applied to assign samples to classes. Samples were assigned to the class reaching the 159 

highest probability regardless the probability magnitude, thus no probability threshold 160 

was considered. This approach is advantageous if there is the need of unambiguous 161 

class assignment when "no class" o “multiple class” has no meaning. Sensitivity and 162 

specificity were calculated for each maturity class in calibration, cross-validation and 163 

prediction. Sensitivity (SENS, equation 3) expresses the model capability to correctly 164 

recognize samples belonging to the considered class. Specificity (SPEC, equation 4) 165 
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describes the model capability to correctly reject samples that do not belong to the 166 

considered class (Ballabio and Consonni, 2013). 167 

 𝑆𝐸𝑁𝑆 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
∗ 100 (3) 168 

 169 

 𝑆𝑃𝐸𝐶 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
∗ 100 (4) 170 

where TP are the true positive samples, FN are the false negative samples, TN are the 171 

true negative samples, and FP are the false positive samples. 172 

Both SENS and SPEC can assume values between 0% and 100%, being 100% the 173 

totally correct classification of TP and the totally correct rejection of TN for sensitivity 174 

and specificity, respectively. 175 

All data analyses were performed in Matlab environment (v. 2016a, Mathworks, Inc., 176 

Natick, MA, USA), using the PLS toolbox (v. 8.5, Eigenvector Research, Inc., Aeattle, 177 

WA, USA). 178 

3. Results and discussion 179 

3.1. Objective assessment of olive maturity class by image analysis 180 

MI of olive samples ranged from 0 to 5.9, with a total mean of 2.4 and a standard 181 

deviation value of 1.4. The highest mean values (3.0-3.3) were reached by the cultivars 182 

Filogaso (CR), Corsicana (SR), Sivigliana (SR), and Dritta (AR), while the cultivar 183 

Semidana (SR) had an average MI lower than 1.0. Thus, despite the long harvesting 184 

period considered (about 4 months), none of the olive cultivars reached the highest 185 

possible value of MI (7.0). This is in agreement with results of previous published 186 

works, in which MI ranged from 0 to 6 (Baccouri et al., 2007) or from 0 to 3 (Vidal et 187 

al., 2019), depending on the considered olive cultivars. In general, it has been reported 188 
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that the best results in terms of both oil quantity and quality (mill extraction yield, 189 

induction time, polyphenol content, aromatic compounds, sensory score) are obtained 190 

with olives harvested when their degreening is limited to the skin, i.e. with a maturity 191 

index less than 4 in a 0-7 scale (Camposeo et al., 2013). 192 

The MI assessment is very time-consuming and the obtained results strongly depend on 193 

the experience of the evaluator, the olive health and physical state, and the 194 

environmental conditions, such as lighting (Guzmán et al., 2015). Due to these issues, a 195 

simpler and non-destructive visual evaluation based only on skin colour was also 196 

performed on all the olive samples. The resulting SCI ranged from 1 to 4, with a total 197 

mean of 2.3 and a standard deviation value of 1.0. MI and SCI values resulted highly 198 

correlated (r = 0.95; p < 0.001), thus indicating the effectiveness of the procedure 199 

developed for SCI assessment, and the higher importance of the skin colour with respect 200 

to the pulp one. However, also the SCI determination is highly dependent on analysis 201 

conditions and evaluator experience, whereas a vision system approach could overcome 202 

these drawbacks. In fact, the scanning procedure allows lighting standardisation, and 203 

image analysis gives more objective and reproducible results. Thus, a suitable image 204 

analysis procedure was developed and the average value of the red channel was used to 205 

assign the olive aliquots to a maturity class.  206 

A simpler method, based on three-class maturity assignment, as reported in Table 3, 207 

was considered instead of the four-class division of SCI. A global red channel 208 

thresholding was defined by considering the images of all the olive cultivars and 209 

sampling times of the crop seasons 2016 and 2018. The reliability of the thresholding 210 

was assessed on the images acquired in 2017.  211 

<Table 3> 212 
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The IA index had a global mean of 2, with a standard deviation value of 1. Also in this 213 

case, a highly significant correlation was found between IA and SCI values (r = 0.85, p < 214 

0.001), thus demonstrating that the subjective visual inspection can be substituted by the 215 

objective vision system approach, enabling the standardisation and automation of the 216 

maturity index evaluation. Furthermore, samples of the Interquartile Range (IQR) of the 217 

three IA classes had MI ranges of 0.80 - 1.55, 1.65 - 3.00, and 3.40 - 4.55, for class 1, 2, 218 

and 3, respectively, thus demonstrating the reliability of the IA method in discriminating 219 

olives with different ripening degree. 220 

3.2. Interpretation of olive FT-NIR spectra 221 

The raw spectra acquired for each aliquot of olives are reported in Fig. 3a. In the region 222 

between 9000 and 8000 cm-1 it is possible to notice the characteristic bands mainly 223 

linked to the absorption of fats and oils (Correa et al., 2019). Indeed, the absorbance at 224 

8733 and 8620 cm-1 is related to the stretching of the C–O bonds of aliphatic esters, 225 

while the second overtone of C–H stretching vibrations of alkyl groups and alkenes 226 

occurs at 8245 and 8030 cm-1 (Fernández-Espinosa, 2016). Other characteristic bands 227 

are present around 6900 cm-1 (6842 cm-1, –CH2– 2C–H stretch + C–H deformation; 228 

6900 cm-1, first overtone of -OH bond) and in the region between 6700 and 5300 cm-1, 229 

characterised by CH3-CH stretch (5950 cm-1) and OH, -CO stretch (5500 cm-1). The 230 

absorbance around 5200 cm-1 is related to the harmonic and combination bands of O–H 231 

bonds in hydroxyl groups (Fernández-Espinosa, 2016; Trapani et al., 2017). Besides, 232 

the relevant differences in absorbance intensity within 4500 and 4000 cm-1 are linked to 233 

the combination of CH stretching with other vibrational modes (Casale and Simonetti, 234 

2014). The peak at 4085 cm-1 was characteristic of the olives assigned to the IA classes 235 

1 (100% green skin colour) and 2 (<50% of the skin colour turning red). Actually, this 236 



12 
 

peak disappeared with the ripening progress, being replaced in the spectra of the class 3 237 

olives by two peaks at 4335 cm-1 (CH second overtone) and 4262 cm-1 (CH2 second 238 

overtone) (Trapani et al., 2017). 239 

<Figure 3> 240 

Due to its scarce relevance, the region between 12500 and 10500 cm-1 was removed 241 

before further analyses and the spectra were pre-treated with smoothing (Savitzky–242 

Golay, zero polynomial order, 15 points) and first derivative (Savitzky–Golay, second 243 

polynomial order, 15 points) to enhance differences (Fig. 3b). The pre-treated spectra 244 

collected from olive samples of the IA class 3 better highlighted the changes occurring 245 

with the olive ripening. In particular, the higher absorbance in the region 8600 - 8330 246 

cm-1 and at 5800 cm-1 and the lower intensity in the 8350 - 8000 and 5850 - 5580 cm-1 247 

ranges of the completely ripe drupes (class 3) are linked to the higher oil content with 248 

respect to the less ripe fruits (Hernández-Sánchez and Gómez-del-Campo, 2018).  249 

3.3. Qualitative inspection of spectral data 250 

The observed differences in spectra of olive samples were investigated by performing a 251 

PCA. The better differentiation among IA classes was observed for the spectra 252 

transformed by smoothing and first derivative. Sample distribution along the first two 253 

PCs (around 80% of the explained variance) was marked according to the maturity stage 254 

(Fig. 4a) and origin (Fig. 4b).  255 

<Figure 4> 256 

The green skin drupes (IA class 1) generally had positive PC1 and PC2 values, whereas 257 

IA class 3 samples were characterised by negative PC1 scores (Fig. 4a). Accordingly, 258 

the samples with an intermediate ripening stage (IA class 2) were distributed in-between 259 

the other two classes. 260 
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By the loading inspection it was possible to associate samples with positive PC1 scores, 261 

i.e. drupes with green skin colour, to higher absorbance at 6900 cm-1 (first overtone of -262 

OH bond), 5850 - 5580 cm-1 (OH stretch, -CO stretch), and 4500 - 4000 cm-1 (Fig. 4c). 263 

Sample distinction based on olive origin (Fig. 4b) was not clear, remarking that the 264 

main differences among the olives were related to the maturation progress, rather than 265 

the growing area or the cultivar. Similarly, Fernández-Espinosa (2016) reported 266 

difficulties in discriminating olive varieties using AOTF-NIR spectra. 267 

The data exploration did the groundwork for the development of a classification model 268 

able to discriminate olives according to the maturity class identified by image analysis.  269 

3.4. FT-NIR spectroscopy for the assessment of olive maturity class 270 

Olive classification models based on IA maturity classes were developed applying the 271 

PLS-DA algorithm, based on the optimisation of covariance between X and Y, 272 

substituting the Y with a dummy variable having three levels, i.e. the number of IA 273 

classes. After the regression procedure, the y predicted values for each sample were 274 

translated into class membership (classification procedure). The class assignation was 275 

then performed based on probability, in a way that each sample was assigned to the 276 

class that had the highest probability regardless of the magnitude of the probability 277 

(Ballabio and Consonni, 2013). The performance of the global model (based on data of 278 

all the olive samples) and the origin models (one model for each region of provenance 279 

of the olives) was evaluated in terms of SENS and SPEC in calibration, cross-validation 280 

and prediction (Table 4).  281 

<Table 4> 282 

Different spectral pre-treatments were evaluated for the classification model 283 

development; the best performance was achieved when spectra were transformed by 284 



14 
 

smoothing and first derivative. SENS and SPEC average values in prediction for the 285 

global model were 79% and 75%, respectively, being mainly affected by the high SENS 286 

value of classes 1 and 3 (>85%) and the low SENS and SPEC values of class 2 (64% 287 

and 72%, respectively). This means that samples with MI values from 0.80 to 1.55 (the 288 

IQR for class 1) were correctly classified with a SENS of 85%, similarly to samples 289 

with MI values from 3.40 to 4.55 (the IQR for class 3).  The higher misclassification of 290 

the intermediate class was expected as the maturation steps are not circumscribable, but 291 

they are the result of continuous modifications along the biological process. The 292 

misclassification is also justified by the high variability of samples present in class 2. 293 

Indeed, the IQR of class 2 includes samples with a larger range of MI (from 1.65 to 294 

3.00), and 10.7% of the samples included in this class (9 samples out of 84) has MI 295 

values outside the IQR range.  296 

Due to the limited number of papers focused on the prediction of olive maturity stages 297 

by NIR spectroscopy, a comparison with previously published data is difficult, also 298 

because of the different chemometric models and performance figures used. For 299 

instance, the work by Cayuela and Camino (2010) assessed the olive MI using Vis-NIR 300 

data, but a PLS regression model was applied. They obtained a root mean square error 301 

of prediction (RMSEP) of 0.51 with a 1-6 MI range, i.e. a RMSEP% of 15.7, that was 302 

considered a good performance being the reference method susceptible of a large error.  303 

Even though the PCA demonstrated that there was not a clear distribution of samples 304 

based on olive origin, PLS-DA models for each region of provenance were in any case 305 

developed to assess if a better performance could be achieved. This was the case of AR, 306 

CR and PR models, being SENS and SPEC in prediction higher than 82% and 81%, 307 

respectively. On the contrary, the SR model reached values of SENS and SPEC in 308 
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prediction of 75% and 69%, respectively, lower than the figures of merit of the global 309 

model. The lower performance of the SR model could be ascribed to the lowest number 310 

of samples used to calibrate (43) and validate the model (20), which could lead to a 311 

model less stable, also considering the lower range of MI variability of the Semidana 312 

olives belonging to this dataset.  313 

Notwithstanding the slightly worse performance of the global model with respect to 314 

most of the origin-based ones, it should be considered that it is definitely more robust 315 

being constructed on a dataset of 303 samples, i.e. aliquots of olives belonging to 316 

thirteen different cultivars harvested over three years. Thus, the global model could be 317 

used on a larger scale, no matter the olive cultivar or origin. 318 

4. Conclusions 319 

In conclusion, the work proposes FT-NIR classification models for the objective 320 

evaluation of olive ripening stage based on maturity classes objectively assessed by an 321 

image analysis method. The developed methodology is easy, green and non-destructive 322 

and it overcomes the issues of the visual evaluations commonly applied in the olive 323 

sector. Moreover, the use of IA results for the calibration of classification models make 324 

them highly reliable, reducing the magnitude of the possible errors. Such a tool can be 325 

used for sorting olives directly at the entrance in the mill or even in field - if transferred 326 

in a portable device – thus providing olive growers and oil producers with an important 327 

decision-making support for the optimisation of virgin and extra virgin olive oil, with a 328 

major economic potential for all the olive oil chain. Moreover, it has to be pointed out 329 

that the implementation of NIR systems do the groundwork for the prediction of olive 330 

and oil quality parameters, thus justifying the use of spectroscopy over the IA used for 331 

the calibration step.  332 
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Dear Editor,  

first of all, we would like to thank you for the positive evaluation of our manuscript.  

The manuscript was carefully revised. All the comments have been answered and changes to the 

manuscript have been highlighted in red throughout the text. Reviewers’ comments have been very 

helpful to increase the quality of the manuscript. 

Reviewers' comments: 

Reviewer #1 

The manuscript shows the use of spectroscopic data and image analysis techniques to determine the 

degree of ripening of olives, and the classification by using the spectral data. 

Actually, the degree of ripening has been commonly determined by the methodology based on 

physical observations of certain number of olives (MI). It is a practical and fast way to see maturity 

level of olives, even on site. 

Now, this proposed methodology uses FT-NIR spectra of olives, analyzing the data by statistical 

models.  The spectroscopic data were combined by image analysis to discriminate (classify) olives 

based on their ripening level (IA as the reference). The study uses a good number of samples, enough 

to calibrate, and then validated with independent sets. 

The methodology proposed here does not seem practical. However, it is a new point of view, in that 

it shows the use of spectroscopic and IA measurements together. The experiments were designed 

thoroughly. It was written clearly. 

We would like to thank the Reviewer for her/his generally positive evaluation of the manuscript. 

 

Here are some questions/suggestions: 

1. Lines 150-154: In the discriminant analysis, the calibration set was chosen from 2017 harvest 

year data. The validation set was set totally with 2016 and 2018 data. Why do the authors use 

calibration and validation sets from different years? Why did not they use randomly chosen sets 

among three-year data for both purposes. 

Certainly there are different reliable strategies to split a dataset into calibration and validation sets 

(Oliveri, 2017). Uniform sampling designs, such as Kennard-Stone algorithm, are recommended for 

dividing the data when there is no obvious variable, such as time, to use for splitting data (Snee, 

1977). In this study, we had different harvesting years, so we decided to use the variable “time” to 

split our data. Being aware that the calibration set must include the whole variability to be considered 

(in our case the different cultivars and different sampling times/ripening degrees), we chose samples 

collected in 2017 for the calibration set construction. Indeed, along 2017 year all the varieties and 

ripening degrees were well represented, whereas samples collected in 2016 and 2018 harvestings 

were less abundant due to environmental and agronomic conditions. These details have been clarified 

by adding a new Table 1 providing relevant information about the sampling procedure (as suggested 

by Reviewer 2). 

Oliveri, P. (2017). Class-modelling in food analytical chemistry: development, sampling, 

optimisation and validation issues–a tutorial. Analytica chimica acta, 982, 9-19. 

Snee, R. D. (1977). Validation of regression models: methods and examples. Technometrics, 

19(4), 415-428. 
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2. Can authors justify their results also by the maturity index (MI) data as reference? 

Thank you for the suggestion. Comments about MI ranges of the three IA classes have been added in 

the text (L217-220, L288-290 and L292-296). 

3. If an image/picture of FT-NIR sampling can be provided, it would be helpful for the 

realization of spectral data collection. 

A new Figure has been added in the M&M section (Fig. 2) to show the acquisition procedure. 

 

Reviewer #2 

1. Please better define the total number of samples sued, samples per region and variety. 

We would like to thank the Reviewer for the comment. A table, new Table 1, has been added to 

provide relevant information concerning the sampling procedure. 

2. More details about the scanning protocol should be added.  Any effect of the olive surface, 

colour patterns. This must be added and discussed in the ms. 

If the Reviewer refers to the FT-NIR protocol, the olive colour has no effect on the scanned signal. 

Indeed, the considered range (10500 - 4000 cm-1) does not include the visible region of the 

electromagnetic spectrum. On the other hand, the interaction between NIR radiation and olive surface 

has an effect, which was corrected by spectral pre-treatments (smoothing, Standard Normal Variate, 

and first derivative). The acquisition procedure is reported in the text (L135-140). A further detail has 

been included in L88-94 and an image of the acquisition procedure has been added as suggested by 

Reviewer 1 (new Fig. 2). 

As for the image acquisition, all the details are already reported in the text (L114-120). The procedure 

was developed to prevent light losses and environmental interferences. In this case, the olive side 

oriented to the glass of the scanner was the one analysed just for its colour pattern.  

3. The criteria used to classify the samples must be added. The cut off must be added 

The criterion used to assign samples to classes has been added in L158-162; no cut-off was used as 

we followed the “most probable approach” that assigns samples to the class in which they obtain the 

highest probability, regardless the probability magnitude.  
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 Development of an image analysis method for objective ripening class identification 

 Image analysis classes used as references for PLS-DA models based on FT-NIR data 

 Good global classification with high sensitivity (79%) and specificity (75%)  
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Figure captions 1 

Figure 1. Example of an olive image before (left) and after (right) the segmentation by 2 

using the Superpixel algorithm. 3 

Figure 2. Image of the FT-NIR spectrometer (MPA, Bruker Optics, Milan, Italy) 4 

equipped with an integrating sphere used for the spectral data collection. The detail 5 

shows the glass Petri dish containing an olive aliquot under analysis.  6 

Figure 3. FT-NIR spectra of olives at different ripening stages, identified according to 7 

the image analysis maturity class (class 1, green line; class 2, red line; class 3, blue): a) 8 

raw spectra; b) reduced spectra after smoothing and first derivative transformation. 9 

Figure 4. Principal Component Analysis results of the FT-NIR spectra of olives at 10 

different ripening stages after smoothing and first derivative: a) score plot with sample 11 

identification according to the image analysis maturity classes (dark gray, class 1; light 12 

gray, class 2; black, class 3); b) score plot with sample identification according to the 13 

origin (reversed triangle, Abruzzo region; square, Calabria region; diamond, Apulia 14 

region; triangle, Sardinia region); c) loading plot (black line, PC1; grey line, PC2). 15 

Figure captions
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Table 1. Overview of the olive sampling plan. T1-T5 represent the different sampling times over 

the ripening period. 

    Sampling times per harvesting year   

Region Cultivar 2016 2017 2018 
Number of 

aliquots 

Abruzzo 

(AR) 

Dritta   T1-T2-T3-T4   23 

Gentile  T1-T2-T3-T4 T1-T2-T3 25 

Tortiglione   T1-T2-T3-T4 T1-T2 29 

Calabria 

(CR) 

Calipa   T1-T2-T3-T4-T5 T1-T2-T3-T4-T5 26 

Cannavà  T1-T2-T3-T4-T5 T1-T2-T3-T4-T5 19 

Ciciariello  T1-T2-T3-T4-T5 T1-T2-T3 23 

Filogaso   T1-T2-T3-T4-T5   21 

Apulia 

(PR) 

Bambina   T1-T2-T3 T1-T2-T3 28 

Cima di Melfi T1-T2-T3 T1-T2-T3 T1-T2-T3 32 

Oliva Rossa T1-T2  T1-T2-T3 T1-T2 15 

Sardinia 

(SR) 

Corsicana T1-T2-T3-T4 T1-T2-T3-T4 T1 20 

Semidana T1-T2-T3-T4 T1-T2-T3-T4 T1 22 

Sivigliana T1-T2-T3-T4 T1-T2-T3-T4 T1 20 

 

 

 

 

Table 1



Table 2. Olive maturity classes considered in the Surface Colorimetric Index (SCI) 

Class number Olive skin colour 

1 100% green 

2 <50% turning red, purple or black 

3 >50% turning red, purple or black 

4 100% purple or black 

 

Table 2



Table 3. Olive maturity classes defined according to the red channel average intensity calculated 

with the developed image analysis procedure. 

Class number Olive skin colour Red channel average intensity 

1 100% green 250.0 – 90.0 

2 <50% turning red, purple or black 89.9 – 71.0 

3 >50% turning red, purple or black 70.9 – 0.0 

 

Table 3



Table 4. Figures of merit of PLS-DA models developed for olive maturity class prediction based on 

FT-NIR spectral data after smoothing and first derivative of all the olives (Global) or of the olives 

coming from Abruzzo Region (AR), Calabria Region (CA), Apulia Region (PR) and Sardinia 

Region (SR): number of Latent Variables (LV), number of samples used to calibrate the model (N-

Cal) and to validate the model (N-Pred), calibration, cross-validation (CV) and prediction results in 

terms of sensitivity (SENS) and specificity (SPEC) percentages. 

Dataset 
 Class 1 Class 2 Class 3 Average prediction 

  SENS SPEC SENS SPEC SENS SPEC SENS SPEC 

 N-Cal 78 61 67 206 

Global 

(7 LV) 

Calibration 86 84 66 61 92 87 82 78 

CV 83 83 66 57 90 85 80 76 

N-Pred 41 28 28 97 

Prediction 85 67 64 72 86 84 79 75 

 N-Cal 12 22 19 53 

AR 

(5 LV) 

Calibration 100 100 86 77 95 97 92 90 

CV 100 100 77 77 95 85 89 85 

N-Pred 8 9 7 24 

Prediction 100 94 67 80 100 94 87 89 

 N-Cal 27 17 20 64 

CR 

(5 LV) 

Calibration 100 100 100 96 100 100 100 99 

CV 89 89 71 85 95 100 86 91 

N-Pred 10 6 9 25 

Prediction 100 60 67 95 78 100 84 83 

 N-Cal 23 14 10 47 

PR 

(4 LV) 

Calibration 74 8 79 64 80 76 77 76 

CV 74 75 64 64 80 76 72 72 

N-Pred 16 7 5 28 

Prediction 81 92 86 62 80 74 82 81 

 N-Cal 16 8 18 42 

SR 

(4 LV) 

Calibration 94 100 75 59 100 79 93 83 

CV 94 100 62 56 100 79 90 83 

N-Pred 7 6 7 20 

Prediction 100 61 33 50 86 92 75 69 

 

Table 4


