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Abstract 

Particulate matter (PM) is acknowledged to have multiple detrimental effects on human health.  

In this review, we report literature results on the possible link between outdoor PM and health outcomes 

with a focus on pulmonary infections and the mechanisms responsible for observed negative effects. PM 

physical and chemical properties, such as size and chemical composition, as well as major emission sources 

are described for a more comprehensive view about the role played by atmospheric PM in the observed 

adverse health effects; to this aim, major processes leading to the deposition of PM in the respiratory tract 

and how this can pave the way to the onset of pathologies are also presented. From the literature works 

here reviewed, two ways in which PM can threaten human health promoting respiratory infectious diseases 

are mostly taken into account. The first pathway is related to an enhanced susceptibility and here we will 

also report on molecular mechanisms in the lung immune system responsible for the augmented 
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susceptibility to pathogens, such as the damage of mechanical defensive barriers, the alteration of the 

innate immune response, and the generation of oxidative stress. The second one deals with the 

relationship between infectious agents and PM; here we recall that viruses and bacteria (BioPM) are 

themselves part of atmospheric PM and are collected during sampling together particles of different origin; 

so, data should be analysed with caution in order to avoid any false cause-effect relation. To face these 

issues a multidisciplinary approach is mandatory as also evident from the ongoing research about the 

mechanisms hypothesized for the SARS-CoV-2 airborne spreading, which is still controversial and claims for 

further investigation. Therefore, we preferred not to include papers dealing with SARS-CoV-2. 

 

 

Introduction 

Air pollution was ranked as the seventh highest risk factor for human health (Lim et al., 2012), being 

responsible for almost 3 million deaths per year globally. Among atmospheric pollutants, particulate matter 

(PM) represents a major challenge. Typically, due to its complexity as for e.g. size, chemical composition, 

sources, and chemical transformation in the atmosphere, and even if PM mass alone is a very poor metric 

to account for observed adverse biological and health effects (Cassee et al., 2013) it is still largely used to 

represent the “effective dose”.  

It is noteworthy that when PM samples are collected – typically on filters - atmospheric particles with very 

different origin are sampled all together; therefore, it is not possible to ascertain if a BioPM (consisting of a 

virus or bacteria) was natively a single particle in the air or was attached to a pre-existing particle; this is 

often a point which is not properly taken into account, leading to misinterpretation of the results pointing 

at a cause-effect relationship, which cannot be robustly proved. Other important points still poorly known 

(Groulx et al., 2018) are about the possible influence of aerosol particles of different origin on micro-

organism, enhancing or inhibiting their viability in atmosphere and the probability of interaction between 

BioPM and other atmospheric particles (Belosi et al., 2021). In recent times, it has become clear that is 
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mandatory to use an interdisciplinary approach to investigate the relationship between particulate matter 

and biological effects, in order to face such complexity.  

The first part of this review is aimed at recalling PM properties and sources in outdoor air; indeed, these 

parameters are sometimes under-considered in papers dealing with PM effects on human health. The 

second part of this work reports literature results concerning outdoor PM pollution and its correlation with 

respiratory diseases, mainly focusing on infectious ones. Of course, these are noteworthy also due to 

recent outbreak of the novel coronavirus SARS-CoV-2, that raised the attention of the world scientific 

community to better understand e.g. how the virus spread in air, what is its lifetime in different 

environmental conditions, which is the effect of ambient conditions on its viability, and what is the 

minimum dose for a possible transmission. However, the mechanisms driving airborne transmission of the 

SARS-CoV-2 is still quite controversial and further studies are needed although there are evidences that the 

probability of transmission in outdoor air due to respiratory aerosol (see e.g. Belosi et al., 2021 and 

references therein) is rather low while it is relevant indoor (Buonanno et al., 2020 and therein cited 

literature); for these reasons, the authors consider premature to focus on this hot-topic for a review paper 

and will mainly refer to literature published in the pre-COVID era.  

In this review, results from a collection of works were selected with the methodology described below. The 

authors collected the bibliographic material for the present work from different databases (Scopus, 

PubMed, and Google Scholar) and following references reported in the retrieved manuscripts, in the period 

between April 2020 and January 2021. The papers, books, and other material cited were all available in 

English. Keywords used were “particulate matter”, “PM”, “air pollution”, “aerosol”, “bioaerosol”, together 

with “viral infection”, “virus”, “health effects”, “deposition”, “inhalation”: for each search, keywords were 

combined using the conjunction “AND”. Among all the results, the authors selected and cited 152 works; 

criteria used for this choice were: collection of papers focusing only on outdoor pollution and laboratory 

studies, collection of peer-reviewed works only.  

 

1. PM: An heterogeneous ensemble with a variety of sources 
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Particulate matter (PM) – in the following referred also to as atmospheric aerosol - is characterised by 

physical-chemical properties (e.g. size, shape, composition, interaction with light) and mass/number 

concentration that can vary widely in space and time, making this mixture a highly heterogeneous 

ensemble. PM has detrimental effects on human health (Dockery et al., 1993; WHO, 2016) and has been 

also inserted in Group 1 of the IARC carcinogenic agents (IARC, 2016). Moreover, PM can affect Earth 

radiation balance, clouds, visibility, and air quality (Boucher, 2015; Fuzzi et al., 2015; Pöschl, 2005; Raes et 

al., 2002; Ramachandran, 2018; Seinfeld and Pandis, 2006; Tomasi et al., 2017). 

PM properties depend strongly on sources types and formation pathways determining the particle size, 

that spans from a few nanometers to hundreds of micrometers (Seinfeld and Pandis, 2006). Major PM 

constituents are inorganic ions, such as NO3
-, SO4

2-, NH4
+, organic and elemental/black carbon, mineral dust, 

and sea salt (Fuzzi et al., 2015; Monks et al., 2009; Ramachandran, 2018). Other minor constituents such as 

heavy metals can be found in PM in small concentrations, but they deserve particular attention as they can 

threaten human health (e.g. Tomasi et al., 2017; and references therein).  

The contribution of different components to total PM mass varies depending on the site, the season, and 

the meteorological conditions. For instance, Putaud et al. (2010) have studied 60 locations in Europe, 

including urban, rural, and kerbside sites. The authors highlighted the relevance of NO3
- and SO4

2- at rural 

sites, compared to PM collected in urban areas; moreover, elemental carbon contribution to PM10 was 

observed to increase when moving from rural to urban to kerbside sites, whereas organic matter 

importance was similar at all locations; natural PM components as sea salt and mineral dust represented a 

relevant fraction of PM only at coastal sites and in Southern Europe, respectively (Putaud et al., 2010). 

Conversely, higher levels of ammonium sulfate, organic matter, ammonium nitrate, and in particular 

elemental carbon were detected by Hand et al. (2012) in US urban locations than in rural ones.  

Moreover, PM composition is also strongly related to the size fraction; indeed, PM of natural origin 

comprises aerosols with diameters in the 2.5 – 10 µm size range (coarse particles e.g. resuspended dust, 

sea spray, and biological particles such as pollen, spores, plant debris) and anthropogenic particles are 

mainly originated by combustion processes and are characterized by smaller diameters (fine particles, 
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typically less than 2.5 µm in size). Aerosol toxicology data very often refer to laboratory studies using 

particles generated by combustion processes using fossil and/or biomass fuels (e.g. Devouassoux et al., 

2002; Naeher et al., 2007) and thus observing effects due to a specific PM type which is far from the 

atmospheric one which has a high degree of complexity. Indeed, particle directly emitted in the 

atmosphere by combustion processes (i.e. fresh aerosols of primary origin) account only for a minor 

fraction of PM mass, which is largely explained by inorganic and organic aerosols produced in the 

atmosphere by gaseous precursors through gas-to-particle conversion (i.e. secondary aerosols) (Seinfeld 

and Pandis, 2006; Tomasi et al., 2017).  

In the atmosphere, transport-related PM is produced by vehicular traffic (both exhaust emissions of 

particles and gaseous precursors and non-exhaust emissions), railroads, aircrafts, and ships. Composition of 

vehicle exhaust particles (generally smaller than 100 nm) is dominated by carbon (in particular from diesel 

vehicles), hydrocarbons, and NOx (i.e. NO and NO2, precursors of secondary aerosol); traffic non-exhaust 

emissions derive from abrasion of road pavement and wear of tyres, brakes, and mechanical components; 

Mo, Fe, Cu, and Sb (from brakes), Ba and Zn (from tyres) ), Al, Si, Ca, Ti, and Fe (from dust resuspended by 

vehicles) are typical tracers found in particles with diameter larger than 2.5 µm (Pant & Harrison, 2013; and 

references therein). Awareness about traffic-related pollution adverse health effects and increased 

mortality risk promoted many studies on exhaust emissions in the last decades (see e.g. HEI, 2010; WHO, 

2005; and references therein); opposite, non-exhaust emissions are still scarcely studied, although 

transition metals emitted have a high potential of inducing negative health effects e.g. through oxidative 

stress in biological tissues, inflammation responses and/or other toxic effects (e.g. Denier van der Gon et 

al., 2013). 

Industrial activities are also a relevant source of several compounds which can cause health effects such as 

lung inflammation and damage causing respiratory chronic diseases (Riffault et al., 2015); the amount and 

composition of industrial PM varies according to the type of industry, the production process, the 

technology, and the materials used (e.g. Riffault et al., 2015; and references therein). For instance, sulfur, 
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heavy metals, and hydrocarbons are emitted by chemical, petrochemical, and paper industries, while iron 

and steel industries emit mainly C, Fe, Si, Ca, Mg, Pb, Zn, F, and metal oxides.  

Combustion of fossil fuels and biomass (especially wood) for domestic heating can account for a large 

portion of carbonaceous PM in urban areas; physical and chemical properties of these particles depend on 

the fuel burned, combustion conditions, and appliances used (e.g. Amato et al., 2016; Calvo et al., 2013; 

Piazzalunga et al., 2011). Combustion processes generally produce PM with heterogeneous chemical 

composition (e.g. Chen et al., 2017; and therein cited literature) and tiny sizes (often with diameter smaller 

than few hundreds of nm), especially when the combustion is more efficient and takes place at higher 

temperature (Reid et al., 2005). Coal and oil emissions are dominated by C, S, and V; biomass burning 

emissions are mainly particles composed by C, Zn, K, Cl, and levoglucosan (e.g. Bhattarai et al., 2019; Reid 

et al., 2005). Many literature studies evidenced toxicological effects associated to combustion-related 

particles (e.g. Corsini et al., 2013; Donaldson et al., 2005); nevertheless atmospheric aerosol has several 

components, all of which can potentially cause health endpoints.  

In addition to anthropogenic sources, PM can have a natural origin. One of the largest components of 

primary natural PM is marine aerosol (Calvo et al., 2013; Fuzzi et al., 2015). Sea spray can contribute to the 

increase in airborne bacteria concentration at coastal sites (Després et al., 2012; and therein cited 

literature). Another major PM component is mineral dust (MD). It is mainly natural, even though 

anthropogenic emissions (soil dust resuspended by human activities) were estimated to account for 25% of 

total mineral dust concentration (Ginoux et al., 2012). Recent literature studies (e.g. Després et al., 2012; 

Fröhlich-Nowoisky et al., 2016; Querol et al., 2019; Soleimani et al., 2020) have reported that desert dust 

outbreaks can have health impacts, being associated to the transport of biological particles (e.g. fungi, 

spores, bacteria, and viruses) and to high PM concentration episodes with daily PM10 concentrations up to 

1000 µg/m3 close to the emission source and 400-600 µg/m3 at receptor sites (Querol et al., 2019). 

Among biological PM components, bioaerosol (or BioPM, as will be referred to in the following), i.e. 

particulate matter of biological origin, is raising increasing interest related to its effects on human health 
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and climate. Major components of BioPM are bacteria and archaea, fungal spores and fragments, pollen, 

viruses, algae and cyanobacteria, biological soil crust (i.e. organisms living on the soil surface), lichens, and 

others (e.g. plant or animal debris) (Després et al., 2012; Fröhlich-Nowoisky et al., 2016; Healy and Sodeau, 

2012; Hinds, 1999; Jones and Harrison, 2004; Kim et al., 2018; Nazaroff, 2016). BioPM size covers a wide 

range comprising particles with diameter from hundreds of nm to 10-100 µm. In terms of particle size, 

pollen is the largest (17-58 μm), followed by fungal cells and spores (1-30 μm), bacteria (0.25-8 μm), and 

viruses (<0.3 μm), while animal and plant fragments range in various sizes (Jones and Harrison, 2004). Their 

percentage distribution is not size proportional as the vast majority of BioPM, approximately 80%, is 

composed of bacteria. Up to 28% of total continental PM concentration can be constituted by BioPM 

(Jaenicke, 2005; Matthias-Maser et al., 2000; Matthias-Maser and Jaenicke, 1995) and it is estimated that 

its emission factor can be comparable to those of mineral dust and sea salt, i.e. about 1000 Tg/year 

(Jaenicke, 2005). Also animals and humans are important sources of BioPM, as they can constitute a 

primary source of some viruses, bacteria and fungi. In addition, areas impacted by human activities are 

characterized by higher BioPM concentrations (e.g. Nazaroff, 2016; and references therein). After emission, 

BioPM can be transported by wind similarly to dust, inside water droplets and ice crystals; it can undergo 

chemical reactions that can modify the molecular composition and biological activity of BioPM particles 

themselves; it is removed by gravitational settling and dry deposition or washed out by precipitations. 

Average residence time of BioPM was estimated to vary from less than 1 day to a few weeks (Després et al., 

2012; and references therein), depending on particle physical-chemical properties. 

 

2. PM and human health  

After the infamous high pollution event occurred in London in 1952, the scientific community focused its 

interest in the study of air pollutants and their relationship with human health (Drinker, 1953). Since then, 

many epidemiological studies have reported the onset of pathologies and the increase of mortality after 

the exposure to pollutants, and especially to PM (WHO, 2016).  
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It is worth reminding that the occupational health community often classifies PM into inhalable, thoracic, 

and respirable size fractions according to its entrance into various compartments of the human respiratory 

tract (e.g. Brown et al., 2013; Hofmann, 2011; Ruzer & Harley, 2012; US EPA, 2004). The 50% penetration 

aerodynamic diameters for thoracic and respirable fractions are 10 µm and 4 µm, respectively (e.g. US EPA, 

2004; Wilson et al., 2002). According to European air quality standards (Directive 2008/50/EC), the 

regulated aerosol size fractions are PM10 and PM2.5, i.e. particles with aerodynamic diameter smaller than 

10 and 2.5 µm, respectively; this size cuts were chosen following considerations on health and source 

apportionment studies (US EPA, 2004; Whitby, 1978; Wilson et al., 2002). PM10 can be considered an 

indicator of thoracic particles (US EPA, 2004; Wilson et al., 2002); PM2.5 meets the need to separate fine 

and coarse particles and identify different sources of fine PM and is consistent with health effects 

investigated by epidemiological studies (e.g Brown et al., 2013; Dockery et al., 1993; U.S. EPA, 2019; and 

therein cited literature). 

To safeguard the global population against the negative outcomes caused by high concentrations of 

particulate matter, WHO has established annual and daily threshold mean values for PM10 (20 and 50 

μg/m3, respectively) and PM2.5 (10 and 25 μg/m3, respectively) (WHO, 2016). Nevertheless, there are no 

evidence of a minimum concentration that guarantees a safe exposure (Shaughnessy et al., 2015); in fact, 

detrimental effects for human health were observed even at the exposure to 3 μg/m3 PM2.5 (Xia and Yao, 

2019). 

The effects of PM inhalation on humans can be serious, causing severe illnesses and death, and worsen pre-

existing pathological conditions, after either acute or chronic exposures. In high pollution conditions the 

mortality rate is enhanced, and WHO attributed to PM 4.2 million deaths worldwide in 2016 (Ahmed et al., 

2020). The adverse effects following exposure to PM range from irritation, coughing, headaches and 

vomiting (Carinanos et al., 2007), to the degeneration into pulmonary-related illnesses, such as reduced 

lung function, increased risk of infections (Ghio, 2014), development of chronic obstructive pulmonary 

disease (COPD), autoimmune diseases, and cancer (Peixoto et al., 2017; C. N. Zhao et al., 2019). 

Furthermore, the cardiovascular system can suffer from ischemia and myocardial infarction (Nemmar et al., 
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2004), the nervous system can be affected by neurodegeneration and neuronal apoptosis, and even 

reproduction can be impaired by premature birth and prenatal death (Peixoto et al., 2017).  

Among all the detrimental effects deriving from PM exposure, from now on, the authors will focus only on 

the ones linked to infectious diseases. 

 

3. PM: A pulmonary threat 

3.1 PM deposition in the respiratory tract 

PM harmfulness depends on its penetration inside the respiratory tract (Deng et al., 2019; Zwozdziak et al., 

2016a). Several factors can influence PM deposition in human lungs and the resulting health effects (Bui et 

al., 2020; Hofmann, 2011; Majid and Madl, 2011; Ruzer and Harley, 2012; U.S. EPA, 2019): biological 

factors, such as lung morphology and physiology (Bui et al., 2020; Hofmann, 2011; Majid and Madl, 2011; 

Ruzer and Harley, 2012; U.S. EPA, 2019); physical factors, including fluid dynamics of the inhaled air volume 

(Bui et al., 2020; Hofmann, 2011; Ruzer and Harley, 2012); particle properties (size, density, chemical 

composition, shape, electrical charge), and deposition mechanisms (Bui et al., 2020; Hofmann, 2011; Majid 

and Madl, 2011; Ruzer and Harley, 2012; U.S. EPA, 2019).  

The breathing pattern is among the most important physiological factors affecting particle deposition in 

lungs. It is defined by the breathing frequency (i.e. number of breaths per minute) and the tidal volume 

(volume of air inhaled during a single breath). Also, the mode of respiration (nasal or oral) plays a key role 

in PM deposition, since the nose is far more efficient than mouth in retaining and removing particles. 

Furthermore, temperature and relative humidity can affect PM deposition as they vary depending on the 

mode of respiration and location inside the lungs (Ching and Kajino, 2018; Ruzer and Harley, 2012).  

Breathability and clearance are two important parameters that determine the residence time and local 

distribution of PM in the respiratory tract, and thus its potential to cause damage. Breathability, i.e. the 

fraction of particles suspended in the air that enters nose and mouth during inspiration, primarily depends 

on particle size, breathing conditions, and wind speed (ICRP, 1994; Ruzer and Harley, 2012; U.S. EPA, 2019). 
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On the other hand, clearance refers to particles removal from the respiratory tract (ICRP, 1994). Major 

clearance mechanisms (Majid and Madl, 2011; Ruzer and Harley, 2012; U.S. EPA, 2019) are mechanical 

clearance, mucociliary (fast phase) clearance, macrophage-mediated (slow phase) clearance, particles 

translocation, and blood absorption. Their relative efficiency depends on particle properties (especially size, 

shape, and solubility) and varies in the different lung regions.  

 

 

Figure 1 Scheme representing the structure of human respiratory tract (RT), major deposition mechanisms acting in 

different RT regions and how their efficiency depends on PM size (colour coding: white=low efficiency; dark grey=high 

efficiency); the right part represents the typical pattern of total PM deposition in the RT as a function of particle 

diameter (based on Hofmann, 2011). 

PM deposition occurs through various mechanisms such as impaction due to inertia, sedimentation 

(gravitational settling), Brownian diffusion, interception, electrostatic precipitation, and convection (Hinds, 

1999); the former three are the major processes involved in the deposition of inhaled particles in the 

respiratory tract (Bui et al., 2020; Hofmann, 2011; Ruzer and Harley, 2012; U.S. EPA, 2019; Madl and Majid, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

11 
 

2011), as also reported in Figure 1. In addition, interception has a role in the deposition of fibrous particles 

and chain-like aggregates (Hofmann, 2011).  

As represented in Figure 1, the relative importance of these mechanisms varies with particle size (Hofmann, 

2011; Seinfeld and Pandis, 2006; U.S. EPA, 2019). Total deposition fraction as a function of particle 

diameter has a minimum at 300-400 nm; lower diameters (below 100 nm) are dominated by diffusion, 

while efficient impaction and sedimentation characterize larger particles (above 1 μm). In addition, the 

shape of the curve describing PM deposition as a function of particle size exhibits a different shape in each 

region of the lungs, depending on the structure and geometry of the regions themselves and breathing 

pattern. PM deposition can be forecast using different models, suitable also for predicting local to whole-

lung health outcomes (Hofmann, 2011). The most used are empirical or semi-empirical, deterministic, 

trumpet, and stochastic models (e.g. ICRP, 1994; Majid and Madl, 2011; Ruzer and Harley, 2012), even 

though also Computational Fluid Dynamics (CFD) and Artificial Neural Network techiques are being recently 

used (Bui et al., 2020).  

Finally, also other factors can affect PM deposition in human respiratory tract, as they impact on lung 

geometry and ventilation (Brown et al., 2013; Bui et al., 2020; Majid and Madl, 2011; Ruzer and Harley, 

2012): these include pre-existing diseases (e.g. COPD, asthma, cystic fibrosis) (Hofmann, 2011; Ruzer and 

Harley, 2012), age, gender and physical activity (Brown et al., 2013; Bui et al., 2020; Hofmann, 2011; Majid 

and Madl, 2011; Ruzer and Harley, 2012). 

According to the size, coarse particles are inhalable and normally are deposited in the upper part of the 

respiratory tract (Figure 1) (Deng et al., 2019; Ghio, 2014). Despite the presence of mucus, cilia and other 

barriers, a fraction of fine particles (i.e. PM2.5) can penetrate the lungs, where almost its half remains and 

penetrates into the tissues (Zwozdziak et al., 2016b). It is noteworthy that ultrafine particles can reach the 

alveoli and diffuse into the cardiovascular system by crossing the air-blood barrier (Rothen-Rutishauser et 

al., 2008; Upadhyay et al., 2014). In few hours, ultrafine particles (UFPs) can reach the main systems of the 

body, thus extending their negative action to the whole organism (Rothen-Rutishauser et al., 2007). Using a 
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rat model, Kreyling et al. (2009) demonstrated that in 24 hours, nanoparticles and their aggregates (size 

below 80 nm) can be collected in secondary organs as heart, brain, liver, skeleton, spleen, and kidneys and 

showed also an accumulation in the foetus.       

 

3.2 Adverse health effects 

PM action in the respiratory tract is generally pro-inflammatory, with increased production and secretion of 

signalling molecules as cytokines, chemokines, and adhesion molecules (Schwarze et al., 2006). The 

inflammatory condition can be prolonged by continuous recall of inflammatory cells, with production 

alongside of cytokines of other active compounds, as reactive oxygen species (ROS) and proteases (Peixoto 

et al., 2017; Schwarze et al., 2006).  

The first pathological outcomes are irritation, decrease in lung function, and exacerbation of pre-existing 

pathologies as asthma, pneumonia or bronchitis. Subsequently, chronic effects may occur, which are 

characterized by a reduction in the expiratory flow and permanent remodelling of the lung tissue (Liang et 

al., 2014; Upadhyay et al., 2014; Van Eeden et al., 2005). In addition, PM exposure can lead to DNA 

damage, possible onset of mutation, and cancer (Corsini et al., 2013; Gualtieri et al., 2011; Marabini et al., 

2017; Oh et al., 2011; Peixoto et al., 2017). Toxicological studies, mainly using human in vitro models, have 

determined that the most toxic PM components are metals (e.g. Fe, Cr or Cd), polycyclic aromatic 

hydrocarbons (PAHs), black carbon (BC), and other organic compounds. These substances can induce DNA 

detriment and micronuclei formation on different cells of the respiratory system, as well as trigger 

inflammation (Michael et al., 2013; Oh et al., 2011) 

Another effect associated with the exposure to environmental pollutants - including PM - makes the picture 

more complex: this is a decrease of immune defences against pathogens, due to the alteration of a correct 

immunological response, which leads to an increased susceptibility to infections (Mishra et al., 2020; 

Zelikoff et al., 2003). Not only PM can result in immunotoxicity, but allergens and pathogens can be part of 

the biological component of PM (BioPM) (e.g. Menetrez et al., 2009). 
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Therefore, to investigate the possible detrimental effects caused by exposure to PM and its contribution to 

the onset and spread of infections, it is important to focus on two aspects: the immunosuppressive effects 

of PM and the role of BioPM as a source of infectious agents. 

4. Immunotoxicity of PM 

As mentioned above, the exposure to air pollution can increase the susceptibility to infections and worsen 

the conditions in those who are already infected (Ciencewicki et al., 2008). Increase in PM10 and PM2.5 

concentrations have been associated with the rise in the spread of bacterial and viral infections (Clifford et 

al., 2015a; Croft et al., 2019). The respiratory system is the first to be affected, but also severe systemic 

infections, as meningitis, have been associated to PM increases in the air (Ghio, 2014).  

Among the factors that can influence the relationship between PM and infections, PM composition and 

meteorological conditions have to be mentioned. It has been shown that wood and biomass smoke, diesel 

engine exhaust, and generally PM containing high quantities of black carbon, have a detrimental action on 

the lungs, causing stress, and inflammatory condition (Grahame et al., 2014). This compromises subsequent 

macrophage activation, and also resulted in defective natural killer (NK) cells activity, leading to an increase 

susceptibility to infectious diseases (Castranova et al., 2001; Grahame et al., 2014). In addition, Clifford et 

al. (2015), in their laboratory study using geogenic PM (i.e. mineral dust), demonstrated a positive 

correlation between the presence of Fe ions and the deficit in lung anti-viral responses in a mouse model of 

influenza. This study has shown that geogenic PM10 exposure increases inflammation, impairs lung function 

and increases viral load, exacerbating the response to respiratory viral infection with iron being a driver of 

these responses. 

Concerning the meteorological conditions and increased risk of infection, there are different opinions in the 

scientific community, with some papers demonstrating that influenza spreads more in winter months, but 

it was also reported that only in warmer winters with high relative humidity a better spread of viruses was 

observed (Jaakkola et al., 2014; Mirsaeidi et al., 2016; Van Noort et al., 2012). It is also worth recalling that 

ambient PM concentrations are driven by both emission/formation rates and dilution conditions in the 
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atmosphere; indeed, high pollution episodes often occur during winter periods as domestic heating is an 

additional PM source and atmospheric mixing layer is shallow as observed in well-known hot-spot pollution 

areas such as the Po Valley, in Northern Italy (Vecchi et al., 2007). Similar seasonal patterns with increasing 

PM concentration during the cold months, driven by atmospheric stability and strong emissions from fossil 

fuels combustion and agricultural biomass burning practices are reported in other heavily polluted areas 

such as China and India (see e.g. Gao and Ji 2018; Jain et al. 2020). Moreover, it is noteworthy that not only 

PM concentration, but also PM2.5-to-PM10 concentration ratio and PM chemical composition show different 

behaviour depending on the location, the season, weather conditions, and activity of emission sources, 

with potentially varying effect on human health (Bell et al., 2007; Hueglin et al., 2005; Yeh et al., 2017). 

The increased susceptibility to infections due to PM is particularly relevant for viral infections. Acute 

respiratory infections are grouped in acute upper respiratory infections (AURI) and acute lower respiratory 

infections (ALRI). The former comprise cold, rhinosinusitis, and laryngitis while the latter include bronchitis, 

bronchiolitis, influenza, and pneumonia (Horne et al., 2018; Silverman et al., 2017). ALRI are due to both 

bacteria and viruses, with virus being the dominant cause. Among the viruses inducing ALRI, respiratory 

syncytial virus (RSV), influenza, parainfluenza, rhinovirus, and human metapneumovirus are some of the 

most common (Horne et al., 2018). Horne et al. (2018) demonstrated that the number of patients needing 

cures for ALRI increased to 15-32% following the rise of PM levels, and estimated that also the severity of 

infections can depend on the concentration of PM. In addition, Xia and Yao (2019) found a strong 

correlation between the increase of 10 μg/m3 in PM2.5 and the increase in hospital admission for ALRI of 

children (4.3%), and for AURI of both children and adults. Shaughnessy et al. (2015), focusing on a subgroup 

of young healthy adults between 18 and 39 years of age, estimated a 0.6% increase in the weekly rate of 

emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged 

PM10 concentration. Studying more susceptible age classes, as elder people or children, the percentage of 

hospital admissions raise to 2-5% (Davila Cordova et al., 2020; Luong et al., 2017). Considering a wide 

population consisting of more than 300,000 individuals, significant positive associations between PM2.5 and 

pneumonia/influenza deaths were observed for never-smokers, which resulted more susceptible to PM 
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exposure than former or current smokers (Pope III et al., 2004). This observation can also be extended to 

infants and children, whose exposure to PM has shown under-development of the lungs and consequently 

promotes an increased susceptibility to infections (Brugha and Grigg, 2014).  

Several studies correlated influenza cases to PM exposure, comparing different years it was observed that 

occurrence of high PM2.5 levels was associated with higher influenza peaks and with exacerbation of its 

symptoms (Liang et al., 2014). Recently, Croft et al. (2019) have evaluated the incidence of influenza 

measuring the number of visits to emergency room in hospital, and found that it was directly linked to the 

PM levels of the week before, with a 3-4% more cases in concomitance with an increase in PM 

concentration. Feng et al. (2016) showed a correlation between PM2.5 concentrations and influenza-like 

illnesses only in the period of the year when flu has its natural spread, while at the non-flu season the two 

events were not linked. This may be imputed to the infectivity of the virus and the meteorological 

conditions that favoured negative conditions in the airways, as body cooling and drying of the respiratory 

tract. It was also observed that other air pollutants can contribute to increased susceptibility to acute 

influenza, as gaseous pollutants such as NO2 and SO2 (Liu et al., 2019). Indeed, as aforementioned, high PM 

levels are often observed during winter months with strong atmospheric stability conditions; this situation 

promotes the build-up of gaseous pollutants and PM emitted at ground level thus generating a very 

complex pollution cocktail so that its relationship with health outcomes is not straightforward.  

To understand the relationship between PM, respiratory viruses, and the onset of pathological conditions, 

it is necessary to explore the molecular mechanisms of the immune system inside the airways and the 

detrimental effects exerted by PM. The study of cellular and molecular mechanisms is only possible under 

laboratory conditions, where the exposure of animals or cells to non-biological PM and BioPM (fungi, 

bacteria, or viruses) has to be led consequently or in parallel, but always separately. 

A primary event that favours the spread of viruses in the airway system after PM inhalation, is the damage 

of the defensive barriers as the tracheal cilia and mucociliary epithelium. These structures can undergo 

remodelling and loss of efficiency, slowing or diminishing the clearance capacity (Ghio, 2014; Liu et al., 
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2019; Ni et al., 2015; Oh et al., 2011), while goblet cells, normally able to secrete the protective layer of 

mucus against ultrafine particles, can suffer from cytotoxicity (Yang et al., 2020).  

Among the factors that compromise the normal immunological defence are damage of alveolar 

macrophages (AM) (Donaldson and Tran, 2002; Liu et al., 2019), increase of permeability in airway 

epithelial cells (Li et al., 1996), alteration of T cell populations (Lee et al., 2014), and impairment of natural 

killer (NK) cells response (Grahame et al., 2014). AM are involved in the inhibition of viruses spreading in 

the lower respiratory tract (Becker et al., 2010); thus, the detrimental action of PM on these cells can 

favour the development of infections. Exposure to PM is known to decrease AM viability, indeed Michael et 

al. (2013), using a murine in vitro model, observed a significant reduction in the survival rate of AM after 48 

hours of treatment with 50 μg/ml of both urban and rural PM10. Moreover, PM and especially ultrafine 

particles (Macnee and Donaldson, 2003) can decrease the phagocytic activity of AM (Ghio, 2014; Ni et al., 

2015) by blocking the release of O2
- and other ROS (Castranova et al., 2001; Sawyer et al., 2010). Another 

anti-viral action that depends on AM is the secretion of cytokines to recall adaptive immunity (Castranova 

et al., 2001); IL-1β and TNF-α mediate chemotaxis and leukocyte activation, while IL-6 is important in 

antibody response (Ramshaw et al. 1997). It was demonstrated, both in human and animal models, that the 

production of cytokines and the consequential activation of the adaptive response can be compromised 

after exposure to PM, increasing individual susceptibility to infections (Becker et al., 2010; Ma et al., 2017).  

For what concerns T cells responses, it was demonstrated that PM2.5 favours an imbalance between the 

different T cells populations. Normally, primary T helper type 1 (Th1) cells are appointed to the protection 

against infectious agents, while the fraction of T cells known as T regs is devoted to immunosuppression 

(Lee et al., 2014; Saravia et al., 2014). After PM2.5 exposure, an elevated production of T regs and inhibition 

of the generation of new Th1 has been observed (Jaligama et al., 2017; Matthews et al., 2014). The 

molecular mechanisms underlying this issue were studied by Jaligama et al. (2017) in a mouse model: 

animals exposed to PM showed an increase in the secretion of the immunoregulatory cytokine IL-10, which 

is able to decrease the activity of Th1 and stimulate T regs population, leading to severe outcomes 
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following influenza infection. The combination of these two factors leads to an incorrect response to 

pathogens, as influenza virus or Klebsiella pneumoniae, as demonstrated in mice (Saravia et al., 2014).  

Another group of cells involved in the immune response against viruses is NK cells. These cells have the 

ability to kill virus-infected cells, but can also connect innate and adaptive immunity releasing cytokines 

(Grahame et al., 2014; Müller et al., 2013). The immunosuppression following PM exposure was 

demonstrated in vitro by Müller et al. (2013), who observed how PM impaired the formation and release of 

granzyme B and perforin, the two major cytotoxic enzymes of NK cells. Another mechanism that can impair 

the action of NK cells against viral infections is the suppression of IP-10, a chemoattractant for NK cells 

present in infected tissues, exerted by wood smoke particles and diesel exhaust particles (DEP) (Rebuli et 

al., 2019).     

A peculiar pathway involved in the antiviral defence of respiratory immune system is the one leading to the 

production of interferon (IFN) family proteins - in particular IFN-γ - which are stimulatory of the antiviral 

state. Normally, their synthesis follows the activation of T and NK cells or the recognition of infected cells 

(Goodbourn et al., 2000). After exposure to PM2.5 collected at urban sites, the production of IFN-γ is 

reduced, allowing enhanced viral replication and leading to a lower defence of the immune system (Ni et 

al., 2015). Using a murine model, Lambert et al. (2003) observed that exposure to PM2.5 determines a 

reduced expression of IFN-γ, increasing individual susceptibility to RSV infections. Castranova et al. (2001) 

focused on the burden of PM carbonaceous components, demonstrating the specific ability of organic 

compounds adsorbed on DEP to interfere in the production of IFN-γ. IFN-β is also involved in the innate 

immune response. The exposure to high doses of PM10 reduces its transcription, along with the activation 

of other antiviral genes, while it stimulates viral replication, as demonstrated by Mishra et al. (2020) in the 

study of influenza for a 1:1 ratio between extracted PM10 and culture media.         

Another detrimental aspect of PM exposure is the generation of oxidative stress. Indeed, this condition can 

trigger the spread of infections in the airways, making lung cells more susceptible to pathogens (Grigg, 

2009). Jaligama et al. (2017) reported the presence of persistent radical species in atmospheric PM; these 
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radicals were studied for their ability to promote a temporal immunosuppressive state and enhance the 

persistence of influenza. The molecular mechanism is still unclear: it is possible that the oxidative stress 

inhibits GSH (glutathione) and this block contributes to the enhancement of the viral replication in the 

respiratory system (Lee et al., 2014). Michael et al. (2013) used a human in vitro model to explore these 

mechanisms and showed significantly decreased levels of GSH and a reduced activity of its synthesis 

enzymes, as SOD (superoxide dismutase), after exposure to PM10 concentrations above 50 µg/ml. 

To summarize, in this section the association between PM exposure and the onset of infections was 

presented in terms of factors affecting this relationship, types of infectious diseases mostly reported as 

related to PM (respiratory viral infections and in particular influenza), and detrimental effects of PM 

causing peculiar molecular mechanisms of the immune system in the respiratory tract (damage of 

mechanical defensive barriers and AM, alteration of T and NK cells action and innate immune response, and 

generation of oxidative stress). 

5. BioPM: A possible source of infectious diseases  

As aforementioned, BioPM comprises a wide range of pathogens that can undermine individuals’ health in 

peculiar ways. Exposure to BioPM consisting in pollens is well-known to cause allergic reactions in 

genetically predisposed individuals, with symptoms ranging from coughing and throat irritation, to asthma 

or hypersensitivity pneumonitis (Menetrez et al., 2009), while exposure to endotoxin from gram negative 

bacteria can induce a severe inflammatory state (Shen et al., 2019).   

In ambient conditions, microorganisms such as fungal spores, bacteria, and viruses can be found airborne 

(see e.g. Cao et al. 2014; Y. Zhao et al. 2019b); atmospheric particles can damage mucosal barriers and 

mucociliary clearance so that airborne microorganisms can directly and more easily penetrate into the 

airways (D’Amato, 2002). About the interaction between viruses and PM in ambient conditions, a recent 

theoretical study by Belosi et al. (2021) has shown that the probability of coagulation between a virus-laden 

particle and another aerosol particle in the air is extremely low for the accumulation (100-800 nm) and 

coarse (> 2.5 µm) aerosol mode.  
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Many atmospheric factors can influence the presence of airborne microorganisms in ambient air, as 

temperature, relative humidity, wind speed, and solar radiation, even though the effect of these 

parameters on the release, growth, viability, and distribution of microorganisms is not straightforward (e.g. 

Alghamdi et al., 2014; Haas et al., 2013; Zhai et al., 2018). Diurnal variations have been observed: sunrise 

and sunset are associated with a rise in concentration of airborne microorganisms, while intense daylight is 

related to its decrease (Zhai et al., 2018); this diurnal pattern is driven by both the atmospheric mixing layer 

height, that is linked to solar radiation, and emissions from human activities.  

The influence of temperature depends on the type of microorganism but also on the interaction with other 

meteorological parameters. The concentrations of airborne fungi and bacteria have often been found to 

positively correlate with temperature (Zhai et al., 2018), even though T>24 °C generally decreases the 

survival of airborne bacteria (Tang, 2009). Viruses survival is negatively affected by high temperature, which 

can alter viral proteins and genome (Tang, 2009; Zhai et al., 2018).  

The effect of relative humidity (RH) on airborne microorganisms is even less clear. Zhai et al (2018) 

reviewed a number of past studies reporting contrasting results i.e. some of them saying that low RH levels 

promoted microbial release and others asserting that high RH was beneficial to bacterial release and 

growth but it might also negatively impact on bacteria viability. High RH conditions also favours deposition 

processes because it increases weight and size of microbial particles. As far as viruses are concerned, they 

show the minimal survival at intermediate RH values (40-70%), with different behaviours exhibited by 

viruses with lipid envelopes (such as influenza viruses, coronaviruses, RSV, parainfluenza viruses, measles, 

rubella, varicella zoster virus), which tend to survive longer at RH<20-30%, and non-lipid enveloped viruses 

(e.g. respiratory adenoviruses and rhinoviruses) whose survival is maximum at higher RH (70-90%) (Tang et 

al., 2009; and references therein).  

Literature studies stated that the increase of wind speed can positively influence the presence of 

microorganisms in the air, resuspending a large amount of biological material: bacteria were observed 

spreading up to 50 km in distance, while viruses travel much more and can cross geographical barriers, as 

observed for the English channel or the Taiwan strait (Jones and Harrison, 2004; Löndahl, 2014). 
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Nevertheless, high wind speed also exerts a strong dilution effect on the atmosphere: this can be the 

reason behind the weak or lack of correlation between wind speed and microbial concentration in the 

atmosphere found by several studies (Zhai et al., 2018).  

Solar radiation, and especially its ultraviolet (UV) component, is agreed to be harmful to both bacteria and 

viruses (Tang, 2009). In their recent study, Schuit et al. (2020) demonstrated that the biological decay rate 

(i.e. rate of infectivity loss) of influenza A virus (H1N1) increases with increasing duration and intensity of 

sunlight, independently of RH. 

The effect of other factors such as gaseous pollutants on microorganisms concentration and viability in the 

atmosphere is poorly understood, also because of the concomitant influence of meteorological parameters 

(Soleimani et al., 2020; Tang, 2009; Zhai et al., 2018). 

It is worthy to note that many literature studies investigated health outcomes and particularly the 

occurrence of infectious diseases following high PM concentration episodes due e.g. to the transport of 

particular aerosol types as during desert dust storms (Soleimani et al., 2020). Nevertheless, as far as the 

authors know, the effect of specific aerosol components on an increased presence of microorganisms in the 

atmosphere, which could have caused the observed health impacts, has not been assessed yet. 

The concentration of different BioPM components vary according to the season, location and climate; 

generating specific compositions in each region of the world (Alghamdi et al., 2014; Schwarze et al., 2006). 

BioPM composition depends also on the human community, which can influence the concentration or the 

presence of some species (Fang et al., 2007, 2005; Shen et al., 2019). As an example, Shen et al. (2019) 

observed that Chinese urban and rural BioPM is composed by different bacterial genera, with a specificity 

of more than 85% at each site: in Bejing the most abundant genus was Lactococcus (49.5%), that accounted 

only for 1% of the total abundance at the rural site of Wangdu, where predominated Enterococcus (65%) 

and other soil-derived genera.  

The recent outbreak of the SARS-CoV-2 pandemic and the possibility for this virus to exist in ambient air as 

airborne and associated with non-biological PM have gained interest in the scientific community worldwide 
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and the debate about the mechanisms of transmission is still going on (Asadi et al., 2020; Belosi et al., 2021; 

Buonanno et al., 2020; Drossinos and Stilianakis, 2020; Jiang et al., 2020; Morawska and Cao, 2020; Niazi et 

al., 2020). Scientific literature on viral BioPM is still scarce, probably because of the inefficiency of the 

current measurement methods (Löndahl, 2014). It is reported that the identification of viral dsDNA (double 

stranded DNA) in PM samples is possible with few limitations, while RNA strains are more challenging to 

recognize, due to the scarce material available for reverse transcription and further analyses (Cao et al., 

2014). It has to be noted that the detection of respirable PM containing RNA traces does not mean that the 

virus is viable or infectious (Belosi et al., 2021; Niazi et al., 2020). As far as the authors know, up to date 

none have demonstrated whether the viruses were attached to or simply mixed with other particles or 

different aerosol components which are collected all together. As already mentioned, Belosi et al. (2021) 

investigated the probability that SARS-CoV-2 virus-laden aerosol coagulate with pre-existing atmospheric 

PM: it resulted to be negligible and not relevant for the dynamic of the viral particles.  

The presence of BioPM, and particularly viruses, is also related to some anthropogenic activities as 

agricultural practice, farming, or sewage treatment (Jones and Harrison, 2004; Kim et al., 2018; Mbareche 

et al., 2019). Wastewater treatment centres are one of the most recognized sources of occupational risk of 

contagions: pathogens that affect the gastroenteric system, as noroviruses or rotaviruses, and adenoviruses 

or rhinoviruses which are responsible for the common cold have been found (Brisebois et al., 2018).  

Adenoviruses, due to their wide diffusion, are considered an indicator of the population’s contamination; 

adenoviruses of major interest are B and C groups (HAdV-B, HAdV-C), which give rise to respiratory 

infections. These were found to be the most abundant among adenoviruses in different sites of the US and 

in Israel, covering almost 92% of the total amount (Bibby and Peccia, 2013), and HAdV-C was also identified 

as the most prevalent virus found in PM10 and PM2.5 samples during heavy smog events in Beijing (Cao et 

al., 2014). Concerning farm workers, the contact with infected animal secretions and the material 

resuspended in air can be a source of contagion (Jones and Harrison, 2004). As an example, influenza A 

diffusion in Chinese pig farms, studied by Anderson et al. (2016), resulted in an infection rate of one out of 

five workers. In contrast, other occupations as biohazard material handling or irrigation practices do not 
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seem to increase the risk of infection of workers (Mirskaya and Agranovski, 2018). Another viral group that 

is widely diffused is the whole of influenza viruses. These can infect both animals and humans and are likely 

to transmit cross-species, increasing their possibility to spread worldwide (Chan et al., 2015; Li et al., 2019; 

Ren et al., 2016).  

Several papers have observed an increase of RSV infections with the rise of PM concentrations. This virus 

mainly affects children, determining symptoms similar to common cold and aggravation of pre-existing 

asthma (Hackett et al., 2011; Mirsaeidi et al., 2016). In Northern Italy it was shown how an acute exposure 

to PM10 and PM2.5 resulted in increased RSV positive detections (Carugno et al., 2018; Vandini et al., 2013). 

To corroborate epidemiological data, in vitro studies were conducted to explore the survival rate and 

infectivity of RSV present in PM10 samples; as an example, Cruz-Sanchez et al. (2013) demonstrated an 

extended survival time of the virus in the air and an increased ability in infecting airway epithelial cells 

when RSV co-exists with carbonaceous aerosol compared to virus alone, leading to a higher inflammatory 

response, with a great release of IL-8 and IL-6 cytokines.  

This section focused on some factors affecting the fate of airborne microorganisms and specifically we 

summarized results about the role of meteorological parameters and human communities. In particular, 

the authors focused on viral BioPM, highlighting how its presence in the atmosphere has been related to 

some anthropogenic activities (e.g. wastewater treatment, agricultural practices, and farming) that were 

found to be sources of noroviruses, rotaviruses, adenoviruses, rhinoviruses, influenza viruses, and RSV. 

 

6. Perspectives and conclusions     

The recent outbreak of the new coronavirus, SARS-CoV-2, has conveyed many research efforts and 

resources worldwide into the study of the molecular mechanisms leading to the infection and the causes of 

the viral diffusion among different countries. A very argued and controversial topic is the airborne 

transmission of the virus as well as the possible role of air pollution and PM, in particular, in the spread of 

COVID-19. Many issues are still open and further studies are mandatory to elucidate the probability of virus 

spreading and its viability and lifetime in locations with different loading and cocktail of pollutants, various 
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atmospheric conditions as well as number of inhabitants and population lifestyle. The authors would like 

also to underline that in a PM sample, any airborne aerosol is collected on the same filter and it is 

practically impossible to say if e.g. a BioPM component (e.g. a virus or bacteria) was natively a single 

particle in the atmosphere or was attached to another pre-existing particle. This is a key point which can 

explain observed relationships between PM and pathogens which are often misunderstood while being 

mainly driven by a co-existence in the same sample. 

In this review, we have described how exposure to PM can contribute to lung infections. The 

comprehension of the link between PM and pathogens is necessary to understand the outcomes on human 

health. We illustrated two different ways in which PM can threaten individuals’ health facilitating 

respiratory infections: the increase of susceptibility towards pathogens by disrupting the lung immune 

system, and the presence of pathogens in air (BioPM) as a possible source of infectious diseases.  

Future scientific research should focus on a better understanding of the effects of BioPM on respiratory 

health and the mechanisms affecting its diffusion based on a multi-disciplinary approach, which is 

mandatory due to the complexity of the topic. 
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Highlights 

 Particulate matter action in infectious diseases needs to be analysed in depth 

 Literature results on the possible link between outdoor PM and health outcomes are reviewed 

 Pulmonary immunological responses following PM exposure are reported 

 The role of BioPM as a source of pathogens is outlined 
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