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Abstract

Regulated transcription controls the diversity, developmental pathways and spatial organization of 

the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we 

mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell 

lines and tissues to produce a comprehensive overview of mammalian gene expression across the 

human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian 

promoters are composite entities composed of several closely separated TSSs, with independent 

cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, 

whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression 

analysis reveals key transcription factors defining cell states and links them to binding-site motifs. 

The functions of identified novel transcripts can be predicted by coexpression and sample 
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ontology enrichment analyses. The functional annotation of the mammalian genome 5 

(FANTOM5) project provides comprehensive expression profiles and functional annotation of 

mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

The mammalian genome encodes the instructions to specify development from the zygote 

through gastrulation, implantation and generation of the full set of organs necessary to 

become an adult, to respond to environmental influences, and eventually to reproduce. 

Although the genome information is the same in almost all cells of an individual, at least 

400 distinct cell types1 have their own regulatory repertoire of active and inactive genes. 

Each cell type responds acutely to alterations in its environment with changes in gene 

expression, and interacts with other cells to generate complex activities such as movement, 

vision, memory and immune response.

Identities of cell types are determined by transcriptional cascades that start initially in the 

fertilised egg. In each cell lineage, specific sets of transcription factors are induced or 

repressed. These factors together provide proximal and distal regulatory inputs that are 

integrated at transcription start sites (TSSs) to control the transcription of target genes. Most 

genes have more than one TSS, and the regulatory inputs that determine TSS choice and 

activity are diverse and complex (reviewed in ref. 2).

Unbiased annotation of the regulation, expression and function of mammalian genes 

requires systematic sampling of the distinct mammalian cell types and methods that can 

identify the set of TSSs and transcription factors that regulate their utilization. To this end, 

the FANTOM5 project has performed cap analysis of gene expression (CAGE)3 across 975 

human and 399 mouse samples, including primary cells, tissues and cancer cell lines, using 

single-molecule sequencing3 (Fig. 1; see the full sample list in Supplementary Table 1).

CAGE libraries were sequenced to a median depth of 4 million mapped tags per sample 

(Supplementary Methods) to produce a unique gene expression profile, focused specifically 

on promoter utilization. CAGE has advantages over RNA-seq or microarrays for this 

purpose, because it permits separate analysis of multiple promoters linked to the same 

gene13. Moreover, we show in an accompanying manuscript4 that the data can be used to 

locate active enhancers, and to provide numerous insights into cell-type-specific 

transcriptional regulatory networks (see the FANTOM5 website http://

fantom.gsc.riken.jp/5). The data extend and complement the recently published ENCODE5 

data, and microarray-based gene expression atlases6 to provide a major resource for 

functional genome annotation and for understanding the transcriptional networks 

underpinning mammalian cellular differentiation.

The FANTOM5 promoter atlas

Single molecule CAGE profiles were generated across a collection of 573 human primary 

cell samples (~ 3 donors for most cell types) and 128 mouse primary cell samples, covering 

most mammalian cell steady states. This data set is complemented with profiles of 250 

different cancer cell lines (all available through public repositories and representing 154 

distinct cancer subtypes), 152 human post-mortem tissues and 271 mouse developmental 
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tissue samples (Fig. 1a; see the full sample list in Supplementary Table 1). To facilitate data 

mining all samples were annotated using structured ontologies (Cell Ontology7, Uberon8, 

Disease Ontology9). The results of all analyses are summarized in the FANTOM5 online 

resource (http://fantom.gsc.riken.jp/5). We also developed two specialized tools for 

exploration of the data. ZENBU, based on the genome browser concept, allows users to 

interactively explore the relationship between genomic distribution of CAGE tags and 

expression profiles10. SSTAR, an interconnected semantic tool, allows users to explore the 

relationships between genes, promoters, samples, transcription factors, transcription factor 

binding sites and coexpressed sets of promoters. These and other ways to access the data are 

described in more detail in Supplementary Note 1.

CAGE peak identification and thresholding

To identify CAGE peaks across the genome we developed decomposition-based peak 

identification (DPI; described in Supplementary Methods; Extended Data Fig. 1). This 

method first clusters CAGE tags based on proximity. For clusters wider than 49 base pairs 

(bp) it attempts to decompose the signal into non-overlapping sub-regions with different 

expression profiles using independent component analysis11. Sample-and genome-wide, DPI 

identified 3,492,729 peaks in human and 2,088,255 peaks in mouse. To minimize the 

fraction of peaks3 that map to internal exons (which could exist due to post-transcriptional 

cleavage and recapping of RNAs12), and enrich for TSSs, we applied tag evidence 

thresholds to define robust and permissive subsets (described in more detail in 

Supplementary Methods and summarized in Table 1). Specifically the robust threshold, 

which is used for most of the analyses presented here, enriched for peaks at known 5′ ends 

compared to known internal exons by twofold (that is, two-thirds of the peaks hitting known 

full-length transcript models hit the 5′ end). A flow diagram showing the relationship 

between samples, peaks, thresholding and subsets used in each analysis is provided in the 

Supplementary Figure 1. Supporting evidence that the peaks are genuine TSSs, based upon 

support from expressed sequence tags (ESTs), histone H3 lysine 4 trimethylation 

(H3K4Me3) marks and DNase hypersensitive sites is provided in Supplementary Note 2.

Figure 1b illustrates the 266 bp spanning transcription initiation region of B4GALT1, where 

6 independent robust peaks were identified by DPI, each with a unique regulatory pattern 

(Fig. 1c). A total of 58% of human and 56% of mouse robust peaks occur in such composite 

transcription initiation regions, defined as clusters of robust peaks within 100 bases of each 

other. More than half of these contain peaks with statistically significant differences in 

expression profiles (63% of human and 54% of mouse composite transcription initiation 

regions; likelihood ratio test, false discovery rate (FDR) < 1%, Extended Data Fig. 1d). 

Supplementary Tables 2 and 3 summarize public domain EST evidence that these 

independent peaks contained within composite transcription initiation regions give rise to 

long RNAs.

Known gene coverage in FANTOM5

To provide annotation of the CAGE peaks, the distance between individual peaks and the 5′ 

ends of known full-length transcripts was determined and then peaks within 500 bases of the 
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5′ end of known transcript models were assigned to that gene (see Supplementary Methods, 

Table 1). To provide names for each TSS region, peaks identified at the permissive 

threshold were ranked by the total number of tags supporting each and then sequentially 

numbered (for example, p1@GFAP corresponds to the promoter of GFAP which has the 

highest tag support). From these annotations, TSS for 91% of human protein coding genes 

(as defined by the HUGO Gene Nomenclature Committee) were supported by robust CAGE 

peaks, and 94% at the permissive threshold (Supplementary Note 3). The atlas also detected 

signals from the promoters of short RNA primary transcripts, and long non-coding RNAs. In 

comparison to the previous FANTOM3 and 4 projects, FANTOM5 measured expression at 

an additional 4,721 human and 5,127 mouse RefSeq genes. The inclusion of primary cells, 

cell lines and tissues in the atlas provided greater coverage than any of the sample types 

alone (Fig. 1d) and the primary cell samples in particular were a rich source of unannotated 

peaks (Fig. 1e).

Mammalian promoter architectures

Mammalian promoters can be classified as broad or sharp types, based upon local spread of 

TSSs along the genome13. The FANTOM5 data confirmed this general observation 

(Extended Data Fig. 2), however, for the first time the greater depth of sequencing enabled 

identification of the preferred TSS within broad promoters. Taking each library in turn, 

using the location of the dominant TSS (that is, the TSS with the highest number of tags), 

we searched for phased WW dinucleotides (AA/AT/TA/TT) associated with nucleosome 

location14 (Extended Data Fig. 2). Remarkably, on a genome-wide scale, there was a 

periodic spacing of WW motifs with a 10.5 bp repeat downstream of the dominant TSS, 

exactly as shown previously for well-phased H2A.Z nucleosomes14 (Extended Data Fig. 

2d). The precise phasing was supported further by the pattern of H2A.Z and H3K4me3 

chromatin immunoprecipitation sequencing (ChIP-seq) signal seen around TSS in CD14+

monocytes and frontal lobe respectively (Extended Data Fig. 2e, f). This observation 

indicates that the positioned nucleosome is a key indicator of start site preference in broad 

promoters.

Expression levels and tissue specificity

The raw tag counts under the DPI peak coordinates were used to generate an expression 

table across the entire collection. Normalized tags per million (TPM) were then calculated 

using the relative log expression (RLE) method in edgeR15. Almost all peaks (96%) were 

reproducibly detected above 1 TPM in at least two samples, but most were detected in less 

than half the samples. Examining the distribution of expression level and breadth across the 

collection, we classified the 185K robust human peak expression profiles as non-ubiquitous 

(cell-type-restricted, 80%), ubiquitous-uniform (‘housekeeping’, 6%) or ubiquitous-non-

uniform (14%) (Fig. 2a, b). We define ubiquitous as detected in more than 50% of samples 

(median >0.2 TPM) and uniform as a less than tenfold difference between maximum and 

median expression. Estimation using the smaller mouse expression data set or human 

primary cell, cell line or tissue data subsets resulted in different fractions, yet in all cases 

ubiquitous-uniform expression profiles were in the minority (Extended Data Fig. 3a–e). 

Alternative measures such as richness index and Shannon entropy confirm that only a minor 
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fraction of transcripts can be considered as genuine housekeeping genes with broad and 

uniform expression (Supplementary Note 4 and Supplementary Table 4 for a list of 

housekeeping genes). In addition many of the 1,225 known genes that were missed in the 

collection are known to be specifically expressed in cell types that are not easily procured; 

indicating that even more of the mammalian transcriptome has a cell-type-restricted 

expression pattern (Supplementary Note 3). In overview, the data confirm the argument that 

most genes are regulated in a tissue-dependent manner16. According to Gene Ontology 

enrichment analysis17 of genes within each of the three classes (Supplementary Table 5), the 

non-ubiquitous genes were enriched for proteins involved in cell–cell signalling, plasma 

membrane receptors, cell adhesion molecules and signal transduction, whereas genes in the 

housekeeping set were enriched for components of the ribonucleoprotein complex and RNA 

processing. The ubiquitous-non-uniform set was enriched for cell cycle genes, with 204 of 

the 268 human genes annotated with the ‘mitotic cell cycle’ term, a reflection of the fact that 

the fraction of actively proliferating cells inevitably varies greatly across the collection.

Finally, of the 104, 859 peaks expressed at 10 TPM (~ 3 copies per cell18) or greater, an 

average primary cell sample expressed a median of 8, 757 including peaks for 430 

transcription factor mRNAs (Extended Data Fig. 3f, g).

Promoter conservation between human and mouse

Regulatory regions such as transcription factor binding sites are often, but not always, 

located in conserved and orthologous regions19. Overall human TSSs were significantly 

enriched in evolutionarily conserved regions compared to the genome-wide null expectation, 

with 38% overlapping previously defined mammalian constrained elements (Fisher’s exact 

test, odds ratio 10.2, P value < 2.2 × 10−16; see Supplementary Methods). Despite this 

general level of conservation, there is evidence of extensive evolutionary remodelling of 

transcription initiation. For example, 43% (79,670 out of 184,476) of human TSSs could not 

be aligned to the mouse genome, and 39% (45,926 out of 116,277) of mouse TSSs could not 

be aligned to the human genome (Supplementary Methods). Alignment between species 

decayed as a function of neutral sequence divergence (Fig. 3). Housekeeping TSSs showed 

highest TSS conservation, whereas the TSSs of non-coding RNAs were less conserved than 

those of protein-coding TSSs. Indeed, the alignment of promoters of broadly expressed non-

coding transcripts was not greatly different from randomly selected genomic sites (Fig. 3a). 

However, it is important to note that the random permutations inevitably overlap constrained 

elements, so cannot be considered representative of neutral evolution.

TSSs that were highly-restricted or biased in their expression to a single cell type or tissue 

were more likely to be gained or lost through evolution (Fig. 3a). TSSs preferentially 

expressed in fibroblasts, chondrocytes and pre-adipocytes were among the most conserved, 

whereas those enriched in T-cells, macrophages, dendritic cells, whole blood and endothelial 

cells were the most likely to be gained or lost (Fig. 3b). This suggests a more rapidly 

evolving immune system. It also suggests contributions of relaxed constraint and positive 

selection to the remodelling of transcription initiation through the insertion and deletion of 

promoter sequences.
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To enable comparative analysis, we projected the expression patterns from one species to 

the other (Extended Data Fig. 4) and provide the peak position and orthologous expression 

profile through a cross-species track in ZENBU10. Only 54% and 61% of human and mouse 

conserved TSSs (of protein coding genes) had an orthologous peak in the other species. This 

increased to 61% and 63% respectively for TSSs from well matched samples (for example, 

human and mouse hepatocytes), however, surprisingly, almost 40% of conserved TSS do not 

appear to be used even in the matched cells (Supplementary Table 6).

Features of cell-type-specific promoters

Carrying out a systematic de novo motif discovery analysis in cell-type-specific promoters, 

recovered motifs similar to the binding motifs of transcription factors known to be relevant 

to the corresponding cellular states (Extended Data Fig. 5a–c and described in 

Supplementary Note 5). Examining general promoter features many CpG island (CGI) based 

promoters (54%) and most non-CGI-non-TATA promoters (92%) had non-ubiquitous 

expression profiles (Extended Data Fig. 3k–n). Although CGI promoters are generally 

associated with housekeeping genes, we observed a subset with highly cell-type-restricted 

expression profiles (right tail of Extended Data Fig. 6a). Examining CGI and non-CGI 

promoters separately we find that cell-type-specific promoters of both classes were enriched 

for binding of cell-type-specific transcription factors (evidenced by over-representation of 

motifs and bound sites in public ChIP-seq data sets). For the human hepatocellular 

carcinoma cell line HepG2 we observed enrichment of liver-specific transcription factors 

(HNF4, FOXA2, and TCF7L2) at both CGI and non-CGI HepG2 specific promoters 

(Extended Data Fig. 6b, c; similar examples are shown in Extended Data Figs 5d and 7). As 

noted in the accompanying analysis4, both cell-type-specific CGI and non-CGI promoters 

tend to have proximal high-specificity enhancers (Extended Data Fig. 6d). This indicates 

that specific expression at CGI promoters uses the same type of signals as non-CGI 

promoters: proximal transcription factor motifs and high-specificity enhancers.

Of note, a small number of highly abundant RNAs account for 20% or more of the reads in 

some libraries: HBB, SMR3B, STATH, PRB4, CLPS, HTN3, SERPINA1, CTRB2, CPB1, 

CPA1 and MALAT1. Although the abundance of these transcripts is a function of their 

relatively stability as well as rate of initiation, a modest but significant over representation of 

ETS and YY1 sites was found in highly expressed promoters compared to weakly expressed 

ones (Extended Data Fig. 5g). Although the different motif composition may contribute to 

expression levels, the accompanying manuscript4 shows that arrays of enhancers with 

similar usage20 probably contribute to the higher maximal expression rate.

Key cell-type-specific transcription factors

Among 1,762 human and 1,516 mouse transcription factors compiled from the 

literature21–23, promoter level expression profiles for 1,665 human transcription factors 

(94%) and 1,382 mouse transcription factors (91%) were obtained (Supplementary Tables 7, 

8 and 9 and Supplementary Note 6). The distribution of expression levels and cell-type or 

tissue-specificity of transcription factors (Extended Data Fig. 3f–j) and the number of robust 

promoter peaks per transcription factor gene was similar to coding genes in general (4.8 
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compared to 4.6). In any given primary cell type, a median of 430 (306 to 722) transcription 

factors were expressed at 10 TPM or above (~ 3 copies per cell based on 300,000 mRNAs 

per cell18) (Extended Data Fig. 3g).

Clustering transcription factors by expression profile revealed sets of transcription factors 

specifically enriched in each cell type (Extended Data Fig. 8). For each primary cell sample 

we have made available ranked lists of transcription factors based on their promoter 

expression in the sample relative to the median across the collection (http://

fantom.gsc.riken.jp/5/sstar/Browse_samples). For most cell types we found one transcription 

factor that was very highly enriched (≥100-fold), 23 highly enriched transcription factors (≥ 

tenfold) and 82 moderately enriched transcription factors (≥ fivefold) (numbers of 

transcription factors are based on median number of transcription factors observed at each 

enrichment threshold across the primary cell samples). To demonstrate their likely relevance 

we systematically reviewed phenotypes of transcription factor knockout mice at the MGI 

(see Supplementary Note 7). The clear connection between tissue-specific expression 

profiles and relevant knockout phenotypes is summarized in Supplementary Table 10. For 

example, in mouse inner ear hair cells, knockout of six of the top 20 most enriched 

transcription factor genes in mouse (Pou3f4 (ref. 24), Sox2 (ref. 25), Egr2, Six1 (ref. 26), 

Fos27, Tbx18 (ref. 28)) as well as patient mutations in a further four top transcription factor 

genes (POU4F3 (ref. 29), ZIC2 (ref. 30), SOX10 (ref. 31), FOXF2 (ref. 32)) resulted in 

hearing-related defects. Similarly, mouse knockouts or patients with mutations in the 

transcription factors enriched in osteoblasts (CREB3L1 (ref. 33), DLX5 (ref. 34), EBF2 (ref. 

35), HAND2 (ref. 36), HOXC5 (ref. 37), NFIX38, PRRX1 (ref. 39), PRRX2 (ref. 40), SIX1 

(ref. 41), TWIST1 (ref. 42), SHOX43, Six2 (ref. 44)) had bone and osteoblast phenotypes. A 

substantial fraction of top transcription factors (61% of mouse and 40% of human 

transcription factors) have relevant phenotypes recorded in knockout mice (Supplementary 

Table 10).

Inferring function from expression profiles

Taking a pair-wise Pearson correlation matrix of the promoter expression profiles we carried 

out MCL clustering45 (Supplementary Methods) to group promoters that share similar 

expression profiles across the atlas. Figure 4 shows a graphical overview of the structure of 

the data (and the mouse counterpart is shown in Extended Data Fig. 9). We find 6,030 cases 

of named genes with alternative promoters participating in two or more coexpression 

clusters (Extended Data Fig. 10). To evaluate and annotate these coexpressed groups, we 

tested for enrichment in specific Gene Ontology terms and in a curated database of 489 

biological pathways. Of these, 356 pathways (174 KEGG, 114 WikiPathways, 46 Reactome, 

22 Netpath) were significantly enriched in at least one human coexpression group (FDR < 

0.05). Using this approach, 38% of the unannotated robust peaks (35,082 out of 91,269) 

were within a cluster with a significant association to a pathway. The annotated 

coexpression groups are summarized in the website (http://fantom.gsc.riken.jp/5/sstar/

Browse_coexpression_clusters) and a detailed example identifying genes putatively 

involved in influenza A pathogenesis is shown in Extended Data Fig. 10a.
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Introducing sample ontology enrichment analysis (SOEA), we show that expression profiles 

can also be associated with cell, anatomical and disease ontology terms by testing for 

overrepresentation of terms in ranked lists of systematically annotated samples expressing 

each peak (Extended Data Fig. 11 and Supplementary Methods). Novel peaks can be 

annotated in this way. For example, an un-annotated DPI peak at 

hg19::chr18:3659943.3659972, + is linked to the terms classical monocyte (CL:0000860; P 

value = 6.35 × 10−124, Extended Data Fig. 11h) and bone marrow (UBERON:0002371; P 

value = 2.7 × 10−80). Manual examination of the profile confirms the transcript is 

predominantly expressed in myeloid cells with higher levels in CD14+ monocytes. Applied 

to all CAGE peaks, 127,645 human and 44,449 mouse robust peaks were annotated as 

enriched in at least one CL, DOID or UBERON term (Extended Data Fig. 11i, j). The most 

commonly-enriched terms at a P value threshold of 10−20 were classical monocyte (CL:

0000860; 26,634 peaks, 14%), bone marrow (UBERON:0002371; 22,387 peaks, 12%) and 

neural tube (UBERON:0001049; 20,484 peaks, 11%) (Supplementary Table 13). This is 

consistent with the coexpression clustering in Fig. 4 (green and purple spheres correspond to 

leukocyte and central nervous system enriched expression profiles) and indicates that a large 

fraction of the mammalian genome is dedicated to immune and nervous system specific 

functions.

Conclusion

The FANTOM5 promoter atlas is a natural extension of earlier maps of active transcripts 

and promoters complementing the sequencing of mammalian genomes46, 47. It represents an 

advance in an order of magnitude in the wide range of cell types and the amount of data 

produced per sample, and using single-molecule sequencing avoided polymerase chain 

reaction (PCR), digestion and cloning bias48. We have identified and quantified the activity 

of at least one promoter for more than 95% of annotated protein-coding genes in the human 

reference genome; only the activity of 1,225 promoters remains uncharacterized. Some of 

these may not actually be expressed. Some cannot be unambiguously measured with CAGE 

due to copy number variants or closely related multigene families. The remaining promoters 

are probably expressed in rare cell types or during windows of development or states of 

cellular activation that are not readily accessible and remain to be sampled. A continued 

effort to add profiles from these cells will make it possible to integrate them with the 

FANTOM5 data, and to extract metadata to identify those regulatory elements that are new 

and lineage-specific.

The FANTOM5 data highlights the value in profiling primary cells as opposed to whole 

tissues. It also highlights the weakness of using cancer cell lines. The cancer cell lines 

generally fail to cluster in a sample-to-sample correlation graph with their supposed cell type 

or tissue of origin (Extended Data Fig. 12) and express more transcription factors than 

primary cells (Extended Data Fig. 3g). The mutations and chromosomal rearrangements that 

occur in cancer result in unique transcriptional networks that do not exist in the 

untransformed state and do not necessarily generalize across multiple tumours of the same 

type. In terms of building mammalian transcriptional regulatory network models that reflect 

the normal untransformed state, primary cells are the logical choice. They have normal 

genomes, and express in the order of 430 transcription factors at appreciable levels, ranking 
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of which can be used to reduce the complexity further and identify key known regulators of 

cellular phenotypes. Focusing on these key regulators and motif searching in the 

corresponding cell-type-specific promoters provides the data to build cell-type-specific 

regulatory network models and support a rational approach to identification of drivers 

required to reprogram cells from one lineage to another. Promoter-based expression data 

also has direct practical applications in the interpretation (and re-interpretation) of the 

function of single nucleotide polymorphisms (SNPs) in genome-wide association studies 

(GWAS), which commonly occur in non-coding sequences. In accompanying manuscripts, 

reanalysis of several GWAS data sets uncovered new disease associations in FANTOM5 

promoters and identification of regulatory SNPs within enhancers that were active in 

medically relevant samples (ref. 4 and manuscript in preparation). Accordingly, the data will 

enable the design of genotyping arrays and sequence-capture systems to target regulatory 

variation, and the design of promoter constructs allowing researchers to specify the cell-

type-specificity and absolute expression levels of their constructs (particularly for Cre-

conditional knockouts49 and gene therapy vectors50). In all these respects, the FANTOM5 

data set greatly extends the data generated by ENCODE5 to further our knowledge of 

genome function.

METHODS SUMMARY

All Methods are described in full in the Supplementary Information.
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Extended Data

Extended Data Figure 1. Decomposition-based peak identification (DPI)
a, Schematic representation of each step in the peak identification. This starts from CAGE 

profiles at individual biological states (I), subsequently defines tag clusters (consecutive 

genomic region producing CAGE signals) over the accumulated CAGE profiles across all 

the states (II). Within each of the tag cluster, it infers up to five underlying signals 

(independent components) by using ICA independent component analysis (ICA) (III). It 

smoothens each of the independent components and finds peaks where signal is higher than 
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the median (IV). The peaks along the individual components are finally merged if they are 

overlapping each other (V). b, c, Genomic view of actual examples (B4GALT1 locus) for 

human and mouse. CAGE profiles across the biological states (I) are shown as a greyscale 

plot, in which the x axis represents the genomic coordinates and individual rows represent 

individual biological states. Dark (or black) dots indicate frequent observation of 

transcription initiation (that is, larger number of CAGE read counts) and light dots (white) 

indicate less frequency. The blue histogram on the top indicates the accumulated CAGE 

read counts, and the entire region shown represents a single tag cluster (II). The histograms 

below the greyscale plot indicate the independent components of the CAGE signals inferred 

by ICA (III), and the resulting CAGE peaks are shown at the blue bars closest to the bottom 

(V). The bottom track indicates a gene model in RefSeq. The figures overall indicate that 

only one TSS is defined by RefSeq gene models in this locus, however, transcription starts 

from slightly different regions depending on the context, and the DPI method successfully 

captured the different initiation events. d, Breakdown of singleton and composite 

transcription initiation regions with homogenous or heterogeneous expression patterns 

according to likelihood ratio test (see Supplementary Methods).
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Extended Data Figure 2. Broad and sharp promoters
DPI peaks from the permissive set were aggregated by grouping neighbouring peaks less 

than 100 bp apart. Cumulative distribution of CAGE signal along each region was calculated 

and positions of 10th and 90th percentiles were determined. a, Schematic representation of 

CAGE signal within promoter region and calculation of interquantile width. Signal from 

CAGE transcription start sites (CTSS) is shown. Distance between these two positions 

(interquantile width) was used as a measure of promoter width. b, Distribution of promoter 

interquantile width across all 988 human samples. Individual grey lines show distribution in 
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each sample and the average distribution is shown in yellow. For each sample only 

promoters with > = 5 TPM were selected. Distribution of obtained interquantile width was 

clearly bimodal and allowed us to set the empirical threshold at 10.5 bp that separates the 

best sharp from broad promoters. c, Distribution of expression specificity. The distribution 

of log ratios of expression in individual samples against the median expression across all 

samples is shown separately for sharp and broad promoters. Solid line shows the average 

distribution for all samples and the semi-transparent band denotes the 99% confidence 

interval. The dashed line corresponds to an expected log ratio if all samples contributed 

equally to the total expression. d, Average frequency of AA/AT/TA/TT (WW) dinucleotides 

around dominant TSS of sharp (red) and broad (blue) promoters across all human samples. 

Lines show the average signal and semi-transparent bands indicate the 99% confidence 

interval. Closer view of WW dinucleotide frequency displaying 10 bp periodicity is shown 

in the inset and indicates the likely position of the +1 nucleosome. For comparison, the 

signal aligned to randomly chosen TSS in broad promoters is shown in orange. e, As in a but 

for promoters in CD14+ monocytes. H2A.Z signal (subtracted coverage − plus strand 

coverage − minus strand coverage) around sharp and broad promoters is shown in 

corresponding semi-transparent colours (data from ref. 51). Transition point in subtracted 

coverage from positive to negative values indicates the most likely position of the 

nucleosome (shown as semitransparent blue circle) centre. f, As in b but for promoters in 

frontal lobe. H3K4me3 signal (subtracted coverage = plus strand coverage – minus strand 

coverage) around sharp and broad promoters is shown in corresponding semi-transparent 

colours (data from ref. 52).
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Extended Data Figure 3. Density plots of DPI peaks maximum and median expression
a, Distribution for all human robust peaks. b, Distribution for all mouse robust peaks. 

Fraction on left of vertical dashed line corresponds to peaks with non-ubiquitous (cell-type-

restricted) expression patterns (median < 0.2 TPM). Fraction below the diagonal dashed line 

corresponds to ubiquitous-uniform (housekeeping) expression profiles (less than tenfold 

difference between maximum and median). Fraction in top-middle corresponds to 

ubiquitous-non-uniform expression profiles (maximum > tenfold median). c–e Show 

distibutions based on cell line, primary cell and tissue data, respectively. The mixture of 

cells in tissues may overestimate the fraction of ubiquitously expressed genes. f, Boxplot 

showing the number of peaks and detected > = 10 TPM in primary cells, cell lines or tissues. 
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g, As in a but showing transcription factor p1 peaks only. h, Boxplot showing maximum 

expression of the main promoter for transcription factors or all coding genes. i, Density plots 

of human robust DPI peaks maximum and median expression for the main promoter of 

coding genes. j, As in d but showing the main promoter of transcription factors. Fraction on 

the left of the vertical dashed line corresponds to peaks with non-ubiquitous (cell-type-

restricted) expression patterns (median < 0.2 TPM). Fraction below the diagonal dashed line 

corresponds to ubiquitous-uniform (housekeeping) expression profiles (less than tenfold 

difference between max and median). Fraction above the diagonal and to the right of the 

vertical dashed lines corresponds to ubiquitous-non-uniform expression profiles (maximum 

> tenfold median). k, Distribution for peaks with CpG island only (n = 55,897). l,
Distribution for peaks with only a TATA motif (n = 3,933). m, Distribution for peaks with

both CpG islands and TATA box motifs (n = 834). n, Distribution for DPI peaks with

neither a TATA motif nor CpG island (n = 124,152). Fraction on the left of the vertical

dashed line corresponds to peaks with non-ubiquitous (cell-type-restricted) expression

patterns (median < 0.2 TPM). Fraction below the diagonal dashed line corresponds to

ubiquitous-uniform (housekeeping) expression profiles (less than tenfold difference between

max and median). Fraction above diagonal and to right of vertical dashed lines corresponds

to ubiquitous-non-uniform expression profiles (maximum > tenfold median).
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Extended Data Figure 4. Cross-species projected super-clusters
a, The number of mouse and human TSSs (both permissive and robust) per projected super-

cluster. b, Same data as presented in panel a, with the y axis on a log scale. There is a slight 

tendency for more human TSSs per super-cluster than mouse TSSs. c, The number of human 

and mouse TSSs per projected super-cluster, density of data points indicated by log-scaled 

colour gradient shown on the right. Most super-clusters contain < = 4 DPI defined TSSs in 

both species. d, Evaluating the conservation of TSS annotation between species. Projected 

super-clusters are annotated by the most functional contributing TSS from each species (see 
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Methods). Grey shading in the margins summarizes the proportion of super-clusters with 

each category of annotation in both mouse (y axis) and human (x axis). Numbers and 

volumes of circles represent counts of projected super-clusters, for example there are 34,868 

super-clusters in which > = 1 human and > = 1 mouse component TSS are annotated as 

protein coding and 719 super-clusters in which the human TSSs are unannotated and at least 

one of the mouse TSSs are annotated as the 5′ end of a non-coding transcript.

Extended Data Figure 5. De novo derived, cell-state-specific motif signatures
a–c, The de novo motif discovery tools DMF, HOMER, ChIPMunk and ScanAll were 

applied to detect sequence motifs enriched in the vicinity of sample-specific peaks (a), 

yielding 8,699 de novo motifs (b). The coverage of known motif space by the de novo 

motifs was evaluated by comparing them to the SWISSREGULON, HOCOMOCO, 
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TRANSFAC, HOMER, JASPAR, and ENCODE LEXICON motif collections. c, The 

remaining 1,221 de novo motifs that were not similar to known motifs were then clustered 

using MACRO-APE, resulting in 169 unique novel motifs. d, Known motifs from the 

HOMER database were annotated and counted in around cell-type-specific TSSs (−300 to 

+50 bp) associated with CpG islands (CGI) or non-CGI regions. e–g, RNA Pol II ChIP-seq

signal and motif finding in ‘housekeeping gene’ promoters with different absolute

expression levels. Human housekeeping gene promoters were defined as (log10(max + 0.1) −

log10(median + 0.1) < = 1). The resulting clusters were then extended by −300 and +50.

Overlapping extended clusters were removed by only keeping those with the highest

expression. e, Extended clusters were then split into 5 equal sized bins with decreasing

absolute expression. f, RNA Pol II occupancy at binned clusters in ENCODE cell lines

(highly expressed genes show the highest occupancy, but even bin5 clusters showing very

low tag counts are still highly occupied). g, Bubble plot representation comparing known

motif enrichments in bin1 (high expression) and bin5 (low expression) extended CAGE

clusters. The bubble plots encode two quantitative parameters per motif: difference in motif

occurrence between bin1 (x axis) and bin5 (y axis) as well as the adjusted P values for

enrichment (bubble diameter). Colouring indicates significantly differentially distributed

motifs (5% FDR). The right panel additionally summarizes the fraction of clusters in each

bin that contain the indicated motifs along with the Benjamini Hochberg adjusted

hypergeometric P value for differential enrichment.
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Extended Data Figure 6. Features of cell-type-specific promoters
a, The distribution of expression log ratios of all individual samples against the median of 

all samples is shown separately for CGI-associated and non-CGI-associated CAGE clusters. 

The dashed line corresponds to an expected log ratio if all samples contribute equally to the 

total expression. b, Histograms for genomic distance distributions of HepG2 DNase I 

hypersensitivity, H3K4me3, H2A.Z, POL2, P300, GABP, YY1, HNF4A, FOXA1 and 

FOXA2 ChIP-seq tag counts centred across CGI-associated and non-CGI-associated CAGE 

clusters (separated according to expression specificities) across a 2 kilobase (kb) genomic 

region. Expression specificity bins are colour-coded (as indicated in the DNase I panel) with 

blue representing the highest degree of specificity. Numbers of regions in bins are given in 

the GABP panel (CGI no. / nCGI no., colour coding as above). c, Histograms for genomic 

distance distributions of ChIP-seq-derived sequence motifs for GABP, YY1, HNF4A, 

FOXA1 and FOXA2 (corresponding to the samples in the lower panel of c) centred across 

CGI-associated and non-CGI-associated CAGE clusters (separated according to expression 

Page 19

Nature. Author manuscript; available in PMC 2015 August 08.



specificities) across a 2 kb genomic region. Motifs are shown on top. The percentage of 

promoters overlapping with ChIP-seq peaks (b) or consensus sequences (c) for transcription 

factors binding the highest specificity clusters (HNF4A, FOXA2, TCF7L2) is also given in 

blue. d, Plots showing mean expression specificity (high values indicate more constrained 

expression over cells, see the accompanying manuscript4) in enhancers close to RefSeq 

promoters as a function of promoter CpG content and three classes of promoter expression 

specificity.
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Extended Data Figure 7. Extended features of cell-type-specific promoters
a, Distribution of global expression specificity estimated using primary cells, cell lines or 

tissues only. b, Distribution of expression specificity for HepG2, GM12878, HeLaS3, K562 

and CD14+ monocytes (distribution of expression log ratios of all individual samples against 

the median of all samples is shown separately for CGI-associated and nonCGI-associated 

CAGE clusters. The dashed line corresponds to an expected log ratio if all samples 

contribute equally to the total expression). c, Histograms for genomic distance distributions 

of K562 DNase I hypersensitivity, H3K4me3, H2A.Z, POL2, P300, GATA1 ChIP-seq tag 

counts centred across CGI-associated and non-CGI-associated CAGE clusters (separated 

according to expression specificities) across a 2 kb genomic region. Expression specificity 

bins are colour-coded with blue representing the highest degree of specificity. d, DNase I 

hypersensitivity, H3K4me3, H2A.Z, POL2, P300 and IRF4 in GM12878. e, DNase I 

hypersensitivity, H3K4me3, H2A.Z in HeLaS3. f, DNase I hypersensitivity, H3K4me3, 

H2A.Z, PU.1 and CEBPB in CD14+ monocytes.
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Extended Data Figure 8. Transcription factor promoter expression profile clustering
a, Biolayout visualization of transcription factor coexpression in human primary cells (3,775 

nodes, 54,892 edges r > 0.70, MCL2.2). b, Hierarchical coexpression clustering and 

heatmap of ETS family transcription factors across the entire human collection (only 

promoter1(p1) data shown).
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Extended Data Figure 9. Collapsed coexpression network for mouse coexpression groups
One node is one group of promoters. Derived from expression profiles of 116, 277 

promoters across 402 primary cell types, tissues and cell lines (r > 0.75, MCLi = 2.2). For 

display, each group of promoters is collapsed into a sphere, the radius of which is 

proportional to the cube root of the number of promoters in that group. Edges indicate r > 

0.6 between the average expression profiles of each cluster. Colours indicate loosely-

associated collections of coexpression groups (MCLi = 1.2). Labels show representative 

descriptions of the dominant cell type in coexpression groups in each region of the network, 

and a selection of highly-enriched pathways (FDR < 10−4) from KEGG (K), WikiPathways 

(W), Netpath (N) and Reactome (R).
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Extended Data Figure 10. Annotated expression profiles of alternative promoters
Overlay of coexpression groups enriched for genes involved in the KEGG pathway for 

influenza A pathogenesis (hsa:05164; FDR < 0.1, n > 2). a, Collapsed coexpression network 

showing 5 groups enriched for influenza pathogenesis genes: C0 (blue), C26 (purple), C61 

(yellow), C187 (green) and C413 (red). b, Excerpt from KEGG pathway diagram showing 

positions of genes in each coexpression group (background colours as in a). Pathway entities 

that map to two coexpression groups have the background colour of the smaller group, and 

the text/border colour of the larger group. Details and promoter-level displays (edges 

indicate r > 0.75) for two coexpression groups are displayed with transcripts mapping to 
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KEGG pathway highlighted (inset). In this example the KEGG pathway for influenza A 

pathogenesis (hsa:05164) was strikingly over-represented in one small coexpression group 

in particular (C413, P value < 10−11, FDR = 4.5 × 10−10). Of 19 promoters in coexpression 

group 413, eight were present in the KEGG pathway, including RIG-I (DDX58), the gene 

encoding the receptor for the mitochondrial antiviral signalling pathway53. Four of the 

remaining genes (TRIM21, TRIM22, RTP4 and XAF1) were found to be key host 

determinants of influenza virus replication in a high-throughput short interfering RNA 

(siRNA) screen54, whereas another, PLSCR1, is required for a normal interferon response to 

influenza A55. The top five transcription factor expression profiles most correlated with 

C413 were IRF7, IRF9, STAT1, SP100 and ZNFX1, and from motif enrichment analysis, the 

most frequent motifs found in promoters of cluster C413 were potential IRF-binding motifs. 

c, p1@IRF9 and p2@IRF9 expression ranked by the ubiquitously expressed p1@IRF9 

promoter. d, As in a but ranked by expression of p2@IRF9. e, f, Similar to a and b but 

showing expression of p1@TRMT5 (housekeeping profile) and p2@TRMT5 (expressed in 

pathogen challenged monocytes). g, Histogram showing the number of different 

coexpression clusters (see Fig. 4) in which named genes with alternative promoters 

participate. The majority of genes with alternative promoters participate in more than one 

cluster; 17 genes participate in more than 10 different clusters and are not shown on this 

graph.
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Extended Data Figure 11. Sample ontology enrichment analysis (SOEA)
Expression profile-sample ontology associations were tested by Mann–Whitney rank sum 

test to identify cell, disease or anatomical ontology terms over-represented in ranked lists of 

samples expressing each peak. a, p1@CXCL6 enriched in vascular associated smooth 

muscle cells. b, p5@ST8SIA3 enriched in brain tissues. c, Novel peak enriched in mast 

cells. d, p1@KIAA0125 enriched in myeloid leukaemia. e, p1@BRI3 enriched in myeloid 

leukaemia. f, p1@BDNF enriched in fibroblasts. g, Novel peak enriched in leukocytes. h, 

Novel peak enriched in classical monocytes. i, j, Venn diagrams showing degree of overlap 
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between peaks associated to known genes (blue), cell ontology enriched (yellow), Uberon 

anatomical ontology enriched (green) and disease ontology (red). i, At a threshold of 10−20

(Mann–Whitney rank sum test), 64% (59, 835 out of 93, 558) of the expression profiles of 

human known transcripts and 74% (67, 810 out of 91, 269) of the expression profiles for 

novel transcripts show enrichment for one or more sample ontologies. j, Mouse sample 

ontology enrichment 10−20 threshold. 30% (18, 273 out of 61, 134) known are enriched and 

47% (26, 176 out of 55, 143) novel are enriched.
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Extended Data Figure 12. Sample-to-sample correlation graph
821 nodes are shown, 21,821 edges shown (r>0.75). a, Samples are coloured by sample type 

(primary cell, cell line or tissue). Note the separation of cell lines and primary cells. b, As in 

a, except major subgroups are coloured and labelled separately.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Promoter discovery and definition in FANTOM5
a, Samples profiled in FANTOM5. b, Reproducible cell-type-specific CAGE patterns 

observed for the 266 base CpG island associated B4GALT1 locus transcription initiation 

region hg19:chr9:33167138.33167403. CAGE profiles for CD4+ T cells (blue), CD14+

monocytes (gold), aortic smooth muscle cells (green) and the adrenal cortex 

adenocarcinoma cell line SW-13 (red) are shown. A combined pooled profile showing TSS 

distribution across the entire human collection is shown in black. Values on the y axis 

correspond to maximum normalized TPM for a single base in each track. c, Decomposition-

based peak identification (DPI) finds 6 differentially used peaks within this composite 

transcription initiation region (note: peaks are labelled from p1@B4GALT1 with most tag 

support through to p7@B4GALT1 with the least tag support; p4@B4GALT1 is not shown 

and is in the 3′ UTR of the locus at position hg19::chr9:33111241.33111254−). Note in 

particular one large broad region on the left used in all samples and a sharp peak to the right, 

preferentially used in the aortic smooth muscle cells. d, Venn diagram showing DPI defined 

peaks expressed at ≥10 TPM in primary cells (red), tissues (blue) and cell lines (green). e, 

Fraction of unannotated peaks observed in subsets of d. P, primary cells, T, tissues, C, cell 

lines, PT, TC, PC and PTC correspond to peaks found in multiple sample types, for 

example, PT, found in primary cells and tissue samples.
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Figure 2. Cell-type-restricted and housekeeping transcripts encoded in the mammalian genome
a, Density plot summarizing the distribution of relative log expression (RLE) normalized 

maximum and median TPM expression values for the 185K robustly detected human peaks 

identified by FANTOM5 (colour bar on right indicates relative density). Box and whiskers 

plots above and to right show distribution of median and maximum values in the data set 

(box shows the interquartile range). Promoters of named genes are highlighted to show 

extremes of expression level and expression breadth, note the alternative promoters of IRF9 

and TRMT5 have different maximums and breadths of expression (see Extended Data Fig. 

10). Fraction on left of the red vertical dashed line corresponds to peaks detected in less than 

50% of samples with non-ubiquitous (cell-type-restricted) expression patterns (median < 0.2 

TPM). Fraction below the red diagonal dashed line corresponds to ubiquitous-uniform 

(housekeeping) expression profiles (maximum < 10× median). Fraction above diagonal and 

to the right of the vertical dashed lines corresponds to ubiquitous-non-uniform expression 

profiles (maximum > 10× median). b, Box and whisker plots showing the distribution of 

expression levels for the same peaks as in a across the 889 samples (box shows the 

interquartile range).
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Figure 3. TSS conservation as a function of expression properties and functional annotation
a, b, Human robust TSS coordinates were projected through EPO12 whole genome multiple 

sequence alignments (Supplementary Methods). The y-axis values show the fraction of 

human TSSs that align to an orthologous position in the indicated species. The x axis shows 

the relative divergence of macaque, dog and mouse genomes as the substitution rate at 

fourfold degenerate sites in protein coding sequence. The TSS locations were genome 

permuted (Supplementary Methods) and then projected through EPO12 alignments to give 

the null expectation (dashed blue line). The 95% confidence intervals of 1, 000 samples of 1, 

000 TSS are shown (blue shading). a, TSS mapped to the 5′ ends of protein coding and non-

coding transcripts are labelled (C and N, respectively), those that do not map to a known 

transcript 5′ end are shown as the ‘anonymous’ category. With the exception of anonymous, 

all robust TSSs represented in both panels are associated with the 59 ends of previously 

annotated transcripts. Non-ubiquitous (cell-type-restricted), ubiquitous-uniform 

(housekeeping) and non-uniform-ubiquitous were defined as in Fig. 2. Ultra-housekeeping 

TSSs were defined as those with less than fivefold difference between maximum and 

median. The category top 1000 UDE represents the 1,000 ubiquitous TSSs that are most 

differentially expressed4. There are 1,016 ultra-housekeeping TSSs, 276 ubiquitous-uniform 

non-coding TSSs and all other categories contain over 2, 000 TSSs. b, Same axes as panel a 

showing TSSs with expression that is biased towards a single expression facet (larger 

mutually exclusive grouping of the primary cell and tissue samples based on the sample 

ontologies CO and UBERON, defined in ref. 4). Only expression facets with greater than 

250 enriched TSSs are shown. For clarity, only a subset of expression facets are coloured 

and labelled.

Page 38

Nature. Author manuscript; available in PMC 2015 August 08.



Figure 4. Coexpression clustering of human promoters in FANTOM5
Collapsed coexpression network derived from 4,882 coexpression groups (one node is one 

group of promoters; 4,664 groups are shown here) derived from expression profiles of 

124,090 promoters across all primary cell types, tissues and cell lines (visualized using 

Biolayout Express3D (ref. 45), r > 0.75, MCLi = 2.2). For display, each group of promoters 

is collapsed into a sphere, the radius of which is proportional to the cube root of the number 

of promoters in that group. Edges indicate r > 0.6 between the average expression profiles of 

each cluster. Colours indicate loosely-associated collections of coexpression groups (MCLi 

= 1.2). Labels show representative descriptions of the dominant cell type in coexpression 

groups in each region of the network, and a selection of highly-enriched pathways (FDR < 

10−4) from KEGG (K), WikiPathways (W), Netpath (N) and Reactome (R). Promoters and 

genes in the coexpression groups are available online at (http://fantom.gsc.riken.jp/5/data/).

Page 39

Nature. Author manuscript; available in PMC 2015 August 08.

http://fantom.gsc.riken.jp/5/data/


Page 40

T
ab

le
 1

Su
m

m
ar

y 
of

 p
ea

ks
, c

ov
er

ag
e 

an
d 

ge
ne

s 
hi

t i
n 

FA
N

T
O

M
5

H
um

an
M

ou
se

P
ea

ks
St

ra
nd

ed
 g

en
om

e 
co

ve
ra

ge
 (

bp
)

N
um

be
r 

of
 

al
ig

ne
d 

re
ad

s
G

en
es

 h
it

P
ea

ks
 p

er
 g

en
e

P
ea

ks
St

ra
nd

ed
 

ge
no

m
e 

co
ve

ra
ge

 (
bp

)

N
um

be
r 

of
 

al
ig

ne
d 

re
ad

s
G

en
es

 h
it

P
ea

ks
 p

er
 g

en
e

T
he

 w
ho

le
 g

en
om

e
–

6.
2 

×
 1

09
10

0%
4.

5 
×

 1
09

10
0%

–
–

–
5.

3 
31

09
10

0%
1.

9 
×

 1
09

10
0%

–
–

‘P
er

m
is

si
ve

’ 
C

A
G

E
 p

ea
ks

1,
04

8,
12

4
1.

4 
×

 1
07

0.
22

%
3.

6 
×

 1
09

80
%

20
,8

08
–

65
2,

86
0

8.
4 

31
06

0.
16

%
1.

5 
×

 1
09

79
%

20
,4

80
–

(A
) 

W
ith

in
 5

00
bp

 o
f 

an
no

ta
te

d 
5′

24
5,

51
4

4.
3 

×
 1

06
0.

07
%

3.
0 

×
 1

09
68

%
20

,8
08

11
.8

14
6,

18
5

2.
5 

31
06

0.
05

%
1.

3 
×

 1
09

69
%

20
,4

80
7.

1

(B
) 

T
SS

 c
la

ss
if

ie
r 

po
si

tiv
e

21
7,

57
2

4.
0 

×
 1

06
0.

06
%

2.
9 

×
 1

09
64

%
18

,5
03

–
12

9,
46

6
2.

4 
31

06
0.

05
%

1.
0 

×
 1

09
52

%
17

,0
88

–

(A
 o

r 
B

) 
L

ik
el

y 
T

SS
30

8,
21

4
5.

3 
×

 1
06

0.
09

%
3.

2 
×

 1
09

72
%

20
,8

08
–

17
3,

56
4

3.
0 

31
06

0.
06

%
1.

4 
×

 1
09

70
%

20
,4

80
–

‘R
ob

us
t’

 C
A

G
E

 p
ea

ks
18

4,
82

7
3.

9 
×

 1
06

0.
06

%
3.

5 
×

 1
09

77
%

18
,9

61
–

11
6,

27
7

2.
5 

31
06

0.
05

%
1.

4 
×

 1
09

75
%

19
,0

01
–

(A
) 

W
ith

in
 5

00
bp

 o
f 

an
no

ta
te

d 
5′

82
,1

50
2.

2 
×

 1
06

0.
04

%
3.

0 
×

 1
09

66
%

18
,9

61
4.

3
61

,1
34

1.
6 

31
06

0.
03

%
1.

3 
×

 1
09

68
%

19
,0

01
3.

2

(B
) 

T
SS

 c
la

ss
if

ie
r 

po
si

tiv
e

76
,4

45
2.

1 
×

 1
06

0.
03

%
2.

9 
×

 1
09

63
%

17
,2

85
–

51
,6

11
1.

4 
31

06
0.

03
%

9.
9 

×
 1

08
51

%
16

,0
28

–

(A
 o

r 
B

) 
L

ik
el

y 
T

SS
92

,7
83

2.
4 

×
 1

06
0.

04
%

3.
2 

×
 1

09
70

%
18

,9
61

–
77

67
4

1.
7 

31
06

0.
03

%
1.

3 
×

 1
09

69
%

19
,0

01
–

C
ro

ss
-s

pe
ci

es
 p

ro
je

ct
ed

 
ro

bu
st

 p
ea

ks
70

,3
51

1.
6 

×
 1

06
0.

03
%

–
–

–
–

10
5,

15
7

2.
4 

31
06

0.
04

%
–

–
–

–

’H
om

ol
og

ou
s’

 r
ob

us
t p

ea
ks

34
,0

41
1.

0 
×

 1
06

0.
02

%
–

–
–

–
42

,4
23

1.
3 

31
06

0.
02

%
–

–
–

–

Nature. Author manuscript; available in PMC 2015 August 08.


