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b Università Cattolica del Sacro Cuore, Milano,
* corresponding author: anna.agliari@unicatt.it

Abstract

In this paper we consider a scenario in which the monetary authority provides
an explicit inflation target in order to anchor private sector expectations and align
them with policy objectives. In this context, a biased perception of the target may
arise due to imperfect information flows and idiosyncrasies in information processing
lead to heterogenous beliefs about the target. We allow private sector expectations
to be revised over time as new information becomes available and the direction of
change is determined by the distance between agents’ beliefs and actual realizations
of macro variables. The recursive choice between alternative predictors is modeled
as an optimization problem under rational inattention. Within this framework we
investigate whether a simple interest rate rule can steer the economy toward the
targeted equilibrium. Our findings suggest that standard policy advices, i.e., ensure
determinacy under rational expectations, may not be sufficient to reach the target.
Instead, a sound monetary policy should be fine-tuned to ensure that the signal sent
by realizations of macro variables can correct biased agents’ beliefs.
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1 Introduction

Modern monetary policy has emphasized that maintaining a stable monetary en-

vironment depends crucially on the ability of the policy regime to control inflation

expectations. Woodford (2003) defines the activity of modern central banks (CB

hereafter) as management of expectations. Therefore, in recent years policy mak-

ers developed communication strategies that aim explicitly to align expectations

with their own policy objectives. The provision of an explicit numerical inflation

target aimed at providing a focal point for private sector expectations is an exam-

ple of such communication strategies. As argued by Svensson (2009) and Blinder,

Ehrmann, Fratzscher, De Haan, and Jansen (2008), in an ideal world characterized

by symmetric information between the CB and the rest of the economy and a fully

informed private sector holding rational expectations, there is no specific role for

CB communication. However, the importance that the debate on CB transparency

and communication has assumed in recent years demonstrates that both theorists

and policy makers are concerned with deviations from such ideal world.

In this paper we consider a scenario in which the CB announces the target in

order to anchor private sector expectations but a biased perception of the target

may arise due to information imperfections and transparency issues. In particular,

due to idiosyncrasies in the process of understanding and processing information,

heterogeneous beliefs about the true inflation target may arise. Heterogeneity in

individual expectations has been abundantly documented using survey data on

inflation expectations, see, e.g., Carroll (2003), Mankiw, Reis, and Wolfers (2003),

Branch (2004), and Pfajfar and Santoro (2010) among others, as well as data on

individual expectations collected in learning-to-forecast laboratory experiments,

see, e.g., Adam (2007), Pfajfar and Zakelj (2010), Assenza, Heemeijer, Hommes,

and Massaro (2011), and Hommes (2011) among others.

Although the private sector may have a biased view of the true target, we

introduce discipline in the evolution of beliefs in order to minimize departures
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from models characterized by full information and rational expectations. In fact,

we assume that private sector’s beliefs about inflation are revised over time as new

information becomes available and the direction of change is determined by the dis-

tance between agents beliefs and actual realizations. De Grauwe (2012) considers

this willingness to learn via continuos evaluation of individual performance as the

most fundamental definition of rational behavior (De Grauwe (2012), p. 7). More-

over, evidence for the evolution of heterogeneous forecasting strategies over time

in reaction to past forecast errors has been provided by Frankel and Froot (1991),

Bloomfield and Hales (2002), Branch (2004), Assenza, Heemeijer, Hommes, and

Massaro (2011) and Hommes (2011), among others, using survey data as well as

experimental data. Recent theoretical contributions analyzing inflation dynamics

under endogenous selection of expectation rules include, among others, Brock and

de Fontnouvelle (2000), Tuinstra and Wagener (2007), Brazier, Harrison, King,

and Yates (2008), Branch and McGough (2010), De Grauwe (2011), Branch and

Evans (2011), Anufriev, Assenza, Hommes, and Massaro (2013) and Hommes and

Lustenhouwer (2016).1

Within this framework in which co-evolution of beliefs and realizations of ag-

gregate variables emerges through the ongoing evaluation of such beliefs, we ask

the following question: can a simple instrument rule implemented by the CB lead

the economy to the targeted inflation? Intuitively, if the intended inflation target

produces good forecasts, or in other words, if the monetary policy rule implemented

by the CB keeps inflation close enough to the target, the probability that agents

will rely on the true target will be high and dynamics will converge to the intended

equilibrium. If, on the other hand, the true inflation target does not produce good

forecasts, agents will adopt different predictors, causing the economy to move away

from the targeted equilibrium. Our results suggest that, in the presence of imper-

fect information flows and recursive evaluation of beliefs, standard policy advices

1Another line of research relaxes the assumption of rational expectations and considers CB
transparency and communications issues within the context of a New Keynesian framework with
adaptive learning (see e.g., Orphanides and Williams (2005), Berardi and Duffy (2007), and
Eusepi and Preston (2010) among others).
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(i.e., obeying the Taylor principle) may not be sufficient to guarantee convergence

to the target. Instead, the CB can ensure global stability of the target by fine-

tuning monetary policy in order to correct agents’ biased beliefs.

The paper is organized as follows. Section 2 presents the theoretical framework

featuring recursive inattentiveness and heterogeneous biased beliefs in the presence

of CB’s inflation targeting. Section 3 derives policy results about inflation target

stability. Section 4 contains concluding remarks.

2 The model

This section develops a New Keynesian (NK hereafter) environment extended to

include possible biases in the perceived inflation targets, and describes the dynamics

of such beliefs.

2.1 An NK economy with biased inflation target beliefs

We consider a NK DSGE model as in Woodford (2003) or Gaĺı (2008). The demand

side of the economy is composed by a continuum of households maximizing the

expected present value of discounted utility subject to their budget constraint.

On the supply side, a continuum of firms produces differentiated consumption

goods under monopolistic competition and a staggered price setting mechanism as

in Calvo (1983). We assume that firms are owned by households and maximize

expected profits given the production function and the households’ demand. The

equations describing the demand and the supply side of the economy are given by

yt = Ētyt+1 − σ−1(it − Ētπt+1) (2.1)

πt = kyt + βĒtπt+1, (2.2)

where y denotes the output gap, π refers to inflation, i is the interest rate set

by the monetary authority and Ē =
∫
i
Ei denotes the average expectation across
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agents (indexed by i), which might have heterogeneous beliefs due to the presence

of idiosyncrasies in information processing.2

The Central Bank (CB) in the model targets a level of inflation π̄ via the

following interest rate rule:

it = π̄ + φπ(πt − π̄) . (2.3)

In the remainder we will assume that the CB has a zero-inflation target, i.e., π̄ = 0,

so that equation (2.3) reduces to

it = φππt . (2.4)

Although the CB announces the target in order to anchor private sector expecta-

tions, we consider a scenario in which a biased perception of the target may arise due

to imperfect information flows. Such imperfections may be related to transparency

issues or inaccurate information processing. The inaccuracy in the perception of

the inflation target in the model generates a potential source of macroeconomic

instability related to the lack of coordination among individuals, who then hold

heterogeneous beliefs about the target. In particular, following Salle, Yildizoğlu,

and Sénégas (2013) we assume that the inflation target perceived by agent i, π̄pi ,

and the true inflation target are related via the relationship π̄pi = π̄ + νi, where

νi represents a noise term. Agents in the model then use their perceived target to

forecast future inflation. As for the expectations on the output gap, we assume

2We remark that this is the standard approach followed in the literature on monetary policy
with diverse beliefs (see, e.g., Brazier, Harrison, King, and Yates (2008), De Grauwe (2011), and
Arifovic, Bullard, and Kostyshyna (2013) among others). Micro-founded NK models consistent
with heterogeneous expectations have been derived by Branch and McGough (2009), Kurz (2011)
and Massaro (2013). Eqs. (2.1) and (2.2) correspond to the model developed by Branch and
McGough (2009) or to the model derived in Kurz (2011). We note that in Kurz (2011) there
are additional terms in the demand and supply equations, corresponding respectively to the
deviation of the average of agents’ forecasts of their individual future consumption from the
average forecast of aggregate consumption (

∫
i
Ei,tci,t+1 − Ei,tct+1) and a similar deviation of

price forecasts (
∫
i
Ei,tpi,t+1 − Ei,tpt+1). We treat these terms as i.i.d. disturbances (see Cornea,

Hommes, and Massaro (2012) for an empirical assessment) and analyze the dynamics of the
deterministic skeleton given by Eqs. (2.1) and (2.2).
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that agents, given their perceived inflation target, form their beliefs about the

output gap consistently with the structural equations of the canonical NK model.

Consequently, given a certain belief π̄pi about inflation, the correspondent belief

about the output gap is (1 − β)π̄pi /k.3 This assumption allows us to have a min-

imal deviation from the standard rational expectations paradigm and it is in line

with the interpretation of a rational inattention framework as an environment in

which agents know the structural parameters but receive noisy information about

the target implemented by the monetary authority.

2.2 Belief dynamics

As a result of imperfect information flows, agents in our model hold heterogeneous

beliefs. We allow for individual expectations to change over time and we introduce

discipline in the individual selection of the forecasting rule for inflation (and the

implied rule for the output gap) by subjecting the choice of the forecasting heuristic

to a fitness criterion.

In what follows we will consider a discrete support for the noise term νi linking

true and perceived inflation target, implying a finite number of biased beliefs. A

finite number of forecasting rules seems reasonable, as boundedly rational agents

may exhibit digit preference and restrict their predictions, for example, to values in

integer numbers or to half percentages.4 We will relax this assumption in Section

3.2 and allow for the possibility of a continuum of biased beliefs.

We define the probability of choosing a certain predictor h from a set of H

predictors conditional on the set of fitness measures U = (U1, ..., UH) as

P (h|U) =
eδUh∑H
h=1 e

δUh
. (2.5)

3Agliari, Pecora, and Spelta (2015) consider a scenario in which the choices of the inflation
and the output gap predictors are unrelated.

4Digit preference has been observed both in survey measures of expectations and experimental
data. See, e.g., Curtin (2005), Duffy and Lunn (2009), and Assenza, Heemeijer, Hommes, and
Massaro (2011).

6



The multinomial logit expression described in Eq. (2.5) can be derived directly

from a random utility model (see Manski and McFadden (1981) and Brock and

Hommes (1997)) in which agents observe the performance of each rule h with some

noise

Ũh = Uh + εh,i , (2.6)

where εh,i represent an idiosyncratic error term. Assuming that the noise term εh,i

is drawn from a double exponential distribution, as the number of agents goes to

infinity, the probability of agents choosing predictor h, is given by the multinomial

logit formula in Eq. (2.5). The parameter δ is referred to as intensity of choice and

it is inversely related to the variance of the noise term in Eq. (2.6). The intensity

of choice reflects the sensitivity of the mass of agents to selecting the optimal

prediction strategy according to the fitness measure. The case δ = 0 corresponds

to the case of infinite variance in which differences in fitness can not be observed

and all probabilities are constant and equal to 1/H, where H is the total number

of available predictors. The case δ = ∞ corresponds to the case in which the

deterministic part of the fitness can be perfectly observed and in every period all

agents choose the best predictor.

Alternatively, Eq. (2.5) can be derived within a framework in which the choice

between the predictor for future inflation, linked to the target announced by the

CB, is modeled as an optimization problem under rational inattention. The notion

of rational inattention as described by Sims (2003) implies that the true value of

the options available to the agents can be investigated, but due to the agents’ lim-

ited information processing capacity, it is too costly to know them with certainty.

Therefore the performance of each option h, measured by Uh, is observed impre-

cisely, implying noise in the decision process and resulting in probabilistic choices

of the agents. Appendix A, based on the results of Matějka and McKay (2015),

shows that the probability of choosing predictor h under rational inattention has

7



the same form of Eq. (2.5), with the intensity of choice being inversely related to

the unit cost of information v. When v = 0 (δ =∞) agents always choose the best

predictor, while as v rises the information cost on forecast attractiveness increases,

and when v =∞ (δ = 0) agents only decide on the basis of their priors 1/H.

Given that agents can switch between forecasts in each period, they solve the

static predictor selection problem in each period and therefore, the probability, in

period t, of choosing a prediction strategy h for inflation and the output gap is

given by

nh,t = Pt(h|Ut−1) =
eδUh,t−1∑H
h=1 e

δUh,t−1

. (2.7)

In the light of the aforementioned empirical evidence for the evolution of forecasting

strategies in reaction to past forecast errors in both survey and experimental data,

we assume that the attractiveness of each predictor is negatively affected by past

squared forecast errors. This fitness metric is also common in the theoretical lit-

erature (see, e.g., De Grauwe (2012), Branch and McGough (2010), and Anufriev,

Assenza, Hommes, and Massaro (2013) among others). The attractiveness of pre-

dictor h at the beginning of period t is defined as:

Uh,t−1 = −
∑
x

(xt−1 − Eh,t−2xt−1)2 , (2.8)

with x ∈ {π, y}. Since agents using the same predictor h will have identical

expectations, the expectational terms in Eqs. (2.1) – (2.2) can be rewritten as

Ē =
∫
i
Ei =

∑H
h=1 nhEh. The full model under scrutiny is described by the follow-
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ing system of equations

yt =
H∑
h=1

nh,tEh,tyt+1 − σ−1

(
it −

H∑
h=1

nh,tEh,tπt+1

)

πt = kyt + β
H∑
h=1

nh,tEh,tπt+1

it = φππt

nh,t =
eδUh,t−1∑H
h=1 e

δUh,t−1

Uh,t−1 = −
∑
x

(xt−1 − Eh,t−2xt−1)2 , (2.9)

where x ∈ {π, y} and the set of predictors h = 1, ..., H is composed by pairs of

beliefs, respectively for inflation and the output gap.

3 Inflation target stability and monetary policy

We now turn to the main research question: can a simple instrument rule, as in

Eq. (2.3), implement the inflation rate targeted by the CB in the presence of biased

perceptions and recursive evaluation of beliefs?

3.1 Few biased beliefs

We follow Anufriev, Assenza, Hommes, and Massaro (2013) and start with the

simplest possible case in which there are only three types of beliefs. In particular,

we will assume that agents may overestimate the target by an amount bπ, underes-

timate the target by an amount −bπ, or have correct beliefs about the target. We

consider the assumption of a simple constant bias in agents forecasts as a parsimo-

nious representation of a scenario in which agents have an incorrect belief about

the target due to informational frictions. De Grauwe (2011) considers a similar

environment in which the biases are time-varying and the divergence in beliefs is

a function of the volatility of the endogenous variable being forecast, finding that

the willingness to learn from past errors leads to waves of optimism and pessimism.
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The simplifying assumption of constant beliefs will enable us to derive analytical

results about global stability and build the intuition for possible dynamics in the

case of many, possibly a continuum of, belief types considered in Section 3.2.5 The

set of predictors is then composed by the pairs6

predictor 1: E1,tπt+1 = 0, E1,tyt+1 = 0

predictor 2: E2,tπt+1 = bπ, E2,tyt+1 = (1− β)bπ/k

predictor 3: E3,tπt+1 = −bπ, E3,tyt+1 = −(1− β)bπ/k .

Substituting the specified forecasting rules into system (2.9), we get

yt = (1− β)k−1bπ(n2,t − n3,t)− σ−1it + σ−1bπ(n2,t − n3,t) (3.1a)

πt = kyt + βbπ(n2,t − n3,t) (3.1b)

it = φππt (3.1c)

nh,t =
eδUh,t−1∑3
h=1 e

δUh,t−1
(3.1d)

Uh,t−1 = −
∑
x

(xt−1 − Eh,t−2xt−1)2 , (3.1e)

where h ∈ {1, 2, 3}, x ∈ {x, y}.

Let us define mt = n2,t−n3,t = z(yt−1, πt−1), with z(yt−1, πt−1) being described by

Eqs. (3.1d) – (3.1e). Then, by substituting the policy rule (3.1c) into the aggregate

demand equation (3.1a) and plugging the aggregate supply equation (3.1b) into

the resulting expression, we obtain

yt = bπ Λmt , (3.2)

5We also remark that the type of dynamic behavior shown in De Grauwe (2011) can be found
in our framework, e.g., in the presence of stable 2-cycles or in the presence of shocks buffeting
the economy and causing dynamics to jump between different basins of attractions.

6In this example we assume “symmetric” beliefs, in the sense that positive and negative
biases are exactly balanced around the targeted equilibrium. The main reason is that under
this assumption the target is among the equilibria of the system and this allows us to address
questions about its stability. However we remark that symmetry of beliefs is not essential for
many qualitative features of the bifurcation scenario.
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where Λ ≡ (1−β)σ+k(1−βφπ)
k(σ+kφπ)

. Substituting then (3.2) into (3.1b) we get

πt = bπ Γmt , (3.3)

where Γ ≡ k+σ
σ+kφπ

. In this way we can define the map T composed by (3.2) – (3.3)

as:

T :

 yt = bπ Λ z (πt−1, yt−1)

πt = bπ Γ z (πt−1, yt−1)
(3.4)

From the Jacobian matrix J of T , given by

J = bπ

 Λzy Λzπ

Γzy Γzπ


it is straightforward to see that det J(y, π) = 0. Thus, in any point of the phase

space, one eigenvalue is equal to zero. From this consideration it follows that there

ought to exist a one-dimensional invariant plane on which dynamics take place.

We can indeed state the following

Proposition 3.1. The straight line y = Λ
Γ
π is invariant.

Proof. See Appendix B.

The intuition behind Proposition 3.1 follows from the fact that the NK model

under analysis is purely forward looking and from the assumption that agents use

the structural equations of the model to form expectations about future output

gap, given their beliefs about the inflation target. This allows to express output

gap expectations as a function of the perceived inflation target. Therefore, the

dynamics of (3.4) can be described by the restriction of the map T to the invariant
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line, that is the following 1D map7

mt = fδ (mt−1) =
e
−δ[M−Nmt−1] − e−δ[M+Nmt−1]

1 + e
−δ[M−Nmt−1]

+ e
−δ[M+Nmt−1]

, (3.5)

in terms of the variable mt, which is easier to handle analytically. By characterising

the dynamics for mt we can pin down the dynamics of yt and πt via (3.2) – (3.3).

The map fδ is monotonic,8 bounded and symmetric with respect to the point

m = 0, which implies that the map always owns the steady state m∗ = 0 corre-

sponding to the targeted equilibrium (see Appendix D). However, the steady state

targeted by the CB, corresponding to m∗ = 0 in terms of the dynamics described

in Eq. (3.5), may not be globally or even locally stable. Dynamics may converge

to other non-fundamental steady states denoted by m+ > 0 and m− = −m+ < 0.

In what follows we provide a complete analysis of the global dynamics of (3.5) and

show how they depend on the parameters of interest, namely the intensity of choice

δ and the monetary policy reaction coefficient φπ.9

Let us define θ = [β, k, σ], which collects the structural parameters of the NK

model, and introduce the positive constants φwπ = φwπ (θ), φmπ = φmπ (θ), φaπ = φaπ(θ),

φoπ = φoπ(θ) defined in Appendix C, such that φwπ < φmπ < φaπ < φoπ. We will

now identify different monetary policy regimes on the basis of the strength of the

monetary policy reaction coefficient φπ. When φπ < φwπ we define the monetary

policy regime as weak ; when φwπ < φπ < φmπ the monetary policy regime is defined

as moderate; when φmπ < φπ < φaπ monetary policy is defined as aggressive; when

φaπ < φπ < φoπ we label the policy regime as very aggressive; finally, when φπ >

φoπ we refer to the implemented policy as overreacting. Table 1 summarises the

7The expressions for M and N are derived in Appendix B.
8The monotonic intervals of fδ are solely determined by the sign of N as shown in Appendix

D.
9Consistently with the literature on dynamic predictor selection in NK models, we consider a

linearized version of the standard model for the purpose of aggregation and study global dynamics
of the nonlinear model resulting from the introduction of recursive evaluation of beliefs (see e.g.,
Branch and McGough (2010), De Grauwe (2012) and Anufriev, Assenza, Hommes, and Massaro
(2013) among others). The analysis of non-fundamental equilibria in this framework is justified
on the grounds that linearized coefficients are not sensitive to variations in the steady states.
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monetary policy regimes.

Strength of φπ Monetary policy regime
φπ < φwπ weak

φwπ < φπ < φmπ moderate
φmπ < φπ < φaπ aggressive
φaπ < φπ < φoπ very aggressive
φπ > φoπ overreacting

Table 1: Monetary policy regimes

Using the Clarida, Gaĺı, and Gertler (2000) calibration, the threshold values for

the different monetary policy regimes are: φwπ = 0.8661, φmπ = 1.9710, φaπ = 6.2877

and φoπ = 14.8762.10 The corresponding dynamics are described respectively in

Propositions 3.2 – 3.6.

Weak monetary policy

Proposition 3.2. Let φπ < φwπ (“weak policy”). Then values 0 < δ∗1 ≤ δ∗2 exist

such that

• for δ < δ∗1 the target steady state is unique and globally stable;

• for δ∗1 < δ < δ∗2 three steady states exist, the unstable target steady state m∗,

and two other stable non-fundamental steady states, m+ and m−;

• for δ > δ∗2 five steady states exist, three steady states are locally stable (m∗,

m+ and m−) and two other steady states are unstable.

Proof. See Appendix D.

Figure 1 shows the map fδ under a weak monetary policy regime (φπ = 0.5)

for low, medium, and high values of the the parameter δ.11 When δ is relatively

10Numerical values of monetary policy thresholds vary according to the preferred calibration.
For example, using Woodford (1999) calibration leads to the following policy thresholds: φwπ =
0.9617, φmπ = 1.2490, φaπ = 1.7997 and φoπ = 2.1562. However, the specific values of the thresholds
do not alter the qualitative results of the analysis.

11The bias parameter bπ is set to 0.25, corresponding to a bias of one percentage point in terms
of annualised inflation. Different values of bπ only impact the values of δ at which the bifurcations
occur, but they do not change the qualitative bifurcation scenario.
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low, the target steady state, corresponding to m∗ = 0, is unique and globally sta-

ble. The intuition for this result is the following. When the cost of information is

prohibitively high, i.e., δ is low, agents decide mostly on the basis of their priors,

meaning that they are more or less evenly distributed among the different predic-

tors. Therefore, due to the symmetry of beliefs around the target, realized inflation

and output will remain relatively close to the target equilibrium and dynamics will

converge. As δ increases, two stable non-fundamental steady states are created,

m+ > 0 and m− < 0, while the target equilibrium m∗ = 0 loses stability for in-

termediate values of δ, to become locally stable again for high values of δ, where

two additional unstable steady states are created in a pitchfork bifurcation. The

intuition for the existence of stable non-fundamental steady states for high values

of δ is simple (cf. Proposition D.2 in Appendix D). Suppose that realizations of

inflation and output gap are close to some biased beliefs. When the cost of in-

formation is low, i.e., intensity of choice is high, almost all agents will adopt the

biased predictor, which is the best performing predictor in terms of forecast error.

If the monetary policy reaction is weak, the signal sent by realizations of aggregate

variables is not strong enough to “correct” agents’ beliefs and dynamics may lock

into non-fundamental equilibria.
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Figure 1: Map fδ(m) for different values of δ in the weak monetary policy scenario.
Parameter values are φπ = 0.5 and bπ = 0.25.
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Moderate monetary policy

Proposition 3.3. Let φwπ < φπ < φmπ (“moderate policy”). Then values 0 < δ∗1 ≤

δ∗2 exist such that

• for δ < δ∗1 the target steady state is unique and globally stable;

• for δ > δ∗2 five steady states exist, three steady states (m∗, m+ and m−) are

locally stable and two other steady states are unstable.

Proof. See Appendix D.

Dynamics under a moderate monetary policy are shown in Figure 2 for low,

medium and high values of δ. The monetary policy reaction coefficient is set to

φπ = 1.5, a value typically suggested in the literature (see, e.g., Taylor (1993)). As

before, a decrease in the cost of information, i.e., higher δ, leads to the creation

of stable non-fundamental steady states. The difference from the previous case is

that the target equilibrium does not lose local stability. Therefore, an interest rate

rule that reacts more than point to point to deviations of inflation from the target,

leads to convergence to the fundamental equilibrium if the economy is sufficiently

close to the target. However, the Taylor principle (i.e., φπ > 1) alone is not

sufficient to ensure convergence to the target. In fact, even if the target equilibrium

is determinate under rational expectations, the presence of misperception of the

CB target coupled with recursive evaluation of forecasting heuristics may lead to

convergence to non-fundamental equilibria. As before, the existence of multiple

stable equilibria is due to the fact that monetary policy is not strong enough, even

if the Taylor principle is satisfied, to correct wrong beliefs of agents about the

target. We remark that in the presence of finite values of δ agents might not select

in equilibrium the best performing predictor due to the presence of noise in the

evaluation of the performances.12 On the other hand, when δ →∞ all agents select

12This result is driven by the general idea that agents cannot perfectly observe the performances
of alternative predictors due to imperfect information flows, and qualitative insights are robust
to the specific predictor selection mechanism.
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the best performing predictor in each period. When all agents coordinate e.g., on

a biased predictor, we have an almost self-fulfilling equilibrium in the sense that

aggregate outcomes do not exactly coincide with agents predictions. This is due to

the fact that we are now considering a scenario with a finite number of beliefs and

agents are choosing the best forecasting model among those available to them. We

will relax this assumption is Section 3.2 and consider an arbitrarily large number

of predictors.
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Figure 2: Map fδ(m) for different values of δ in the moderate monetary policy
scenario. Parameter values are φπ = 1.5 and bπ = 0.25.

Aggressive monetary policy

Proposition 3.4. Let φmπ < φπ < φaπ (“aggressive policy”). Then the target steady

state is unique and globally stable for any δ.

Proof. See Appendix D.

When the nominal interest rate reacts aggressively to inflation, the CB avoids

multiplicity of equilibria and the target equilibrium is globally stable. Adjustment

dynamics differ according to whether the slope of the map is positive or negative,

i.e., whether φmπ < φπ < φ∗π or φ∗π < φπ < φaπ.13 Figure 3 depicts the map (3.5)

for different values of δ and φπ = 2 in the case of positive slope. The aggressive

monetary policy regime of the CB reacts to deviations from the target in such a way

that the fundamental equilibrium is closest to realizations of aggregate variables

13See Appendix C for the definition of φ∗π.
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and ongoing evaluations of forecasting rule lead more and more agents to believe in

the true value of the target. Therefore, a properly designed monetary policy leads

to uniqueness and global stability of the target steady state even in the presence

of biased beliefs about the true target.
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Figure 3: Map fδ(m) for different values of δ in the aggressive monetary policy
scenario. Parameter values are φπ = 2 and bπ = 0.25.

Very aggressive monetary policy

Proposition 3.5. Let φaπ < φπ < φoπ (“very aggressive policy”). Then a value

δ∗1 > 0 exists such that

• for δ < δ∗1 the target steady state is unique and globally stable;

• for δ > δ∗1 the locally stable target steady state and a stable 2-cycle coexist,

separated by an unstable 2-cycle.

Proof. See Appendix D.

In this scenario macroeconomic variables follow an oscillatory path that can

lead to convergence to the target equilibrium or to a stable 2-cycle. In fact, Figure

4 shows the creation of two stable non-fundamental steady state for the second

iterate of map fδ for high values of δ. The reason for this result is due to the

strong negative effect of real interest rate on output, acting as a stabilizing force.

Suppose that a positive cost-push shock hits the economy. Higher inflation causes

the CB to raise the real interest rate which in turns lowers demand which reduces
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future inflation. However, if the reaction of the CB is too strong, the decrease in

demand in the face of higher real rates will be high enough to push the economy

out of the basin of attraction of the target steady state, and the system will lock

in a stable 2-cycle. The reason is that when φπ is relatively high, there will be a

consistent decrease in output after, say a positive shock to inflation, and this will

have a positive impact on the performance of the negative bias predictor causing

more and more agents to adopt that predictor. If the intensity of choice δ is

relatively low, agents do not respond fast to differences in predictors’ performances

and dynamics will slowly converge to the target equilibrium. However, when δ

is higher, even small differences in predictors’ performances may lead agents to

switch massively among forecasting rules. These alternate waves of “optimism”

and “pessimism” lead the system to a stable 2-cycle.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

m

f ∆
Hm

L

∆=10

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

m

f ∆
Hm

L

∆=60

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

m

f ∆
Hm

L
∆=100

Figure 4: Map fδ(m) (solid line) and second iterate f 2
δ (m) (thick dashed line) for

different values of δ in the very aggressive monetary policy scenario. Parameter
values are φπ = 10 and bπ = 0.25.

Overreacting monetary policy

Proposition 3.6. Let φπ > φoπ (“overreacting policy”). Then values 0 < δ∗1 < δ∗2

exist such that

• for δ < δ∗1 the target steady state is unique and globally stable;

• for δ∗1 < δ < δ∗2 the unstable target steady state and a stable 2-cycle coexist;
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• for δ > δ∗2 the locally stable target steady state and a stable 2-cycle coexist,

separated by an unstable 2-cycle.

Proof. See Appendix D.

Dynamics under an overreacting monetary policy are described in Figure 5 for

low, intermediate and high values of δ. As in the previous case, an increase in

δ leads to the creation of a stable 2-cycle characterized by large shifts in agents

beliefs. However, for intermediate values of δ the target equilibrium loses local

stability.
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Figure 5: Map fδ(m) (solid line) and second iterate f 2
δ (m) (thick dashed line) for

different values of δ in the overreacting monetary policy scenario. Parameter values
are φπ = 15 and bπ = 0.25.

The results of the analysis performed in this section show that in a scenario in

which biased perceptions of the CB target arise due to imperfections in information

processing, standard policy advices, such as the Taylor principle (i.e., φπ > 1),

may not be sufficient to ensure convergence to the target. Rational inattention and

recursive evaluation of beliefs as new information becomes available may result

in co-evolution of aggregate variables and beliefs towards non-fundamental steady

states or 2-cycles. Nevertheless, a properly designed monetary policy can ensure

convergence to the target by impacting, via the interest rate, on realizations of

macro variables in such a way to correct wrong agents’ beliefs.
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3.2 Many biased beliefs

In Section 3.1 we considered the simplest possible scenario in which information

imperfections and individual idiosyncrasies gave rise to three different types of

beliefs, corresponding to underestimation, overestimation and correct guess of the

target. This example enabled us to derive analytical results and build the intuition

for possible dynamics as a function of the key parameters δ, related to the cost of

information, and φπ, measuring the strength of monetary policy.

A similar analysis can be made for other examples with a larger number of het-

erogeneous beliefs resulting from imperfect information. Figure 6 shows the bifurca-

tion diagram in the presence of five different beliefs, namely {−bπ,−bπ/2, 0, bπ/2, bπ},

with respect to the intensity of choice parameter δ.14
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Figure 6: Bifurcation diagram for the system with five beliefs. Solid (dashed) lines
indicate stable (unstable) equilibria. Parameter values are φπ = 1.25 and bπ = 0.25.

For high values of δ, additional steady states are created. The intuition is similar

to the case of three beliefs. If the intensity of choice is high enough, more and more

agents will adopt the belief yielding the most precise forecast, causing dynamics to

14The bifurcation diagram refers to system (3.1), where the variable mt is now defined as
mt = 2n2,t − 2n3,t + n4,t − n5,t and therefore bounded by -2 and +2.
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lock into a self-fulfilling non-fundamental equilibrium.

In this section we want to revisit our main policy question, i.e, whether a

simple interest rate rule can implement the inflation level targeted by the CB

in the presence of biased perceptions and recursive evaluation of beliefs, when the

number of beliefs H is arbitrarily large. In general, it is difficult to obtain analytical

results for systems with many belief types. We will therefore resort to the large

type limit concept (LTL henceforth) introduced in Brock, Hommes, and Wagener

(2005) and used by Anufriev, Assenza, Hommes, and Massaro (2013) in a similar

context. Given an arbitrary set of H inflation beliefs bh ∈ R, and correspondent

output gap beliefs abh with a ≡ (1−β)/k, drawn from a common initial distribution

with density ψ(b), the average expectations terms in system (2.9) can be written

as

Ētyt+1 =
1
H

∑H
h=1 abh exp (−δ ((bh − πt−1)2 + (abh − yt−1)2))

1
H

∑H
h=1 exp (−δ ((bh − πt−1)2 + (abh − yt−1)2))

Ētπt+1 =
1
H

∑H
h=1 bh exp (−δ ((bh − πt−1)2 + (abh − yt−1)2))

1
H

∑H
h=1 exp (−δ ((bh − πt−1)2 + (abh − yt−1)2))

,

where we divided both numerators and denominators by H. The LTL is obtained

by replacing the sample mean with the population mean, yielding

Ētyt+1 =

∫
ab exp (−δ((b− πt−1)2 + (ab− yt−1)2))ψ(b)db∫

exp (−δ((b− πt−1)2 + (ab− yt−1)2))ψ(b)db
(3.6a)

Ētπt+1 =

∫
b exp (−δ((b− πt−1)2 + (ab− yt−1)2))ψ(b)db∫
exp (−δ((b− πt−1)2 + (ab− yt−1)2))ψ(b)db

. (3.6b)

As shown in Brock, Hommes, and Wagener (2005), when the number of beliefs

H is sufficiently large the LTL dynamics well approximate the dynamics of the

system with H beliefs. In particular, when H is large, with high probability the

steady states and their local stability conditions coincide for both the LTL and
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the H-beliefs map. Hence, properties of the dynamical system with many types of

beliefs can be studied using the LTL system.

For suitable distributions ψ(b) of initial beliefs, Eqs. (3.6a) – (3.6b) can be com-

puted explicitly. We follow Anufriev, Assenza, Hommes, and Massaro (2013) and

consider a normal distribution ψ(b) ∼ N(0, s2) centered around the CB inflation

target. In this case a straightforward computation shows that Eqs. (3.6a) – (3.6b)

reduce to

Ētyt+1 =
δ2s2

1 + δ2s2(1 + a2)
a(πt−1 + ayt−1) (3.7a)

Ētπt+1 =
δ2s2

1 + δ2s2(1 + a2)
(πt−1 + ayt−1) . (3.7b)

Using results (3.7a) – (3.7b), we can rewrite system (2.9) as

yt
πt

 =

Λ ·My Λ ·Mπ

Γ ·My Γ ·Mπ


yt−1

πt−1

 (3.8)

where Λ and Γ are defined as before (see Appendix B) and

My =
2k(1− β)δs2

k2 + 2(k2 + (β − 1)2)δs2

Mπ =
2k2δs2

k2 + 2(k2 + (β − 1)2)δs2
.

Dynamics in the presence of a continuum of beliefs are described in the following

proposition:

Proposition 3.7. Consider the LTL dynamics described by linear system (3.8).

1. Let φπ < 1. Then a value δ∗ exists such that:

• for δ < δ∗ the target steady state is unique and globally stable;

• for δ > δ∗ the target steady state is unstable.
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2. Let φπ > 1. Under certain restrictions on structural parameters,15 a value

φ∗∗π exists such that:

(2a) for φπ < φ∗∗π the target steady state is unique and globally stable for any

δ;

(2b) for φπ > φ∗∗π , a value δ∗∗ exists such that:

• for δ < δ∗∗ the target steady state is unique and globally stable;

• for δ > δ∗∗ the target steady state is unstable.

Proof. See Appendix E.

The general policy implications of agents’ biased perception of the target and

recursive evaluation of beliefs derived in the case of few biased perceptions carry

over to the case of an arbitrarily large number of heterogeneous beliefs. In partic-

ular, when the cost of information is prohibitively high, the target steady state is

globally stable. The intuition for this result is the same as in the case with few

biased beliefs laid out in Section 3.1. When the coefficient φπ < 1, the monetary

policy reaction to inflation is not strong enough to offset deviations of inflation

from the target, leading to system instability. Once again, the Taylor principle,

i.e., φπ > 1, is not a sufficient condition to guarantee convergence to the target. In

fact, as in the case of few biased beliefs, monetary policy may overreact to devia-

tions of inflation from the target, causing oscillatory dynamics moving away from

the target.

4 Conclusions

This paper discusses the issue of inflation target implementability via simple instru-

ment rules. In particular, we consider a scenario in which the CB announces the

15The set of parameter restrictions is described in Appendix E. Most commonly used calibrated
values (see, e.g., Woodford (1999) and Clarida, Gaĺı, and Gertler (2000) among others) satisfy
these restrictions. If the restrictions are not satisfied, then, given φπ > 1, the target steady state
is globally stable for any δ.
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target to anchor private sector expectations, but biased perceptions of the target

arise due to imperfect information.

Recursive evaluation of beliefs as new information becomes available leads to

a dynamical system in which aggregate variables and private sector’s expectations

co-evolve over time. The specific form of beliefs dynamics can be derived alterna-

tively from a random utility model in which agents observe the distance between

predictions and realizations with some noise, or from an optimization problem un-

der rational inattention, in which agents face an information processing capacity

constraint. Both frameworks link the probability of agents’ holding a certain belief

to the performance of such belief in terms of forecasting error, via a multinomial

logit model. Within this environment, we investigate whether the monetary au-

thority can effectively manage private sector expectations via an interest rate rule,

and lead the economy to the desired target.

Our results suggest that the CB’s ability to implement the inflation target

depends crucially upon the interplay between the strength of monetary policy re-

action to inflation, and the key parameter regulating the evolution of beliefs over

time. The latter is related to the noise with which agents observe predictors’

performances within the random utility framework, or to the cost of information

within the rational inattention environment. In a fully specified model the unit

cost of information would be endogenous. For example, it could be that in periods

of high-news-coverage of macroeconomic conditions related e.g., to high aggregate

volatility, the unit cost of information is relatively lower due to the vast availabil-

ity of information through the media;16 or in general the level of technical change

might determine the cost of collecting and processing information. In this paper we

keep the parameter regulating the cost of information fixed over time for analytical

simplicity and leave the case of a time-varying cost for future research.

At first we analyse the simplest possible scenario in which information imper-

fections give raise to only few biased beliefs. This allows us to derive analytical

16This would be consistent with the results of Carroll (2003) who finds that during high-news-
coverage periods agents are better informed.
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results about global stability and build the intuition for the resulting dynamics.

We then consider a more general scenario in which an arbitrarily large number of

biased perceptions may arise as a consequence of imperfect information flows.

We find that, when the cost of information is not prohibitively high, the mone-

tary authority should react aggressively to deviations of inflation from the target.

However, merely obeying to the Taylor principle, i.e., setting the interest rate to en-

sure determinacy, may not be sufficient to achieve the target. In fact, as argued by

Branch and McGough (2010), in the presence of heterogeneous beliefs, determinacy

under rational expectations may not be a robust criterion for policy advice. When

monetary policy is passive (i.e., φπ < 1), the fundamental equilibrium is indeter-

minate under rational expectations, leading to the existence of sunspot equilibria

which are closely connected to the existence of non-fundamental equilibria in our

model. However, our results show that even when monetary policy is set to ensure

determinacy under rational expectations (i.e., φπ > 1), multiple equilibria and ex-

cess volatility may arise under heterogeneous expectations, for example when the

policy regime is moderate or overly aggressive as described in Section 3.1. Indeed,

given the CGG calibration, a reaction coefficient 1 < φπ < φmπ or φπ > φaπ > 1

ensures determinacy under rational expectations, but not uniqueness and global

stability under recursive inattentiveness and heterogeneous beliefs. The finding

that determinacy under rational expectations may not be enough to insulate the

economy from instability has also been showed in Benhabib, Schmitt-Grohé, and

Uribe (2001), Benhabib and Eusepi (2005), Branch and McGough (2010) among

others.

The CB could also act in order to increase the precision of information to the

public in order to reduce the uncertainty about the target in the market. In par-

ticular, the CB could act in order to influence the cost of information, i.e., provide

easier access to information about the target or in general about future policy ac-

tions. This recent shift in communication policies of CB, e.g., forward guidance, has

been empirically documented in recent studies (see Campbell, Evans, Fisher, and
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Justiniano (2012), Negro, Giannoni, and Patterson (2012) and Kool and Thorn-

ton (2012) among others). Nevertheless, our results show that reducing the cost

of information is not enough, by itself, as a policy measure to guarantee global

stability of the target. In fact, if monetary policy is not tight enough or if it overre-

acts to inflation fluctuations, lowering the cost of information may only guarantee

the local stability of the target.17 Instead, monetary policy should be fine-tuned

in order to ensure that the signal sent by realizations of aggregate variables can

correct wrong agents’ beliefs. Indeed, our findings suggests that properly designed

monetary policies lead to uniqueness and global stability of the target steady state

and are robust to different levels of the cost of information.

An interesting extension of our analysis would be to include a fully rational

predictor, perhaps available at some cost, among the set of beliefs. Notice in fact

that, although some agents in our setup have correct beliefs about the target, their

forecasts in each period do not coincide with perfect foresight, i.e., fully rational

expectations, due to the presence of boundedly rational agents. The introduction

of a fraction of boundedly rational agents in a setup with rational expectations

may alter sensibly the determinacy properties of the model as shown for example

by Branch and McGough (2009) and Massaro (2013) among others, who consider

models in which a fixed fraction of agents has rational expectations, while another

fixed fraction of agents has boundedly rational expectations. We leave the anal-

ysis of a richer model including (costly) fully rational expectations and recursive

evaluation of beliefs for future research.

17See also Gaballo (2015) on the interaction between monetary policy and the social value of
information.
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Appendix

A Belief dynamics under Rational Inattention

Given the set of options available to agents, the performance of each option h, measured

by Uh, is observed imprecisely, implying noise in the decision process and resulting in

probabilistic choices of the agents. Agents do not know a priori which predictor will be

more attractive in a certain period, so their prior probabilities of choosing each predictor,

without processing any information, are symmetric and equal to 1/H. Therefore we can

apply the framework developed in Matějka and McKay (2015) to derive the probabilistic

choice between predictors as the outcome of an optimization problem under rational

inattention with discrete and symmetric options.18 Under rational inattention, agents

cannot fully observe the true values of U = (U1, ..., UH), and they have some prior

knowledge on the predictor attractiveness given by the joint pdf g(U). Agents receive

signals on the choices h and the cost of information is defined using an entropy-based

measure. For a generic discrete random variable X, entropy is defined as

Q(X) = −
∑
k

P (k) logP (k) ,

where P (k) is the probability of state k. The cost function used in the rational inattention

literature is given by the mutual information defined as the reduction in entropy of X

due to signal Y about X, i.e., Q(X) −Q(X|Y ). In our setup the cost of information is

therefore defined as

c(P, g) ≡ v

(
−
∑
h

1/H log(1/H) +

∫
U

∑
h

P (h|U) log(P (h|U))g(U)dU

)
(A.1)

where v is the unit cost of information, the first term is the prior uncertainty,19 while the

second term denotes the posterior uncertainty after observing the signal. Under rational

18See also Dräger (2015) for a recent application of the framework developed by Matějka and
McKay (2015) to model the dynamic choice between a fully rational predictor and a sticky
information predictor in changing macroeconomic conditions.

19Notice that we used the fact that we assumed uniform priors 1/H.
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inattention, the optimisation problem faced by the agents reads as follows:

max
P={P (h|U)}Hh=1

∑
h

∫
U
UhP (h|U)g(U)dU − c(P, g) (A.2)

subject to

P (h|U) ≥ 0 (A.3)∑
h

P (h|U) = 1, (A.4)

where c(P, g) is defined in Eq. (A.1). In other words, agents choose the conditional

probabilities {P (h|U)}Hh=1 in order to maximise the expected value of the predictor at-

tractiveness U net of the cost of information processing. From the first order conditions of

problem (A.2) – (A.4), Matějka and McKay (2015) show that the probability of choosing

predictor h, given a set of values in U is given by

P (h|U) =
eUh/v∑H
h=1 e

Uh/v
.

Defining v ≡ 1/δ we obtain Eq. (2.5).

B Reduction to 1D map

Proof of Proposition 3.1. Points on the straight line y = Λ
Γπ are given by the (para-

metric) representation:

T :

 y = bπ Λm

π = bπ Γm

where m ∈ R, Λ ≡ (1−β)σ+k(1−βφπ)
k(σ+kφπ) , and Γ ≡ k+σ

σ+kφπ
.

Let S = {(bπΛm, bπΓm) ∈ R2 : m ∈ R} be the invariant set. The assertion of Proposition

3.1 follows by showing that P ′ = T (P ) ∈ S for any P ∈ S.

Recall the definition mt = z(yt−1, πt−1). From P = (bπΛm, bπΓm) ∈ S and ap-

plying map T , we get P ′ = (bπΛz(bπΛm, bπΓm), bπΓz(bπΛm, bπΓm)) ∈ S. Calling
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m′ = z(bπΛm, bπΓm), the restriction of T on set S is the 1-D map

m′ = fδ (m) =
e
−δ[M−Nm] − e−δ[M+Nm]

1 + e
−δ[M−Nm]

+ e
−δ[M+Nm]

where

M =

(
(1− β) bπ

k

)2

+ b2π

and

N = 2bπ

(
(1− β)

k
bπΛ + bπΓ

)
.

The trajectories starting in S belong to it forever, while any point not belonging to S is

mapped into S in one iteration.

C Monetary policy thresholds

Define the function q (φπ) = M
N . Given the theoretical restriction 0 < β < 1, the function

q (φπ) has the following properties:

• q (φπ) has an asymptote in φπ = φ∗π

• 0 < q (0) < 1

• q′ (φπ) > 0

• lim
φπ→+∞

q (φπ) < 0

where φ∗π =
(k+σ−kβ−2σβ+k2σ+σβ2+k3)

kβ(1−β) . Let us introduce two positive quantities φwπ and

φoπ defined by the solution of equation x∗ − 1 = |q (φπ)| where x∗ ≈ 1.46306 is the

solution of 2 + ex − xex = 0 (see Lemma 1 in Appendix C), and other two positive

quantities φmπ and φaπ defined by the solution of the equation 1 = |q (φπ)|. Given the

properties of q (φπ) we have that φwπ < φmπ < φ∗π < φaπ < φoπ. The function q (φπ) = M
N ,

together with the critical values of φwπ , φmπ , φaπ, φoπ, are shown in Figure 7 using the

Clarida, Gaĺı, and Gertler (2000) (CGG) calibration. Given the calibrated values for the
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structural parameters, the threshold values for the different monetary policy regimes are:

φwπ = 0.8661, φmπ = 1.9710, φaπ = 6.2877 and φoπ = 14.8762.
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Figure 7: Function q (φπ), CGG calibration.

D Dynamics of the model with few biased beliefs

In order to analyse the dynamics of the model with few biased beliefs we follow the

strategy laid out in Anufriev, Assenza, Hommes, and Massaro (2013). The slope of the

map in (3.5) is given by

f ′δ(m) =
δeδNm

(
eδM + 4eδNm + eδ(M+2Nm)

)
N(

1 + eδ2Nm + eδ(M+Nm)
)2 . (D.1)

Notice that the sign of the previous expression depends only from the parameter N ,

because δ ∈ [0,∞) and M is always positive. The monotonic intervals of fδ(m) are

determined by the sign of N which, in turns, depends on the values of φπ, since all the

other structural parameters are set at the baseline calibration. Thus we calculate the φπ

values that satisfy N = N (φπ) > 0, i.e.
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2

k2

bπ
σ + kφπ

(
k + σ − kβ − 2σβ + k2σ + σβ2 + k3 − kβφπ + kβ2φπ

)
> 0

Since all coefficients are positive, we find a threshold value for φπ

φ∗π =

(
k + σ − kβ − 2σβ + k2σ + σβ2 + k3

)
kβ (1− β)

We can distinguish two cases, namely φπ < φ∗π, implying that fδ(m) is increasing, and

φπ > φ∗π implying that fδ(m) is decreasing. Using the CGG calibration, the threshold

value such that N = 0 is φ∗π = 3.5059.

Moreover, the function fδ(m) has the following properties:

• f maps the interval [−1, 1] into itself;

• f is bounded;

• f is odd because fδ (−m) = −fδ (m).

The monotonicity of f ensures that, when φπ < φ∗π, from the minimum value f(−1) it

follows that f(−1) ≥ −1 and from the maximum value f(1) it follows that f(1) ≤ 1.

Since function fδ (m) is bounded (either from below or above), no diverging trajectories

are possible. Indeed m expresses the difference between fractions and it can assume only

value in the interval [−1, 1].

The following lemmas are useful to prove the results described in Proposition 3.2.

Lemma 1. Equation 2 + ex − xex = 0 has a unique solution x∗ ∈ (1, 2). For x < x∗ we

have 2 + ex − xex > 0 and for x > x∗ we have 2 + ex − xex < 0.

Proof. Consider the function g(x) = 2 + ex − xex. Notice that limx→−∞ g(x) = 2,

limx→∞ g(x) = −∞, g(0) = 3, and that derivative g′(x) = −xex. Hence, for x ≤ 0

function g increases from 2 to 3 and has no zeros. For x > 0 function g is strictly

decreasing and has at most one zero. On the other hand, g(1) = 2 > 0, while g(2) =

2 − e2 < 0, because ex > 1 + x for x = 2 becomes e2 > 3. Applying the intermediate

value theorem we obtain that there exists x∗, zero of function g, and that x∗ ∈ (1, 2).
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Lemma 2. The function fδ(m) defined on (0,∞) is concave for every 0 < δ < ln 4
M

Proof. The second derivative of fδ is given by

f ′′δ (m) = − N2δ2eδNm(e2δNm − 1)

(1 + e2δNm + eδ(M+Nm))3
(eδM + 8eδNm + eδ(M+2Nm) − eδ(2M+Nm))

The fraction in this expression is positive for m > 0. Hence the sign of the second

derivative depends only on the term between brackets, which can be rewritten as

eδM
(

1 + e2δNm
)

+ eδNm
(

8− e2δM
)
.

When m = 0 this term becomes

2eδM + 8− e2δM =
(

2 + eδM
)(

4− eδM
)

which is positive when
(
4− eδM

)
> 0 i.e. 0 < δ < log 4

M . By continuity of the second

derivative, f ′′δ (m) < 0 for small m > 0. With a further increase of m, the sign of the

second derivative would change when the term between brackets is zero, i.e. when

eδM

8− e2δM
= − eδNm

1 + e2δNm
(D.2)

Fix eδM = x. The left hand side can be re-written as x
8−x2 and this function does not

take values in the interval [−0.5, 0). However the right hand side does take values only

in this interval, as a function −t
1+t2

where we set t = eδNm. It means that there is no

m to satisfy equality (D.2) and f ′′δ (m) does not change its sign. Thus we establish that

f ′′δ (m) < 0 for 0 < δ < log 4
M and for any m > 0. This completes the proof.

The following result provides conditions for local stability of the inflation target of

the CB for the case in which the map fδ is increasing, i.e., when φπ < φ∗π.

Proposition D.1 (Local stability of the target for φπ < φ∗π). Consider the dynamics

given by (3.5). Let x∗ denote the solution of the equation 2+ex−xex = 0. The following

cases are possible:
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1. When φπ < φwπ , two values 0 < δ∗1 < δ∗2 exist such that for δ /∈ [δ∗1 , δ
∗
2 ] the target

steady state is locally stable, and for δ ∈ (δ∗1 , δ
∗
2) the target steady state is unstable.

2. When φπ > φwπ the target steady state is locally stable for any δ ≥ 0.

Proof. The derivative of map fδ described in (D.1) computed in the target steady state

is given by

f ′δ(0) =
2δN

2 + eδM
.

Since we are considering the case in which N > 0, the condition for local stability is given

by f ′δ(0) < 1, or, equivalently by h(δ) < 1
N , where function h is defined as

h(δ) =
2δ

2 + eδM
. (D.3)

Notice that h(0) = 0 and the derivative of the function in δ is given by

h′ =
2(2 + ex − xex)

(2 + ex)2
,

where we introduced the variable x = δM .

When M > 0, the variable x is positive and changes from 0 to ∞ together with δ.

According to Lemma 1 we have then that the function h is initially increasing in δ and

then decreasing. Function h takes its maximum value in the point where x = x∗, i.e.,

when δ = x∗/M . The value of function h in this point is given by

h

(
x∗

M

)
=

2x∗

2 + ex∗
· 1

M
=

2x∗

2 + 2
x∗−1

· 1

M
=

(x∗ − 1)

M
.

The maximum value of h is positive according to Lemma 1. If it is larger than 1
N , i.e.,

if x∗ − 1 > M
N , then the two solutions of equation h(δ) = 1

N define an interval (δ1, δ2)

where h(δ) > 1
N , and so the target steady state is unstable. In the opposite case, if the

maximum value of h is smaller than 1
N , then h(δ) < 1

N for any δ and the target steady

state is always locally stable.

Proposition D.2 (Steady states for δ = +∞). Consider the dynamics given by (3.5)

for the special case of δ = +∞. Let us denote m∗ = 0, m+ = 1 and m− = −1. When
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the slope of the map is positive,20 i.e., φπ < φ∗π, the following cases are possible:

1. When φπ < φmπ , the system has three locally stable steady states, m∗, m+, and m−.

The basin of attraction of the steady state is
(
−M
N ,

M
N

)
.

2. When φπ > φmπ there exists a unique, globally stable fundamental steady state.

Proof. For mt−1 > M
N we have that M − Nmt−1 < 0, therefore f∞(mt−1) = 1. For

mt−1 ∈
(
−M
N ,

M
N

)
we have that M − Nmt−1 > 0, therefore f∞ = 0. Finally, for

mt−1 < −M
N we have that M + Nmt−1 < 0, therefore f∞ = −1. The non-fundamental

steady state m+ exists if and only if the 45-degree line has an intersection with the upper

horizontal parts of f∞, i.e., when it intersects the line 1 at some m > M
N . The condition

for this to happen is M
N < 1, i.e., φπ < φmπ (see Figure 7).

When the monetary policy is not aggressive enough, i.e., whenever φπ < φmπ , we

observe non-fundamental steady states for δ high enough, as suggested by the following

Lemma 3. Suppose φπ < φmπ . Then for δ high enough, the map described in (3.5) has

two locally stable steady states, m+ > 0 and m− = −m+ < 0.

Proof. We prove the existence of m+ (the existence of m− follows from the symmetry of

fδ (m)).

Let us fix 0 < ε < N−M
M and define γ = εMN > 0. Then consider the set U = {m : m >

M
N + γ}. This set U is bounded from below and lim

δ→+∞
fδ (m) = 1. For 0 < ε < N−M

M , we

have that 0 < M
N (1 + ε) < 1, hence ∀m ∈ U and δ sufficiently large, we have that

fδ (m) >
M

N
(1 + ε) =

M

N
+ γ

Thus function fδ (m), increasing and bounded from above, maps U into itself. Therefore

there exists a locally stable steady state within the set U .

Using the results derived above we can now prove Proposition 3.2.

Proof of Proposition 3.2. The targeted equilibrium is locally stable for low values

of δ, but loses and then gains local stability again through two subsequent pitchfork

20Dynamics for the case φπ > φ∗π are analysed below in the proofs of Propositions 3.4 – 3.6
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bifurcations. Together with the concavity of fδ (m) proved in Lemma 2, it implies the

global stability of the target steady state for small values of δ. Consider now the moment

of the first pitchfork bifurcation at δ = δ∗1 : the target steady state loses stability and

it might happen in two different ways. If function fδ (m) is concave for m > 0, the

bifurcation occurring at δ = δ∗1 is supercritical and two stable non-fundamental stable

steady states are created. But if function fδ (m) is not concave (and in particular fδ (m) is

convex for small m > 0), then the bifurcation is subcritical and two new unstable steady

states are created. The only way in which they can be created is via fold bifurcation.21

As δ increases, the fundamental equilibrium regains its stability at δ = δ∗2 , when function

is convex for small m > 0. Thus at δ = δ∗2 a subcritical pitchfork bifurcation occurs and

two new unstable steady states appears. But given that fδ (m) is not decreasing and

bounded, then there exist two other stable steady states. These five steady states are

also observable for high δ values, as proved in Lemma 3.

We have checked the usual conditions for a pitchfork bifurcation to occur. Let m = 0 be

a fixed point for the map fδ (m) = F (m, δ), δ∗1,2 the bifurcation values with f ′δ∗1,2
(0) = 1

and

Fmm
(
0, δ∗1,2

)
= Fδ

(
0, δ∗1,2

)
= 0

The non-degeneracy conditions Fm,δ
(
0, δ∗1,2

)
6= 0 and Fmmm

(
0, δ∗1,2

)
6= 0 hold. Then

there is a pitchfork bifurcation at
(
0, δ∗1,2

)
. Notice also that at δ = δ∗1 we have Fmmm (0, δ∗1) <

0, therefore the pitchfork bifurcation is supercritical. On the other hand at δ = δ∗2 ,

Fmmm (0, δ∗2) > 0, hence the pitchfork bifurcation is subcritical.

Proof of Proposition 3.3. According to Proposition D.1(2), the target steady state

is always locally stable when φπ < φmπ < φ∗π. It is unique and, therefore, globally stable,

when fδ (m) is concave, i.e., for small δ values (see Lemma 2). On the other hand,

when δ is sufficiently high, two other locally stable steady states exist, m+ and m− (see

Lemma 3). These steady states could only be created via tangent bifurcation. Since we

cannot rule out the possibility of a number of subsequent tangent bifurcations (where the

21Numerical analysis demonstrate that such scenario may happen for values of φπ which are
very close to φwπ . See Anufriev, Assenza, Hommes, and Massaro (2013) for details.
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non-fundamental steady states are created and subsequently disappear), we denote as δ∗1

the instance of the first tangent bifurcation and as δ∗2 the instance of the last tangent

bifurcation. However, in our numerical analysis we never encountered a case in which

δ∗1 6= δ∗2 .

Proof of Proposition 3.4 (φmπ < φπ < φ∗π). We will start by proving the global sta-

bility result for the case φmπ < φπ < φ∗π, i.e., the map fδ(m) is increasing. The proof for

the case φ∗π < φπ < φaπ is provided below. When φπ > φmπ , it follows from Proposition

D.1(2) that the target steady state is locally stable. In order to prove that it is globally

stable for any δ, we show that it is the unique steady state of the dynamics described by

the map fδ(m). Since fδ (m) is an increasing function, uniqueness implies global stability.

Map fδ (m) can be re-written as

mt = fδ (mt) =
e
−δ[M−Nmt−1] − e−δ[M+Nmt−1]

1 + e
−δ[M−Nmt−1]

+ e
−δ[M+Nmt−1]

=
1− e−2δNm

1 + eδ(M−Nm) + e−2δNm

Assume that m > 0. Since function fδ (m) is bounded from above by the horizontal

asymptote fδ (m) ≤ 1 ∀m, no steady state can exist within the interval [1,+∞). Let us

consider m ∈ (0, 1) and show that fδ (m) ∈ (0, 1
2 ]. Since fδ (m) is an increasing map, the

following chain of inequalities holds

0 = fδ (0) ≤ fδ (m) ≤ fδ (1)

Furthermore the aggressive monetary policy scenario, i.e., φπ ≥ φmπ ) implies that M
N(φπ) ≥

1 (see Figure 7), i.e. M − N (φπ) ≥ 0. Then from e−δ(N−M) ≥ 1, we can derive the

following

fδ (m) ≤ fδ (1) =
1− e−2δN

1 + eδ(M−N) + e−2δN
≤ 1

2
.

The above expression implies that there are no fixed points for m > 1
2 .

Suppose now that 0 < m ≤ 1
2 . Applying the restriction φπ ≥ φmπ , i.e. M−N (φπ) ≥ 0

we find that the condition on m ∈ (0, 1
2 ] implies that eδ(M/2) < eδ(M−Nm). We obtain
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the following estimate of dynamics on the interval (0, 1/2)

fδ (m) =
1− e−2δNm

1 + eδ(M−Nm) + e−2δNm
≤ M

N

1− e−2δNm

1 + eδ(M/2) + e−2δNm

Let the function on the right hand side be defined as g (m). This function is increasing

in m with first and second derivative respectively given by

g′ (m) = 2δM
e2δNm

(
2 + eδ(M/2)

)(
1 + e2δNm

(
1 + eδ(M/2)

))2
g′′ (m) = −4δ2MN

(
2 + eδ(M/2)

) −1 + e2δNm
(
1 + eδ(M/2)

)(
1 + e2δNm

(
1 + eδ(M/2)

))3
Note that e2Mmδ > 1 and g′′ (m) < 0 for m > 0 and M > 0. Note also that

g′ (0) = 2
Mδ

eδ(M/2) + 2

and, by fixing Mδ = x, we get

g′ (0) =
2x

ex/2 + 2

The first derivative of l(x) = 2x
ex/2+2

is l′ (x) =
(2ex/2−xex/2+4)
ex+4ex/2+4

. Therefore a maximum

point has to satisfy 2−x+ 4e−x/2 = 0, which is 2x∗, with x∗ defined in Lemma 1. Hence

we can state that g′ (0) < 1.

Thanks to the concavity of g and g′ (0) < 1 for m > 0, it follows that g (m) < m ∀m > 0.

Given that g (m) borders f (m) then f (m) < m ∀m ∈ (0, 1). Thus no positive fixed

points are possible. Since function fδ (m) is odd it also implies that no negative steady

states are possible for −1 < m < 0.

Proofs of Propositions 3.4 (φ∗π < φπ < φaπ) – 3.6. As we have shown before, when

φπ > φ∗π the dynamics of mt is described by a decreasing map. Thank to the character-

istics of fδ(m) it is possible to prove the dynamical properties of this case employing the

same properties of the map when φπ < φ∗π.
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Indeed it holds that

fδ (m,N,M) = fδ (−m,−N,M) (D.4)

Since fδ (m,N,M) is odd, it follows that the second iterate of gδ (m), where gδ (m) =

fδ (−m) = −fδ (m), is equal to the second iterate of fδ (m), i.e.

f2
δ (m) = g2

δ (m) (D.5)

Furthermore we have proved that fδ (m) is an increasing function. Then it has only fixed

points and consequently f2
δ (m) has the same fixed points and the same bifurcations of

fδ (m). Since gδ (m) is decreasing, it has only one fixed points and possible (stable or

unstable) 2-cycles.

Now, if δ∗ is a bifurcation value for fδ (m) given the corresponding
(
N̄ , M̄

)
, then

the same δ∗ may be a bifurcation value for gδ (m) given the parameter
(
−N̄ , M̄

)
. Since

we have proved that the target equilibrium has only pitchfork bifurcation for a given(
N̄ , M̄

)
, thus

(
−N̄ , M̄

)
corresponds to a flip bifurcation for gδ (m). Furthermore if a

tangent bifurcation occurs for
(
N̄ , M̄

)
for fδ (m), then a tangent bifurcation will occur

at
(
−N̄ , M̄

)
for g2

δ (m) and this gives rise to two 2-cycles for gδ (m).

Thanks to equations (D.4)-(D.5) and to the properties of the map fδ(m), we can

prove the results of Propositions 3.4 – 3.6 in the way previously adopted.

Moreover, concerning Proposition 3.6, we have checked the usual conditions for a period-

doubling bifurcation to occur. Let m = 0 be a fixed point for the map fδ (m) = F (m, δ),

δ∗1,2 the bifurcation values with f ′δ∗1,2
(0) = −1 and

Fmm
(
0, δ∗1,2

)
= 0

Assume furthermore the non-degeneracy condition FδFmm + 2Fmδ 6= 0 also holds. Then

there is a flip bifurcation at
(
0, δ∗1,2

)
. Furthermore at δ = δ∗1 we have that −2Fmmm −

3 (Fmm)2 < 0, therefore the flip bifurcation is supercritical. On the other hand at δ = δ∗2 ,

−2Fmmm − 3 (Fmm)2 > 0, hence the flip bifurcation is subcritical.
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Fig. 8 summarizes the stability results that have been proved, showing the overlap-

ping of the determinacy/stability regions in the (δ, φπ)-space with the parameter restric-

tions we identified in Table 1. We notice that when the Taylor principle is not satisfied

(i.e., φπ < 1), the fundamental steady state is indeterminate, leading to the existence

of sunspot equilibria which are closely connected to the existence of non-fundamental

equilibria in our model. Our results then show that even when monetary policy is set

to ensure determinacy under rational expectations multiple equilibria and stable cycles

may arise under heterogeneous expectations.
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Figure 8: Bifurcation diagram of dynamics, in coordinates (δ, φπ). Parameters
are set at the CGG calibration with b = 0.25. The lower dashed curve gives
all the parameters of the pitchfork bifurcation, the upper dashed curve gives all
the parameters of the flip bifurcation while the solid line gives the parameters of
tangent bifurcation. The red dots denote the points at which the curve of pitchfork
(flip) bifurcation intersect with the curve of tangent bifurcation, while the red line
φπ = 1 marks the boundary between the regions of determinacy vs. indeterminacy
under rational expectations.
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E LTL dynamics

Consider the LTL system described by (3.8). Straightforward computations show that

the eigenvalues of the transition matrix are given by

λ1 =
2s2δ(k3 + k2σ + (β − 1)2σ + k(β − 1)(βφπ − 1))

(k2 + 2s2(k2 + (β − 1)2)δ)(σ + kφπ)

λ2 = 0 .

The stability analysis reduces to the study of the eigenvalue λ1.

Proof of Propositions 3.7. When φπ < 1 we have that

λ1(0) = 0

λ′1(δ) =
2k2s2(k3 + k2σ + (β − 1)2σ + k(β − 1)(βφπ − 1))

(k2 + 2s2(k2 + (β − 1)2)δ)2(σ + kφπ)
> 0

lim
δ→∞

λ1(δ) =
k3 + k2σ + (β − 1)2σ + k(β − 1)(βφπ − 1)

(k2 + (β − 1)2)(σ + kφπ)
> 1 ,

implying that a value δ∗ must exist such that λ1(δ∗) = 1.

When φπ > 1 we have that the following holds:

λ′1(δ) > (<) 0 if φπ < (>)φ•π , with φ•π =
−k − k3 + kβ − σ − k2σ + 2βσ − β2σ

−kβ + kβ2
.

When φπ < φ•π we have that

λ1(0) = 0

λ′1(δ) > 0

lim
δ→∞

λ1(δ) < 1 ,

which imply that target steady state is globally stable for any δ.

When φπ > φ•π we can derive the following restrictions on structural parameters:

1. 0 < k < 1
2
√

2

2. 3
4 −

1
4

√
1− 8k2 < β < 3

4 + 1
4

√
1− 8k2 .

When restrictions 1 – 2 are satisfied, we can derive the threshold value

1 < φ•π < φ∗∗π = −k−k3+kβ−2σ−2k2σ+4βσ−2β2σ
k+k3−3kβ+2kβ2
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such that, when φπ < φ∗∗π we have that

λ1(0) = 0

λ′1(δ) < 0

lim
δ→∞

λ1(δ) > −1 ,

implying that the target steady state is globally stable for any δ; while when φπ > φ∗∗π ,

we instead have that

λ1(0) = 0

λ′1(δ) < 0

lim
δ→∞

λ1(δ) < −1 ,

implying that a value δ∗∗ must exist such that λ1(δ∗∗) = −1.

When at least one between restrictions 1 – 2 is not satisfied we have that

λ1(0) = 0

λ′1(δ) < 0

lim
δ→∞

λ1(δ) > −1 ,

implying that the target steady state is globally stable for any δ.
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Salle, I., M. Yildizoğlu, and M. Sénégas (2013): “Inflation targeting in a

learning economy: an ABM perspective,” Economic Modelling, 34, 114 – 128.

Sims, C. (2003): “Implications of Rational Inattention,” Journal of Monetary

Economics, 50, 665–690.

Svensson, L. (2009): “Transparency under Flexible Inflation Targeting: Experi-

ences and Challenges,” Economic Review, 1, 5–44.

Taylor, J. (1993): “Discretion versus Policy Rules in Practice,” Carnegie-

Rochester Conference Series on Public Policy, 39(0), 195–214.

Tuinstra, J., and F. Wagener (2007): “On learning equilibria,” Economic

Theory, 30(3), 493–513.

46



Woodford, M. (1999): “Optimal Monetary Policy Inertia,” NBER Working

Paper 7261.

Woodford, M. (2003): Interest and Prices: Foundations of a Theory of Mone-

tary Policy. Princeton University Press.

47


