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Abstract

During these last few years an increasing body of scientific evidence showed
that looking at the single exposure to chemicals without considering the mix-
ture effect can cause an underestimate of the chemical exposures risk. This
poses also statistical challenges on how to manage more complex datasets.
Weighted Quantile Sum (WQS) regression is a new statistical model that al-
lows to deal with this problems. It is able to test the association of the overall
environmental exposures with an outcome and to find the main actors in the
association between the exposure and the dependent variable.
Through this work we showed how we adapted the model to allow to fit
a WQS regression in presence of binary, multinomial and count outcomes.
Moreover, we implemented two more extensions: the possibility to test for an
interaction between the WQS index (representing the overall exposure) and
a continuous or categorical variable; and the ability of having two indices in
the same model, one looking in the positive and the second in the negative
direction when the mixture can have a bidirectional effect on the outcome.
The first extension answers to a frequent and important line of inquiry in
epidemiologic studies that is whether there is an effect modification (i.e., an
interaction) between an exposure and a particular covariate of interest that
can affect the association between the exposure and the outcome. The sec-
ond extension allows to estimate both the protective and harmful effect of the
mixture within the same regression model. Lastly, we showed how to apply
this novel method in the genetic context thanks to the inclusion of the double
WQS index. We then compared its results with the standard methodology
used to test the effect of a gene set on a particular phenotype.
The simulation studies performed to test the new extensions showed the good
performance of the methods reducing the bias and standard error of the es-
timates of the effect of the mixture on the outcome and correctly identifying
the elements in the mixture that play a major role in the studied association.
A high specificity was also observed. Through the case studies we were able to
see how WQS confirmed previous major findings and providing new insights
respect to previous literature. When we tested for the interaction between age
or sex and the exposure to lead (Pb), cadmium (Cd), mercury (Hg), selenium
(Se) and manganese (Mn) we found that the association between the forced
vital capacity (FVC) and Pb and Hg was attenuated among older children,
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while female FVC is more susceptible to Cd and Hg compared to males. The
application of the double index to test the association between 43 nutrients
and obesity showed a harmful effect of moisture (from all sources), polyun-
saturated fatty acids, saturated fatty acids, sodium, caffeine and cholesterol
while a protective effect was found for beta-carotene, vitamin B12, vitamin
B6, vitamin D, folic acid, vitamin C, folate DFE and alpha-carotene. Finally,
through WQS we observed a significant role of the genes involved in cell-cycle
in the risk of death for ovarian cancer which was not shown applying single
sample Gene Set Enrichment Analysis.
The advantages of WQS regression and the extension that we described in
this work are the ease of use and interpretation of the results; moreover, none
of the other environmental mixture methods allow to consider the effect mod-
ification due to a covariate or to measure the amount of positive and negative
association when the elements in the mixture show both effects. This work
will be the starting point for additional future extensions, improvements and
applications of the model while all these extensions will be implemented in
the gWQS package of the statistical software R.
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Chapter 1

Introduction

Humans are daily exposed to multiple chemicals from different sources and
the assessment of the effects of the exposure to mixture of chemical contami-
nants on human health is becoming always more a big concern. During these
last few years an increasing body of scientific evidence showed that looking
at a single exposure element without considering the mixture effect can cause
an underestimate of the chemical exposures risk (Martin et al. 2013, Ko-
rtenkamp & Faust 2018, European Commission 2011). The introduction of
analytical method yielding multi-elemental measurements in biological sam-
ples has further enhanced the potential of biomonitoring in addressing the
effects of mixed exposures. With the availability of these information it be-
came of interest to look at the overall impact of the exposure to the mixture
and the interactions among chemicals. This poses also statistical challenges
on how to manage more complex datasets. Several models with the abil-
ity of conducting regression with a set of correlated variables were already
available, such as ridge regression (Hoerl & Kennard 1970), lasso (Tibshirani
1996), adaptive lasso (Zou 2006) and elastic net (Zou & Hastie 2005). All
these methods are particularly useful for variable selection in prediction mod-
els and in particular when the number of covariates is much higher than the
number of observations. However, they can have some limitations in assess-
ing the risk of the exposure to chemical mixture: e.g. ridge regression does
not reduce the dimensionality while lasso selects a random element among
the correlated predictors and elastic net keeps in the model or eliminates all
the correlated elements. This is problematic in the context of environmental
chemical mixture exposure since we need to find the elements truly associated
with the outcome and not because of a ”grouping effect”. Moreover, none of
these methods are able to estimate an overall mixture effect on the outcome
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of interest.
New statistical methods were recently developed to address the specific ques-
tion about measuring the risk of the environmental chemical mixture exposure
(Stafoggia et al. 2017). Among others there is the Weighted Quantile Sum
(WQS) regression (Czarnota et al. 2015, Gennings et al. 2013, Carrico et al.
2015, Horton et al. 2015, Brunst et al. 2017). This new statistical model
constructs a weighted index estimating the mixed effect of all predictor vari-
ables on an outcome, which may then be used in a regression model with
relevant covariates. WQS is able to test for the association between the over-
all environmental exposure with a dependent variable or outcome and to find
the main actors in the association between the exposure and the dependent
variable in a simplistic nevertheless powerful model through the weights esti-
mation. However, WQS in its first formulation can still be improved to better
answer to epidemiological questions like testing for the modification effect of
a covariate of interest in the association between the exposure mixture and
the outcome or to consider the double effect of the mixture on the dependent
variable. The first extension will allow to apply WQS also in scenarios where
the association between the exposure and the outcome can vary across groups
(e.g. sex) or at different levels of a continuous variable (e.g. age) which is
often the case in epidemiological studies. The introduction of an interaction
term is feasible in WQS regression thanks to the WQS index which we can
treat as a continuous variable in a classical regression once estimated by the
model. The additional ability to test for both positive and negative effect of
the mixture on the dependent variable with the estimate of a double index,
will allow to apply WQS in context where the mixture can have a bidirec-
tional association (e.g. nutrients) with the outcome. The inclusion of two
indices was already possible in the original WQS formulation but not at the
step where the weights of the index are estimated. Through this work we will
show how to deal with a double index when the model estimates the weights
to be attributed to each element in the mixture. This second extension will
also give the possibility to apply WQS in different context like genetic which
is characterized by the bidirectional effect of the expression of genes on a
phenotype.
In the next chapters we are going to show how the weights and the parame-
ters are estimated in the WQS regression and how we adapted the model to
allow for logistic, multinomial, Poisson and negative binomial regression. We
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will then show two improvements of the model: the possibility to test for an
interaction between the WQS index (representing the overall exposure) and
a continuous or categorical variable; and the ability of having two indices in
the same model, one looking in the positive and the second in the negative
direction when the mixture is made of both protective and harmful elements.
Lastly, we applied this last method in the context of gene expression and its
effect on a phenotype of interest. All these extensions of the WQS regression
were tested on simulated data and then applied in case studies to compare
the results with previous literature.
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Chapter 2

The Weighted Quantile Sum (WQS)
Regression

2.1 Overview of the method

As previously mentioned, WQS regression is a statistical model for multivari-
ate regression in high-dimensional datasets commonly encountered in envi-
ronmental exposures, epi/genomics, and metabolomic studies, among others.
The method is divided in two parts: a training step where the weights are
estimated and a validation step where the regression is fitted using the pre-
viously estimated weights. The WQS model has the following equation:

g(µ) = β0 + β1

(
c∑
i=1

wiqi

)
+ z′ϕ (2.1)

where g is the link function as in generalized linear model, µ is the mean
of the outcome, qi is the quantile of the ith component, wi is the weight (to
be estimated) associated with the ith component, z′ is the vector of covari-
ates and ϕ is the vector of parameters associated with the covariates. The
(
∑c

i=1wiqi) term represents the index that weights and sums the components
included in the mixture. To estimate the model, the data may be split in
a training and a validation dataset: the first one to be used for the weight
estimation, the second one to test for the significance of the final WQS index.
The weights are estimated through a bootstrap and constrained to sum to
one and bounded between zero and one:

∑c
i=1wi = 1 and 0 ≤ wi ≤ 1. For

each bootstrap sample (usually B = 100 total samples) a dataset is created
sampling with replacement from the training dataset and the parameters of
the model in equation 2.1 (θ = (β0, β1, w1, . . . , wc,ϕ)) are estimated through
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an optimization algorithm where the log-likelihood is the objective function:

θ̂WQS = argmax
θ

[
l(θ; y) + λ

(
c∑
i=1

wi − 1

)]
(2.2)

where l(θ; y) is the log-likelihood function and λ is the lagrangian coef-
ficient associated with the equality constraint in which the weights have to
sum to 1. An inequality constraint is also applied in order to impose that
0 ≤ wi ≤ 1.
Once the weights are estimated the model is fitted in order to find the re-
gression coefficients in each ensemble step. After the bootstrap ensemble is
completed, the estimated weights are averaged across bootstrap samples to
obtain the WQS index:

WQS =
c∑
i=1

w̄iqi

where w̄i = 1∑B
b=1 f(β1(b))

∑B
b=1wi(b)f(β1(b)) and f(β1(b)) is a signal function

that we will specify later in the text. Typically weights are estimated in a
training set then used to construct a WQS index in a validation set, which
can be used to test for the association between the mixture and the health
outcome in a standard generalized linear model, as:

g(µ) = β0 + β1WQS + z′ϕ

Due to the structure of the model either a positive or a negative direction
of the association between the dependent variable and the WQS index has to
be chosen; that is, the model is inherently one-directional, in that it tests only
for mixture effects positively or negatively associated with a given outcome.
In practice analyses should therefore be run twice to test for associations in
either direction. The specification of a test for positive or negative association
determines the form of the signal function:

f(β̂1(b)) =

{
1, if β̂1(b) and the chosen direction have the same sign

0, if β̂1(b) and the chosen direction have different sign

The one-directional index allows not to incur in the reversal paradox when
we have highly correlated variables (Tu et al. 2008), moreover the bootstrap
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step (or random subsets of components as described below in section 2.4)
improves the identification of bad actors.
After the final model is fitted we can test the significance of the β1 to see
if there is an association between the WQS index and the outcome. In the
case the coefficient is significantly different from 0 then we can interpret the
weights: the highest values identify the associated components as the relevant
contributors in the association. A selection threshold can be decided a priori
as τ = 1/c to identify those chemicals that have a significant weight in the
index.
Once the WQS index is estimated, the required assumptions for generalized
linear regression has to be met.

2.2 Quantiles choice

Quantiles are applied to get measure of the variables included in the mixture
on the same scale. We simulated data to better understand how the choice
of quartiles, deciles and ranks affect the estimate of the regression parame-
ter associated to the WQS index in terms of bias and standard error. We
considered 25 exposure concentrations simulated from a distribution of ph-
thalate biomarkers measured in subjects participating in the NHANES study
(2001-2002) (NCHS 2017). Four elements were randomly selected and were
assigned a non null weight as follows: w15 = 0.5, w19 = 0.25, w14 = 0.15 and
w3 = 0.1. We then generated 11 different dependent variables from a nor-
mal distribution with standard deviation equal to two and mean equal to the
combination of parameters and variables as per equation 2.1 setting 11 dif-
ferent values of the regression parameter β: β = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1,
1.2, 1.3, 1.4 and 1.5. Each WQS index was standardized to get comparable
effect estimates when using the different quantiles before the dependent vari-
ables were generated. A WQS regression using quartiles, deciles or ranks was
applied to estimate the effect of the mixture on each outcome. Figure 2.1A
shows that all the three models reduced the bias at increasing values of β
and ranks usage produced the lowest bias compared to quantiles and deciles
in all different scenarios. The Standard Errors (SE) were similar among the
three different models fluctuating around 0.13 and not showing a trend at
increasing β (figure 2.1B).
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Figure 2.1: Relative bias and standard error (SE) of the estimate of the regression parameter associated to
the WQS index (β) at varying values of β when using quartiles, deciles or ranks to stnadardize the mixture
components.
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Based on these results we suggest to apply ranks as a way to scale the ele-
ments included in the mixture. Standardization can also be applied, however
the estimates will be more sensitive to extreme values.

2.3 The Generalised WQS regression

The WQS regression can be generalised and applied to multiple types of
dependent variables. To adapt the model to different types of outcomes
we need to specify the objective function reported in equation 2.2 defining
different log-likelihoods depending on the outcome distribution. This allows
to estimate the weights taking into account the different distribution of the
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dependent variable; once we are able to estimate the WQS index we can
fit a standard generalised linear model. In particular we adapted the WQS
regression to four different cases: logistic, multinomial, Poisson and negative
binomial regression. For these last two cases we also added the possibility to
fit zero-inflated models keeping the same objective function used to estimate
the weights as for the Poisson and negative binomial regression but taking
into account the zero inflation fitting the final model.
Starting from a linear regression the following function is minimised when
estimating the weights:

θ̂WQS = argmin
θ

[
n∑
i=1

(
yi −

(
β0 + β1

c∑
j=1

wjqj + z′ϕ

))2

+λ

(
c∑

j=1

wj − 1

)]
For a logistic regression the following likelihood is maximised:

θ̂WQS = argmax
θ

[
n∑
i=1

(
yi × log

(
1

1 + exp(β0 + β1

∑c
j=1wjqj + z′ϕ)

)

+

(
1− yi

)
× log

(
1− β0 + β1

c∑
j=1

wjqj + z′ϕ

)]
The equation to be maximised for a multinomial regression is the following:

θ̂WQS = argmax
θ

{
n∑
i=1

[
L−1∑
l=1

(
yij

(
β0l + β1l

c∑
j=1

wljqij + z′ϕ

)

− log

(
1 +

L−1∑
l=1

exp

(
β0l + β1l

c∑
j=1

wljqij + z′ϕ

)))]}
The objective function used to estimate the weights in a Poisson regression

is:
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θ̂WQS = argmax
θ

[
n∑
i=1

(
yi ×

(
β0 + β1

c∑
j=1

wjqj + z′ϕ

)

− exp

(
β0 + β1

c∑
j=1

wjqj + z′ϕ

)]
In the case of a negative binomial regression the likelihoods to be max-

imised is:

θ̂WQS = argmax
θ

[
n∑
i=1

(
yi log(α) + yi

(
β0 + β1

c∑
j=1

wjqj + z′ϕ

)

−

(
yi + 1/α

)
log

(
1 + α exp

(
β0 + β1

c∑
j=1

wjqj + z′ϕ

))

+ log(Γ(yi + 1/α))− log(Γ(yi + 1))− log(Γ(1/α))

]
All these adaptations of the WQS regression to different type of outcomes

were implemented in the R package gWQS as shown in Appendix A.

2.4 A Random Subset Implementation of Weighted Quantile Sum
(WQSRS) Regression

A novel implementation of WQS regression for high-dimensional mixtures
with highly correlated components was proposed in Curtin et al. (2019). This
approach to which we will refer as WQSRS applies a random selection of a
subset of the variables included in the mixture instead of the bootstrapping for
parameter estimation. Through this method we are able to generate a more
de-correlated subsets of variables and reduce the variance of the parameter
estimates compared to a single analysis.
In this case the formula that describes how the weights are averaged after
their estimation for each subset (wb,(s×1)) to obtain the full ensemble set
wFULL
c×1 is the following:
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wFULL
c×1 =

1∑B
b=1 f(β1(b))

B∑
b=1

(Ab)
′
(c×s)wb,(s×1)

where s is the number of randomly selected variables (say, s =
√
c), Ab is

the translation matrix with elements aq,j = {f(β1(b)), j ∈ H}; q = 1, ..., s;H ∈
{1, 2, ..., c} and f(β1(b)) is the same signal function already seen for the boot-
strap WQS that we will specify later in the text.
This novel statistical methodology was shown to be more effective compared
to WQS in modeling contexts with large predictor sets, complex correlation
structures, or where the numbers of predictors exceeds the number of sub-
jects.

2.5 Repeated holdout validation for weighted quantile sum regres-
sion

One limit of WQS is the reduced statistical power caused by the necessity
to split the dataset in training and validation sets. This partition can also
lead to unrepresentative sets of data and unstable parameter estimates. A
recent work from Tanner et al. (2019) showed that conducing a WQS on
the full dataset without splitting in training and validation produces opti-
mistic results and proposed to apply a repeated holdout validation combin-
ing cross-validation and bootstrap resampling. From now on we will refer to
this approach as WQSRH. They suggested to repeatedly split the data 100
times with replacement and fit a WQS regression on each partitioned dataset.
Through this procedure we obtain an approximately normal distribution of
the weights and the regression parameters and we can apply the mean or the
median to estimate the final parameters. We can then use their distributions
to build the 95% confidence intervals (CI) based on the standard deviation
or using the 2.5th and 97.5th percentiles. Another advantage of the WQSRH

is the ability to characterize the weight distribution. On the other hand a
limit of this approach is the higher computational intensity, for this reason
only 100 repeated holdout validation iterations were proposed in Tanner et al.
(2019), but if feasible, a larger number of repetitions would allow to better
meet a normal approximation (usually ≥ 1000 for bootstrap).
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The R package gWQS was developed to make this new method available and
it is downloadable from CRAN repository. The Appendix A shows how to use
the package through four different applications of the model on a simulated
dataset.
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Chapter 3

Interaction between WQS index and a
continuous or a categorical variable

A frequent and important line of inquiry in epidemiologic studies is whether
there is effect modification (i.e., an interaction) between an exposure and a
particular covariate of interest that can affect the association between the ex-
posure and the outcome (Knottnerus & Tugwell 2019, Stafoggia et al. 2017).
Traditional modelling strategies, particularly forms of generalized linear re-
gression, can be easily applied to capture these effects through the estimation
of multiplicative effects; for example, one might test for sex-based modifi-
cation of exposure effects by estimating the interaction between sex- and
exposure-based effects. The increasing availability of high-dimensional expo-
sure assessments, however, has compounded the challenge in estimating the
effects associated with individual exposure variables, as these must ideally be
evaluated in the context of combined exposures.
Here we propose a method to extend the generalized mixtures modeling strat-
egy advanced with WQS regression to the evaluation of effect modification by
covariates. This method retains the advantages of a mixtures modeling strat-
egy, in that it allows evaluation of the association between multiple combined
exposures and an outcome rather than evaluating effects in discrete models,
but also considers how the interaction between the whole mixture exposure
and the covariate affects the outcome.
To demonstrate the utility and efficacy of this procedure, we show how we
extended WQS regression to test for an interaction between the WQS index,
representing the mixture effect, and a covariate of interest, with weights esti-
mated in the presence of the interaction. Even within a consistent modeling
framework, there are multiple approaches to estimating multiplicative effects.
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For example, interactions could be considered during or after ensemble esti-
mation and aggregation, or at different stages of cross-validation. As such we
compared the bias introduced in implementing several different approaches
to estimating effect moderation. In particular we will show that when the
interaction term is kept in the model both during the weight estimation step
and when fitting the final model on the validation dataset, WQS shows much
better performance in both estimating the mixture effect and identifying the
”main actors”. We characterize the efficacy of this procedure in contexts of
interaction with a continuous variable and with a categorical variable. We
then applied this new extension of WQS to a real case study from Madrigal
et al. 2018 (Madrigal et al. 2018) considering data from the National Health
and Nutrition Examination Survey (NHANES) (2011-2012) where the associ-
ation between heavy metal exposure and pulmonary function among children
and adolescents was tested.

3.1 Model and Methods

The standard formulation of WQS regression (equation 2.1) can be extended
to evaluate interactions between the WQS index and a continuous covariate,
x. The WQS general formula is of the form:

g(µ) = β0 + β1

(
c∑
i=1

wiqi

)
+ β2x+ β3x

c∑
i=1

wiqi + z′ϕ (3.1)

where g is the link function as in generalized linear model, µ is the mean of
the outcome, qi is the quantile of the ith component, wi is the weight (to be
estimated) associated with the ith component, z′ is the vector of covariates
and ϕ is the vector of parameters associated with the covariates. As we
can see comparing equation 2.1 with equation 3.1, the interaction term is
incorporated and identified by the term x

∑c
i=1wiqi between the WQS index

and the continuous variable x. The interaction parameter is adjusted for
both during the training step where the weights are estimated and in the
final model in the holdout validation data using the constructed index. Here,
the interaction model allows for a change of slope associated with the WQS
index at fixed levels of x, say x0, the change of slope is β3x0, and for a change
of intercept is given by β2x0.
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WQS can similarly evaluate interactions involving categorical covariates. In
this case, the β1 parameter and weights vary across the levels of the categorical
variable as shown by the formula:

g(µ) = β0 + β1

(
p∑
i=1

c∑
j=1

wijqcatij

)
+ β21x11 + ...+ β2(p−1)x1(p−1)+

β31x11

(
p−1∑
j=1

c∑
i=1

wijqcatij

)
+ ...+

β3(p−1)x1(p−1)

(
p−1∑
j=1

c∑
i=1

wijqcatij

)
+ z′ϕ

(3.2)

where x11, ..., x1(p−1) are the dummy variables of the categorical variable
x1 with p categories (x10 considered as reference category) and qcatij are the
quantile variables associated to each mixture element (i = 1, ..., c) that are
equal to zero if the considered observation belongs to a level of x1 which is
different from the one examined. For example, if x1 has two categories A

and B then qcatiA =

{
qi, if x1 = A

0, otherwise
and qcatiB =

{
qi, if x1 = B

0, otherwise
as shown

in Brunst et al. (2017) (Brunst et al. 2017). In this case wij represents the
weight associated with the ith component for the jth category and the fol-
lowing constraints are applied

∑c
i=1wij = 1 for j = 1, .., p; 0 ≤ wij ≤ 1 for

i = 1, ..., c; j = 1, ..., p. In this case, the interaction model allows for different
slopes for the WQS index and for different intercepts for each category while
also allowing different weights for each category.

3.1.1 Simulation Study

In order to test the goodness of fit of the WQS regression in the presence
of an interaction between the WQS index and a continuous or categorical
variable we performed a simulation study. The data were taken from the
blood metal concentrations of the 2011-2012 NHANES cohort. In particu-
lar lead (Pb), cadmium (Cd), mercury (Hg), selenium (Se) and manganese
(Mn) were considered. In total 100 different datasets were generated from a
multivariate normal distribution with 1000 observations and null mean. The
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variance-covariance matrix of the five variables was applied to reproduce their
correlation structure. Figure 3.1 shows a complex correlation matrix where
we can see a wide range of correlations among all the five variables (from -0.5
to 0.49).

Figure 3.1: Spearman correlation matrix of the five heavy metals (lead, cadmium, mercury, selenium and
manganese) taken from the 2011-2012 NHANES study.
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Five dependent variables were then generated from a normal distribution
with unit variance and mean equal to the resulting WQS formula setting the
parameters as described in table 3.1. All the remaining weights associated to
the remaining elements in the mixture not displayed in table 3.1 were set to
zero.

The outcome y0 was generated in the absence of an interaction with either
a continuous or a categorical covariate to check the specificity of the models.
The dependent variable y1 was built in the presence of an interaction be-
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Table 3.1: Regression parameter (βi) and weight (Wi) values used to generate the dependent variables in
five different models.

y0: No
interaction

y1: Interaction
with continuous

modifier

y21: Interaction
with categorical

modifier,
equivalent weights
across categories

y22: Different
weights across

categories,
with no

interaction

y23: Interaction
with categorical

modifier, different
weights across

categories
β1 0.5 0.2 0.3 0.5 0.3
β2 0.3 0.4 0 0 0
β3 0 0.6 0.3 0.3
W2 0.3 0.3 0.3
W3 0.5 0.5 0.5
W5 0.2 0.2 0.2
W2A 0.6 0.6
W5A 0.4 0.4
W1B 0.3 0.3
W3B 0.7 0.7

tween the WQS index and a continuous variable, while y21, y22 and y23 were
defined in the presence of an interaction with a categorical variable: y21 did
not account for varying weights across variable categories, y22 did not con-
sider the interaction term between WQS index and the categorical covariate
but included different weights depending by the categorical variable levels
while both interaction term and varying weights were considered to generate
y23. Finally, a continuous variable was generated from a standard normal
distribution while a categorical variable was generated from a Bernoulli with
probability equal to 0.5 and the two categories A and B were defined.
To test the performance of the novel method in the case of an interaction
between the WQS index and a continuous covariate (method 2) we compared
it to a model where we consider the interaction term only in the validation
step (method 1). In the case of an interaction with a categorical variable the
first method included only the interaction term between the WQS index and
the covariate (method 1); method 2 only considered stratified weights by cat-
egory while method 3 comprised both the interaction term and the stratified
weights.

3.1.2 Case Study

We then applied this method to an empirical case study. A detailed descrip-
tion of the study population and the outcome and exposure variables were
reported in NHNAES documentation (CDC 2011, NCHS 2017) and Madri-
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gal et al. (2018). Briefly, a total of 1,234 subjects between 6 to 17 years
old from the NHANES 2011-2012 survey cycle were included in the study.
Exclusion criteria applied for when the spirometry test included chest pain
at the time of the exam; recent surgery of the eye, chest or abdomen; tu-
berculosis exposure; a physical problem with forceful expiration; and anyone
with a recent incident of cough with blood or painful ear infections. The rec-
ommendations of the American Thoracic Society (ATS) (Miller et al. 2005)
were followed for the spirometry measurements. In this application we only
considered the Force Vital Capacity (FVC) and we included in the analysis
values rated A (exceeds ATS data collection standards) or B (meets ATS
data collection standards). Pb, Cd, Hg, Se and Mn were measured in blood
using inductively coupled plasma mass spectrometry and ranked in deciles in
the WQS regression. The interaction between the WQS index and age and
sex was tested applying the method described above. Following Madrigal et
al. (2018), the regression models were adjusted for race (non-Hispanic white,
non-Hispanic black, Mexican American, other Hispanic, or other/multiracial),
the ratio of family income to poverty (using the Department of Health and
Human Services (HHS) poverty guidelines), serum cotinine levels, BMI and
use of anti-asthmatic, bronchodilator, or inhaler. FVC, serum cotinine and
BMI were log-transformed when included in the regression because of their
asymmetric distribution.

3.2 Results

3.2.1 Simulation Studies

We first examined the case of the interaction between the WQS index and a
continuous variable. Figure 3.2A shows the box-plots of the absolute differ-
ence between the 100 estimates of the parameter β3 related to the interaction
term and the true value. As we can see from figure 3.2A method 2 gives more
accurate measures of the β3 compared to method 1 (mean error (ME): 0.035;
SD: 0.026 and ME: 0.317; SD: 0.040 respectively) reducing the ME estimates
of 89.0%. When we consider the interaction with a categorical variable we fit
the three different models described in the methods section for each of the
three outcomes y21, y22 and y23. Figure 3.2B shows that method 1 provides
good estimates for the outcome y21 but shows a higher bias when considering
y22 and y23 for both level A (ME: 0.029; SD: 0.026, ME: 0.052; SD: 0.036
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and ME: 0.129; SD: 0.039 respectively) and level B (ME: 0.037; SD: 0.026,
ME: 0.093; SD: 0.073 and ME: 0.194; SD: 0.042 respectively). Method 2
shows better performances when y22 is the outcome (ME: 0.033; SD: 0.022)
but with a higher bias when y21 (ME: 0.068; SD: 0.025) and y23 (ME: 0.074;
SD: 0.024) are the dependent variables. Method 3 provides good estimates
for the interaction coefficient in all three cases for both level A (ME: 0.029;
SD: 0.026, ME: 0.029; SD: 0.023 and ME: 0.034; SD: 0.025 for y21, y22 and
y23 respectively) and level B (ME: 0.042; SD: 0.031, ME: 0.042; SD: 0.034
and ME: 0.040; SD: 0.027 for y21, y22 and y23 respectively). In particular a
better performance is shown for y23 where we can see a reduction of ME of
the 73.6% and 79.4% for level A and B respectively compared to method 1
and the 54.1% compared to method 2. For all the following figures includ-
ing boxplots we will interpret a more accurate parameter estimation those
boxplots showing distributions closer to zero.
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Figure 3.2: Absolute difference between the 100 estimates of the parameter β3 associated with the interaction
term between the WQS index and the continuous covariate x (A) or the categorical variable xcat (B) obtained
applying the different methods: in panel (A) method 1 included the interaction only in the validation step
while method 2 also included the interaction term when estimating the weights; in panel (B) method 1
included only the interaction term without stratified weights, method 2 only considered stratified weights by
category without an interaction term, while method 3 comprised both the interaction term and the stratified
weights. The three methods were all applied in the three different scenarios y21 (interaction with categorical
modifier, equivalent weights across categories), y22 (different weights across categories, with no interaction)
and y23 (interaction with categorical modifier, and different weights across categories). In this second panel
the parameters for both levels A and B of xcat are shown.
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In figure 3.3 the absolute differences between the estimates of each mixture
component weight and the true values in the presence of the interaction be-
tween the WQS index and the continuous variable are represented. Method 2
clearly shows estimates of the weights (ME: 0.052; SD: 0.040, ME: 0.063; SD:
0.042, ME: 0.079; SD: 0.058, ME: 0.056; SD: 0.049, ME: 0.055; SD: 0.040 for
z1, z2, z3, z4 and z5 respectively) have less absolute bias for all the elements
in the mixture compared to method 1 (ME: 0.132; SD: 0.092, ME: 0.136; SD:
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0.085, ME: 0.238; SD: 0.132, ME: 0.139; SD: 0.111, ME: 0.114; SD: 0.075 for
z1, z2, z3, z4 and z5 respectively).

Figure 3.3: Boxplots of the absolute difference between the mixture component weight estimated on each
one of the 100 datasets by both method 1 and 2 and the true value of each element in the mixture. Method 1
included the interaction only in the validation step while method 2 also included the interaction term when
estimating the weights.
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The same analysis was performed on the interaction of the WQS index with
the categorical variable. Figure 3.4 shows the absolute difference between
the estimated weights and the true value for each element by categorical
strata. As for the regression parameter estimates we can still see a more
accurate weight estimation of method 3 in all the three different scenarios
while method one and method two showed lower bias in the weight estimates
when considering y21 and y23 respectively.
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Figure 3.4: Boxplots of the absolute difference between the 100 estimates and the true weight value for each
element of the mixture and each strata of the categorical variable. Results are shown for the three methods
applied in the three different scenarios depending on the outcome variables y21, y22 and y23.
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We then checked the specificity of the method fitting a WQS regression
including the interaction term with a continuous or a categorical variable
when the dependent variable was generated in the absence of any interaction.
Figure 3.5 represents the regression parameter estimates of the interaction
term between the WQS index and both the continuous (figure 3.5A) and
categorical (figure 3.5B) variables and their p-values. We can see that the
estimates of parameter β are close to zero in both cases and they have high
p-values with only 4% and 5% false positives (p-value below 0.05) for the
continuous and categorical variable respectively.
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Figure 3.5: Boxplots of the parameter estimates and associated p-values of the interaction term between the
WQS index and the continuous (A) and categorical (B) variables.
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3.2.2 Case Study

Table 3.2 shows the descriptive statistics of the variables included in the
model. The final cohort was composed of 1,234 subjects with an average age
of 11.5 ranging from 6 to 17 years old, a slightly higher percentages of males
(50.4%) and a higher proportion of non-Hispanic black and non-Hispanic
white.

We considered three models: WQS regression without interaction; WQS
regression allowing for a WQS × age interaction; and stratified WQS regres-
sion with interaction with sex. In all three models, we find that there is a
significant reduction of FVC at higher levels of exposure to metals (higher
values of the WQS index) (table 3.3). In particular the effect is mainly driven
by Hg, Pb and Mn which are the mixture components with a higher weight
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Table 3.2: Descriptive statistics of the variables included in the WQS regression.
Overall (N=1234)

FVC (ml)
Mean (SD) 2880.4 (1062.4)
Age
Mean (SD) 11.5 (3.3)
Sex
M 622 (50.4%)
F 612 (49.6%)
Family income to poverty ratio
Mean (SD) 2.1 (1.6)
Race
Mexican American 237 (19.2%)
Other Hispanic 132 (10.7%)
Non-Hispanic White 305 (24.7%)
Non-Hispanic Black 355 (28.8%)
Other Race 205 (16.6%)
Use of antiasthmatic, bronchodilator, or inhaler
No 1114 (90.3%)
Yes 120 (9.7%)
BMI (kg/m2)
Mean (SD) 21.2 (5.6)
Serum cotinine (ng/mL)
Mean (SD) 3.8 (26.9)
Blood Cd (ug/L)
Mean (SD) 0.2 (0.1)
Blood Mn (ug/L)
Mean (SD) 10.6 (3.6)
Blood Pb (ug/L)
Mean (SD) 0.8 (0.6)
Blood Se (ug/L)
Mean (SD) 181.3 (21.8)
Blood Hg (ug/L)
Mean (SD) 0.6 (0.7)
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(figure 3.7A); this means that if we move from a decile to the next one of Hg,
Pb and Mn distribution we can observe a decrease of −0.02×0.393 = −0.008,
−0.02 × 0.243 = −0.005 and −0.02 × 0.199 = −0.004 (β × w) in log-
transformed FVC on average respectively. When we included the interaction
between the WQS index and child age in the model we see that there is a
positive significant interaction meaning that the negative effect on FVC of
the mixture diminishes at increasing age (table 3.3 and figure 3.6A). The
elements that mainly show this pattern are Pb and Hg (figure 3.7B). The
interaction between the WQS index and sex was finally considered in the
regression. A marginally significant negative effect of the mixture was found
among males (with slope estimate -0.01; p=0.052) while females were sig-
nificantly (p=0.010) more susceptible to metals (with slope estimate -0.04=-
0.01-0.03; table 3.3 and figure 3.6B). When looking at the weights associated
with each metal we can further see that the single elements have different
effects on the outcome depending on sex: Cd and Hg were more toxic among
females while Mn and Hg had a higher impact on males FVC (figure 3.7C).

Table 3.3: Regression coefficients, 95% confidence intervals (CI) and p-values from the three WQS regression
where no interaction, the interaction with age and with sex were considered to test the association between
metal exposure and FVC. All regression models were adjusted for race, the ratio of family income to poverty,
serum cotinine levels and BMI.

No interaction Interaction with age Interaction with sex
β (95%CI) p-value β (95%CI) p-value β (95%CI) p-value

WQS -0.02 <0.001 -0.02 0.002 -0.01 0.052
(-0.03, -0.01) (-0.04,-0.01) (-0.02, 0.0001)

Age 0.27 <0.001 0.27 <0.001 0.28 <0.001
(0.26, 0.29) (0.26, 0.28) (0.26, 0.29)

Sex F vs M -0.12 <0.001 -0.13 <0.001 -0.08 0.007
(-0.15,-0.10) (-0.15,-0.10) (-0.14,-0.02)

WQS*Age 0.02 0.008
(0.01, 0.03)

WQS*Sex F vs M -0.03 0.010
(-0.05,-0.01)
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Figure 3.6: Trends representation between the WQS index and the FVC (log-transformed) at varying age
levels (10th, 25th, 40th, 50th, 60th, 75th and 90th percentiles were used) when the interaction with age was
included in the model (panel A) and for males and females when the interaction with sex was considered
(panel B).
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Figure 3.7: Bar plot of the weights associated with the metals included in the mixture estimated in the three
WQS regression models where no interaction (A), the interaction with age (B) and sex (C) were considered.
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Chapter 4

A Weighted Quantile Sum Regression
with Double Index

As described in chapter 2, Weighted Quantile Sum (WQS) regression is a re-
cent statistical model that is increasingly applied in epidemiological studies to
solve problems like multiple comparisons and multicollinearity that are typ-
ical of situations where we have high dimensional and correlated exposures.
This method allows to build an empirical weighted index that represents the
overall mixture exposure and test the association with the outcome of inter-
est. The body burden index reduces the dimensionality and it is more robust
to multicollinearity (Carrico et al. 2015). The original methodology provides
the estimate of a single index that allows to measure the association between
the mixture and the dependent variable in only one direction (either positive
or negative). This can be an advantage when the elements in the mixture
have the same direction in the association with the dependent variable. In
fact, looking in one direction we avoid to incur in the reversal paradox (Tu
et al. 2008). However, when the mixture is made of both ”good” and ”bad”
actors, this can become a limit when we want to estimate both the positive
and negative effect that the mixture has on the specific outcome of interest.
In this chapter we propose an extension of the WQS where two indices, one
looking in the positive and the second in the negative direction, will be built
in the same model both at the weights and at the final model estimation
step. An application of the new method on the National Health and Nutri-
tion Examination Survey (NHANES) (2015-2016) dietary data and the effect
on obesity will be shown besides a simulation study to test the accuracy of
the method.
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4.1 Model and Methods

The WQS regression, which general formula is shown in equation 2.1, requires
that data are split in a training and validation dataset. The first part of the
data is used for the weights estimate that allow to build the WQS index
while on the remaining part is fitted the final model to test the effect of the
score on the outcome. In this study we propose to include two indices in the
same model to allow an estimate of the mixture effect both in a positive and
a negative direction at the same time both at training and validation step.
The new general formula will be the following:

g(µ) = β0 + β1p

(
c∑
i=1

wpiqi

)
+ β1n

(
c∑
i=1

wniqi

)
+ z′ϕ (4.1)

where wpi and wni are the weights associated to each component for the
positive and negative direction respectively while βpi and βni are the two
parameters that measure the positive and negative effect of the mixture on
the outcome. The two indices will be kept in the model both at the first
step where two set of weights are estimated (one for the positive and one
for the negative direction) and at the second step when the final model is
fitted. The equality and inequality constraints will be applied to both the
sets of weights besides a constraint to each β1 parameter: β1p ≥ 0 and β1n ≤
0. A penalization term was also introduced to better discriminate between
the elements having an effect and those not associated to the outcome and
to reduce the noise produced by the null components that can increase the
correlation between the two indices. The objective function will be of the
form:

θ̂ = argmin
θ

[
n∑
j=1

(
yj −

(
β0 + β1p

c∑
i=1

wpiqpi+

β1n

c∑
i=1

wniqni + z′ϕ

))2

+ λ

(
c∑
i=1

| νpi | +
c∑
i=1

| νni |

)] (4.2)

where θ = (β0, β1p, β1n, νp1, ..., νpc, νn1, ..., νnc, ϕ, λ) and wi = |νi|∑c
i=1|νi|

, νi ∈ <,
i = 1, ..., c.
The final model will be: g(µ) = β0 + β1pWQSp + β1nWQSn + z′ϕ.
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To further control for the collinearity between the two indices we proposed to
apply a different signal function when averaging the weights estimated in each
bootstrapped sample. In particular we considered the tolerance (the inverse
of the variance inflation factor (VIF)) as the weight in the weighted mean:
f(β̂1(b)) = (tol(β̂1(b))/

∑B
b=1 tol(β̂1(b)))

k where tol is the tolerance associated

to the parameter β̂1(b) and k can be chosen depending on the variability
of the tolerance values: lower variability would bring to apply higher k to
better discriminate between those models where there is a higher collinearity
between the positive and the negative index and those where collinearity is
less severe.

4.1.1 Simulation Study

In order to show how this new model improves both the estimate of the
regression parameters and the weights we performed a simulation study. We
took the data from the NHANES 2015-2016 survey cycle where a total of
43 nutrients were measured through the administration of a food frequency
questionnaire. In total 100 different datasets were built generating the 43
variables from a multivariate normal distribution keeping the same correlation
structure of the original data. As we can see from figure 4.1 the nutrient data
show a complex correlation matrix ranging from -0.05 to 0.93.
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Figure 4.1: Correlation matrix among the 43 nutrients from the NHANES 2015-2016 survey cycle.
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Protein
Carbohydrate

Sugar
Fiber

Saturated Fat
Monounsaturated Fat

Polyunsaturated Fat
Cholesterol

Acohol
Vitamin E

Added Alpha−Tocopherol
Retinol

Vitamin A
Alpha−carotene
Beta−carotene
Cryptoxanthin

Lycopene
Lutein + Zeaxanthin

Thiamin
Riboflavin

Niacin
Vitamin B6
Folic Acid

Food Folate
Folate DFE

Choline
Vitamin B12

Added Vitamin B12
Vitamin C
Vitamin D
Vitamin K

Calcium
Phosphorus
Magnesium

Iron
Zinc

Copper
Sodium

Potassium
Selenium
Caffeine

Theobromine
Moisture

Five nutrients were selected to have weights different from 0 for each di-
rection. In particular the dependent variable was generated from a normal
distribution with mean equal to the combination obtained applying the pa-
rameters showed in table 4.1 as per WQS with double index formula and a
unit standard deviation.

We then fit three different methods on each dataset to compare their perfor-
mances: in method 1 two separate WQS regressions were built, one exploring
the positive and the second the negative direction; in method 2 the WQS set
of weights were estimated separately for the positive and negative directions,
the two WQS indices were then included in the same regression model fitted
on the validation set; we then compared these results with those obtained
applying the WQS regression with double index that we called method 3.
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Table 4.1: Values of the parameter regression (βi) and weights (wi) used to generate the dependent variable.
The weight of all the remaining variables not included in the table were set to 0.

Parameter PWQS NWQS

β1p 0.5
β1n -0.5
w1 0 0.05
w8 0.1 0
w10 0.15 0
w19 0 0.1
w21 0.2 0
w27 0.25 0
w34 0 0.2
w35 0 0.25
w40 0.3 0
w41 0 0.4

4.1.2 Case Study

In the case study we considered the nutrition information from the NHANES
2015-2016 study cycle and we assessed the effects of nutrients on obesity
among adults. Obesity was defined as BMI greater or equal to 30kg/m2. We
excluded subjects with severe obesity (BMI ≥ 40kg/m2).
Nutrients were estimated from the dietary intake data that considered the
types and amounts of foods and beverages (including all types of water)
consumed during the 24-hour period prior to the interview (midnight to mid-
night). Two interviews were performed: the first one was collected in-person
while the second interview was collected by telephone 3 to 10 days later. De-
tails of the survey are described elsewhere (CDC 2016a,b). In this study we
averaged the two nutrition measures and we added the dietary supplement
intake when applicable.
Other information was considered in the study like age, sex, race, educa-
tion as the highest grade or level of school completed or the highest degree
received, the ratio of family income to poverty (using the Department of
Health and Human Services (HHS) poverty guidelines), the minutes of seden-
tary activity represented by the time spent sitting on a typical day and the
minutes of moderate and vigorous activities spent either during work or dur-
ing recreational activities categorized using its tertiles (because of the skewed
distribution) and the smoking status as never-smokers (subjects who did not
smoke as many as 100 cigarettes in their lifetime), former smokers (those who
smoked at least 100 cigarettes in their lifetime but were not currently smoking
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cigarettes), and current smokers (subjects that currently smoked cigarettes).
Exclusion criteria were being on any kind of diet to lose weight or for another
health-related reason at the time of the interview, having a BMI greater than
40kg/m2 and to be younger than 20 or older than 60 years old. In total 1851
subjects were included in the study.
Kruskal-Wallis test and Chi-squared test were used to test differences between
obese and non-obese participants for continuous and categorical variables re-
spectively.

4.2 Results

4.2.1 Simulation Study

As a first step we tested for the best shrinkage parameter λ: a WQS regression
was fitted on each dataset letting λ varying among the values 0, 0.01, 0.1, ..., 107.
To choose the best shrinkage parameter we looked at the Akaike Information
Criterion (AIC) and we selected the parameter that minimizes it. In our case
λ = 1000 was the optimum value as shown by figure 4.2.
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Figure 4.2: WQS regression AIC depending by the shrinkage parameter λ. The red dots represent the average
AIC obtained by fitting WQS models on the 100 datasets fixing λ to the corresponding value.
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We then checked the accuracy in the parameter estimates at varying shrink-
age parameter values. In figure 4.3 the absolute difference between the true
value of the regression parameters β1p and β1n for the positive and the nega-
tive direction respectively at a fixed λ. The most accurate estimates for the
regression parameters correspond to the shrinkage parameter that minimized
the AIC (λ = 1000).
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Figure 4.3: Box-plots of the absolute difference between the true value and estimates of the β1p and β1n
regression parameters for the positive and negative direction respectively at different shrinkage parameters
λ.
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We performed the same analysis for the weights: the weight estimates
showed the lowest median error the 72.1% of the time (31 times out of 43)
when λ = 1000. In figure 4.4 only the elements set with a weight greater than
0 are shown since these were the situations where a more evident difference
was shown among the different λ.
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Figure 4.4: Box-plots of the absolute difference between the weight estimates and the true value at varying
shrinkage parameter λ. Only the elements that were set with a weight different from 0 are shown.
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Once the optimum shrinkage parameter λ was identified, method 1, 2 and
3 were fitted on each of the 100 simulated datasets. Figure 4.5 shows the
box-plots of the absolute value of the difference between the true β value
and the estimates of the three different models for the positive and negative
directions. We can see how the WQS regression with the double index is
able to give a better estimate of the parameters compared to method 1 and
2: for positive direction method 3 reduced the mean error of the 62.1% and
the 29.5% while for negative direction it reduced the mean error of the 52.9%
and the 23.4% compared to method 1 and 2 respectively.
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Figure 4.5: Distribution of the absolute difference between the true values of the regression parameter and
the estimated value by the three models: method 1 fits two separate WQS regression, one exploring the
positive direction and the second exploring the negative direction; method 2 estimates the WQS set of
weights separately for the positive and negative directions and then includes the two WQS indices in the
same regression; method 3 considers a double index in both the training and validation steps.
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Figure 4.6 shows the performance in measuring the weights of method 3
and method 1 and 2 (that share the same weight estimates). The absolute
value of the difference between the true weight and the estimated values was
considered. Also in this case we can appreciate how method 3 performs better
than the other two regressions showing more accurate weight estimates: in
general method 3 shows a lower bias and when we consider the elements with
a weight greater than 0 we can observe a reduction of the mean error of 12.5%,
24.3%, 35.7%, 18.5%, 22.6%, 12.9%, 18.2%, and 11.1% for z41, z40, z27, z35,
z21, z34, z10 and z1 respectively while there was an increase of the mean error
of the 4.3% and 7.6% for z8 and z19 respectively.
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Figure 4.6: Distribution of the absolute difference between the true values of the WQS weights and the
estimated value by method 1-2 (that share the same weights) and method 3.
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4.2.2 Case Study

We then applied the new method of the WQS regression with double index
in a real case study. Table 4.2 shows the descriptive statistics of the overall
population and divided by obese and non-obese for the covariates included in
the WQS regression with double index. A total of 638 (34.5%) subjects were
obese and were characterized by a higher median age and higher prevalence
of females compared to non-obese participants. A different race distribution
was also observed showing a higher percentage of Mexican and Black subjects
and a lower prevalence of Asian participants among obese. Finally, a lower
level of education was detected in obese people.
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Table 4.2: Descriptive statistics of the variables included in the study for the overall population and divided
by obese and non-obese. Median, 1st and 3rd quartiles are shown for continuous variables while counts and
percentages were considered for categorical variables. Kruskal-Wallis test and Chi-squared test were used to
test differences for continuous and categorical variables respectively.

Non-Obese
(N=1213)

Obese
(N=638)

Total
(N=1851)

p-value

Age 38.0 (28.0, 49.0) 42.0 (32.0, 51.0) 40.0 (30.0, 50.0) <0.001
Sex <0.001

M 631 (52.0%) 285 (44.7%) 916 (49.5%)
F 582 (48.0%) 353 (55.3%) 935 (50.5%)

Race <0.001
Mexican 164 (13.5%) 133 (20.8%) 297 (16.0%)
Other Hispanic 138 (11.4%) 82 (12.9%) 220 (11.9%)
White 416 (34.3%) 198 (31.0%) 614 (33.2%)
Black 236 (19.5%) 165 (25.9%) 401 (21.7%)
Asian 220 (18.1%) 27 (4.2%) 247 (13.3%)
Others 39 (3.2%) 33 (5.2%) 72 (3.9%)

Education 4.0 (3.0, 5.0) 4.0 (3.0, 4.0) 4.0 (3.0, 5.0) <0.001
Family income to
poverty ratio

2.2 (1.2, 4.2) 2.1 (1.1, 3.8) 2.2 (1.2, 4.1) 0.072

Minutes of sedentary
activity

360.0 (180.0, 480.0) 360.0 (240.0, 480.0) 360.0 (240.0, 480.0) 0.253

Moderate and Vigorous-
Intensity Activities

0.352

Low 396 (32.6%) 229 (35.9%) 625 (33.8%)
Medium 436 (35.9%) 214 (33.5%) 650 (35.1%)
High 381 (31.4%) 195 (30.6%) 576 (31.1%)

Smoking status 0.345
Never 754 (62.2%) 387 (60.7%) 1141 (61.6%)
Former 187 (15.4%) 115 (18.0%) 302 (16.3%)
Current 272 (22.4%) 136 (21.3%) 408 (22.0%)

In table 4.3 are shown the summary statistics related to the 43 nutrients
included in the analysis. All the elements that showed a significant difference
between the two groups had higher values among non-obese subjects.

Table 4.3: Summary statistics of the 43 nutrients included in the analysis. Median, 1st and 3rd quartiles are shown
for the overall population and divided in obese and non-obese participants. Kruskal-Wallis test was applied to test
for differences between the two groups.

Non-Obese
(N=1213)

Obese
(N=638)

Total
(N=1851)

p-value

Added vitamin
B12 (mcg)

0.0 (0.0, 1.3) 0.0 (0.0, 0.9) 0.0 (0.0, 1.2) 0.171

Added Vitamin E
(alpha-tocopherol) (mg)

0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.069

Alcohol (gm) 0.0 (0.0, 9.3) 0.0 (0.0, 6.7) 0.0 (0.0, 8.5) 0.024

Alpha-carotene
(mcg)

83.5 (22.5, 501.0) 55.0 (17.0, 291.0) 72.5 (21.0, 432.8) <0.001

Beta-carotene (mcg) 1118.0 (479.0, 2973.5) 804.2 (350.2, 1897.5) 992.0 (417.8, 2528.5) <0.001

Caffeine (mg) 85.0 (27.5, 176.0) 91.8 (24.4, 193.0) 88.0 (26.8, 182.0) 0.248
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Calcium (mg) 911.0 (639.0, 1264.0) 883.2 (633.0, 1229.9) 902.5 (638.2, 1257.0) 0.290

Carbohydrate (gm) 244.3 (181.7, 312.2) 235.0 (173.8, 298.1) 241.4 (178.6, 307.6) 0.043

Cholesterol (mg) 265.0 (169.5, 389.5) 267.4 (169.8, 401.8) 265.5 (169.5, 392.8) 0.597

Total choline (mg) 314.7 (227.0, 414.6) 296.8 (212.4, 410.2) 306.9 (221.8, 413.1) 0.027

Copper (mg) 1.2 (0.9, 1.7) 1.1 (0.8, 1.6) 1.2 (0.8, 1.7) <0.001

Beta-cryptoxanthin
(mcg)

43.0 (16.5, 104.0) 46.8 (15.5, 92.4) 44.0 (16.0, 99.5) 0.828

Dietary fiber (gm) 15.9 (11.0, 22.6) 15.1 (10.4, 20.9) 15.7 (10.8, 22.1) 0.026

Folate, DFE (mcg) 587.0 (377.5, 878.8) 502.0 (325.0, 759.9) 547.2 (358.8, 843.0) <0.001

Folic acid (mcg) 195.7 (106.5, 364.0) 157.8 (92.5, 294.9) 182.5 (99.2, 343.5) <0.001

Food folate (mcg) 202.0 (138.0, 289.5) 184.5 (131.5, 268.5) 196.0 (135.8, 283.0) 0.004

Iron (mg) 14.1 (10.1, 19.3) 13.1 (9.6, 18.3) 13.7 (9.9, 19.1) 0.017

Lutein +
zeaxanthin (mcg)

887.0 (480.5, 1754.0) 769.5 (430.5, 1440.0) 853.0 (464.8, 1644.2) 0.002

Lycopene (mcg) 2764.0 (915.0, 6688.0) 2646.2 (878.6, 6613.1) 2718.0 (904.2, 6668.8) 0.495

Magnesium (mg) 297.5 (222.5, 401.0) 274.5 (202.1, 362.0) 291.0 (216.8, 389.0) <0.001

Moisture (gm) 2601.1 (1987.7, 3486.9) 2682.3 (1921.5, 3677.9) 2632.7 (1964.4, 3565.8) 0.459

Monounsaturated
fatty acids (gm)

26.7 (18.8, 35.0) 26.2 (18.6, 35.6) 26.5 (18.7, 35.3) 0.959

Niacin (mg) 27.6 (19.8, 38.7) 25.1 (18.2, 35.7) 26.9 (19.2, 37.8) 0.002

Phosphorus (mg) 1306.0 (1004.5, 1673.0) 1265.8 (948.5, 1648.4) 1290.5 (983.0, 1670.0) 0.108

Polyunsaturated
fatty acids (gm)

16.9 (12.0, 23.6) 17.2 (12.1, 24.7) 17.0 (12.0, 23.9) 0.370

Potassium (mg) 2490.0 (1897.0, 3149.5) 2325.0 (1727.9, 2931.4) 2444.0 (1841.8, 3078.8) 0.002

Protein (gm) 78.9 (59.8, 101.6) 75.3 (57.3, 97.9) 77.7 (59.2, 100.0) 0.041

Retinol (mcg) 316.5 (188.5, 505.5) 301.8 (172.9, 477.8) 311.5 (183.2, 493.0) 0.180

Riboflavin
(Vitamin B2) (mg)

2.1 (1.5, 3.1) 1.9 (1.4, 2.8) 2.0 (1.4, 3.0) 0.005

Saturated fatty
acids (gm)

23.9 (16.5, 33.3) 24.9 (17.0, 34.0) 24.2 (16.7, 33.5) 0.317

Selenium (mcg) 120.0 (86.0, 163.1) 112.2 (82.7, 153.1) 117.6 (84.3, 159.3) 0.043

Sodium (mg) 3409.5 (2458.5, 4338.0) 3336.0 (2518.2, 4170.6) 3377.5 (2470.2, 4280.2) 0.378

Sugars (gm) 95.0 (63.4, 134.6) 93.9 (61.6, 137.0) 94.6 (62.3, 135.3) 0.654

Theobromine (mg) 8.5 (0.0, 39.5) 7.5 (0.0, 35.9) 8.0 (0.0, 38.0) 0.279

Thiamin
(Vitamin B1) (mg)

1.7 (1.2, 2.5) 1.5 (1.1, 2.3) 1.6 (1.2, 2.4) <0.001

Vitamin A,
RAE (mcg)

501.0 (305.0, 767.0) 432.5 (275.4, 677.0) 477.5 (292.5, 732.8) <0.001

Vitamin B12 (mcg) 5.3 (3.0, 10.6) 4.5 (2.6, 9.0) 5.0 (2.9, 10.1) 0.001

Vitamin B6 (mg) 2.2 (1.5, 3.6) 1.9 (1.3, 3.2) 2.1 (1.5, 3.4) <0.001

Vitamin C (mg) 84.5 (36.4, 158.0) 71.2 (30.7, 134.7) 80.6 (35.0, 149.8) 0.002

Vitamin D
(D2 + D3) (mcg)

5.4 (2.3, 15.1) 4.1 (2.0, 10.5) 4.8 (2.2, 13.4) <0.001

Vitamin E as
alpha-tocopherol (mg)

7.8 (5.3, 10.8) 7.3 (5.1, 10.4) 7.6 (5.2, 10.7) 0.083

Vitamin K (mcg) 86.9 (50.8, 148.7) 75.5 (47.6, 124.7) 82.6 (49.2, 140.1) <0.001

Zinc (mg) 11.6 (8.3, 16.8) 10.8 (7.4, 15.6) 11.3 (7.8, 16.3) 0.002
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We then applied the WQS regression with double index to test for the asso-
ciation between the nutrients and the outcome adjusting for all the covariates
reported in table 4.2. We used a repeated holdout approach to have more
stable results including all the observations in the study to estimate both
the weights and the regression parameters during the repeated testing and
validation steps (Tanner et al. 2019). A total of 100 repeated holdout WQS
with double index were performed. Table 4 shows the effects and their 95%
CIs of both the positive and the negative index on the probability of being
obese. Both indices were associated with the outcome. The median was used
as the parameter point estimates while the 2.5th and the 97.5th percentiles
were considered to build the 95% CIs. In table 4.4 are also shown the medi-
ans of the weights greater than the prespecified cutoff (0.023=1/43) for the
positive and negative index where moisture, polyunsaturated fatty acid, sat-
urated fatty acid, sodium, caffeine and cholesterol showed a predominant role
in the positive direction while beta-carotene, vitamin B12, vitamin B6, vita-
min D, folic acid, vitamin C, folate DFE and alpha carotene were inversely
associated with obesity. Figure 4.7 represents the mean and the distribution
of all the elements included in the analysis estimated for both indices.
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Table 4.4: WQS regression with double index results. The estimates and 95% confidence intervals (CI) of the
positive (pwqs) and negative (nwqs) indices are shown. Model was adjusted for age, sex, race, education, the
ratio of family income to poverty, the minutes of sedentary activity, the minutes of moderate and vigorous
activities and the smoking status. The second part of the table shows the magnitude of the weights greater
than the prespecified cutoff (0.023) for both the positive and the negative index.

Estimate 95% CI

pwqs 0.084 0.009; 0.198
nwqs -0.137 -0.243; -0.068

Weights

pwqs

Moisture 0.259
Polyunsaturated fatty acids 0.072
Saturated fatty acids 0.044
Sodium 0.034
Caffeine 0.031
Cholesterol 0.026

nwqs

Beta-carotene 0.148
Vitamin B12 0.071
Vitamin B6 0.050
Vitamin D 0.049
Folic acid 0.047
Vitamin C 0.040
Folate DFE 0.038
Alpha-carotene 0.036
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Figure 4.7: Box-plot of the weights associated to the positive and negative index estimate through the
repeated holdout WQS regression with double index. The dashed red line represents the prespecified cut-off
established to identify the most important elements of the mixture and set equal to the inverse of the number
of the mixture components (0.023).
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Chapter 5

Application of WQS regression to
genetic data

As a final work we tested the performance of WQS in a different context
like genetic compared to environmental exposures. Since the advent of DNA
hybridization microarrays, a persistent challenge in this field is to analyze
and interpret genes or pattern of expression affecting a particular phenotype
(e.g. tumor vs normal). This information provides a better understanding
of the underlying biological process or can be used to predict the condition
on a new sample. Different methods like single sample Gene Set Enrich-
ment Analysis (ssGSEA) (Barbie et al. 2009), Gene Set Variation Analysis
(GSVA) (Hanzelmann et al. 2013), Pathway Level Analysis of Gene Expres-
sion (PLAGE) (Tomfohr et al. 2005) combining z-scores (Lee et al. 2008)
and singscore (Foroutan et al. 2018) have been developed to score individual
samples against gene sets. In particular we will consider the ssGSEA method
which is the most widely used approach in this context. This method sum-
marizes the gene expression in a single enrichment score for each pairing of
sample and gene set independently by the condition. ssGSEA scores a gene
set enrichment profile representing the activity level of the biological mecha-
nism where the genes can be up- or down-regulated. The effect of the score
on the considered dependent variable can be tested in a standard regression
model. This allows to overcome the problem of the high dimensionality of
the data that classical statistical methods are not able to manage. However,
a limit of all these approaches included ssGSEA is the unsupervised estimate
of the score, where by unsupervised we mean that the index is created in ab-
sence of the dependent variable. WQS regression is a novel statistical method
that can deal with high dimensional data especially through its random sub-
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set extension, and it is able to estimate a score in the presence of the outcome
better identifying the true genes which expression affects the dependent vari-
able. Moreover, the initial application of the WQS regression with double
index allows to identify either the bidirectional or unidirectional effect of the
gene signature due to the up- and down-regulated gene set’s members.
In this chapter we propose the application of the WQS regression within the
context of the biological pathways. We will test its performance compared to
the ssGSEA method and we will show how to apply it in a real case study.

5.1 Model and Methods

In order to apply the WQS regression in the context of a pathway analysis
we propose to apply the WQS with double index as per equation 4.1. In this
case the two indices are necessary to identify an effect of the up- or down-
regulation of the genes on the considered outcome. A single score may be
necessary to represent the pathway hypothesized to affect the condition of
interest. In this case a second model has to be fitted. If only one of the
two scores is statistically significant then a WQS regression with single index
(equation 2.1) has to be performed choosing the same direction of the sig-
nificant association. If there is an effect of both indices, the genes with the
highest weights (selected through the prespecified cutoff τ usually set equal to
the inverse of the number of elements in the mixture) associated to the index
representing the opposite direction to the one identified by the pathway are
multiplied by -1 to reverse their effect. A WQS regression with single index
can now be fitted to estimate the association between the gene set and the
outcome.

5.1.1 Simulation Study

To test the performance of the WQS in estimating the effect of a chosen
gene set on an outcome we considered data from the curatedOvarianData
(Ganzfried et al. 2013) from The Cancer Genome Atlas (TCGA) program.
This dataset included patients with ovarian cancer providing uniformly pre-
pared microarray data for 2970 patients from 23 studies with documented
clinical information. A total of 578 subjects being part of the TCGA study
were considered in our analysis. A genetic pathway was randomly selected
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and the correlation matrix (figure 5.1) of the variables representing the gene
expression was applied to derive the covariance matrix used to define the sim-
ulated independent variables from a multivariate normal distribution (with a
null mean vector). A total of 20 genes were included in the analysis and 500
observations were generated for each of the 100 datasets.

Figure 5.1: Gene set correlation matrix.
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Two outcomes were generated from a normal distribution with a mean
equal to the resulting WQS formula setting the parameters as described in
table 5.1 and a unit variance. Those weights associated to the genes which
did not have an effect on the outcome were not reported in table 5.1 and were
set to zero. The first dependent variable y1 was built under the assumption of
a double directionality of the association while y2 was identified considering
only a positive effect of the gene set. In total 8 genes were selected for y1,
4 in each direction. The same 4 genes included in the positive index for y1
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were considered for y2.

Table 5.1: Parameter values used to generate the two dependent variables y1 and y2 in the presence of a
double directionality of the association and only a positive effect of the gene set respectively.

y1 y2
β1p 0.5 0.5
β1n 0.5 0
W3p 0.15 0.15
W14p 0.5 0.5
W15p 0.4 0.4
W19p 0.25 0.25
W2n 0.3 0
W7n 0.15 0
W11n 0.45 0
W12n 0.1 0

5.1.2 Case Study

We then applied the ssGSEA and the WQS regression on the real data from
the curatedOvarianData. We selected a known pathway that increases the
risk of death among patients with ovarian cancer. The pathway involved in
cell-cycle is known to be altered at high frequencies in ovarian cancer among
others: it identifies a series of events that control the genome replication
and the subsequent chromosomes segregation into daughter cells (Matthews
2011). A total of 527 genes were identified as involved in the cell-cycle among
those present in the curatedOvarianData; as previously mentioned the sample
size was made of 578 observations which reduced to 559 subjects because of
few missing values of the dependent variable. Because of the large number of
variables (genes) included in the analysis we applied a WQSRS while a WQSRH

was considered to allow all observations to be chosen in both training and
validation steps. The results obtained from applying the ssGSEA gene score
in a logistic regression and the WQS regression to test for the effect of the
expression of the selected gene set and the condition of each subject (deceased
or living) were then compared.

5.2 Results

5.2.1 Simulation Study

In the first instance we applied the WQS regression with double index and the
ssGSEA to the simulated data considering y1 as the outcome. In figure 5.2A
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are represented the boxplots of the absolute differences between the estimates
of the regression parameter associated to the score for each method and the
true values. The WQS with double index shows more accurate estimates of
the regression parameters (ME: 0.100; SD: 0.074 and ME: 0.105; SD: 0.069
for pwqs and nwqs scores respectively) compared to ssGSEA (ME: 0.721;
SD: 0.406) showing a bias reduction of the 85.4%. Once we reverse the
variables associated to the down-regulated genes with a weight greater than
the prespecified cutoff we can still see a better performance of the WQS with
single index (ME: 0.164; SD: 0.125) reducing the bias of the 77.3%. The
effects of the ssGSEA and the WQS with single index were compared to 1
since the total effect (the sum of the absolute value of both positive and
negative directions) sums to the unit value. Moreover, in the presence of
a double effect of the up- and down-regulated selected genes we can see an
underestimated effect (average effect: 0.299) and higher SEs (average SE:
0.440) when applying the ssGSEA compared to the WQS with single index
where the mean effect is slightly lower (0.913) with an associated lower SEs
(average SE: 0.188).
In figure 5.2B we compared the results of the two methods applied to the
outcome y2 where only a positive effect is simulated. Also in this case we can
observe more accurate estimates of the WQS with double index (ME: 0.169,
SD: 0.113 and ME: 0.148; SD: 0.111) compared to ssGSEA (ME: 1.755, SD:
0.768) showing a reduced bias of the 90.4%. The WQS with double index did
not detect a negative effect of the score on the dependent variable; we then
applied the WQS with single index setting a positive direction (ME: 0.172;
SD: 0.109) and we could still see a better performance compared to ssGSEA
reducing the mean error of the 90.2%. In the situation of an effect in only
one direction (due to either the up- or down-regulated genes) we observed an
overestimated effect of the ssGSEA (average effect: 2.2453) and higher SEs
(average SE: 0.791) compared to WQS with single index where we can see a
slightly higher mean effect (average effect: 0.516) and lower SEs (average SE:
0.204).
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Figure 5.2: Boxplots of the absolute difference between the true and estimated value of the regression
parameter associated to the score for each method (WQS with double index (pWQS and nWQS), ssGSEA
and WQS with single index) applied to test the effect on the two outcomes y1 and y2.
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Through WQS regression we are also able to identify the genes that show
a greater effect in the identified pathway. As per table 5.1 g15, g19, g14 and g3

were identified as the genes with a positive significant effect on the dependent
variable and were correctly selected 100%, 62%, 72% and 56% of the time
respectively by WQS regression. The WQS negative score was then built
giving a non-null weight to g11, g2, g7 and g12 which were correctly chosen
100%, 98%, 49% and 35% of the time respectively. The results related to the
outcome y2 showed that g15, g19, g14 and g3 were correctly identified the 93%,
77%, 69% and 45% of the time. The distribution of the weights of the three
scores is shown in figure 5.3A-B-C respectively.
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Figure 5.3: Boxplots of the absolute difference between the true and estimated value of the weights from the
WQS regression with double index applied to the outcome y1 (panel A for positive score and panel B for
negative score) and y2 (panel C for positive score; negative score weights are not shown since the effect in
this direction was not significant).
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Once the distribution of the down-regulated genes was reversed to estimate
the effect of a single score on y1 we observed that the genes g11, g15, g2, g19, g14,
g3, g7 and g12 were correctly selected the 100%, 99%, 91%, 69%, 65%, 46%,
49% and 28% of the time respectively. The results related to the outcome
y2 showed that g15, g19, g14 and g3 were correctly identified the 97%, 68%,
72% and 49% of the time. The distribution of the weights of the two scores
is shown in figure 5.4A-B respectively.
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Figure 5.4: Boxplots of the absolute difference between the true and estimated value of the weights from the
WQS regression with single index applied to the outcome y1 (panel A) and y2 (panel B).
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5.2.2 Case Study

The study moved to the application of the WQS with double index on a
real case study: a total of 527 genes being part of the cell-cycle pathway were
selected to test the association between the gene set and the condition of each
subject (deceased or living). When we applied the ssGSEA to estimate the
genetic score and test its effect on the outcome through a logistic regression
we find a negative but not statistically significant effect (β -1.017; 95%CI
-2.356, 0.300). The WQS regression with double index showed a significant
association in the negative but not in the positive direction (β -0.230; 95%
CI -0.399, -0.055 and β 0.157; 95% CI -0.111, 0.416 respectively) (results
displayed in table 5.2).When we applied the WQS regression with single index
after reversing the distribution of the down-regulated genes we observed an
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increased risk of death corresponding to higher score values (β 0.923; 95% CI
0.499, 1.397).

Table 5.2: Estimates and 95% CI obtained applying the ssGSEA, the WQS with double index and the WQS
with single index (built after reversing the down-regulated genes).

Estimates 95% CI

ssGSEA -1.017 -2.356, 0.300
pwqs 0.157 -0.111, 0.416
nwqs -0.230 -0.399, -0.055
wqs 0.923 0.499, 1.397

In order to represent the difference in detecting the effect of the gene ex-
pression on the outcome we categorized the ssGSEA and WQS in ”Low” and
”High” score using the respective medians and then looked at the effect on
time to death. Comparing the survival probability between the two groups
we can clearly see how those subjects with a high WQS score have a lower
probability to survive than those with a lower score (p<0.0001) while we
do not see a significant difference when using the ssGSEA score (p=0.680)
(figure 5.5).
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Figure 5.5: Effect of ssGSEA (A) and WQS (B) score on time to death.
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Chapter 6

Discussion

6.1 Effect modification in WQS regression

Through the introduction of an interaction term in the WQS regression we
were able to test for the effect modification of an environmental mixture due
to a covariate of interest (either categorical or continuous). WQS regression
accommodates the evaluation of the mixture effect as a weighted index of
multiple elements which may have a complex correlation pattern. Once the
weights are estimated using the training data, the index is built and included
in analysis of the hold-out validation data as a continuous variable. Through
representation of the chemical mixture in a weighted index, we can easily test
for the interaction with a second covariate adding a multiplicative term as in
a standard regression. The analysis strategy permits a direct test for changes
in the mixture effect due to important covariates (e.g., age, sex).
In the simulation study we evaluated the importance of including the inter-
action term while estimating the weights to obtain a lower bias on both the
regression parameter and weight estimates. In the case of a categorical ef-
fect modifier we showed that when considering both the interaction between
the WQS index and the categorical variable, and we stratify the weights
evaluating a set of parameters for each level of the categorical variable, we
obtain more accurate estimates. Moreover, when applying method 3 in the
absence of an interaction or when weights do not vary across categories we
can appreciate similar results to method 1 and 2. Based on these simulations
we recommend to initially fit the complex model including both the inter-
action term and stratified weights and then move to a simpler model if the
interaction term is not statistically significant; or, in the case of categorical
interaction terms, if the estimated weights are similar across categorical vari-
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able levels. In the first case the stratified weights can be kept even if the
interaction term is not significant, while in the second situation we can spec-
ify the model with only the interaction term between the WQS index and the
categorical variable without stratifying the weights.
In the case study, we applied the extension of WQS regression allowing for
interaction where we tested for the mixture effect of blood concentrations of
Pb, Cd, Hg, Se and Mn on FVC among children from 6 to 17 years old. Us-
ing a mixture approach, we saw an inverse association of metal exposure with
FVC mainly driven by Hg, Pb and Mn. In the previous work from Madrigal
et al. (2018), only a direct effect of Mn on FVC among blood metal concen-
trations was detected. When including an interaction between Mn and age
they also observed that this association was strongest among older youth.
Through the WQS regression modeling, we see how the mixture effect can
change compared to a single element analysis: WQS regression allowed us
to find that not only Mn but also Hg and Pb have a meaningful effect on
FVC when considering all metals in the same analysis - evidence of a mixture
effect. Moreover, when we include the interaction with age we were able to
find that the association between FVC and Pb and Hg was attenuated among
older children. This agrees with previous literature stressing the higher vul-
nerability of younger children to environmental chemical exposure (Landrigan
et al. 2016, Sly et al. 2016, Suk et al. 2016). Finally, we were also able to find
different effects of metal exposure between males and females. In particular
the model demonstrated a higher effect of the mixture among females mainly
driven by Cd and Hg meaning that female FVC is more susceptible to these
two metals compared to males.
A previous work from Lee et al. (2019) (Lee et al. 2019) demonstrated another
approach to estimating stratum-specific weights of exposures in a mixture:
the variables representing the multiplicative interaction between the chemi-
cals and the effect modifiers are included in the WQS index as part of the
mixture and a weight is also attributed to these components. A potential
disadvantage in such an approach is that it does not allow for a direct hy-
pothesis test for the significance of putative interactive effects. In contrast,
the approach proposed here allows for direct tests for effect modification at
the level of the whole mixture and the outcome, not at the interaction of the
single elements. This is particularly useful when we are interested in consid-
ering the impact of different elements as a whole and the starting hypothesis
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is that the effect modifier can interact with all the chemicals included in the
mixture. Moreover, through the stratified weights we were able to measure
the category specific contribution of each element to the effect of the whole
mixture when considering a categorical modifier.

6.2 WQS with double index

Through the introduction of a double index we extended the WQS regression
to the case where the mixture considered in the study can have both a positive
or a negative effect. We allowed to build two scores in the same regression
model both including all the elements of the mixture, one constrained to be
positive and one to be negative. A recent work from Keil et al. (2020) (Keil
et al. 2020) introduced a new approach that allows to estimate the overall ef-
fect of the mixture on the outcome when there is uncertainty about the effect
direction of some exposures. Differently from the original WQS regression
they proposed to estimate positive and negative weights within the same in-
dex using normalized linear (or generalized linear) regression coefficients and
then estimating the mixture effect via a standard g-computation algorithm.
Thanks to this approach we are able to measure the overall effect of the
mixture on the outcome but we cannot estimate the impact in the positive
and negative direction. Through our method we introduced the possibility
to measure both the beneficial and harmful effect of the mixture exposure.
In this work we showed how the two indices were built and how we deal
with the correlation between the two scores: because of the high correlation
among the elements included in the mixture we noticed an increased risk of
collinearity when including both indices in the same regression model. To face
this problem we applied two strategies. At first we introduced a penalization
parameter in the objective function used to estimate the weights to better
discriminate between the elements that have a weight significantly different
from zero and those who have a null weight. This helps to reduce the noise
produced by the elements that are not associated with the outcome which can
increase the correlation between the two indices. To define the shrinkage pa-
rameter a cross-validation step should be performed. However, since this can
be computationally intense, a rule of thumb that can be applied to choose the
value of the parameter lambda is to set it equal to the magnitude of the AIC
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of the non-penalized WQS regression. We then suggest to fit a non-penalized
WQS regression with double index and then run the same model setting three
different shrinkage parameter values: one equal to the magnitude of the AIC
of the previous regression, one to a lower and one to a greater order of mag-
nitude. The parameter associated to the lowest AIC will be selected. As a
second step we weighted the final weight estimates by the tolerance, giving
higher ”importance” to the set of weights with lower collinearity between the
two indices among all of those estimated in the bootstrap step. However, we
strongly suggest to do a final check of the collinearity between the two scores.
In the real case study we applied this new methodology taking data from the
NHANES 2015-2016 study cycle to test for the association between nutri-
ents and obesity. The results showed a harmful effect of moisture, polyun-
saturated fatty acids, saturated fatty acids, sodium, caffeine and cholesterol.
While some nutrients like saturated fatty acids (González-Becerra et al. 2019,
Tortosa-Caparrós et al. 2017, Ralston et al. 2017, Rogero & Calder 2018),
cholesterol (Tall & Yvan-Charvet 2015, Sozen & Ozer 2017) and sodium
(Kang et al. 2016, Zhou et al. 2019, Lee et al. 2018) are already known
risk elements for obesity, we also found nutrients for which there is a contro-
versial evidence of their effect on BMI like moisture or caffeine. The effect
of the first nutrient may depend by its intake source (Tayie & Beck 2016,
Walton et al. 2019, Kant et al. 2009) and the lack of information about its
origin is a limit of our study. The second element has a protective effect
on a regular intake (Bhatti et al. 2013) but in excessive doses it can affect
insomnia and anxiety (Nehlig 2018, Yang et al. 2010) which are associated
in turn with obesity (Amiri & Behnezhad 2019, Rajan & Menon 2017, Cai
et al. 2018). For this reason, the effect that we noticed could not be entirely
due to caffeine intake. Because of the unavailable information of the different
types of polyunsaturated fatty acids we were not able to disentangle which
component drove the harmful effect on obesity. Polyunsaturated fatty acids
are known to be protective against overweight and obesity (Tortosa-Caparrós
et al. 2017, Ralston et al. 2017, Rogero & Calder 2018, Saini & Keum 2018,
Figueiredo et al. 2018, Albracht-Schulte et al. 2018), however there is evi-
dence that an increased intake of omega-6 long-chain polyunsaturated fatty
acids can increase the risk of obesity (Saini & Keum 2018, Figueiredo et al.
2018, Albracht-Schulte et al. 2018, Fekete et al. 2015) in particular if there is
an unbalanced omega-6/omega-3 ratio, an increasingly widespread problem

61



in western countries (Simopoulos 2016). On the other hand, a protective ef-
fect against obesity was found for beta-carotene, vitamin B12, vitamin B6,
vitamin D, folic acid, vitamin C, folate DFE and alpha-carotene. For all of
these nutrients there was evidence of a beneficial effect against obesity in
previous studies (Coronel et al. 2019, Bonet et al. 2016, Perveen et al. 2015,
Wiebe et al. 2018, Pereira-Santos et al. 2015, Savastano et al. 2017, Walsh
et al. 2017, Pourshahidi 2015, Garcia-Diaz et al. 2014, Thomas-Valdés et al.
2017).
One strength of this novel approach is the ability to include all nutrients in
the analysis considering the possible confounding that can be caused by the
exclusion of some elements. All previous studies showed the association of
one or few elements selected at a time with obesity. Moreover, we showed
that considering two indices in the same WQS regression increased the accu-
racy of the parameter estimates when the mixture has a bidirectional effect
on the outcome of interest. In addition to already available methods like
the quantile-based g-computation approach, our new methodology allows to
measure the double association of the mixture quantifying the effect in both
the positive and negative direction with the dependent variable.

6.3 WQS for genetic data

In chapter 5 we tested the performance of WQS in a different field of ap-
plication. WQS was originally developed to face the problems related to
environmental exposure and the increased need of instruments able to deal
with large datasets and correlated variables. This corresponds to the same
need that biologists encounter when they aim to test if genes or pattern of
expression affect a particular phenotype. All the available methods that are
usually applied in this context require the estimate of a score in absence of the
dependent variable. WQS regression has the great advantage to be a super-
vised method able to build an index that attributed higher weights to those
genes whose down- or up-regulation shows a higher effect on the outcome.
Through this study we compared the performance of WQS and ssGSEA, the
most used approach in this context, and we observed how WQS gives more
accurate estimates of the effect of the genetic score on the dependent vari-
able. Moreover, WQS regression is able to identify which genes give a higher
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contribution to the association with the outcome through the estimate of
the weights. This can be an important additional information that allows
to select the genes that can mainly regulate the considered pathway and to
conduct a subsequent intervention.
The application of WQS and ssGSEA to the case study confirmed the ability
of WQS in determining the biological pathway: in our case we were able to
find a significant role of the genes involved in cell-cycle in the risk of death
for ovarian cancer which was not observed applying ssGSEA. The measure of
the effect was still less variable when using WQS regression showing narrower
standard errors.

6.4 Conclusion

The advantages of WQS regression and the extension that we showed in this
work are the ease of use and interpretation of the results. Moreover, the
two extensions presented in this work allow to cover some problems left un-
solved by other methods like Bayesian Kernel Machine Regression (BKMR)
(Bobb et al. 2015), Bayesian Semiparametric Regression (BSR) (Antonelli
et al. 2019) and quantile g-computation which share some common features
with WQS like variable selection and measuring environmental mixture ef-
fect: none of these methods allow to consider the effect modification due to a
covariate or to measure the amount of positive and negative association when
the elements show both effects. On the other hand limits of this method are
the lower flexibility due to the assumption of a linear trend between each
element and the dependent variable compared to more flexible environmental
mixture methods like BKMR and BSR and the more computational intensive
procedure in contrast to methods like quantile g-computation or ssGSEA for
the genetic context.
In summary, we implemented the possibility to apply the WQS regression
to the generalised case when we have a binary, multinomial or count depen-
dent variable. We then added the ability to test for an interaction between
the WQS index representing the overall mixture exposure and a continuous
or a categorical covariate showing the importance of considering the inter-
action term both during the training and validation steps. Moreover, we
introduced the option to consider the bidirectionality of the mixture effect
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on the outcome in the same model improving the performance of WQS to
finally apply it in the genetic field, a new application context for WQS which
showed promising performances. All these extensions will be implemented
in the gWQS package which development was part of this work (Appendix A)
and it is already available on CRAN.
These studies will be the starting point for additional future extensions, im-
plementations and applications of the WQS regression.
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Appendix A

The gWQS R package

The R package gWQS extends WQS, WQSRS and WQSRH regression to appli-
cations with continuous, categorical and count outcomes. The first main func-
tion of the gWQS package is gwqs, which allows the implementation of WQS
and WQSRS regression, while the function gwqsrh that relies on the gwqs

function, allows to apply the WQSRH method. For all the three method-
ologies a linear, logistic, multinomial, Poisson, quasi-Poisson and negative
binomial regression are implemented. For Poisson and negative binomial re-
gression a zero inflated option is also implemented. Few secondary functions
are also available to generate plots and tables from the gwqs and gwqsrh

output and will be described in the following four examples. The gWQS

package uses the optim function from the stats package as optimization
algorithm to estimates the weights. This function allows to solve general
nonlinear programming problems through the Broyden, Fletcher, Goldfarb
and Shanno (BFGS) method (Broyden 1970, Fletcher 1970, Goldfarb 1970,
Shanno 1970), a quasi-Newton method also known as a variable metric algo-
rithm. A quadratic transformation is applied to the weights while optimizing
the objective function in order to constrain them to be positive; they are then
normalized to get their sum equal to one.
We created the wqs_data dataset (available once the package is installed and
loaded) to demonstrate the use of these functions. These data reflect 59 ex-
posure concentrations simulated from a distribution of 34 PCB exposures and
25 phthalate biomarkers measured in subjects participating in the NHANES
study (2001-2002). Additionally, 8 outcome measures were simulated apply-
ing different distributions and fixed beta coefficients to the predictors. In
particular y and yLBX were simulated from a normal distribution, ybin and
ybinLBX from a binomial distribution, ymultinom and ymultinomLBX from a
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multinomial distribution and ycount and ycountLBX from a Poisson distri-
bution. Table A.1 shows the real beta coefficient values used to generate the
dependent variables:

yLBX, ybinLBX,
ycountLBX

y, ybin,
ycount

ymultinomLBX ymultinom

Level B Level C Level B Level C
PCBs
LBX138LA 0.6 0.6 0.8 0 0.8 0
LBXD02LA 0.45 0.45 0 0.6 0 0.6
LBXF07LA 0.45 0.45 0 0.6 0 0.6
LBX105LA 0.3 0.3 0 0.4 0 0.4
LBXF06LA 0.3 0.3 0 0.4 0 0.4
LBX157LA 0.2 0.2 0 0.3 0 0.3
LBXD04LA 0.15 0.15 0.2 0 0.2 0
Phthalates
URXMOH 0 0.45 0 0 0 0.6
URXP10 0 0.3 0 0 0.4 0
URXP02 0 0.2 0 0 0.3 0
URXUCR 0 0.2 0 0 0.3 0
URXMC1 0 0.15 0 0 0.2 0

Table A.1: Real beta coefficient values used to generate the dependent variables.

The sex variable was also simulated to allow to adjust for a covariate in
the model. This dataset can thus be used to test the gWQS package by ana-
lyzing the mixture effect of the 59 simulated chemicals on the outcomes, with
adjustments for covariates.
We list five examples to illustrate the usage of the package.

A.1 Example 1

The following script calls a WQS model for a continuous outcome using
the function gwqs that returns an object of class gwqs; the three functions
gwqs_barplot, gwqs_scatterplot and gwqs_fitted_vs_resid allow to plot
the figures shown in figure A.1, while the functions gwqs_summary_tab and
gwqs_weights_tab allow to generate the summary and weights tables:

R> library(gWQS)

R> # we save the names of the mixture variables in the variable "PCBs"

R> PCBs <- names(wqs_data)[1:34]

R> # we run the model and save the results in the variable "results"

R> results <- gwqs(yLBX ~ wqs, mix_name = PCBs,

+ data = wqs_data, q = 10,
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+ validation = 0.6, b = 100,

+ b1_pos = TRUE, b1_constr = FALSE,

+ family = "gaussian", seed = 2016)

R> # bar plot

R> gwqs_barplot(results)

R> # scatter plot y vs wqs

R> gwqs_scatterplot(results)

R> # scatter plot residuals vs fitted values

R> gwqs_fitted_vs_resid(results)
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Figure A.1: Plots available for linear outcomes

This WQS model tests the relationship between our dependent variable,
yLBX, and a WQS index estimated from ranking exposure concentrations in
deciles (q = 10); in the gwqs formula the wqs term must be included as if
a wqs variable was present in the dataset. The data were divided in 40%
of the dataset for training and 60% for validation (validation = 0.6), and
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100 bootstrap samples (b = 100) for parameter estimation were assigned
(in practical applications we suggest at least 100 bootstrap samples to be
used). Because WQS provides a unidirectional evaluation of mixture effects,
we first examined weights derived from bootstrap models where β1 was posi-
tive (b1_pos = TRUE); we could test for negative associations by setting that
parameter to be false (b1_pos = FALSE). We can also choose to constrain
the β1 to be positive (b1_pos = TRUE and b1_constr = TRUE) or negative
(b1_pos = FALSE and b1_constr = TRUE) when we estimate the weights; in
the case of example 1 we are not applying a constraint to β1. We linked our
model to a gaussian distribution to test for relationships between the contin-
uous outcome and exposures (family = "gaussian"), and fixed the seed to
2016 for reproducible results (seed = 2016).
To test the statistical significance of the association between the variables in
the model, the following code has to be run as for a classical R regression
function:

R> summary(results$fit)

Call:

glm(formula = formula, family = family, data = bdtf, weights = wghts)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.0285 -0.6612 -0.0078 0.6998 3.5401

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.74268 0.32599 -14.55 <2e-16 ***

wqs 1.07415 0.07023 15.30 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.196741)

Null deviance: 636.62 on 299 degrees of freedom

Residual deviance: 356.63 on 298 degrees of freedom

AIC: 909.24

Number of Fisher Scoring iterations: 2

This result tells us that the association between the WQS index and the
outcome yLBX is positive and statistically significant (p<2e-16).
Figure A.1 A is a barplot showing the weights assigned to each variable or-
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dered from the highest weight to the lowest. The dashed red line represents
the cutoff τ to discriminate which element has a significant weight greater
than zero. As suggested in Carrico et al. (2015) the default value is set to
τ = 1/c where c is the number of elements in the mixture (in our case c =
34). From these results we notice that the variables LBXD02LA, LBXF07LA,

LBX138LA, LBX105LA, LBXF06LA, LBX157LA, LBXF05LA and LBXD01LA are
the largest contributors to the mixture effect. According to table A.1 the
model was able to find all the elements associated with the outcome apart
from LBXD04LA and wrongly attributed a high weight to LBXF05LA and LBXD0-

1LA.
To have the exact values of the estimated weights we can apply the com-
mand results$final_weights. The following code shows the first six high-
est weights; the full list of weights can be called by omitting the head function:

R> head(results$final_weights)

mix_name mean_weight

LBXD02LA LBXD02LA 0.14862139

LBXF07LA LBXF07LA 0.13418317

LBX138LA LBX138LA 0.13368244

LBX105LA LBX105LA 0.10570102

LBXF06LA LBXF06LA 0.06156063

LBX157LA LBX157LA 0.04811495

This same table as well as the summary table are also shown in the Viewer
window through the functions gwqs_weights_tab and gwqs_summary_tab re-
spectively. Both these two functions use the package kableExtra to produce
the output. The output (table A.2 and A.3) and respective code is shown be-
low (only the first 10 elements with highest weights are reported in table A.3):

R> # summary table

R> gwqs_summary_tab(results)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.74 0.3260 -14.5 0
wqs 1.07 0.0702 15.3 0

Table A.2: Summary results of the WQS regression for linear outcomes.

R> mf_df = as.data.frame(signif(coef(summary(results$fit)), 3))

R> kable_styling(kable(mf_df, row.names = TRUE))
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mix name mean weight
LBXD02LA 0.149000
LBXF07LA 0.134000
LBX138LA 0.134000
LBX105LA 0.106000
LBXF06LA 0.061600
LBX157LA 0.048100
LBXF05LA 0.041800
LBXD01LA 0.039600
LBX170LA 0.027000
LBX180LA 0.025000

Table A.3: Weights table of the WQS regression for linear outcomes.

R> # weights table

R> gwqs_weights_tab(results)

R> final_weight <- results$final_weights

R> final_weight[, -1] <- signif(final_weight[, -1], 3)

R> kable_styling(kable(final_weight, row.names = FALSE))

In plot B of figure A.1 we have a representation of the wqs index and the
outcome (adjusted for the model residual when covariates are included in the
model) that shows the direction and the shape of the association between the
exposure and the outcome. For example, in this case we can observe a linear
and positive relationship between the mixture and the yLBX variable.
In plot C a diagnostic graph of the residuals vs the fitted values is shown to
check if they are randomly spread around zero or if there is a trend. All these
plots are built using the ggplot2 package.
The gwqs function gives back other outputs like the vector of the values that
indicate whether the solver has converged (0) or not (1) (results$conv), the
matrix with all the estimated weights and the associated β1, standard errors,
statistics and p-values for each bootstrap sample (results$bres), the vec-
tor of the estimated wqs index (results$wqs), the list of vectors containing
the cutoffs used to determine the quantiles of each variable in the mixture
(results$qi), the list of vectors containing the rows of the subjects included
in each bootstrap dataset (results$bindex), the rows identifying the sub-
jects used to estimate the weights in each bootstrap (results$tindex), the
rows identifying the subjects used to estimate the parameters of the final
model (results$vindex), the vector of the values of the objective func-
tion at the optima parameter estimates obtained at each bootstrap step
(results$objfn_values) and any messages from the optim function (resul-
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ts$optim_messages).
The following script allows to reproduce the figures that are automatically
generated using the plots functions:

R> # bar plot

R> w_ord <- order(results$final_weights$mean_weight)

R> mean_weight <- results$final_weights$mean_weight[w_ord]

R> mix_name <- factor(results$final_weights$mix_name[w_ord],

+ levels = results$final_weights$mix_name[w_ord])

R> data_plot <- data.frame(mean_weight, mix_name)

R> nPCBs <- length(PCBs)

R> ggplot(data_plot, aes(x = mix_name, y = mean_weight)) +

+ geom_bar(stat = "identity", color = "black") + theme_bw() +

+ theme(axis.ticks = element_blank(),

+ axis.title = element_blank(),

+ axis.text.x = element_text(color='black'),
+ legend.position = "none") + coord_flip() +

+ geom_hline(yintercept = 1/nPCBs, linetype="dashed", color = "red")

R> #

R> # scatter plot y vs wqs

R> ggplot(results$y_wqs_df, aes(wqs, y_adj)) + geom_point() +

+ stat_smooth(method = "loess", se = FALSE, size = 1.5) + theme_bw()

R> #

R> # scatter plot residuals vs fitted values

R> fit_df <- data.frame(fitted = fitted(results),

+ resid = residuals(results, type = "response"))

R> ggplot(fit_df, aes(x = fitted, y = resid)) + geom_point() +

+ theme_bw() + xlab("Fitted values") + ylab("Residuals")

A.2 Example 2

In the following code we run a logistic regression (family = binomial) to
test the association between the exposure to all the 59 elements in the mix-
ture and the outcome ybin. In this case we apply the WQSRS method (rs
= TRUE) creating 1000 random subsets (b = 1000) selecting without replace-
ment

√
(c) (as default) variables from the entire set (in our case each random

subset contains 8 variables, a different number can be chosen through the pa-
rameter n_vars). An exponential signal function is applied to the t-statistic
associated to the WQS parameter and then used as weight when averaging
the final WQS weights in order to give more importance to the estimates of
those weights related to a more significant β parameter. A quadratic (default)
or an exponential signal function is recommended especially when using the
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WQSRS. Since the mixture concentrations in this example are already stan-
dardized we can also run a model without categorizing for quantiles (q =

NULL) after checking that there were no skewed distributions. Furthermore
we examined the ability of our model to predict the outcome on a third part of
the dataset: we split the data in a training dataset (wqs_data_train) used to
build the model and a second part was used for prediction (wqs_data_pred).
The training dataset was further split in test and validation (40% and 60% of
the training dataset respectively (validation = 0.6)) to build the WQSRS

model.

R> # we save the names of the mixture variables in the variable

R> # "toxic_chems"

R> toxic_chems <- names(wqs_data)[1:59]

R> # create a dataset exluding the data where we want to apply the

R> # prediction and define the group variable to identify the test

R> # and validation dataset

R> set.seed(1234)

R> pred <- sample(1:nrow(wqs_data), 150)

R> wqs_data_train <- wqs_data[-pred,]

R> wqs_data_pred <- wqs_data[pred,]

R> # we run the logistic model and save the results in the variable

R> # "results2"

R> results2 <- gwqs(ybin ~ wqs, mix_name = toxic_chems, rs = TRUE,

+ signal = "exp", data = wqs_data_train, q = 10,

+ validation = 0.6, b = 1000, b1_pos = TRUE,

+ b1_constr = FALSE, family = binomial, seed = 2016)

R> # bar plot

R> gwqs_barplot(results2)

R> # scatter plot ybin vs wqs

R> gwqs_scatterplot(results2)

R> # plot ROC

R> gwqs_ROC(results2, wqs_data_pred)
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Figure A.2: Plots available for binary outcomes

As we can see from table A.4 (generated by the function gwqs_summary_tab)
there is a statistically significant association between the WQS index and the
outcome ybin (p=1.47e-07):

R> # summary table

R> gwqs_summary_tab(results2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.00546 0.152 -0.036 0.971
wqs 3.37000 0.608 5.550 0.000

Table A.4: Summary results of the WQSRS regression for binary outcomes.

Figure A.2 A and B are generated by the same functions gwqs_barplot,

gwqs_scatterplot as reported in the code above. From figure A.2 A we
see the per-variable calculated weights, ordered by relative magnitude. All
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the elements associated with the dependent variable were correctly identified
apart from LBX105LA, while there were few non significant weights wrongly in-
cluded: LBXD07LA, URXP07, URXP06, URXP04, LBXHXCLA and URXP01. Plot
B shows a positive relationship between the mixture and the outcome con-
firming the results in table A.4. Through the predict function we can run
the predictive model. The following code shows how to reproduce the predic-
tion: the function predict requires the object results2 of class gwqs and
the optional new dataset (argument newdata) on which the prediction model
is applied; alternatively if the newdata argument is not specified the predic-
tive model is applied to the same data on which the fitted model was built.
The predict function returns the dataset df_pred, which is a data.frame

including a first column as the actual value of the dependent variable and a
second column as the predicted values, the matrix Q of the elements in the
mixture categorized in their quantiles, the list qi containing the vectors of
the cut points used to generate the quantile variables and the vector wqs

representing the WQS index built using the new data. The following code
shows how to apply the predict function on the gwqs output:

R> results2_pred <- predict(results2, newdata = wqs_data_pred)

For the predictive logistic regression model the gWQS provides the function
gwqs_ROC to plot the Receiver Operating Characteristic (ROC) curve. Fig-
ure A.2 C shows the ROC curve related to the predictive model: we can see
that the cutoff that is closer to the left-hand border and the top border has
around 70% sensitivity (true positive) and 70% 1−specificity (false positive)
while the Area Under the Curve (AUC) is equal to 0.687.
The same plot as in figure A.2 C can be displayed through the code after
having installed and loaded the package plotROC:

R> # plot ROC curve

R> gg_roc <- ggplot(results2_pred$df_pred, aes(d=y, m=ypred)) +

+ geom_roc(n.cuts = 0) +

+ style_roc(xlab = "1 - Specificity", ylab = "Sensitivity")

R> auc_est <- plotROC::calc_auc(gg_roc)

R> gg_roc + annotate("text", x=0.75, y=0.25,

+ label=paste0("AUC = ", round(auc_est[, "AUC"], 3)))
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A.3 Example 3

In this third case we fit a WQS multinomial model (family = "multino-

mial") for categorical data: the outcome is ymultinomLBX consisting of three
categories "A", "B" and "C". This modelling strategy creates a distinct lo-
gistic model comparing each level of the outcome variable to a reference level
(in this case the "A" category). We chose to create the training and valida-
tion dataset and assign to valid_var the name of the variable that identifies
the two datasets (valid_var = "group"). In this case we had to choose
two directions for each level of the outcome variable (in this case both pos-
itive: b1_pos = c(TRUE, TRUE)). We also decided to run the bootstrap in
parallel on multiple cores (plan_strategy = "multisession") through the
future_lapply function from the package future.apply.

R> # we create the variable "group" in the dataset to identify the

R> # training and validation dataset: we choose 300 observations for

R> # the validation dataset and the remaining 200 for the training dataset

R> set.seed(123)

R> wqs_data$group <- 0

R> wqs_data$group[rownames(wqs_data) %in%

+ sample(rownames(wqs_data), 300)] <- 1

R> #

R> # we run the logistic model and save the results in the variable

R> # "results3"

R> results3 <- gwqs(ymultinomLBX ~ wqs, mix_name = PCBs,

+ data = wqs_data, q = NULL, valid_var = "group",

+ b = 100, b1_pos = c(TRUE, TRUE), b1_constr = FALSE,

+ family = "multinomial", seed = 123,

+ plan_strategy = "multisession")

R> # bar plot

R> gwqs_barplot(results3)

R> # scatter plot y vs wqs

R> gwqs_scatterplot(results3)

R> # weights scatterplot

R> gwqs_levels_scatterplot(results3)
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Figure A.3: Plots available for multinomial outcomes

To test for significance we still can apply the gwqs_summary_tab function:

R> # summary table

R> gwqs_summary_tab(results3)

Estimate Standard Error stat p value
(Intercept) B vs A -0.1380 0.149 -0.93 0.352000
wqs B vs A 1.7800 0.495 3.60 0.000324
(Intercept) C vs A 0.0486 0.147 0.33 0.742000
wqs C vs A 3.1300 0.501 6.24 0.000000

Table A.5: Summary results of the WQS regression for multinomial outcomes.

As we can see from the results in table A.5, both the WQS indices for each
level are significant (p < 0.001) but, as shown from plot A and C in figure A.3,
chemicals have different weights depending on the race. The first ten highest
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weights ordered for category "B are reported in table A.6 obtained through
the function gwqs_weights_tab:

R> # weights table

R> gwqs_weights_tab(results3)

mix name B vs A C vs A
LBX138LA 1.91e-01 0.006720
LBXD04LA 9.32e-02 0.003090
LBX153LA 7.88e-02 0.035700
LBX180LA 7.43e-02 0.068200
LBX167LA 7.01e-02 0.003370
LBXD07LA 5.67e-02 0.008220
LBXF03LA 5.00e-02 0.011100
LBX156LA 4.47e-02 0.009110
LBXD01LA 3.63e-02 0.031400
LBXF07LA 2.95e-02 0.141000

Table A.6: Weights table of the WQS regression for multinomial outcomes.

In figure A.3 while plots A and B are the same as in figure A.1 and A.2
generated by the same functions (gwqs_barplot and gwqs_scatterplot)
but divided by the levels of the outcome variable, C is a scatter plot of the
weights generated by the function gwqs_levels_scatterplot. This allows
us to compare the magnitude of weights estimated in each model (e.g. ”B vs
A” or ”C vs A”), with departures from the main diagonal indicating variables
that are differentially-weighted for each comparison, e.g. C vs. A, or B vs.
A. In our case we can see that there is a clear discrepancy between the levels
since the highest weights in one level have lower weights in the other level
and the other way round. This is plotted only when the outcome has three
levels.
The following code shows how to generate the plots in the multinomial case
as shown by figure A.3:

R> # bar plot

R> data_plot <- results3$final_weights[order(results3$final_weights[,2]),]

R> pos <- match(data_plot$mix_name, sort(data_plot$mix_name))

R> data_plot$mix_name <- factor(data_plot$mix_name,

+ levels(data_plot$mix_name)[pos])

R> data_plot_l <- melt(data_plot, id.vars = "mix_name")

R> ggplot(data_plot_l, aes(x = mix_name, y = value)) +

+ facet_wrap(~ variable) +

+ geom_bar(stat = "identity", color = "black") +

+ theme_bw() + theme(axis.ticks = element_blank(),

+ axis.title = element_blank(),
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+ axis.text.x = element_text(color='black'),
+ legend.position = "none") + coord_flip() +

+ geom_hline(yintercept = 1/nPCBs, linetype="dashed", color = "red")

R> #

R> # scatter plot y vs wqs

R> ggplot(results3$y_wqs_df, aes(wqs, y)) + geom_point() +

+ stat_smooth(method = "loess", se = FALSE, size = 1.5) +

+ theme_bw() + facet_wrap(~ level)

R> #

R> # scatter plot of weights for the two levels of the dependent variable

R> ggplot(data_plot, aes_string(names(data_plot)[2],

+ names(data_plot)[3])) +

+ geom_point() + theme_bw() + xlab(names(data_plot)[2]) +

+ ylab(names(data_plot)[3]) + geom_abline(linetype = 2) +

+ ggrepel::geom_text_repel(aes(label=mix_name))

A.4 Example 4

This last example shows how to fit a WQSRH regression, in particular we
apply the method on count data. The dependent variable taken into ac-
count is ycountLBX and we fit a Poisson regression (family = poisson). A
quasi-Poisson regression is also available when count data are overdispersed
(family = quasipoisson). In this case we need to specify the number of
repeated holdout validation sets and we set it to 10 (rh = 10) as well as the
number of bootstrap (b = 10) to reduce the computation time. However, we
suggest to run the WQSRH with at least 100 repeated holdout and 100 boot-
strap. We also run a stratified analysis by sex estimating different weights
for males and females setting stratified = "sex".

R> # we run the poisson model and save the results in the variable

R> # "results4"

R> results4 <- gwqsrh(ycountLBX ~ wqs + sex, mix_name = PCBs, rh = 10,

+ stratified = "sex", data = wqs_data, q = 10,

+ validation = 0.6, b = 10, b1_pos = TRUE,

+ b1_constr = FALSE, family = poisson, seed = 123)

R> # box plot

R> gwqsrh_boxplot(results4)

R> # bar plot

R> gwqs_barplot(results4)

R> # scatter plot y vs wqs

R> gwqs_scatterplot(results4)
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R> # scatter plot residuals vs fitted values

R> gwqs_fitted_vs_resid(results4)
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Figure A.4: Plots available for count outcome

The results of the model are shown in table A.7 and table A.8. When
using the WQSRH method the additional option sumtype is available when
applying the method functions (such as summary, predict, residuals etc.)
or the secondary functions to create plots and tables. Through this option
we can choose if using the mean and the 95% CI based on the standard
deviation (sumtype = "norm", default value) or the median and the 2.5th and
97.5th percentiles (sumtype = "perc"). As a default the mean and standard
deviation based 95% CI are set:

R> # summary table

R> gwqs_summary_tab(results4)
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Estimate Std. Error 2.5 % 97.5 %
(Intercept) -4.640 0.4140 -5.460 -3.83
wqs 2.020 0.0955 1.840 2.21
sexF 0.687 0.5080 -0.309 1.68

Table A.7: Summary results of the WQSRH regression for Poisson regression.

R> # weights table

R> gwqs_weights_tab(results4)

mix name Estimate 2.5 % 97.5%
LBXF07LA M 0.072300 5.21e-02 0.08330
LBX138LA F 0.071700 5.93e-02 0.08240
LBX138LA M 0.069600 5.22e-02 0.08420
LBXD02LA F 0.054300 3.90e-02 0.06480
LBXD02LA M 0.054300 3.12e-02 0.07460
LBXF07LA F 0.048700 3.42e-02 0.06420
LBXF06LA F 0.046000 3.06e-02 0.06960
LBXF06LA M 0.042700 2.59e-02 0.06170
LBX105LA F 0.042700 1.91e-02 0.06160
LBX157LA M 0.037800 8.01e-03 0.05640

Table A.8: Weights table of the WQSRH regression for Poisson regression.

We notice that there is a significant positive association between the WQS
index and the dependent variable (table A.7 and figure A.4 B). Since we
stratified by sex, we have an estimate of each weight for males and females
and we can see how the weights differ between the two genders (table A.8
and figure A.4 A): we have a good agreement between the first four couple
of weights (e.g. LBXF07LA, LBX138LA, LBXD02LA and LBXF06LA has an high
impact in both males and females).
Since in WQSRH we repeat a WQS regression rh times, the additional function
gwqsrh_boxplot(results4) is available allowing to build the plot reported
in figure A.5.
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Figure A.5: Box Plot of the weights in WQSRH.

The box plots represent the weight distributions for each element in the
mixture and the estimated mean value (represented by the diamond). The red
dashed line is the prespecified cutoff τ to determine the significant weights.
An additional advantage of this method is the possibility to look at the vari-
ability of each weight and the ability to overcome the risk of incorrect con-
clusions that could incur in single partition analysis. Below is reported the
code to reproduce the same plot as in figure A.5.

R> # box plot

R> wboxplot <- melt(results4$wmat, varnames = c("rh", "mix_name"))

R> wboxplot$mix_name <- factor(wboxplot$mix_name,

+ levels = results4$final_weights$mix_name)

R> ggplot(wboxplot, aes_string(x = "mix_name", y = "value")) +

+ geom_boxplot(outlier.shape = " ") + theme_bw() +

+ theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
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+ ylab("Weight (%)") +

+ stat_summary(fun.y = mean, geom = "point", shape = 18, size = 3) +

+ geom_hline(yintercept=1/(2*nPCBs),linetype="dashed",color="red") +

+ geom_jitter(alpha = 0.3)

A zero-inflated model can be fitted for the Poisson and negative bino-
mial regression setting zero_infl = TRUE and choosing a link function for
the binomial process (we can choose among "logit", "probit", "cloglog",
"cauchit", and "log").

91


	Introduction
	The Weighted Quantile Sum (WQS) Regression
	Overview of the method
	Quantiles choice
	The Generalised WQS regression
	A Random Subset Implementation of Weighted Quantile Sum (WQSRS) Regression
	Repeated holdout validation for weighted quantile sum regression

	Interaction between WQS index and a continuous or a categorical variable
	Model and Methods
	Simulation Study
	Case Study

	Results
	Simulation Studies
	Case Study


	A Weighted Quantile Sum Regression with Double Index
	Model and Methods
	Simulation Study
	Case Study

	Results
	Simulation Study
	Case Study


	Application of WQS regression to genetic data
	Model and Methods
	Simulation Study
	Case Study

	Results
	Simulation Study
	Case Study


	Discussion
	Effect modification in WQS regression
	WQS with double index
	WQS for genetic data
	Conclusion

	Bibliography
	The gWQS R package
	Example 1
	Example 2
	Example 3
	Example 4


