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Introduction

Why bother with critical models?

This thesis, as so many works by other physicists, is in a sense about the search for uni-
versal laws. After all, theory’s purpose has never been to merely mimic the experimental
results, but to give a deeper understanding, embedding them into a universal picture of
nature.

Being raised by old-fashioned Russian field theorists, during my master I knew very
well what every physicist should work on: Grand Unified Theory models, and if we
value being taken seriously, they ought to be supersymmetric. Being a judicious stu-
dent, I knew by hearth both graphs upon which the modern understanding of physics
is based: the one where three lines intersect (at one single point, if seriousness is held
in esteem) and the one with an ethnic hat. Being young and full of ideals, at the time I
thought these concepts arose purely from the study of nature at incredible scales, where
it shines the brightest, behaving in an intricate and yet simple way. As it turns out,
Quantum Field Theory, the Standard Model, and what’s beyond may be based on the
very peculiar behaviour of nature at vanishing scales, but the struggle for a unified de-
scription of vastly different systems begun, unknowingly, more than a century and a half
ago from the study of unsuspicious phenomena.

In the 1860s, while a picture of the atomic structure of matter was absent and physi-
cists were still debating the existence of atoms, Thomas Andrews discovered a strange
point in the pressure-temperature graphic of carbon dioxide, where the properties of
the liquid and the vapour above it became indistinguishable and the new fluid became
opalescent. It was the first time a critical point was observed. Van der Waals’ doctoral
thesis contained a first explanation of the phenomena based on the interactions between
molecules that bear his name and showed that the difference between vapour and liq-
uid’s specific volume vanishes as a power of the temperature. Some thirty years after
Andrews, Pierre Curie discovered the ferromagnetic-paramagnetic transition in iron and
realized the similarity of the two phenomena, both governed by critical exponents. After
forty years, in 1937, when the quantum mechanical description of matter was well un-
derstood, Lev Landau was the first one to propose a general framework that provided a
unified explanation of these phenomena. His model gave a good qualitative description
of the transitions in fluids and magnets, yielding the values of critical exponents. For
the first time, the concepts of broken symmetry were used to justify different phases.
Parallel to all this, in 1924 the first abstract model of a magnet, to put it as John Cardy
said, ”the one we have in the back of our minds”, was formulated and solved in its
one-dimensional variant by Ernst Ising. Some other ten years later, in 1947, Onsager’s
solution of the two-dimensional Ising model, in which there can be phase transitions,
showed that Lev Landau’s model is not quantitatively exact. Physicists started studying
condensed matter models and in the early 60’s several scaling relations among critical ex-
ponents were derived. A deeper understanding of the scaling importance came from Leo
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Kadanoff’s ”block-spin” renormalization group. A general understanding was reached
when the scaling ideas were reconsidered in the renormalization-group framework by
Kenneth Wilson. Within this new framework, it was possible to explain the critical be-
haviour of most of the systems and their universal features. For instance, why fluids and
uniaxial antiferromagnets behave quantitatively in an identical way at the critical point,
despite having no apparent common Hamiltonian. Since then, critical phenomena have
been the object of extensive studies and many new ideas have been developed in order
to understand the critical behaviour of increasingly complex systems. The concepts that
first appeared in condensed matter physics have been applied to different areas, such as
high energy physics, where the whole ”spontaneous symmetry breaking” mechanism is
a cornerstone of the Standard Model and, as my education showed, the struggle for the
reconstruction of broken symmetries drove physicists’ imagination.

The traditional approach of theoreticians, going back to the formulation of quan-
tum mechanics, is to consult Schrödinger’s equation when a problem arises in atomic
or solid-state physics. We define the Hamiltonian, hoping we have included everything
relevant, then we make some approximations, or rather some pseudo-guesses, and then
proceed to find for the energy levels, eigenstates and the rest. However, for truly com-
plicated systems, this is a hopeless task.

One could argue that the task of the theorist is to understand what is going on and
to elucidate which are the crucial features of the problem. Furthermore, we are met
by a dilemma when dealing with many-body systems. Even if we had a large enough
computer to solve Schrödinger’s equation for the immense system, we would still have
no understanding of the reasons behind the emerging behaviour. As Michael Fisher
said: ”A good theoretical model of a complex system should emphasize those features
which are most important and should downplay the inessential details. Now the only
snag with this advice is that one does not really know which are the inessential details
until one has understood the phenomena under study.” The rational consequence is the
need to investigate the widest possible range of models and as I will try to prove to you,
that even the simplest model of scattered points joined by lines can be analysed with
incredibly sophisticated theories, yielding a stream of beautiful connections between
vastly different mathematical concepts.



CHAPTER 1

Critical Phenomena

1.1 Introduction

1.1.1 A first encounter

The theory of Critical Phenomena is a great endeavour which started more than a cen-
tury ago and has seen active discovery up to very recent years. In the 1860s Thomas An-
drews carried out experiments with carbon dioxide Andrews (1869). Imagine a sealed
transparent tube containing CO2 at an overall density of about 0.5 g/cm2 and a pressure
of about 72 atm. When heated at 29◦C it exhibits a sharp meniscus separating liquid
from vapour. We can follow the behaviour of liquid and vapour densities inserting two
solid spheres of densities slightly above and below 0.48 g/cm2 respectively. In this state,
the spheres are both lying on the meniscus, floating onto the liquid. If we heat the sys-
tem to 30◦C, the two objects will separate, the lighter will float up to the top of the tube,
while the heavier will sink to the bottom. This can only mean that the densities of the
two phases have become incredibly close one to another, but the meniscus is still visible,
meaning that there still is a difference between them. At 31◦C we start seeing fog inside
the tube, a phenomenon known as Critical Opalescence. An attentive observer will notice
how its colour changes, depending on where the light source is: bluish if viewed from a
direction normal to the illumination, reddish if illuminated from behind. Finally, if we
heat a bit more, all differences between the two phases disappear, leaving a transparent
homogeneous fluid at all temperatures above Tc ' 31.04◦C.

If we were to sketch the system’s state on a pressure-temperature phase diagram as
in 1.1, we could draw curves separating different phases. The discussed phenomena
will be at points a, b and c. At (Tc, pc), the so called Critical Point, we will have critical
opalescence, the two densities ρliq and ρvap will match and the vapour pressure curve
will terminate. The fact that it terminates means that one can convert a liquid to a gas
continuously, without crossing the phase transition line, as is indicated by the dotted
path. In this sense, there is no fundamental difference between the liquid and gaseous
phases. This is clearly portrayed in a density-temperature phase diagram 1.2, where the
two phases merge at Tc. It has been found out that this behaviour is not peculiar only to
carbon dioxide, but it’s also present in gasses such as argon, krypton, nitrogen, oxygen,
etc. If for each gas we normalize their pressure and temperature by their critical values
Tc and ρc, we will get curves on the density-temperature plane that nearly fit the same
values, as shown in fig. 1.3. The existence of a quantity ρliq − ρvap, which is non-zero
below the critical temperature and zero above it, is a common feature associated with
the critical points of a variety of physical systems and Its dependence on T is one of the
focuses of the theory of critical phenomena.

The previous attentive observer would have pointed out that the dependence of the
tinge from light’s angle is similar to how the atmosphere behaves under the sun’s light.

1
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Figure 1.1: P − T phase portrait for Carbon Dioxide. a, b, c are the three points described above

The colour of the sky was shown by A. Einstein (1910) to be caused by Rayleigh scat-
tering on the small particles in the atmosphere, scattering light with intensity ∼ λ−4.
This gives us the bluish tinge if we observe from a direction normal to the one of the
source, where scattering is prominent, otherwise shifting towards the red simply be-
cause shorter wavelengths dissipate faster. We will explain the connection with critical
opalescence after introducing some useful concepts.

A first explanation of the critical behaviour can be found in van der Waals’ doctoral
thesis van der Waals (1873). Van der Waals equation of state can be written in terms of
critical temperature, pressure and volume introducing

T =
T

Tc
, p =

p

pc
, V =

V

Vc
. (1.1)

We can then write a ”universal” equation, independent of the nature of the fluid being
considered. (

p +
3

V2

)(
V− 1

3

)
=

8

3
T (1.2)

It follows that for T close enough to Tc, the difference between the gas’s and the liquid’s
specific volume vanishes as a power of |T − Tc|

Vliq − Vvap = |T − Tc|β (1.3)

From the van der Waals equation we can get that β = 1/2. Experimentally, it has been
observed that this exponent is closer to 1/3 than to 1/2. As said before, the value of this
exponent is apparently the same for several different fluids as can be seen in figure 1.3 .

1.1.2 A striking analogy

The profundity of this relation goes beyond its application to gasses, as it was noted by
Pierre Curie Curie (1895) when he discovered the ferromagnetic transition in iron at the
critical (Curie after him) point. At any T < Tc, the magnet has a magnetization M that one
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Figure 1.2: ρ− T diagram

can temper with if one applies a strong enough external magnetic field H, spending some
energy to bring the system to a new state M′, following the hysteresis curve. At T ∼ Tc
the magnetization vanishes and so does the hysteresis, meaning one can exert a very
weak external magnetic field H and then cool the magnet to reach a new magnetization,
effectively going around the critical point as we did for gasses. Above Tc all the phases
coexist since thermal fluctuations are strong enough to bring the system to ergodicity. If
we had to draw an analogy between gasses and magnets, we could argue that overall
magnetization H needs to be the analogue of pressure p, and the H − T phase portrait
has a curve analogous to the one in P − T . The quantity, which vanishes at Tc is the
magnetization M. Fig 1.4 shows how far this analogy can be taken.

There is one difference though. In this case, we are dealing with vector fields and
solids instead of scalars and fluids and this actually helps us understand what’s happen-
ing. The overall magnetization is just the sum of a solid’s constituents’ magnetization
vectors in quantum as in classical theory and for simplicity, we will use the term spin for
these vectors. The phases of a magnet differ only because of the prevailing direction of
their spins’ alignment, and heating makes the latter randomly fluctuate. According to
Landau’s classification, in fact, phase transitions, in general, are a result of a change in
symmetry. When we transition from above Tc to below, we pass from a symmetry group
G to a subgroup G′ ⊂ G, thus restricting the freedom and bringing some order. In the
case of magnets, it’s simpler to portray the symmetries Landau et al. (1980). Both ∆ρ and
M differ from zero only below Tc, thus signalling the presence of order in the system,
hence they are called order parameters.



4 1.1 Introduction

T
Tc

p
pc

0.0

Ne
A
Kr
Xe
N2

O2

CO
CH4

1.0 2.0

0.50

0.75

1.00

Figure 1.3: The universal behaviour of fluids following van der Waals’ equation is confirmed
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1.2 Order parameters

As we have seen, the order in the system is responsible for its phases. This description
is more natural in magnets and we will focus on them hoping to get greater insights on
critical phenomena in general, given the broad analogies discovered so far. We can try
quantifying the order of our system by introducing an order parameter as we just saw.
A non-zero value of the order parameter will correspond to the breaking of a symmetry.
In our magnetic example, the broken symmetry is the symmetry under rotations and the
order parameter is the magnetization vector M. In the high-temperature phase the sys-
tem is invariant under rotations around all three axes. We can intuitively imagine how
spins randomly point in all directions and rotating all of them around a given axis will
still yield randomly pointing spins. When M is non-zero, in the low-temperature phase,
the symmetry breaks to a smaller one: it remains invariant only under rotations around
one axis, namely that of M. Following Landau we will distinguish phase transitions by
the behaviour of the order parameter. In phase portrays like 1.2, the phase transitions
away from critical points are followed by a discontinuity of the order parameter. These
are phase transitions of the first order. At critical points however, the order parameter
is a continuous function of the temperature and the discontinuity is in its slope. This is
what distinguishes the two phenomena, and the latter will be called phase transition of
the second order.

Having established all of this, it becomes clear that to understand phase transitions
and the peculiar behaviour of systems at critical point, it will be wise to investigate
order parameters. If we assume the parameter to be an enough smooth function of the
temperature, then we can expand it around Tc. Naming t = T−Tc

Tc
, if the limit

lim
t→0+

ln f(t)

ln t
= λ. (1.4)

exists, then we say that λ is the critical exponent of that function and we write f(x) ∼ xλ

as a shorthand meaning that near Tc the function can be approximated as a power law
with exponent λ. It does not mean that f(t) = Axλ, in fact, in general, we find that there
are correction terms and the full expansion reads

f(x) = Axλ(1 +Bxy + ...), y > 0. (1.5)

Nonetheless, in the proximity of the critical point, the behaviour of the leading terms
dominates as is experimentally observed by log-log plots of the parameters. The slope of
this straight-line region is all we need to know:

∆ρ ∼ (T − Tc)β , as T → Tc (1.6)

M ∼ (T − Tc)β
′
, as T → Tc (1.7)

The order parameter is not the only observable we can take. Let’s say we define the
Helmholtz free energy for our magnet:

dF (T,M) = −SdT −MdH. (1.8)

Then we can define quantities such as the specific heat C, our usual magnetization M or
the magnetic susceptibility χ :

C = −T ∂
2F

∂T 2
, M = − ∂F

∂H
, χ =

∂M

∂H
. (1.9)
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Figure 1.5: Kadanoff’s droplet picture. A ferromagnet at Tc exhibits droplets of aligned spins
inside other droplets in a fractal way.

All these quantities behave as power laws near the critical point, with critical exponents

C ∼ |T − Tc|−α , H = 0 (1.10)

M ∼ (Tc − T )
β
, T ≤ Tc, H = 0 (1.11)

χ ∼ |T − Tc|−γ , H = 0 (1.12)

Furthermore, we can introduce a two-point correlation function as

G(r) = G(i, j) = 〈σiσj〉 − 〈σi〉 〈σj〉 (1.13)

where σi is the local value of the magnetization, or spin, and 〈.〉 is the mean value over
all the system, then away from criticality and at large distances, it will behave as

G(r) ∼ r−τe−r/ξ, T 6= Tc, H = 0. (1.14)

ξ = ξ (T,H) is the so called correlation length. At critical temperature, the system can
fluctuate between the slightly more ordered phase and the slightly less since for a phase
transition of the second-order there is no discontinuity. This means that small fluctua-
tions will lead to the appearance of locally ordered regions, which will have an extension
of the order of the correlation length ξ. As we have seen with carbon dioxide, the emer-
gence of opalescence means that density fluctuations extend for a length comparable
with the wavelength of light λ ∼ ξ. The same phenomenon appears in magnets, if we
were to take a picture of the magnet’s local magnetization, we would see the so-called
Kadanoff’s droplet picture 1.5 . In other words, the correlation length diverges at the
critical point and its behaviour is described by the exponent

ξ ∼ |T − Tc|−ν , H = 0. (1.15)
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This means correlations appear at all lengths, and the droplets actually ought to have a
fractal structure. The whole correlation function at large distances behaves as

G(r) ∼ r−d+2−ν , T = Tc, H = 0. (1.16)

which is a power law instead of an exponential decay.
What is remarkable is that such behaviour, though singular, has some very simple

characteristics. The critical exponents do not assume just any values. Different systems,
undergoing the most varied kinds of transitions, can be assigned to a small number of
classes, each specified by a certain set of values of the exponents. Moreover one observes
between the critical exponents some very simple relations like α + 2β + γ = 2 called
scaling laws, whose degree of universality is even greater.

1.3 Scaling and Universality

Let’s take a step back. The divergence of the correlation length creating the beautiful
fractal structure of the droplet picture seems to be the signature of criticality. As we have
seen, near the critical point the range of correlations greatly increases and all the details
of the local iterations in the system become unimportant to the long-wavelength behav-
ior of the fluctuations measured by G. This gives us some insight about the remarkable
universality we noticed. Clearly, the only important differences between different fluids
can be found in the shapes and short range interactions of their constituent molecules.
Near the critical point, fluctuations are taking place on the scale beyond any intermolec-
ular distance, so the differences are averaged over. We can understand in an intuitive
way that universality is a consequence of the fact that the correlation length becomes
very large so that triggers the emergence of effective interactions, which no longer take
place on an atomic scale but rather on a semi-macroscopic scale set by G. On this level,
the microscopic differences do not matter and one obtains universality. As systems move
away from criticality and the correlation length becomes smaller, the differences start to
matter.

Now that we have established this picture, let’s see how it can be used to derive
information about the critical parameters and their exponents. All our functions depend
on T and H which differ for every system. To render their form universal, let’s use the
reduced variables t = T−Tc

Tc
and h = H

kBTc
, where kB is the Boltzmann constant. We

previously saw how to define correlation functions. For the critical parameter density
σ(r) and the energy density ε(r), the two-point functions read:

Gσ (r1 − r2) = 〈σ(r1)σ(r2)〉 − 〈σ(r1)〉 〈σ(r2)〉 (1.17)
Gε (r1 − r2) = 〈ε(r1)ε(r2)〉 − 〈ε(r1)〉 〈ε(r2)〉 (1.18)

Where we have already used knowledge from our picture to impose translation invari-
ance, which holds for distances a� r � ξ. Let’s now apply the scale invariance implied
by the fractal picture:

Gσ (r; t, h) =b−2xσGσ (r/b; tbyt , hbyh) (1.19)

Gε (r; t, h) =b−2xεGσ (r/b; tbyt , hbyh) (1.20)

This is the general form of a homogeneous function and the ansatz is known in literature
as scaling hypothesis. In this way, at the critical point t, h = 0, our correlators are covariant
under scale transformations. The exponents xσ and xε are the so-called scaling exponents



8 1.3 Scaling and Universality

for the scaling operators σ and ε, a hint that these observables are often studied in a quan-
tum picture. The variables h and t are known as scaling fields conjugated to σ and ε. Each
has its own exponent yσ and yε. These correlators are related to the susceptibility and
specific heat through the fluctuation-dissipation theorems:

χ =
1

T

∑
r

Gσ (r) ≈ 1

T

∫
Gσ (r) ddr (1.21)

C =
1

T 2

∑
r

Gε (r) ≈ 1

T 2

∫
Gε (r) ddr (1.22)

Integrating, we get the scaling of the susceptibility per site

χ (t, h) = bd−2xσχ (tbyt , hbyh) (1.23)

As we previously saw, this quantity is related to the free energy density f = F/N by
χ = −∂2f/∂h2. Therefore, integrating twice with respect to h, we arrive at the scaling of
the free energy density

f(t, h) = bd−2xσ−2yhf (tbyt , hbyh) (1.24)

The same can be done for the specific heat, since C = −∂2f/∂t2 to obtain

f(t, h) = bd−2xε−2ytf (tbyt , hbyh) (1.25)

Comparing the two results gives us a relation between the scaling exponents: xσ + yh =
xε + yt. A similar relationship in the scaling of the free energy could be derived for any
pair of scaling operators coupled to their conjugate scaling fields. Since the free energy
should scale simply as

f(t, h) = b−df (tbyt , hbyh) , (1.26)

where the factor b−d results simply from the fact that the number of sites N which ap-
pears in the definition of f is reduced by a factor b−d. We can see how xa + yb = d for all
the conjugate operators and fields a and b. We can perform the rescaling multiple times,
getting

f(t, h) = b−ndf (tbnyt , hbnyh) . (1.27)

The dilatation factor can be eliminated by fixing bytt = K, obtaining

f(t, h) = K−d/yttd/ytf
(
K,K−yh/yttyh/yth

)
, (1.28)

or

f(t, h) =

∣∣∣∣ tt0
∣∣∣∣d/ytW±

((
h

h0

)(
t

t0

)−yh/yt )
(1.29)

Where W± are universal homogeneous functions and the index ± refers to t > 0 or t < 0
respectively. From here we can easily recover the critical exponents, in fact

C = −∂2f/∂t2 ∼ |t|d/yt−2 (1.30)

Hence, α = 2− d/yt. The exponents β and γ are found analogously from M = −∂f/∂h
and χ = −∂2f/∂h2, yielding

α =2− d/yt (1.31)
β =(d− yh)/yt (1.32)
γ =(2yh − d)/yt (1.33)
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From where we can recover the previous remarkable relation between critical exponents!

α+ 2β + γ = 2. (1.34)

If we eliminate in the same way the scaling factor from the correlation function Gσ , we
have

Gσ ∼ t2xσ/yt , (1.35)

thus

ξ ∼ t−1/yt , h = 0. (1.36)

which gives ν = 1/yt, while at t → 0, Gσ(r) ∼ r−2xσ , or η = 2xσ + 2 − d. This can be
combined with γ = (d− 2xσ)/yt to find another relation:

γ = ν(2− η). (1.37)

As we saw, imposing translation invariance and scaling covariance allowed us to find
the remarkable relations between critical exponents that were mentioned in the previous
paragraph. Scale covariance seems to be the footprint of criticality and we are going to
see how it can be obtained from general assumptions.

1.4 The renormalization group argument

Although our previous scaling hypothesis was sound, it was motivated by ad hoc rea-
soning over the phenomenological behaviour of magnets at critical temperature, with
the fractal droplet picture given by fluctuations of the symmetry. We can actually con-
struct a more general line of reasoning from basic elements. In order to establish a gen-
eral formalism, we need to introduce some objects defined for a vast class of systems.
For every system, we can introduce a Hamiltonian, or at least we can try to guess one.
For our magnets let’s consider a Hamiltonian H [σ; t, h]. Let’s now say our spin vari-
ables σi are located on the sites i of a regular grid, divided into cells each of a volume
b× b× ...× b = bd, where b is the spacing between them. Each cell contains a number of
spins. Now let’s average on them to find a new block spin, leading to a new Hamiltonian
H [σ′; t′, h′], where in general the couplings t, h are also transformed. This will lead to
the creation of interactions between the new block spins which are not present in the
original Hamiltonian. We can neglect this for now since we are not trying to obtain the
whole picture. Now let’s consider the case at critical temperature t = 0 and perform a
scale transformation or dilatation.

r→ r′ =r/b (1.38)
h→ h′ =hby (1.39)

Now the mean value of σ can be found knowing the Hamiltonian simply by the partition
function defined as

Z =
∑
{σ}

exp

(
1

T
H

)
(1.40)
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Since h is conjugate to the spin σ, the mean value is

〈σ(r)〉 =
1

NZ

∂Z

∂h(r)

=
1

N

1

Z ′
∂Z ′

∂h(r)

=
1

N ′bd
1

Z ′
∂h′(r′)

∂h(r)

∂Z ′

∂h′(r′)

=by−d 〈σ′(r′)〉

(1.41)

We can now define the scaling dimension of the spin operator as xσ = y − d and write

〈σ(r)〉h = b−xσ 〈σ′(r′)〉h′ (1.42)

The spin correlation function inherits the same factors:

Gσ (r1 − r2) = 〈σ(r1)σ(r2)〉 =
1

N2Z

∂2Z

∂h(r1)∂h(r2)
(1.43)

and therefore
G(r) = b−2xσG(r′). (1.44)

Other correlators can be treated similarly.
We see how for each scaling operator φ, the scaling dimension is

xφ = d− yφ (1.45)

and we retrieve the conjugation between the scaling operator and the scaling field. This
ideas are the basis of what is known as Renormalization Group. One last important ob-
servation we can make about this technique, is that the introduced scaling exponents
for fields and conjugated operators lead to a sharp distinction between them. As we
proceed with the rescaling, averaging over more and more spins, some operators are
greatly enhanced by their prefactor bnxφ and others are dumped, depending on the sign
of the exponent. This reflects the very same idea about correlations at criticality that we
wanted to implement. At criticality, when the fields are equal to zero, any small per-
turbation will be greatly enhanced, leading the system away from criticality, or greatly
diminished, leading it towards criticality. This is a prescription to find which operators
will be relevant to our new, renormalized, system and which are irrelevant, which is ex-
actly what we wanted to find when we realized that at criticality information about local
details will be lost by an averaging over a vast quantity of constituents. For further in-
formation on this important subject, we strongly recommend the historical review by the
very same Wilson (1975) as well as texts such as Fisher (1983) or books Stanley (1987),
Pfeuty and Toulouse (1976) or Uzunov (1993).

We have thus seen that scale invariance, as implemented by the renormalization
group, yields relations between the critical exponents, but without fixing their numerical
value. In addition, the correlation functions transform covariantly under a dilatation, at
the critical point. One cannot help but wonder if we have guessed the right symmetry
to impose and what will happen if we change it. After all, symmetry is the muse of
physicists.



CHAPTER 2

Conformal Field Theory

In the last chapter, we were able to derive part of the phenomenology of systems at the
critical point by imposing scale invariance (covariance to be precise) on our microscopic
observables. The correctness of the ansatz was verified a posteriori since the predictions
seem to fit empirical observations. Of course, we have not proved the uniqueness of
this assumption and it is natural to loosen them, generalizing the scale invariance to
a broader symmetry. The following chapter is meant to be a concise introduction to
how Conformal Field Theory can be used to obtain results about observables in critical
systems, for further reading about this beautiful subject we recommend a few classical
texts such as Di Francesco et al. (1997), Henkel (1999).

2.1 Scale and conformal invariance

Scale invariance is a global symmetry, meaning that every point of our space is acted on
in the same way

r→ ar, a = const > 0, (2.1)

and the whole region we are acting on just dilate (or shrunk for a < 1). Any field theo-
rist knows that things start getting interesting when we consider local symmetries. The
self-similarity requirement we used in the previous chapter can be expressed as the re-
quirement to maintain proportions, and thus angles. Although rescaling does the trick,
in general, our requirement can be expressed as

dS2(r)→ dS′2 = Λ(r)dS2, (2.2)

where dS2(r) is the interval defining the metric at point r for our space of arbitrary di-
mension. We see that if Λ(r) is smooth enough, we can rescale differently at every point
and still get a self similar picture. This self-similarity is called conformal symmetry , from
Latin conformalis, meaning of the same form or shape. Intuitively the set of all such
transformation is composed solely by dilatation and rotations (at least in 2d where intu-
ition works). This set forms a group and it has the Poincaré group as a subgroup since
the latter corresponds to the case Λ(r) ≡ 1. Some examples of conformal transformations
are shown in fig. 2.1. Steven Weinberg in the introduction of ”Gravitation and Cosmology”
famously asks if Middle Earth is flat. We can now say that although the mapping from
the flat chart to the shape of the word is not a global rescaling (in which case flatness
would be preserved), it is at least a locally conformal map.

Let’s study how coordinates must transform in order to satisfy 2.2. We will denote as
gµν(r) the metric tensor yielding the interval dS2(r) = gµν(r)drµdrν . Any infinitesimal

11
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(a) (b) (c)

Figure 2.1: Coordinate transformations. The transformation from the square lattice in (a) onto the
lattice in (b) is conformal, while the transformation onto the lattice in (c) is not because angles are
not locally preserved.

transformation can be expressed as rµ → r′µ = rµ + εµ(r) and the transformed metric
can be written as a function of it:

g′µν =
∂rα

∂r′µ
∂rβ

∂r′ν
gαβ

=(δαµ − ∂µεα)(δβν − ∂νεβ)gαβ

and thus neglecting terms o(∂ε2) we arrive at

gµν → gµν − (∂µεν + ∂νεµ) . (2.3)

To be a conformal transformation, the last term must still be of the form

∂µεν + ∂νεµ = f(x)gµν (2.4)

and we can obtain information of f(x) by taking the trace of both sides:

f(x) =
2

d
∂ρε

ρ, (2.5)

where for simplicity we are supposing a flat d dimensional real space Rd with metric
ηµν . Returning to 2.4 we can simplify the left-hand side by applying a derivative ∂ρ,
permuting indices and taking the linear combination in order to obtain

2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf, (2.6)

which can be contracted with ηµν to become

2∂2εµ = (2− d)∂µf. (2.7)

If we now apply ∂ν to this expression and ∂2 to 2.2, we find

(2− d)∂µ∂vf = ηµν∂
2f. (2.8)

Finally, after contracting with ηµν , we end up with

(d− 1)∂2f = 0. (2.9)

From these equations, we can derive the explicit form of conformal transformations in d
dimensions. The two final equations impose that ∂µ∂νf = 0, meaning f is of the form

f(x) = A+Bµx
µ (A,Bµ constant) (2.10)
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thus ∂µ∂νερ is constant and so εµ is at most quadratic in the coordinates. We can therefore
write the general expression

εµ = aµ + bµνr
ν + cµνρr

νrρ cµνρ = cµρν . (2.11)

We can treat each power of the coordinate separately since 2.2 holds for all r. This means
rµ is free of constraints and it amounts for infinitesimal translation. The linear term
behaves as

bµν + bvµ =
2

d
bλληµν (2.12)

Which implies that bµν is the sum of an anti-symmetric tensor and a pure trace:

bµν = αηµν +mµν mµν = −mvµ (2.13)

The pure trace part is responsible for infinitesimal scale transformations, whereas the
anti-symmetric part is an infinitesimal rotation. The quadratic terms have the constraints

cµvρ = ηµρbv + ηµvbρ − ηvρbµ where bµ ≡
1

d
cσσµ (2.14)

and the corresponding infinitesimal transformation is

r′µ = rµ + 2(r · b)rµ − bµr2, (2.15)

which is known in literature as special conformal transformation (SCT). The finite transfor-
mations corresponding to the above are the following:

Translation r′µ = rµ + aµ

Dilatation r′µ = αrµ

Rotation r′µ = Mµ
v r

ν

SCT r′µ = rµ−bµr2

1−2b·r+b2r2

The geometric meaning of the special transformation becomes clear when rewriting it as

x′

x′2
=

x

x2
− b (2.16)

Which is the combination of an inversion r → r′ = r/r2 followed by a translation −b
and again an inversion.

Since the transformations generate independent groups, we can write the generators
for each one:

Translation Pµ = −i∂µ

Dilatation Dµ = −ixµ∂µ

Rotation Lµν = i(xµ∂ν − xν∂µ)

SCT Kµ = −i(2xµxν∂ν − x2∂µ)
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It is well known that in 2 dimensions holomorphic functions are conformal mappings.
In 2 dimensions condition 2.2 becomes

∂1ε1 = ∂2ε2 ∂1ε2 = −∂2ε1. (2.17)

If we define standard complex coordinates

z = x1 + ix2, z̄ = x1 − ix2

ε(z) = ε1 + iε2, ε̄(z̄) = ε1 − iε2
(2.18)

The conformal transformations we introduced are easily rewritten. A translation is z →
z′ = z+a, a rotation by the angle α is z → z′ = zeiα and a dilatation becomes z → z′ = bz,
where α and b are both real. For the special transformations, let a = a1− ia2 then we get

z′ =
z + āzz̄

1 + āz̄ + az + aāzz̄
=

z(1 + āz̄)

(1 + az)(1 + āz̄)
=

z

1 + az
(2.19)

The same expressions are obtained for the transformation of z̄. Through the rest of our
discussion, we will use this notation when working in a 2d space.

2.2 Conformal covariance of operators

Now that we have seen how the underlying space is transformed conformally, we can
proceed to analyse the behaviour of correlation functions of operators such as ε or σ
introduced in the previous chapter, when conformal covariance is requested. We remind
that covariance under a global rescaling imposed on our correlators the form

Gσ (r; t, h) =b−2xσGσ (r/b; tbyt , hbyh)

Gε (r; t, h) =b−2xεGσ (r/b; tbyt , hbyh)
(2.20)

And the critical exponents are related by the equations

xσ = d− yh =
β

v
, xε = d− yτ =

1− α
v

(2.21)

Now we will consider generic scaling operators φa(r) with the requirement of 〈φa(r)〉 =
0 and study correlators Gab(ra, rb) = 〈φa(ra)φb(rb)〉. If our previous rescaling factor b is
now space dependent b(r), a natural generalization of covariance is

φ(r) 7→ φ′(r) = J(r)xφ/dφ(r/b(r)) (2.22)

where J(x) is the Jacobian of the transformation r → r′ = r/b(r) and xφ the scaling
dimension of φ.

It will be helpful for us to redefine the mean value of an observable A in terms of a
continuous probability distribution.

〈A〉 =
1

Z

∑
{σ}

A[{σ}]e−H[{σ}]/T =
1

Z

∫
DφA[φ]e−S[φ] (2.23)

WhereZ =
∑
{σ} e

−H[{σ}]/T =
∫
Dφe−S[φ] is the partition function andDφ =

∏
x

∫
dφ(x)

is a shorthand for the functional integration. This can be done rigorously for instance by
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a Hubbard-Stratonovich transformation, but intuitively can be thought of as a simple
continuum limit without losing the physical meaning of the operation. A generic co-
ordinate transformation will not be conformal, hence it will contain shear components
which will drive the system away from its critical point, such that the action transforms
as S∗[φ]→ S∗[φ] + δS[φ].

We impose that in general n point correlators transform covariantly if

〈φ′1(r1) . . . φ′n(rn)〉S∗ = J(r1)x1/d . . . J(rn)xn/d 〈φ1(r′1) . . . φn(r′n)〉S∗+δS (2.24)

Where S∗ is the action at a fixed point, in our case the critical point. For the conformal
invariance to hold, we need the variation to be zero:

n∑
p=1

〈φ1 (r1) . . . δtotal φp (rp) . . . φn (rn)〉 = 0 (2.25)

Where δtotal = δ1 +δ2 is the sum of all variations induced by the coordinate change. From
the Jacobian we get the variation for a single operator

δ1φ(r) =
(xφ
d
∇ · ε(r) + ε(r) · ∇

)
φ(r) (2.26)

Beside this, for an infinitesimal transformation rµ → r′µ = rµ + εµ(r), the variation of
the action, up to the first order, can be written as

δ2S = −α
∫
ddr∂µεν(r)Tµν(r) (2.27)

Where Tµν is the energy-momentum tensor, i.e. the Noether current generating infinitesi-
mal coordinate transformation. Variating the action affects mean values

〈A〉S∗+δS '
1

Z

∫
DφA[φ](1− δS[φ])e−S

∗[φ] = 〈A(1− δ2S)〉S∗ (2.28)

And so the total variation of an n point correlator can be written as

n∑
p=1

〈
φ1 (r1) . . .

(
ε (rp) · ∇+

xp
d
∇ · ε (rp)

)
φp (rp) . . . φn (rn)

〉
+α

∫
dr 〈φ1 (r1) . . . φn (rn)Tµν(r)〉 ∂µεν(r) = 0

(2.29)

This is the requirement that selects the operators in order to have conformal covariance.
It is known in literature as conformal Ward identity and it’s the fundamental equation for
a confolmal field theory.

It turns out that in 2d the Ward identity can be expressed in a more compact form.
Since we are dealing with holomorphic functions, we can use powerful tools such as
Cauchy’s integral formula. The second part of 2.29 simplified by Gauss’ theorem to∮

∂D

dz

2πi
ε(z) 〈T (z)φ1 (z1, z̄1) . . . φn (zn, z̄n)〉+ c.c =

=

n∑
j=1

∮
Cj

dz

2πi
ε(z) 〈T (z)φ1 (z1, z̄1) . . . φn (zn, z̄n)〉+ c.c.

(2.30)
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Where the integration was first performed on the boundary ∂D of a region, and subse-
quently substituted by small contours around singularities that can occur at z = zj . We
split the holomorphic and antiholomorphic parts since they turn out to be independent,
and the same can be done for the first part of 2.29, which on the other hand can also be
rewritten using Cauchy’s formula

∆ε′ (z1)φ (z1, z̄1) + ε (z1) ∂φ (z1) =

=
1

2πi

∮
C1

dzε(z)

(
∆

(z − z1)
2φ (z1, z̄1) +

1

z − z1
∂z1φ (z1, z̄1)

)
,

(2.31)

where ∆ + ∆̄ = xφ, the scaling dimension of the operator φ.
Thus joining the two halves and discarding the integral over same contours, we ob-

tain the local conformal Ward identity

〈T (z)φ1 (z1, z̄1) . . . φn (zn, z̄n)〉

=

n∑
p=1

(
∆p

(z − zp)2 +
1

z − zp
∂

∂zp

)
〈φ1 (z1, z̄1) . . . φn (zn, z̄n)〉 .

(2.32)

Clearly, an analogous form holds true for ¯T (z), and can be obtained from the above
expression by replacing z → z̄, zp → z̄p and ∆p → ∆̄p.

The Ward identity shows the effects of a conformal transformation on operators in
the group’s representation. The transformation on T (z) on itself can be interpreted as its
two-point correlator 〈T (z)T (z′)〉 and in the local form its value is

T (z)T (z′) =

=
c/2

(z − z′)4 +
2

(z − z′)2T (z′) +
1

z − z′
∂

∂z′
T (z′) + regular terms

(2.33)

The constant cwill turn put to be the most important information we need to characterise
a conformal field theory. It’s known in literature as the central charge.

We can now proceed to study the effects of conformal transformations, generated by
Tµν , on operators φ. Eq 2.32 can be rewritten as

T (z)φ (z1) =

(
∆

(z − z1)
2 +

1

z − z1

∂

∂z1

)
φ (z1) + regular terms

=
∑
n∈Z

Ln (z1)

(z − z1)
n+2φ (z1)

(2.34)

through Laurent expansion T (z) =
∑∞
n=−∞ Lnz

−n−2, where Ln are the generators of the
group, i.e. they are the content of the associated algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m,0[

Ln, L̄m
]

= 0[
L̄n, L̄m

]
= (n−m)L̄n+m +

c

12

(
n3 − n

)
δn+m,0

(2.35)
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called the Virasoro Algebra. Simple comparison in eq. 2.34 gives

L−1 (z1)φ (z1) =
∂

∂z1
φ (z1)

L0 (z1)φ (z1) = ∆φ (z1)

Ln (z1)φ (z1) = 0 for all n > 0,

(2.36)

which are the algebraic equivalent of the Ward identities.
The reason we need this supplementary abstraction is that we are not going to obtain

the correlators by cumbersome functional derivation. Instead, we are going to linearise
the picture by introducing states in the Hilbert space the same way it’s done in quantum
mechanics, so that we can now study the object 〈φ(z1)φ(z2)〉 = 〈0|φ(z1)φ(z2)|0〉.

We finally see why φ were called operators from the beginning! We postulate that |0〉
is conformally invariant, i.e. Ln|0〉 = 0 for all n ≥ −1. Then let’s define the highest-weight
state as

|∆〉 := lim
z→0

φ(z)|0〉. (2.37)

We can impose conformal covariance with our new algebraic Ward identities: A scaling
operator φ will be conformal if and only if (i) Ln|0〉 = 0 fro all n ≥ −1 and (ii) L0|∆〉 =
∆〉. These are known in literature as primary operators.

Different states can be built according to

|∆;n1, . . . , nk〉 := L−nk . . . L−n1
|∆〉 (2.38)

The L0 generator acts as a counting operator

L0 |∆;n1, . . . , nk〉 = (nk + · · ·+ n1 + ∆) |∆;n1, . . . , nk〉 (2.39)

The last ingredient we need in order to reconstruct the picture in an algebraic language
is the unitarity of the representation since we need states to have real positive norm
‖Ln|∆〉‖2 =

〈
∆
∣∣L†nLn∣∣∆〉 ≥ 0, where L† is the correspondent hermitian conjugate op-

erator. In other words, we need to construct dual states 〈∆|. A natural way to do so in
the complex plane is to use the duality

z 7→ z′ = −1

z
(2.40)

and from the Laurent expansion, we get the expression for the hermitian conjugate op-
erators for a unitary representation:

L†n = L−n (2.41)

Any state at the origin can be mapped to a desired point z1 by the expansion in Taylor
series φ(z1)|0〉 = ez1L−1 |∆〉. Since under the duality transformation a primary operator
becomes φ(z′) = z2∆φ(z), the dual states located at infinity are constructed as

〈∆| := lim
z1→∞

〈0|φ (z1) z2∆
1 (2.42)

By applying the identity

〈∆| (L1)
n

(L−1)
m |∆〉 = δn,mn!

(2∆− 1 + n)!

(2∆− 1)!
(2.43)
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we can easily get the new expression for the 2 point correlator

〈0|φ (z1)φ (z2) |0〉 = (z1 − z2)
−2∆

= 〈φ (z1)φ (z2)〉 (2.44)

We see that the correlator of primary operators behaves exactly as the correlator of
scaling operators at critical point, thus qualitatively a conformal field theory seems to
describe observables at criticality.

The beauty of our algebraic approach is that now all states can be constructed using
just eq. 2.38. The full content of operators or states can be constructed by acting with
generators. For each maximum value n of L−n ∈ {L}, we are going to have a different
representation of the Virasoro algebra, describing different primary operators. At level
1 we have a single state L−1|∆〉with norm

‖L−1|∆〉‖2 = 〈∆ |L1L−1|∆〉 = 2∆. (2.45)

We still must impose ∆ ≥ 0 to obtain unitarity. Another simple condition is given by the
two-point correlator of the energy-momentum tensor. Its norm is given by

‖T |0〉‖2 = 〈0 |L2L−2| 0〉 =
c

2
(2.46)

Therefore c > 0 is necessary to ensure unitarity.
The picture becomes more complex at level 2, where we have two independent vec-

tors L−2|∆〉 and L2
−1|∆〉. The unitarity condition requires that the determinant

det2(c,∆) :=

∣∣∣∣∣∣ 〈∆ |L2L−2|∆〉
〈

∆
∣∣∣L2 (L−1)

2
∣∣∣∆〉〈

∆
∣∣∣(L1)

2
L−2

∣∣∣∆〉 〈
∆
∣∣∣(L1)

2
(L−1)

2
∣∣∣∆〉

∣∣∣∣∣∣
=

∣∣∣∣ 4∆ + 1
2c 6∆

6∆ 4∆(2∆ + 1)

∣∣∣∣
=2∆

(
16∆2 + 2(c− 5)∆ + c

)
(2.47)

called Kac determinant is positive definite. This is equivalent to the requirement that
the matrix above is positive definite, which is true if and only if its eigenvalues are posi-
tive. An arbitrary choice of the conformal weight ∆ and the central charge c may result
in negative eigenvalues at level 2. The determinant computed in 2.47 at level 2 can be
generalized to any level. At level n, Kac found the following formula bearing his name

detn(c,∆) = an

n∏
r,s=1;1≤rs≤n

(∆−∆r,s)
p(n−rs)

, (2.48)

Where we used the following parametrisation:

c = cm := 1− 6

m(m+ 1)

∆r,s = ∆m−r,m+1−s :=
[r(m+ 1)− sm]2 − 1

4m(m+ 1)

(2.49)

A model is called minimal if m is a rational number. For each value of m, the table of
possible conformal weights ∆r,s with r = 1, . . . ,m− 1 and s = 1, . . . ,m is called the Kac
table. The case m = 3, where c = 1/2, is shown below
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r

2 1/2 1/16 0

1 0 1/16 1/2

1 2 3 s

Now that we obtained the concrete values of dimensions for scaling operators, we
can compare them to physical observables in order to establish or deny a connection.
For our magnetic model, the most interesting observables, such a magnetisation density
σ and energy density ε, are scalars under rotations so we can expect that ∆r,s = ∆̄r,s. If
we identify

1 = φ1,1 = φ2,3, σ = φ1,2 = φ2,2, ε = φ2,1 = φ1,3 (2.50)

then we obtain the scaling dimensions

x1 = 2∆1,1 = 0, xσ = 2∆1,2 =
1

8
, xε = 2∆2,1 = 1. (2.51)

If we use this information to complete equation 2.21 in order to obtain

xσ = d− yh =
β

ν
, xε = d− yτ =

1− α
ν

(2.52)

From which we can derive the values for the exponents α = 0, β = 1/8, ν = 1, which
agree with the exponents of the two-dimensional Ising model!

Going back to the beginning of the discussion, we can now say that our observables
may very well possess conformal invariance and for some models, it is proven that they
can be described by a conformal field theory.

2.3 CFT on a cylinder

Even if conformal invariance seems to be generated by the absence of a length scale, its
presence does not necessary break the symmetry and rather leads to corrections useful
for extracting exponents, so we are going to briefly review what happens if we introduce
a length scale in our geometry. The easiest way is to restrain the underlying space to an
infinite strip of width L. We will, however, compactify the strip folding it to an infinite
cylinder as shown in fig. 2.2 by mapping the plane points z to

w =
L

2π
ln z. (2.53)

This is a conformal map, we can write w = t + iu and think of the coordinate t run-
ning along the cylinder as imaginary time, and u as space. CFT on the cylinder then
corresponds to Euclidean QFT on a circle. The relation between the stress tensor on the
cylinder and in the plane is given by

T (w)cyl = (dz/dw)2T (z) +
c

12
{z, w} = (2π/L)2

(
z2T (z)plane −

c

24

)
(2.54)
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Figure 2.2: The compactification of the infinite strip of width L by folding it into an infinite cylin-
der.

The Hamiltonian Ĥ on the cylinder, which generates infinitesimal translations in t, can
be written in the usual way as an integral over the time-time component of the stress
tensor

Ĥ =
1

2π

∫ L

0

T̂tt(u)du =
1

2π

∫ L

0

(T̂ (u) + ˆ̄T (u))du (2.55)

Which in the plane corresponds to

Ĥ =
2π

L

(
L̂0 + L̂0

)
− πc

6L
(2.56)

This is a remarkable equation that relates all of scaling operators in the theory to the
spectrum of Ĥ on the cylinder!

In particular, the lowest eigenvalue, corresponding to the ground state energy, is

E0 = − πc
6L

+
2π

L

(
∆0 + ∆̄0

)
(2.57)

In all unitary CFTs,
(
∆0 + ∆̄0

)
= 0 and so we see how c can be measured from finite-size

behaviour of the ground state energy.
E0 also gives the leading term in the partition function Z = Tre−lĤ on a finite cylin-

der (or a torus) of length l� L. Equivalently, the free energy is

F = − logZ ∼ −πc`
6L

(2.58)

2.4 Boundary CFT

For now, we considered all fields living on C, but it’s well known from the behaviour
of, say, electromagnetic fields, that the presence of a boundary affects them globally, and
not just in the proximity of the surface. For instance, an electromagnetic wave will look
very different if constrained to reflect between two surfaces: the electric and magnetic
components’ phases will be shifted by π/4.

How will conformal fields react to the presence of a boundary? As in general, bound-
ary condition may vary. A natural requirement is that the off-diagonal component T‖/⊥
of the stress tensor parallel/perpendicular to the boundary should vanish. This is the
so-called conformal boundary condition.
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Let’s see what happens if our fields live in the upper-half complex plane H and the
boundary is the real axis. The conformal boundary condition implies that T (z) = T̄ (z̄)
when 0 is on the real axis. This means that the correlators of T̄ are those of T analytically
continued into the lower half-plane. The conformal Ward identity now reads〈

T (z)
∏
j

φj (zj , z̄j)

〉
=

∑
j

(
∆j

(z − zj)2 +
1

z − zj
∂zj +

∆̄j

(z − z̄j)2 +
1

z − z̄j
∂z̄j

)〈∏
j

φj (zj , z̄j)

〉 (2.59)

The integral expression for the algebra operators L now will have to be modified since
we are going to integrate on semicircles centred on some point on the boundary, con-
ventionally the origin. Now we have only one Virasoro algebra, and this is related to the
fact, that conformal mappings that preserve the real axis correspond to real holomorphic
functions. As before, the eigenstates of L0 correspond to boundary operators φ(0) acting
on the vacuum state |0〉. Fields on the boundary will have a different set of conformal
weights. Although irrelevant for this chapter, BCFT will come handy at the end of the
next one, where we will make use of this result.





CHAPTER 3

Schramm Loewner Evolution

The divergence of correlation length is the reason for the formation of clusters of cor-
related values for observables. It is intuitive that the form of such clusters must hold
some information about the universality class of the model since they too are the result
of relevant operators. With this in mind, we will focus our attention on the study of geo-
metrical shapes arising at criticality. The following chapter is based on the exposition of
Cardy (2005), Cardy (2006), Bauer and Bernard (2006), Kager and Nienhuis (2004).

3.1 From spin to curves

Let’s formalise our thoughts. Taking as an ideal abstraction the classical 2d Ising model,
we will define each spin σ as a binary variable located at different points of the plane
(x, y) ∈ D ∈ R2. There are multiple ways to specify their locations, one of which is to say
they are fixed at the nodes of a graph G. In abstract terms, a graph is a set of points with
a given topology, but we have no need for such abstraction and will consider a Graph
G(E,V) to be a set of vertices V connected by edges E, preferably along a recurrent path,
i.e. a periodic tiling we cal lattice. We can see in 3.1 that such graphs are constructed by
tiling the plane with a cell that can be a square, hexagonal, a triangular or even aperiodic,
such as the beautiful Penrose tiling.

Figure 3.1: The beautiful Penrose aperiodic tiling

23
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The Ising model on the triangular lattice is shown in fig 3.2 . Its partition function is
equal to

Z =
∑
{σ}

e−β
∑
〈ij〉 Eij , (3.1)

where
Eij = −Jσiσj (3.2)

and the sum
∑
〈ij〉 means that we consider only interactions between adjacent spins, i.e.

between vertices connected by an edge, while
∑
{σ} si carried over all possible configu-

rations.

Figure 3.2: The Ising model on a triangular lattice

Any configuration can be mapped to a loop model. Suppose we define the model on a
triangular lattice. We can introduce a dual lattice by introducing a vertex V’ at the centre
of each tile and connecting vertices of adjacent tiles by an edge E’. The lattice G’(V’,E’)
is the graph formed by these elements. For a lattice forming a triangular tiling, the dual
forms a hexagonal tiling of the plane as shown in fig. 3.3 . The reason we are interested
in this object is that on it we can define surfaces containing our spins, as seen in picture
3.4.

Figure 3.3: A triangular lattice and its dual hexagonal counterpart.

If now we decide to draw borders separating different spin values, the so-called do-
main walls, we end up with a picture containing a so-called gas of loops like in fig 3.5 .
What is remarkable about this dual mapping, is that our partition function can also be
mapped to one based on loop counting instead of configuration counting. We can easily
show this on the triangular tiling, where domain walls are formed by tiles of the form
3.6 .

Instead of simply having a spin value on each vertex of the triangles, we are going
to assign a value h that counts the enclosure of the loop within another, i.e. h2 = h1 + 1
if and only if loop 2 is enclosed in loop 1. We can interpret hi as the values of a height
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Figure 3.4: A spin portrayed in black on a triangular lattice with its neighbours coloured in grey.
The same spins are mapped to hexagonal tiles in the dual lattice.

Figure 3.5: A triangular lattice and its dual hexagonal counterpart. The red curves separate differ-
ent spin values

map, where domain walls are contours of equal height and the ”hills” are the higher the
more the loops are nested.

This is essential for counting loops. If now we assign to each triangle a weight

x(Sh/Sh′)
1
6 , (3.3)

where Sh is a function of the height, to be made explicit later, and x is a positive temperature-
like parameter, this height model can be mapped to a loop model as follows. Every time
the heights in a given triangle are not all equal, we draw a segment of a curve through
it, as shown in 3.6. These segments all link up, and if we demand that all the heights on
the boundary are the same, they form a set of nested, non-intersecting closed loops on
the dual honeycomb lattice, separating regions of constant height on the original lattice,
as shown in fig 3.7 .

Consider a loop for which the heights just inside and outside are h and h′ respectively.
Since it’s a loop it will have 6 more right (left) turns than the opposite, thus clarifying
the exponent 1/6 in the definition and yielding

xlength loop(Sh/Sh′). (3.4)



26 3.1 From spin to curves

h

h′ h′

Figure 3.6: Triangular cell with heights on its vertices

h0

h1

h1

h2

h2
h3

Figure 3.7: Nested loops and their heights.

Summing over all loops containing a given h′ and with h outside can be expressed as∑
h′

Gh,h′ , (3.5)

where Gi,j is the adjacency matrix for the graph G, i.e. a matrix with values 1 if i is
connected to j by a vertex and 0 otherwise. What we need to do is to sum the factor
(Sh/Sh′) over all loops that are domain walls between h and h′. This can be done by
taking the sum ∑

h′

Gh,h′(Sh′/Sh). (3.6)

Since G is formed by ones and zeroes, by the Perron-Frobenius theorem it has a unique
largest eigenvalue Λ and the corresponding eigenvector can be chosen to have strictly
positive components. We are now going to define a posteriori Sh > 0 as the components
of the unique eigenvector S with the largest eigenvalue Λ. The cumbersome expression
now can be simplified obtaining∑

h′

Gh,h′(Sh′/Sh) = Λ(Sh/Sh) = Λ. (3.7)
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What we end up with is a very simple formula for the partition function

Z =
∑

loop config.

Λloops numberxtotal length (3.8)

This partition function clearly will behave differently for different levels of x

x� 1 will describe a phase with few, small loops, we can identify with the ordered phase.

x� 1 will describe a phase very dense in loops, i.e. a disordered phase

We point out that the above decomposition in loops rather than in spin configura-
tions can be obtained by algebraic manipulation starting from 3.1, defining K = Jβ and
expanding Z in power series of K and 1/K corresponding to low and high-temperature
phases respectively.

In the high temperature phase (small K), we write

Z =
∑
{σ}

∏
〈ij〉

cosh(K) (1 + σiσj tanh(K)) (3.9)

and expand the product on the r.h.s. into monomials. When summing over all σi ∈
{+1,−1}, the only monomials with a non-vanishing contribution are products of σ2

i only
(a term σi sums +1 − 1 = 0). These monomials come from spins forming closed chains
of neighbours. Hence, the sum over all spins can be replaced by a sum over all closed
(possibly disconnected) loops on the lattice, namely

Zhigh = [2 cosh(K)]NM
∑
loops

[tanh(K)]length (3.10)

This is the so-called high-temperature expansion of the Ising model
In the low-temperature phase (large K), a given spin configuration is characterized

by the borders of, say, all the spin +1 areas in a spin -1 background. Since the borders
form loops, the sum 3.1 can be replaced by

Zlow = 2eNMK
∑

loops

e−2K( length ) (3.11)

Where the contribution fo all down spin has been factored out of the sum. The factor 2
accounts for the degeneracy under reflection of all the spins. This is the low-temperature
expansion of the Ising model.

We can see that the two phases are mapped into each other by the identification

e−2K = tanhK (3.12)

which gives us
Zlow (K ′) = 2(sinh 2K)−NM/2Zhigh (K) (3.13)

and since both sides must become simultaneously singular, we have

Kc = −1

2
ln(
√

2− 1) ' 0.440686 . . . (3.14)
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Figure 3.8: A typical term in the high and low-temperature expansion for a square lattice. (a) A
loop configuration in the high-temperature expansion with contribution (2 coshK)NM (tanhK)16.
(b) a spin configuration corresponding to the same loop configuration in the low-temperature
expansion, with contribution eKNMe−32K .

3.2 From global to local. Coulomb gas.

What we achieved is a description based on global variables for which a small local
change in the configuration, i.e. the flip of one spin, will yield a huge change in the
partition function since the new picture will correspond to a new loop configuration
with a very different Boltzmann weight, as we can see in the example of fig. 3.9

Figure 3.9: A single spin change can induce a huge change in the loop configuration

What we need is to find new local variables which can be used for the formulation fo
a local field theory that can give us predictions on the criticality!

There is no ideal way of doing this, one solution is the so-called Coulomb gas method.
The construction is the following: each loop will now be the sum of two oriented loops
with total weight Λ = e+iχ + e−iχ, as schematically shown in fig. 3.10 .

This can be reformulated by assigning a weight e±iχ/6 at each vertex of the loops,
choosing e+iχ/6 each time the loop turns to the right, and e−iχ/6 at each left turn (see fig.
3.11 ). Each loop will still correctly add up to e±iχ since for it to be closed it will turn
exactly 6 times to one direction more than to the other. We still have not said anything
about how to choose orientation. Every loop will have the opposite orientation of the
loop it is contained in. Now the heights h on the triangular lattice can be identified with
a loop configuration since we can count line crossings, as shown in fig. 3.12

There is a one-to-one mapping between oriented loops and the values of h on the
triangular lattice, with the restriction that the change of h between nearest neighbours
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= +

Λ e+iχ e−iχ

Figure 3.10: Any loop can be thought of as the sum of two oriented loops.

e+iχ/6 e−iχ/6

Figure 3.11: Weights assigned at each turn.

is restricted to ‖hi − hi+1‖ ∈ {−1, 0,+1}. Now our variables, the weights, are local and
invariant under h→ h+ n.

We are not going to prove the fact that under renormalization this picture will map
to a CFT invariant under h→ h+ n.

The best candidate for the continuum limit of the model is the Gaussian model:

S =
g

4π

∫
(∇h)2d2r − λ

∫
cos(2h)d2r (3.15)

where the last term is added to constrain h to discrete values so that

h ∈ Zπ , λ→∞
Usual Gaussian model , λ→ 0

(3.16)

and we will redefine the heights to be multiples of π. For the usual free field theory, the
height fluctuations grow logarithmically 〈(h (r1)− h (r2))

2〉 ∼ (2/g) ln | r1−r2 |, and the
correlators of exponentials of the height decay with power laws:〈

eiqh(r1)e−iqh(r2)
〉
∼ |r1 − r2|−2xq , (3.17)

where xq = q2/2g.
The way we are going to obtain information about scaling dimensions with this

model is to study it on a cylinder of circumference L and length l � L, where we have
established in 2.58 that the partition function will go as

ZG ∼ e
πcl
6L (3.18)

All loops not wrapping around on the cylinder will not feel the different topology, but
the ones wrapping will have a wrong weight. To overcome this we can add two ”electric
charges” at the ends of the cylinder respectively equal to e±iχh(±l/2)
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Figure 3.12: The height model is univocally mapped to oriented loops since we can count cross-
ings.

Now that we compensated for the wrong counting, the new partition function will
be

Z = ZG〈e−iχh(−l/2)e+iχh(l/2)〉 ∼ e πl6L e
−2πl
L xq=χ (3.19)

Substituting xq = q2/2g we find the effective value of c/6 = 1/6 − (1/g)(χ/π)2 Now
any other correlator can be obtained by adding a corresponding charge, say e±iqh(±l/2)

at both ends and taking the value of

〈e−iqh(+l/2)e+iqh(−l/2)〉 =
〈ei(q−χ/π)h(l/2)e−iq(−χ/π)−h(l/2)〉CG

〈eiqh(−l/2)e−iqh(l/2)〉CG
∼ e

−2πx̃q
L

(3.20)

Obtaining

x̃q =
1

2g

(
(q − χ

π
)2 − (

χ

π
)2
)

(3.21)

This is the scaling dimension in the model we started with, by the mapping to a Coulomb
gas, described by a Gaussian model in the continuum limit. We still have too many
parameters but we can express χ2 by noticing that if the second part of 3.15 is needed to
vanish at the continuum limit, λ has to be dimensionless and thus χ̃2 = 2 giving

g = 1− χ

π
(3.22)

If we now eliminate χ in 3.21 we get what essentially is the Kac formula.
Let’s show another quick result we can obtain with the Coulomb gas formulation.

Consider a cylinder of circumference 2π and a path propagating along it. What is the
probability that it winds through an angle θ around the cylinder while it moves a dis-
tance L � 1 along the axis? This corresponds to a height difference ∆h = π(θ/2π)
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between the ends of the cylinder, and therefore it adds to the free energy an additional
term

P (θ) ∝ exp (−gθ2/8L), (3.23)

and thus θ is normally distributed with variance (4/g)L.

h1

h2

Figure 3.13: The height difference ∆h = π(θ/2π) for a path between the cylinders’ borders

This all seems cumbersome and not at all mathematically rigorous. For the latter to
be true, we would need a way to deal with smooth curves based on local variables. This
mathematical description exists and is known as Schramm Loewner Evolution

3.3 The Loewner construction

So far we arrived at the conclusion that in order to study a critical model we can look at
the interfaces between ordered phases which, as we saw, encode information about the
exponents of the model. Ideally, we would like to have the probability distribution of
loops in order to play with the partition function as we please. A first step towards this
is the study of a segment of such loops, that can be created if for a region of our previous
lattice we take two points on the border, thus partitioning it in right and left sides, and
assign h and h′ to each side, as shown in fig. 3.14 . Once we answered questions about
this chordal curve, we can gain information about the statistics for loops in general.

A

B

Figure 3.14: Boundary conditions h = +, h′ = − for a given region. Between points A and B a
curve will always exist. Other loops do not concern us.

If we are going to claim conformity, then we can use (and even abuse) Riemann’s
theorem:

Riemann’s Mapping Theorem: let D be a region in the complex plane C,
z0 a point in D and U = {w : ‖w‖ < 1} the unit disk in the w-plane. If D
is simply connected and D 6= C, then there exists exactly one conformal mapping
f : z → w = f(z) from D onto U that satisfies f(z0) = 0 and f ′(z0) > 0.
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This right away means that we can work on the upper-half complex plane H by map-
ping any simply connected region to it.

The strategy to describe such curves by one parameter is the Loewner evolution. Imag-
ine a curve γ(t) growing with time t, propagating upwards from in the half-plane start-
ing from the origin as in fig. 3.15. By the same Riemann’s theorem, there exists a map

H/γ(t)
gt(z)−−−→ H (3.24)

that has the effect of ”absorbing” back the curve into the origin, mapping the border of
H/γ(t) to the real axis of H. 3.15.

H/γ H/γ

gtτ(t) gt

0 0

at = gt(τ(t))

Figure 3.15: The curve γ is absorbed into the real axis by conformal mapping gt

We can make this map unique by giving some additional constraints, such as saying
what happens at infinity. It’s clear that the further we distance from the curve, the lesser
the space will be affected, yielding just a z term. There still would be corrections we can
expand in 1/z obtaining:

gt(z) ∼
z→∞

z + 0 +
c1
z

+
c2
z2

+ . . . (3.25)

where we set shifts equal to zero. This may look familiar to the reader if he/she had a
good classical electrodynamics background. The solution for the potential of a charge
distribution near an infinite conducting surface ∆φ = −4πqδ(γ(t)− z) yields a holomor-
phic (i.e. conformal) function φ in all the points of the space where ∆φ = ∂z∂z̄φ = 0.
This problem is notoriously solved by adding a mirroring charge distribution with the
opposite sign on the other side of the conducting surface. At great distances, φ can be
expressed in terms of a multipole expansion q + d/z + . . . where q, the total charge, is
zero and d is the dipole moment. It’s clear than the latter will grow with the length of
the curve and so we can express c1 = 2t.

We made gt(z) unique, its behaviour at infinity will be:

gt(z) ∼
z→∞

z +
t

z
+ o(1/z) (3.26)

If we now look at how the tip of our curve τ(t) behaves, we find it to be mapped to
the real axis at a(t) = g(τ(t)).

The simplest example would be the map of a vertical segment of length 2i
√
t. We can

see that
gt(z) =

[
z2 + 4t

]2
(3.27)

will map the tip to the origin. Any other point of the curve z ∈ [0i, 2i
√
t] will be mapped

to two points on the real axis on the left and right of the origin, thus mapping the border
of H/γ(t) to the real axis of H, as shown in fig. 3.16 .
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Imagine now the curve γ(t) has evolved in a generic way until time t. Starting from
t, for an infinitesimal amount of time δt, the increment of the curve γ′(t) can be approx-
imated as a straight segment just like the slit we analysed. If gz(t) is the map for γ(t),
then gt+δt(z) will map γ′(t) back to H is this way:

gt+δt(z) = a(t) + [(gt(z)− a(t))2 + 4δt]
1
2 (3.28)

which is just the map of a vertical segment starting from a(t) instead of the origin, since
gt(z) will map τ(t) to a(t).

2i
√
tH

0 gt(z)gt(z)

z

Figure 3.16: A segment of height 21
√
t is mapped back to the real axis.

Basically, we are saying that the final map is the composition gt+δt = gδt ◦ gt. Since
it’s not difficult to believe in the existence of the identity element, we can say that these
maps form at least a semigroup.

It’s not difficult now to take limδt→0(gt+δt−gt)/δt and obtain the differential equation

dgt(z)

dt
=

2

gt(z)− a(t)
(3.29)

This great result by Loewner means that now instead of needing two equations to
define a curve on the plane z(t) = x(t) + iy(t), we only need to know a(t) to construct
the whole curve!

The reader versed in analytical mechanics will not be amazed, even if she/he skipped
electrodynamics. What we have done is in fact, analogous to a description of motion
based on natural coordinates, i.e. tangent and normal velocities, where we constrained
total velocity to be constant and a(t) is the normal component of the acceleration.

The beauty of it lies in the fact that now we can classify continuous curves growing
in the plane by just classifying continuous functions a(t).

3.4 Schramm’s theorem

The great contribution of Oded Schramm was to take a(t) as a stochastic function and
analyse what constraints are imposed on it by the requirement for γ(t) to satisfy

• Conformal invariance, i.e. the self-similarity of the curve under conformal mappings.

• Domain Markov property, i.e. the curve needs to evolve at each point independently
of its history up to it.

Which are requirements based on speculated properties of our interfaces.
Dividing a curve into two sections γt(z) and γs(z) as in fig. 3.17, after the mapping gt,

we will remain with the portion corresponding to time s− t. If the curves are conformally
invariant, the remaining portion can be mapped by the same function except for the
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gt

s

t

at0

Figure 3.17: The curve divided into two parts and the remainder after the mapping gt

starting point which gets shifted to a(t) ≡ at. This means that the law of at − as ,
given at, is the same as as−t given a0. In particular, this implies that the increments
a(n+1)δt − anδt are independent identically distributed random variables, for all δt > 0.
The only process satisfying this is 1d Brownian motion, with a possible drift term:

at =
√
kBt + αt, (3.30)

where 〈Bt〉 = 0, 〈(Bs − Bt)2〉 = |s − t| and κ and α are constants. If the curve does not
drift towards any direction, α = 0.

Let’s take a moment to remark what we achieved: we constructed a way of describing
a vast family or 2d curves which possess conformal invariance and are generated by a
stochastic process, by just one parameter κ!

We can now perform tests on the conformal curves generated by stochastic processes
we started with, i.e. the loops describing interfaces in the Ising model, in order to classify
them by a single parameter. It turns out that not only Ising but various models have in
the continuum limit curves corresponding to different values of κ

• κ = 6: boundaries of percolation clusters Smirnov (2001)

• κ = 3: boundaries of Ising spin clusters Chelkak and Smirnov (2012)

• κ = 4: the harmonic explorer, and level lines of a gaussian field Schramm and
Sheffield (2003)

• κ = 8/3: self-avoiding walk Lawler et al. (2011)

Some of these are rigorously proven while others still have not formal proof but are
in accordance with numerical results.

3.5 Properties of SLE

3.5.1 Phases of SLE

The only parameter of SLEκ is the variance of the generating Brownian motion. Any
question we have about the behaviour of the curves will have an answer as a function
of κ. Immediately we notice that the ”winding” of the curve will increase with κ until it
becomes enough winding that it intersects itself.

Let’s try to evaluate the value of κ for which the so-called double points appear. A
shown in fig. 3.18, close points of the curve will be torn apart by the reabsorption process
if they do not coincide. On the other hand, if they coincide, everything between these
two points needs to be mapped to a single point.



Schramm Loewner Evolution 35

0 0

gt

Figure 3.18: Close points are torn apart by the mapping gt. Only coincident ones will map to the
same point

We can simplify the picture by introducing the shifted mapping function ĝt(z) ≡
gt(z)− at, which satisfies

dĝt(z) =
2dt

ĝt(z)
− dat. (3.31)

This always maps the growing tip back to the origin and now the coincidence condition
of two points becomes the condition that they are mapped to the origin. A point x0 on
the real axis gets mapped into xt = gt(x0) where

dxt =
2dt

xt
−
√
κBt. (3.32)

The reader versed in stochastic processes will immediately recognise in it a Bessel pro-
cess. It describes the motion of a particle repelled from the origin and also subject to
Brownian noise. For small values of κ, the repulsive force always wins, and the particle
goes off to infinity, while for large κ, eventually, random noise will cause the particle to
reach the origin.

The critical value of κ can be found by equating the variance 〈x2〉 for the two cases.
It turns out that for κ ≤ 4 the curve almost surely does not have double points, while
for κ ≥ 4 the curve has double points, and in fact because of its self-similarity, it has
infinitely many such points in any finite region.

κ ≤ 4 4 < κ < 8 κ ≥ 8

0 0 0

Figure 3.19: Three different phases for SLE curves

3.5.2 Fractal dimension

Fractal objects are not easy to study, they may have finite area encompassed by an in-
finitely long curve, so our usual definition of dimension falls apart. One way to define
the fractal dimension of an object is to cover it with a large number of (overlapping) discs
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of radius ε. Let N(ε) be the minimum such number. Then if N(ε) ∼ ε−df as ε → 0, df is
the fractal dimension.

An equivalent definition, for random fractals, is to ask for the probability P (r, ε) that
the object intersects a disc of radius ε centred on r. If

P (r, ε) ∼ εD−df f(r) (3.33)

as ε→ 0, whereD is the embedding dimension (2 in our case), then df is again the fractal
dimension. We will use this last definition and derive an equation for P (r, ε)

Suppose the curve γ intersects a disc as in fig. 3.20 under the mapping ĝδ , the first
section of the curve is mapped onto the real axis, while the rest is mapped to a new curve
starting from the origin. The disc itself is mapped to a new origin gδt(r) and its radius is
slightly modified to |ĝ′δt(r)|ε.

gt

Figure 3.20: The curve intersecting a small disc, and its image under gδt

By conformal invariance, the probability measure on this image should be the same
as the one for the original curve. Equating the two, we can write the expression

P (x, y, ε) =

〈
P

(
x+

2xδt

x2 + y2
−
√
κδBt, y −

2yδt

x2 + y2
,

(
1−

2
(
x2 − y2

)
δt

(x2 + y2)
2

)
ε

)〉
,

(3.34)
where the average is over the Brownian motion δBt. Expanding to the first order in δt,
while using 〈B2

t 〉 = δt, we get the partial differential equation(
2x

x2 + y2

∂

∂x
− 2y

x2 + y2

∂

∂y
+
κ

2

∂2

∂x2
−

2
(
x2 − y2

)
(x2 + y2)

2 ε
∂

∂ε

)
P = 0 (3.35)

We can check that P ∼ ε2−df is an eigenvalue of this differential operator. This is typical
of SLE calculus, several critical exponents can be extrapolated by solving such eigen-
value problems.

We will not dwell into the methods for solving PDEs, but simply check that a solution
can be

P ∼ ε1−κ/8y(κ−8)2/8κ
(
x2 + y2

)(κ−8)/2κ
(3.36)

from which we can obtain df = 1 + κ/8 for κ ≤ 8

3.5.3 Left Passage Probability

Another greatly useful observable is the so-called left passage probability (LPP). consider
a curve γ spanning the upper-half plane H. Intuitively κ will parametrise how much the
tip will deviate from the origin. If the curve propagates to infinity, every point in the
domain will find itself on the left or on the right of the trace. If we average over a great
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number of traces, we can find the probability that the curve passes, say on the left, of a
given point.

This probability is well defined and as it turns out can be expressed again as a func-
tion of the sole parameter κ and the point’s coordinates z0 = x0 + iy0

P [γ passes to the left of z0] =
1

2
+

Γ(4/κ)
√
πΓ
(

8−κ
2κ

) x0

y0
F2,1

(
1

2
,

4

κ
,

3

2
,
−x2

0

y2
0

)
, (3.37)

where Γ is the gamma function and F2,1 is the hypergeometric function (any reader will
be excused for not being versed in it).

The proof is rather long, requires additional instruments and it is not vert illustrative,
so we redirect the rider directly to Schramm et al. (2001) for supplementary information.

3.5.4 Winding angle

When discussing the Coulomb gas method applied to loops, we obtained the distribu-
tion of the winding angle, showing that its variance on a cylinder of length L is asymp-
totically (4/g)L. let’s see if we can achieve the same result with our new SLE formalism.

We need to analyse the SLE growth in a semi-infinite cylinder of length L. Instead of
working with this geometry, we can easily map conformally the cylinder in the unitary
disk D by w = e−z , so that the coordinates (u, v) become (ρ = e−v, θ = arg[e−iu]) as
shown if fig 3.21

u

v

θ

ρ
∞

Figure 3.21: The map (u, v)→ (ρ = e−v, θ = arg[e−iu])

We now should reformulate the SLE in this domain, which will have a curve span-
ning from the boundary to the origin. This is, in fact, the original version of the Loewner
equation and it’s known as radial SLE. The radial Loewner equation is

dgt(z)

dt
= −gt(z)

gt(z) + eiθt

gt(z)− eiθt
(3.38)

What we need to understand in order to find the winding angle distribution, is how
the tip γ(τ) behaves under the new mappings gt(z). In the previous case, the tip got
mapped to at on the real axis, in this case, it gets mapped to a point on the boundary
eiθt , with θ still normally distributed with variance κt. Asymptotically Re w → Re w − t
under Loewner evolution, thus we can identify L ∼ t and write

Var θ ∼ κL, (3.39)

from which we can identify κ = 4/g.
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τ

θt

Figure 3.22: The radial evolution of the curve. θt = gt(τ(t)) is normally distributed with variance
κt

3.6 SLE from BCFT

We can directly relate the parameter of SLE to the central charge of a boundary conformal
field theory. Let’s get back for a moment to the equation describing the evolution of γ on
the real axis:

dxt =
2dt

xt
−
√
κBt. (3.40)

This is equivalent to the description of the motion of a particle in a time-dependent
vector field v such that

vdt = dt
2

z
∂z − dξt∂z, (3.41)

where dξt =
√
κBt. We know that the 2d conformal group generators are ln := −zn+1∂z

so that
vdt = −2l−2dt+ l−1dξξ (3.42)

As discussed at the and of the previous chapter, a BCFT derives its properties by the
fields on the boundary. The boundary conditions guarantee the existence, on the lattice,
of a domain wall connecting the origin to infinity. We can always condition the spins
in a region so that a domain wall is formed between two points of its boundary. We
would like to impose conditions on the fields inside the region so that the existence of γ
is guaranteed. We can condition the fields {ψ} in the region Γ contributing to the path
integral on the existence of γt, thus defining a state

|γt〉 =

∫
[dψ′Γ]

∫
ψΓ=ψ′Γ;γt

[dψ]e−S[ψ] |ψ′Γ〉 (3.43)

The path integral, when conditioned on γt, gives a measure dµ(γt) on these curves.
The state

|h〉 = |ht〉 ≡
∫
dµ (γt) |γt〉 (3.44)

is independent of t, since it is just given by the path integral conditioned on there being
a curve connecting the origin to infinity, as guaranteed by the boundary conditions. A
conformal map on states will act with the generators of the Virasoro algebra Ln, but the
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result is the same as in 3.42 . The conformal mappings ĝt satisfying dĝt = 2dt/ĝt − dat
will act on the state as

|ht〉 = exp
(
−
(
2L−2 − (κ/2)L2

−1

)
t1
)
|ht−t1〉 , (3.45)

thus the time independence translates to(
2L−2 − (κ/2)L2

−1

)
|h〉 = 0. (3.46)

We recognize a representation of the Virasoro algebra of level 2. From this follows
that if we act with L1 and L2, remember the commutators for the Virasoro algebra and
use L1|h〉 = L2|h〉 = 0 while L0|h〉 = h|h〉, we can get

h = h2,1 =
6− κ

2κ

c =
(3κ− 8)(6− κ)

2κ
.

(3.47)

We arrived at the fundamental relations between the parameter κ of SLE and the dimen-
sions of a CFT! Note that the central charge c vanishes when κ = 6 or κ = 8/3. This
corresponds to the continuum limit of percolation and self-avoiding walks respectively.





CHAPTER 4

Critical model analysis

What we discussed so far needs to be put in practice. After all, the most sophisticated
field theory means nothing if can’t be applied to existing problems, in order to give
us additional knowledge about them. We will dedicate this last introductory chapter
to so far well-studied models which exhibit criticality with known exponents and are
described by SLE in the continuum limit.

4.1 Discrete growth processes in 2d

In this section, we are going to describe examples of growth processes on lattices, which
continuum limit we will explore at the end.

4.1.1 Percolation

Let us consider a hexagonal or honeycomb lattice on a portion of the plane. Let’s describe
the evolution of a pattern on the edges of such lattice. It starts at some point on the
boundary, which in the example portrayed in figure 4.1 is chosen to be the top left-hand
corner. The pattern, or walk, always grows by one edge from its tip. Each time the tip
encounters the angle of a hexagon in front of it and chooses to turn to the left or to the
right with equal probability.

Figure 4.1: An example of percolation

Once it decides, we will mark the hexagon in front of the tip by + or -. As the walk
grows, all the hexagons on its immediate left will be marked with -1, while all on its right
will be marked +1. It may seem that if the walk curves enough, it may intersect itself.
This is impossible since it will encounter a hexagon which has already been marked. The
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marking procedure is chosen so that it has no choice: it will turn away from its previous
trace.

We need one last thing: to specify what happens at the boundary. It will be easy to
mark the hexagons at the boundary so that the walk never crushes on it. If we decide to
mark half of the boundary with - (left bottom in fig 4.1) and the other half with + (top
right), then the walk will be forced to end at the bottom right corner, even if, worst-case
scenario, simply follows the border. It will never get stuck since at any intermediate time
there is always at least one path from the growing tip to this final point which does not
intersect the existing part of the walk. What we end up with is a self-avoiding walk on the
lattice.

Since the number of paths on our discrete lattice is finite, we can always count them.
The rules we have given determine the probability for a walk to emerge. In other words,
we have a probability distribution, or measure, on the set of all such paths. However,
since each hexagon’s ± mark is extracted independently, we could have generated the
same paths with the same probability distribution by simply marking all the interior
hexagons independently with equal probability, leaving the border ones marked as be-
fore. This is the measure for independent site percolation. For each one of these config-
urations, there is exactly one path connecting the top left and bottom right corners, such
that all the hexagons on one side are marked + and all those on the other are -. Note that
the path is the boundary of the connected + cluster containing the upper right boundary
of the whole domain, and that of the - cluster containing the lower-left boundary. Of
course inside these clusters, there can be other markings and sub-clusters, but we are
concerned only by the outermost cluster.

There is another important property of this measure: if, at a given step of the walk,
we physically cut the lattice along the existing part of the path removing all the edges
that formed the walk until that point, then the measure on the rest of the path is just the
same as if we started the process from the tip, and defined it in the cut domain, with the
left and right sides of the existing part of the path forming part of the boundary. This
is the Markov property since defines independence of the probability measure from the
path’s history.

It’s easy to see that we can generalise this problem by giving weights, or probabilities
p ∈ [0, 1] for each hexagon to be assigned a + (1− p for a -). We can easily identify p with
a fictive temperature and its critical value will be clearly pc = 1/2.

It has been rigorously proved by Smirnov (2001), that these curves possess a unique
conformal invariant continuum limit with fractal dimension df = 7/4 and correspond to
a SLE with parameter κ = 6 but with central charge c = 0.

4.1.2 Ising model

We don’t need to change lattice to introduce a different model. By modifying the weights
for this process we can obtain a new measure on paths. For instance, let’s suppose
that the marks ± now represent the possible values of an Ising spin s(h) = ±1 on
each hexagon. If H is the hexagon just in front of the tip, mark it ± with probability
1/2(1 +m(H)), where m(H) is the mean magnetisation of an Ising spin at H in an Ising
model defined in the whole of the cut domain, with the specified boundary conditions.
That is

m(H) =
Tr s(H)eJ

∑
h,h′ s(h)s(h′)

Tr eJ
∑
h,h′ s(h)s(h′)

(4.1)

where −J
∑
h,h′ s(h)s(h′) is the usual Ising energy function in units of kT . If s(H) =
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+1, the walk turns to the right, if -1, it turns to the left. If J = 0, which corresponds
to the infinite temperature limit T → ∞, we get back to the case of percolation. When
J 6= 0 it will be difficult to simulate the walk since we would have to evaluate m(H) at
each step. We will prefer to simulate an equilibrium Ising model in the rectangle with
the same boundary conditions as before, sample one configuration and draw the path
connecting the top left and bottom right corners as before. Once again, the measure on
curves we get this way is the same as that given by the growth process.

Looking now at the example of the Ising model, we can see the difference between
walks here and in the percolation model. In percolation, if we modify the domain by
distorting its boundary or taking out a piece of the interior, the measure on paths which
do not intersect this remains unchanged. It’s as the growing walk does not ”feel” the
region’s boundary until it impacts on it. This is not true of the Ising model: the mag-
netisation of s(H) depends on the shape of the whole region. This property is called
locality.

This model also allows for a rigorous proof of its critical exponents and for the fractal
dimension of cluster boundaries df = 11/8, which converge in the continuum limit to a
SLE with κ = 3 and central charge c = 1/2, as it was definitively proven in Chelkak and
Smirnov (2012) .

4.2 Disordered models

The question of whether interfaces in disordered systems are described by SLE or not
is still unanswered. Intuitively the Domain Markov property does not hold as for or-
dered and it is unclear why it should hold for disordered systems. Moreover, conformal
invariance is broken for a particular disorder realisation but may be restored after aver-
age over randomness! Recent numerical simulations provide evidence that interfaces in
some random systems, frustrated or not, may be SLE curves.

4.2.1 Ising spin glasses

The Edwards-Anderson model of spin glasses Edwards and Anderson (1975) is defined by
the Hamiltonian

H = −
∑
(i,j)

Jijσiσj (4.2)

where the coupling constants Jij are so-called quenched random variables, meaning that
are constants that take different values for every realisation of the disorder or instance.
Usually, they are chosen as random variables distributed normally with mean 〈J〉 = 0
and variance 〈J2〉 = const. It is a well-known fact, that in 2d the correlation length ξ is
divergent for T = 0.

Recent investigation about scaling behaviour of domain walls Melchert and Hart-
mann (2009) showed that their fractal dimension is df ' 1.275. Although conformal
invariance is broken by the inhomogeneity of the couplings Jij , it seems to be restored if
we consider average quantities.

In a recent paper Amoruso et al. (2006) , a large-scale Monte Carlo simulation of the
two-dimensional Ising spin glass provided evidence in that sense. To test specifically
SLE, the authors extracted the driving function by using an algorithm that maps the
simulated shape to H and then performs discrete mappings g∆t(z) for which the point
of the curve on the real axis ξt needs to behave as a random variable with normal distri-
bution and variance 〈ξ2

t 〉 = κ. Results are shown in fig. 4.2, they allow the estimation of
κ ' 2.1 consistent with an estimate of df ' 1.275.
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Figure 4.2: From Bauer and Bernard (2006):(Color online) Plots of P (φ,R)−P2(φ), where P (φ,R))
is the probability for the domain wall to pass to the left of a point with polar coordinates (R,φ) (see
inset). The magnitude of statistical errors (not shown) is consistent with the apparent fluctuations
of the data lines. The predicted P2(φ) = [φ− 1

2
sin(2φ)]/π is subtracted to display small variations

clearly. The data from the paths agree with SLE predictions for κ in the range 2.44 < κ < 2.40.
Inset: A domain wall of length S = 9 in a sample with L = 4 rows and W = 6 columns.

Conformal predictions for the winding number of the floating domain wall around
long cylinders are reproduced by the data with a value of the fractal dimension compat-
ible to the above estimate.

Measurements of the left-passage probability performed by Bauer and Bernard (2006)
, were shown to be compatible with the Schramm formula with κ = 2.32(8) as shown in
fig 4.2 .

The boundary conditions where chosen periodically along one border by fixing the
spins to have the same sign and anti-periodic along the other, so that the ending points of
the domain wall are therefore not fixed. When the starting point of the interface is fixed
by changing a bond on the lower boundary, a slightly larger value 2.85(10) is obtained
from the Schramm formula.

4.2.2 Shortest path on critical percolation cluster

In a recent paper Posé et al. (2014) , it is numerically shown that the statistical properties
of the shortest path on critical percolation clusters are consistent with the ones predicted
for SLE curves for κ = 1.04(2). An example of such path is shown in fig. 4.3.

The authors relied on the analysis of three observables. The winding angle was
shown to be normally distributed with variance proportional to logLy , from which they
were able to extract a coefficient κwinding = 1.046(4). The left passage probability was in
accordance with κLPP = 1.04(2). By mapping the curves back to the origin with discrete
conformal maps g∆t, and thus obtaining a statistics for the Brownian motion, the authors
estimated κg = 0.9(2). These results are in accordance with the fractal dimension of such
curves, from which the coefficient is κfrac = 1.0462(2)
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Figure 4.3: From Posé et al. (2014) : A spanning cluster on the triangular lattice in a strip of vertical
size Ly = 5512. The shortest path is in red and all the other sites belonging to the spanning cluster
are in blue.





CHAPTER 5

Random Dimer Models

It may be argued that a natural generalization of the simple random walk on Z is given
by the planar dimer model. While the simple random walk and its continuum limit, Brow-
nian motion, are used extensively in all of probability theory, higher dimensional mod-
els like the dimer model are much less used or understood. The dimer model is at the
moment the most successful two-dimensional random field theory, our aim is to obtain
additional information about a special case of said model. For an introduction to the
argument and its applications, we recommend the lectures Kenyon (2009). In this chap-
ter, we will perform a numerical study of the effects of quenched disorder on the dimer
model, showing how criticality and conformality emerge at its ground state at zero tem-
perature. The results are published for now as preprint Caracciolo et al. (2020).

5.1 Dimer Models

A dimer covering, of a graph is a subset of edges which covers every vertex exactly once,
that is, every vertex is the endpoint of exactly one edge Lovász and Plummer (2009) (see
fig. 5.1 ). The dimer problem occurs experimentally, for instance, when a diatomic gas
is adsorbed onto a crystalline substrate Kasteleyn (1967). Given a lattice, we ask for the
number of ways that its vertices can be completely covered by non-overlapping dimers,
each occupying two neighbouring vertices.

Figure 5.1: A dimer covering of a regular lattice. We can clearly see how its topology gives a
bipartite graph.

A graph is bipartite when the vertices can be coloured black and white in such a way
that each edge connects vertices of different colours. When the lattice is bipartite, dimer
coverings are known in graph theory as perfect matchings. A classical example of dimer
covering is showed in fig 5.2 with its equivalent domino tiling (tiling by 2× 1 rectangles).
When considering the Honeycomb graph as in fig 5.3 , we can construct the equivalent
lozenge tiling (by tiling with 60◦ rhombi).

This random surface interpretation holds only for bipartite graphs, but there are many
open problems involving dimer coverings of both monopartite and bipartite planar graphs.
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Figure 5.2: Dimers on a square lattice and the equivalent domino tiling picture

Figure 5.3: Dimers on the hexagonal lattice and the equivalent lozenge tiling giving a 3d picture.
Colours are added to trick the eye.

Kasteleyn, Fisher and Temperley showed that the 2d Ising model can be reduced to
a generalized dimer problem Kasteleyn (1961), Temperley and Fisher (1961), Kasteleyn
(1963).

Dimers have been used more recently to model valence bonds by the so-called quan-
tum dimer model Kivelson et al. (1987), Moessner and Sondhi (2001) Kimchi et al. (2018).

Following the groundbreaking work of Kesteleyn, we will show how to obtain the
partition function for dimer models. On the square lattice, let’s define a positive weight
π(e) > 0 on each edge. To each configuration, we can assign a Boltzmann weight

π(C) :=
∏
e∈C

π(e). (5.1)

The partition function is then defined as

ZG :=
∑
C
π(C) =

∑
C

∏
e∈C

π(e), (5.2)

Where the sum runs over all possible dimer configurations on G. In If we set π(e) = 1
for every edge, then ZG is simply the number of dimer configurations on G. The topol-
ogy of the square lattice makes it bipartite, thus we can denote (w1, w2, ..., wN ) the half
of vertices we will colour in white, and (b1, b2, ..., bN ) the other half we will colour in
black. Choosing an orientation for each edge, we can define the adjacency matrix called
Kasteleyn matrix as

Kij =

 +π (wi, bj) if wi → bj
−π (wi, bj) if wi ← bj
0 otherwise

(5.3)
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Figure 5.4: A Kasteleyn orientation of the square lattice. The coordinates of black and white ver-
tices are indicated. Courtesy of Jesper Jacobsen.

The determinant of such matrix is

detK =
∑
σ∈SN

sgn(σ)K1,σ(1) . . .KN,σ(N), (5.4)

where SN is the group of permutations ofN elements. Not all permutations are relevant,
in fact, the ones that contribute satisfy the adjacency of wi to bσ(i), thus the determinant
counts only dimer configurations:

C(σ) :=
{(
w1, bσ(1)

)
, . . . ,

(
wN , bσ(N)

)}
. (5.5)

Every dimer covering C(σ) will contribute with its weight π [C(σ)] up to a sign. In order
to give all them the same sign, Kasteleyn proposed an alternating orientation shown in
fig. 5.4 In this way, we obtain the partition function

ZG = |detK| . (5.6)

For a generic graph, the free energy per dimer is defined as

f ({zi}) = lim
N→∞

1

N/2
lnZ ({zi}) , (5.7)

where {zi} is the set of weights we assign for each direction. In a square lattice with
equal weight along both vertical and horizontal directions, the free energy is

f(1, 1) = − 1

π

∞∑
k=0

(−1)k

(2k + 1)2
≡ −G

π
. (5.8)

G is the so-called Catalan constant G = 1 − 3−2 + 5−2 − 7−2 + · · · = 0.915965594 . . ..
Analogous results are obtained for Honeycomb, Triangular and more exotic lattices.

As a last classical dimer model, we would like to briefly present one problem that
gained much interest in the community: the beautiful Arctic circle. Its appearance is
easily visualised in the Aztec diamond domain, shown in fig. 5.5. A domino tiling of the
Aztec diamond yields an interesting figure, which border is named Arctic circle. We are
selecting a tiling at random, and we see a deterministic shape appearing. Most domino
tilings of the Aztec diamond are frozen outside a disk. We see a surprising behaviour: a
deterministic shape occurs inside a random object.

All these models, whatever their emergent disorder may be, are formulated with
classical, ordered dimers. Our aim is the study dimer models with quenched disorder,
which can be mapped to disordered models.
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Figure 5.5: Left: the Aztec diamond domain. By tiling it rectangular tiles, we obtain the Arctic
circle

5.2 The Random Dimer Model

As we showed in the previous chapter, the introduction of quenched disorder seems to
break conformal symmetry and Markovianity. This is what interests us: we would like
to study a generalized dimer model on a graph G(E, V ) in which we introduce disorder
by assigning a weight we ∈ R+ to each edge e ∈ E. Let’s assume that the weights
we are independently and identically distributed random variables, having a defined
probability distribution density ρ(w). In this way, we can assign a cost E[D] to each
covering of the lattice:

E[D] :=
∑
e∈D

we. (5.9)

We can introduce now a partition function

Z(β) :=
∑
D

e−βE[D], (5.10)

depending on the fictitious inverse temperature β = T−1. The number of coverings on
the graph is given by Z(0). Such model, we decided to call Random Dimer Model (RDM).
We say that D∗ is an optimal covering if

E[D∗] = min
D

E[D] = − lim
β→+∞

β−1 lnZ(β). (5.11)

The optimal configuration is almost surely unique and corresponds, therefore, to the
”ground state” of the model. The introduced randomness can be thought as due to noise
or it can be viewed as a representation of the system’s disorder we are mapping onto our
dimer model. In a dimer deposition picture, for example, randomness in edge weights
might refer to a noisy, space-dependent binding energy of the diatomic molecules on the
substrate.

The RDM is also a simple model for Random Euclidean matching problems (REMPs)
Mézard and Parisi (1986) Mézard and Parisi (1988). In a REMP, a set of 2N points {xi}2Ni=1

is given, uniformly and independently generated on a given Euclidean domain (e.g.,
the unit hypercube). We search then for an optimal permutation of 2N elements σ that
minimizes the matching cost

E[Dσ] :=

N∑
i=1

dp(xσ(2i), xσ(2i−1)), p ∈ R+, (5.12)
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where d(x, y) is the distance between x and y. Each permutation defines a set of N pairs
Dσ := {(σ(2i), σ(2i − 1))}Ni=1 of points that are matched. The goal is to find the match-
ing D∗ = arg minσ E[Dσ] that minimizes the total cost of the selected pairs. Finding
the average cost of the pairing is a challenging task, due to the presence of Euclidean
correlations between the pair costs. Euclidean matching problems, on the other hand,
are of great interest in the theory of optimal transportation Villani (2008), Bogachev and
Kolesnikov (2012), Santambrogio (2015), having a plethora of applications, from particle
transportation Chertkov et al. (2010) to data science Peyré and Cuturi (2019).

On the other hand, a bipartite graph is a simplified model for the bipartite REMP, or
Random Euclidean Assignment Problem (the very same formulated by Gaspard Monge
in 1784), in which we have two sets of N points {xi}Ni=1, {yi}Ni=1, uniformly and inde-
pendently generated on the square. The cost to be minimized will then be

E[Dσ] :=

N∑
i=1

dp(xσ(2i), yσ(2i−1)), p ∈ R+. (5.13)

Important results about statistical properties, such as scaling exponents, average op-
timal cost and correlation functions were recently derived by Caracciolo et al. (2014),
Caracciolo and Sicuro (2015b), Caracciolo and Sicuro (2015a). Computing the average
optimal cost in the REMP or the REAP is a challenging task, due to the presence of Eu-
clidean correlations between the pair costs Lucibello et al. (2017) Caracciolo et al. (2017).

On the other hand, the RDM in the β →∞ limit on planar graphs showed interesting
conformality properties. For example, given two uniformly sampled dimer coverings,
their union generates a set of curves and paths. Kenyon predicted the convergence of
such curves to a Schramm-Loewner evolution SLE(4) Kenyon and Wilson (2011), and
proved the conformality of the loops on bipartite lattices Kenyon (2014) .

As we have said, there is a correspondence between matchings and spin glasses in
two dimensions Fisher (1966) . The problem of finding the ground state of the two-
dimensional Edwards–Anderson model Edwards and Anderson (1975) can be mapped
into a planar matching problem Bieche et al. (1980) Barahona (1982). Notably, the 2d
EA model has a glass transition at zero temperature exhibiting scale invariance Bray
and Moore (1984) Shirakura and Matsubara (1997) Hartmann and Young (2001) and it
has been suggested that conformal invariance holds as well, as we have seen in in the
previous chapter Amoruso et al. (2006), Bauer and Bernard (2006) .

These results motivate our search for the presence of criticality and conformality in
the RDM on 2d lattices in the β →∞ limit, i.e. on the ground state, and search for corre-
spondences with the REMP, REAP and 2d spin glasses. We will show that similar critical
properties appear in the RDM, the REMP and the EA model, suggesting the existence of
a unique universality class for these models. Moreover, such properties depend on the
nature of the underlying graph over which the problems live.

5.3 Searching for criticality

In order to achieve small, local, perturbations of the optimal dimer cover, there are two
possible ways we can modify the weighted graph G: inhibition of an edge or a vertex.
Changing a single dimer of the cover will in order force other dimers to rearrange. Let’s
say we have a hexagonal or honeycomb latticeH , we find the optimal dimer coverD∗ for
a set of weights and then decide to inhibit an edge in the cover ê ∈ D∗, obtaining a new
lattice H/ê. Now we can find the new optimal cover D∗ê for the lattice H/ê. Comparing
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D∗ with D∗ê , we are able to evaluate the perturbation’s extent. The set of all affected
edges is given by the symmetric difference between the two coverings D∗ and D∗ê

Sê = {e ∈ E : e ∈ D∗4D∗ê}, (5.14)

pictorially exemplified in 5.6 . The result is a closed curve since both vertices of ê have

Figure 5.6: The resultant perturbation after prohibiting one edge of the optimal cover for a honey-
comb lattice.

to be attached to new neighbours, triggering the rearrangement of other edges and so
forth. If the curve weren’t close, we would not have a dimer cover.

Another way of perturbing the system is to inhibit vertices. Deleting a vertex will
not result in a lattice suitable to be covered by dimers, but deleting two vertices will
yield a new cover D∗v1,v2 and the resultant symmetric difference Sv1,v2 will be a curve
that starts at v1 and ends at v2, as portrayed in 5.7. One could argue that this procedure
is equivalent to the previous if we apply periodic boundary conditions merging the top
and bottom sides. The deleting of vertices is then equivalent to the inhibition of the edge
between them.

As we have previously seen, criticality means the divergence of correlation length.
If a system is critical, a localized perturbation induces an extensive rearrangement that
affects points that are arbitrarily far away from the location where the perturbation is
applied. In our cases, the rearrangements form a curve and we will study its properties.
Analogous topological defects on lattices were previously studied in the contest of elastic
glasses by Zeng et al. (1999); Middleton (2000).

Figure 5.7: The resultant perturbation after deleting two vertices at the upper and lower border
respectively.
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5.4 The analysis

When we analyse systems of a large but finite size in order to simulate the thermody-
namic limit, we need to be aware of the simulation’s limitations. In our case, we need to
mind the effects of the lattice border since our curves will inevitably hit it. To account
for this, one can impose Periodic Boundary Conditions (PBC) on both sides, modifying the
topology of the square into that of a torus T 2 = S1 × S1. We analyse closed curves
on three types of lattices: the honeycomb (H) lattice, the triangular (T) lattice, and the
square (Q) lattice. Each lattice is obtained considering L rows of L sites, displaced in
such a way that the lattice edge length is fixed to 1, so that the total number of sites is
2N = L2. We impose periodic boundary conditions in both directions, i.e., we work on
the torus. For L = 4, for example, see fig. 5.8.

Figure 5.8: the honeycomb (H), triangular (T) and square (Q) lattices

Open curves instead will be best analysed on a square with open boundary condi-
tions, since it is natural to let them spawn from one border to the opposite.

On the square with open boundary conditions, we will analyze the bipartite square
lattice H, the monopartite triangular lattice T as well as the monopartite REMP and bi-
partite REAP.

Finding a perfect minimum-weighted matching is a task that would require the com-
parison of all possible matchings, an immense number considering that even a small
chessboard of 8x8 vertices joined by a square lattice has more than 1013 possible dimer
covers Kasteleyn (1963). We used a variant of Edmonds’ Blossom algorithm Edmonds
(1965a,b); Edmonds and Karp (1972), which yields the solution in O(EV log V ), being V
and E the number of vertices and edges respectively. In broad strokes, instead of find-
ing all matchings and selecting the best one, it constructs the optimal matching edge by
edge in such a way that the resultant complete matching has to be the optimal one. The
algorithm is briefly explained in Appendix B, for a review on the subject and its modifi-
cations through the years, see Cook and Rohe (1999). The algorithm was implemented
in a C++ code with the use of the LEMON library Dezsö et al. (2011), which manages the
modelling and optimization in networks, providing also the Blossom algorithm execu-
tion. The code run on different machines: one with 64 cores and 256 GB RAM memory,
another with 920 cores and a total of 1150 GB RAM.

We numerically evaluated the probability distribution function Pr[Sê > s] of having
a curve of length greater than s for all models considered above. Scaling theory for
critical systems suggests that such a probability distribution can be written as

Pr[Sê > s] = s−ζρ
(
sλL−1

)
, (5.15)

for some scaling function ρ, such that 0 < limz→0 ρ(z) < +∞ and with ζ > 0, just as we
saw in eq. 1.20 . The function ρ is homogeneous and its argument is dimensionless. The
scaling exponents ζ and λ have to be determined. The scaling ansatz in eq. (5.15) is nu-
merically confirmed for all the analyzed models, including the REMP, see fig. 5.11. It is
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Figure 5.9: Closed curve on the torus Figure 5.10: Open curve on a square

evident that, as the size L increases, a power-law tail develops in all considered models.
This implies that local perturbations induce extensive rearrangements with finite prob-
ability in the thermodynamic limit and the models are indeed on a ”critical point”. The
results in Fig. 5.11 also suggest that the power-law exponent ζ on the torus is the same
for the H and the Q model, whereas the T model has an exponent that is very close to
the REMP one. On the open square, since curves have a minimum cut-off equal to the
size L, the same analysis in less informative. After a rescaling S → (S − 〈S〉)/VarS it
suggests only that ζ = 0, see fig 5.12
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Figure 5.11: Cumulative distribution of the size ”s” of the excitation for the different models. The
sizes are L = 100, 300, 500 (from left to right in each case) for each dimer model. For the Euclidean
cases, instead, the represented sizes are 2N = 2000, 5000, 10000, from left to right
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Figure 5.12: Probability Pr[S′ê > x] of H model on the open square, S′ê = (Sê − 〈Sê〉)/Var Sê. All
the curves for different sizes collapse onto one.
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5.5 Critical exponents and fractal dimension

Let’s now try to evaluate the fractal dimension Df of the curve. Assuming that < Sê >∼
Lα, from Eq. (5.15) we have

< Sê >=

∫ ∞
0

SêPr[Sê = s]ds ∝
∫ ∞

0

ss−1−ζρ(sλL−1)d(sλL−1)s1−λL ∝ L
1−ζ
λ (5.16)

α =
1− ζ
λ

. (5.17)

The gyration radius of the cycle is defined as

R2
ê :=

1

2S2
ê

∑
i,j

d2(ri, rj) (5.18)

where ri is the position of the ith node in the cycle and the sum runs over all pairs of
vertices of the cycle. The gyration radius satisfies a scaling law of the form 1〈

R2
ê

〉
Sê=s

= s2D−1
f g

(
sλL−1

)
. (5.19)

where g is a scaling function such that 0 < limz→0 g(z) < +∞, and the average is condi-
tioned on cycles of length s. Assuming that

〈
R2
ê

〉
∼ Lγ , we obtain〈

R2
ê

〉
=

∫ ∞
0

〈
R2
ê

〉
Sê=s

Pr[Sê = s]ds ∝
∫ ∞

0

s2D−1
f g

(
sλL−1

)
s−1−ζρ(sλL−1)d(sλL−1)s1−λL ∝

L
2D
−1
f
−ζ−λ
λ L = Lγ

(5.20)

γ =
2D−1

f − ζ
λ

. (5.21)

Taking into account eq. (5.17) a relation between the three exponents α, γ and ζ and the
fractal dimension Df is easily found,

Df = 2− γ + α, (5.22a)

ζ =
2− γ

2− γ + α
. (5.22b)

In particular, the fractal dimension and the power-law exponent ζ can be extracted by a
careful measurement of α and γ.

A linear fit of log 〈O〉L ∼ logL, where 〈•〉L denote an average at size L, for the length
O = Sê and gyration radius O = R2

ê is certainly a good first approximation. However,
finite-size effects must be accounted even if the simulation sizes L may seem great. In
other words, our curves are never truly able to extend freely beyond a certain length,
being subjected to the constrain of the system’s size. To extrapolate the values of expo-
nents α and γ to L = ∞, we used the so-called method of ratios Caracciolo et al. (1995).
Finite-size scaling predicts that

O(L)

O(∞)
= fO(ξ(∞)/L) +O(ξ−ω, L−ω) (5.23)

1Here a hyperscaling assumption has been made: we assume that, to get a proper L → +∞ limit, the
argument of g in Eq. (5.19) has the same scaling properties of the one of ρ in Eq. (5.15).
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Figure 5.13: Extrapolation of α (left) and γ (right) for the different models. Each point represents
the value ratios log2

(
〈Sê〉2L/〈Sê〉L

)
(left) and log2

(〈
R2
ê

〉
2L
/
〈
R2
ê

〉
L

)
(right) for different sizes L,

with its respective error. Sizes vary in the range 8 ≤ L ≤ 512 for lattice models, and 64 ≤
L2 ≤ 51200 for the REMP. Each value has been averaged over 107–108 different instances. The
value of both exponents in the bipartite models is clearly different from the one obtained for the
monopartite ones.

Where fO is a universal function and ω is a correction-to-scaling exponent. This holds
true for any fixed scale factor a: O(aL)/O(L). It follows automatically if we consider a
first correction to the scaling law 〈S〉L ∼ Lα(1 + b/Lω). Now the ratio will have the form

log2

〈Sê〉2L
〈Sê〉L

= α+
α(1)

Lω
+ o

(
1

Lω

)
. (5.24)

Plotting it against the size L, we can fit our data, given in Fig. 5.13, using a function
f(L) = α+α(1)L−ω , with α, α(1) and ω free parameters. Similarly for the gyration radius,
expanding 〈R2

ê〉 to the second order, we have

log2

〈
R2
ê

〉
2L

〈R2
ê〉L

= γ +
γ(1)

Lω
+
γ(2)

L2ω
+ o

(
1

L2ω

)
. (5.25)

In this case, the fit, given in Fig. 5.13, has been obtained using a fitting function f(L) =

γ + γ(1)L−ω + γ(2)L−2ω , with γ, γ(1) and γ(2) free parameters, whilst for ω was fixed
to the same value estimated in the analysis for α. The data points have been obtained
averaging over 107–108 different instances for each value of L. In the case of lattice
models, we used 8 ≤ L ≤ 512, whereas for the REMP we considered 64 ≤ L2 ≤ 51200.
The results are summarized in fig.5.13. Once found α and γ, the fractal dimension of our
curves is easily found Df = 2− γ + α

All our results are collected in Table 5.1. We observe that the values of the exponents
naturally splits into two groups: the first one including the T model and the REMP, with
curves havingDf = 1.273(2), and the second one including the Q and the H models, with
curves havingDf = 1.252(2). The fact that the H and Q model share the same exponents,
and similarly, the T model shares its exponents with the REMP, suggests that the only
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H Q REAP T REMP
〈∆Eê〉 1.115(1) 0.655(1) 0.637(1) 0.380(1) 0.585(1)
α 0.508(2) 0.506(1) 0.504(1) 0.827(1) 0.824(1)
γ 1.259(1) 1.252(2) 1.257(15) 1.554(1) 1.554(1)
ζ 0.593(1) 0.597(1) 0.596(6) 0.350(1) 0.351(1)

ζ (from fit) 0.593(1) 0.595(1) 0.588(1) 0.354(1) 0.350(1)
Df 1.250(2) 1.253(2) 1.247(15) 1.273(1) 1.270(1)

κwinding 2.034(6) 2.003(7) 2.023(4) 2.181(4) 2.195(4)
1 + κw

8 1.254(1) 1.250(1) 1.253(1) 1.273(1) 1.274(1)

Table 5.1: Asymptotic average optimal cost and of the scaling exponents for random dimer cover-
ing problems on the torus. 〈∆Eê〉 is the average cost of the perturbation, i.e. the sum of weights
composing the curve.

relevant feature that determines the scaling is the nature of the underlying graph, i.e.,
the fact of being bipartite or not.

The analysis of models on the square with open boundary conditions showed results
compatible with the obtained for the torus, the only difference being that with ζ = 0
γ = 2 and Df = α. For the REMP we obtained Df = 1.25(1). For the assignment
problem the dimension is Df = 1.26(2) and for the grid-Poisson we have Df = 1.26(2).

5.6 Conformal invariance

The presence of criticality suggest the inspection of a stronger invariance, namely con-
formal invariance.

5.6.1 Winding angle

To this purpose, we computed the winding angle of the curves. Picking a random edge
on the curve, we can define the angle θe between it and a chosen direction. Denoting
the winding angle ϑ(e + 1) = ϑe + angle(e, e + 1) as the difference between angles of
adjacent edge. On the lattice, we have that, since the curves are closed,

∑
e∈Sê ϑ(e) = 0.

The variance of the angle 〈
ϑ2
〉

:=

〈
1

Sê

∑
e∈Sê

ϑ2(e)

〉
, (5.26)

however, is found to grow linearly with logL as〈
ϑ2
〉

= a+
κwinding

4
lnL, (5.27)

see Fig. 5.14. The values of κ are given in Table 5.1. Once again, the T model and the
REMP are found to have the same value of κ. This value is different from the value of κ
obtained for the Q model and for the H model. As we have seen, this may follow from
conformal invariance, see Duplantier and Saleur (1988). Furthermore, such behaviour is
a hint of a possible SLE description, with the parameter κwinding appearing in Eq. (5.27)
being the parameter of the Schramm–Loewner evolution, see Duplantier and Binder
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Figure 5.14: The variance of winding angles
〈
ϑ2

〉
for the hexagonal (red), square (blue), triangular

(green) models and the REMP (yellow). each point represents the winding angle’s variance for a
size L averaged by 107 iterations. Sizes vary in the range 16 ≤ L ≤ 128 for lattice models and
256 ≤ L2 ≤ 8100. The error is smaller than the points’ diameters.

(2002); Wieland and Wilson (2003). The quantity a is instead a nonuniversal constant.
Moreover, given an SLEκ, then Df = 1 + κ

8 Rohde and Schramm (2005). This relation
approximately holds for all the considered models, see Table 5.1, suggesting that the
obtained curves are indeed SLEκ but with different κ.

5.7 SLE observables

As we discussed, the logarithmic behaviour of Varϑ can be explained by the presence of
conformal invariance and it’s also a result of SLE. The latter is a stronger assumption,
its emergence in a system with quenched disorder is not a trivial assumption. We will
analyse SLE observables in order to rule out this hypothesis.

5.7.1 Left Passage Probability

For all models on the square with open boundary conditions we can, as shown in the
previous chapters, check the Left Passage Probability (LPP). For the SLEκ the left passage
probability is known for the points of the upper half-plane H. Let us fix a point z =
x + iy ∈ H, then the probability that a trace of a SLEκ, spanning from 0 to i∞, passes to
the left of this point is given by the Schramm formula

Pr[γ left of z] =
1

2
+

Γ
(

4
κ

)√
π Γ
(

4
κ −

1
2

) xy F2,1

(
1

2
,

4

κ
;

3

2
;−x

2

y2

)
(5.28)

where F2,1 is the hypergeometric function.
To do this check, we should map our grid, with the curve in it, into the upper half

complex plane H. The LPP is the probability for a curve to pass on the left of a point z.
See Fig. 5.15.
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0

Figure 5.15: The upper half complex plane H with a curve in it and lines of equal probability level.

In this way, straight lines will indicate probability levels (Pr[γ left of z] withx/y =
const). What we did was actually the opposite: we conformally mapped the upper half
complex plane H with its level lines into our square and then compared how well the
experimental LPP of our curves fitted the predicted one. We used two maps to do this:
first, we mapped H into the unit disk D with a Möbious map.

g(z)H→D = i
1 + z

1− z
(5.29)

We then proceeded to map the unit disk to the square S, so that the old axes origin will
be mapped at the middle bottom, and the infinity will be at the middle top.

f(z)H→S =

i F

(
arcsin 1√

i
1−g(z)
1+g(z)

,−1

)
Re(K(2))

(5.30)

Where F (x; k) is the incomplete elliptic integral of the first kind

F (x; k) :=

∫ x

0

dt√
(1− t2) (1− k2t2)

(5.31)

And K(m) is the complete elliptic integral of the first kind

K(m) :=

∫ π
2

0

dθ√
1−m sin2 θ

(5.32)

A brief check of the LPP for the above-mentioned percolator-explorator model yields
the results are shown in fig. 5.16, where we choose two arbitrary points on the upper and
lower borders. We can see that the theoretical probability levels, drawn in red, follow
the levels in black obtained from numerical simulations. The theoretical levels are those
for κ = 6, while the fractal dimension obtained by rescaling is equal to 1.79(2), thus in
agreement with SLE6
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Figure 5.16: A plot of the simulated probability levels of the percolator-explorator on the hexag-
onal lattice on a square region with red curves being theoretical probability levels mapped from
H.

5.7.2 Bipartite models

Since the two categories fell into distinct universality classes, we will test if their SLE
observables behave differently. Let’s start with the bipartite models, namely the square
H and assignment REAP.

For the H model figure 5.17 shows the astonishing agreement between the probability
levels for κ = 4.00(4) and the simulation ones. The algorithm we used was constructed
upon the Mathematica language. The simulations were conducted on squares of sizes
L = 50, 10, 150, 200, the latter of which is reported here. All sizes gave the same result,
meaning that fine-size effects do not diminish sensibly enough. We can test optimal
value by analyzing the L2 distance between curves for different κ, see fig 5.18 .

This may seem a success at first glance, but the fractal dimension obtained in the
previous section is in disagreement with this value of κ! Such value impliesD′f = 1+ κ

8 =
1.5 not compatible with our previous Df = 1.250(2).

The same analysis was performed for the REAP on squares of sizeN2 = L = 50, 100, 150.
The results are incredibly similar, we report the results in fig. 5.19.

Once again this striking accordance for the LPP is in conflict with the previous value
of Df = 1.253(2).

In a previous work, Zarinelli (2008), analysed the so-called Grid-Poisson Matching
Problem. In it, two sets ofN points xNi=1 and yNi=1 are given on a square of side L = 1. One
of them is uniformly and independently generated, while the other consists of points
placed on the vertices of a square grid with spacing 1/

√
N . The cost to be minimized is

E[Dσ] :=

N∑
i=1

d2(xσ(2i), yσ(2i−1)). (5.33)

The analysis showed the same discordance between the best fit for the LPP κLPP = 4,
and the fractal dimension of curves, for which κfrac = 8(d− 1) = 2.4(2).
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Figure 5.17: LPP for the Square lattice. The red curves are the theoretical probability levels after
the conformal mapping. The colour shade indicates the LPP, from light yellow (LPP∼ 0) to dark
blue (LPP∼ 1). Among the shades, we draw in black the same probability levels obtained from
numerical simulation
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Figure 5.18: The L2 distance between experimental curves and theoretical values for the LPP of
the Square lattice versus the fitted value of κ
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Figure 5.19: LPP for the REAP, for 2N points on a square of size L =
√

2N = 200. The theoretical
values of probability lines for κ = 4 are portrayed in red, they lay just above the experimental
values.
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Figure 5.20: The L2 distance between probability lines of numerical simulations and theoretical
curves for the REAP versus the different values κ for the fit.

5.7.3 Monopartite models

The picture changes if we analyse monopartite problems, namely the triangular lattice T
and the REMP. For the REMP, the results are reported in fig. 5.21 .
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Figure 5.21: LPP for the REMP on a square of size L = 50. The red curves are the theoretical
probability levels for κ = 4, which is the best fit.

As we can see, although experimental values are fitted best by SLE4, there is no value
of κ that guarantees a perfect match. This is clearly portrayed in fig 5.22, where L2 in
never quite able to converge to 0.
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Figure 5.22: The L2 distance between probability lines of numerical simulations and theoretical
curves for the REMP versus the different values κ for the fit.

The same picture is obtained analysing the ”lattice counterpart”, i.e. the Triangular
lattice. This all seemed suspicious and we decided to perform additional checks in order
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to understand if the results are affected by border conditions.
Fig. 5.23 reports the LPP analysis for the REMP with a different choice of the deleted

vertices. Choosing them not aligned generates twisted curves that can still be mapped
on H and compared with theoretical values for SLE. The results do not change, κ = 4
gives still the best fit, but it does not converge properly.
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Figure 5.23: Left Passage Probability for the REMP on a square of size L =
√
N = 100 and deleted

vertices not aligned. Despite the twist, the best fit is still given by κ = 4
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5.7.4 Domain Markov Property

The conclusions derived from LPP tests were not in accordance with the values of Varϑ,
which clearly exhibited a behaviour present in conformal invariant models.

To obtain greater insight about the latter we decided to check a fundamental property,
namely the presence of the Domain Markov Property, for which

PD (γ2|γ1) = PD/γ1
(γ2) , (5.34)

Meaning that the probability for the curve to be γ2 when conditioned to γ1 is the same
probability if we consider a ”cut” domain D/γ1, as shown below.

Instead of analysing the probabilities, we can look at observablesO[γ2], which ought
to have expectation values given by∫

dPD,ζ,ξ (γ2 | γ1)O [γ2] =

∫
dPD\γ1,z,ξ (γ2)O [γ2] (5.35)

This means that LPP for conditioned curves and for curves in the cut domain must be
the same.

We analysed the square lattice H by simulating curves and keeping only the ones that
had |γ1| = L/4 horizontal edges. The cut domain was realised as portrayed below

,

The analysis was performed for sizes L=8,|γ1| = 2; L=16,|γ1| = 4 and L=24,|γ1| = 6.
The average values were obtained over 17639 curves for L = 8, 2923 for L = 16 and 5390
for L = 24. In order to quantify the difference between the two distributions we defined
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Figure 5.24: Distance between PD(γ2|γ1) and PD/γ1
(γ2) for sizes L= 8,16,24. If fitted linearly, the

dependence is given by d(P1, P2) = 0.18(1) + 0.00120(8)L

Figure 5.25: The order of the first 4 curves of length 2 (the remaining 3 are specular)

a distance between their two matrices of size L× L = N .

d(A,B) =

√√√√ L∑
i,j

(aij − bij)2/N, (5.36)

Where aij (bij) is the number of times p the curve passes to the left of the point with
coordinates (i, j), normalized to obtain aij ∈ [−1,+1]. The uncertainty was estimated as√
p. The dependence of d(PD(γ2|γ1), PD/γ1

(γ2)) from size L is shown in fig. 5.24 .
One may very well doubt about the typicality of the particular choice of γ1. The

divergence of the distance between probabilities may be an artefact of our conditioning
on something increasingly less typical. Driven by such fear, we analysed the frequency
with which paths of a given length appear. For instance, for a path of length 2 there are
7 possible realizations, as shown in fig.5.25.

The ordered histogram for sizes L = 8, 16, 24 is shown in fig. 5.26.
As we can see, the most frequent paths are the ones laying on the border, while the

vertical path loses importance. If we take a large enough square, say of size L = 24,
we can study the statistics of curves of length |γ| = 4, 5. As shown from histograms in
fig. 5.27, the most frequent paths are still the ones that lay on the border, shown in a red
circle (here the order is casual).

We then decided to condition the curve being as it’s most frequently encountered,
i.e. along the top border (see fig. 5.28). The same analysis for the distance between
probabilities shows how in this case they still diverge and, in fact, the effect is even
greater, as showed in fig. 5.29
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Figure 5.26: Histogram of the 7 paths ordered as in .5.25. For sizes L = 8 (left), L = 16 (centre)
and L = 16 (right). The paths numbered 1 and 7 are the ones laying on the upper border (right
and left sides), number 4 is the vertical one.
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Figure 5.27: Paths of length 4 (left) and 5 (right) in a square of size L = 24. The paths laying on
the border are shown in a red circle, the vertical path is shown in a blue circle. The order is casual.

Figure 5.28: An example of the cut domain and a generated curve in it
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Figure 5.29: The distance d(PD(γ2|γ1), PD/γ1
(γ2)) fitted with x1.72
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We performed the same analysis for a monopartite lattice, namely the triangular lat-
tice.

We started analysing the frequency of first paths. In fig.5.30 it’s showed the histogram
for the first 4 steps of a curve in a square of size L = 24. The most frequent are once again
the ones laying on the left and right top borders.
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Figure 5.30: Histogram of the first paths of length 4 for a lattice of size L = 24

We then conditioned the curves to have the first |γ1| = L/4 part on the border, ob-
taining LPPD (γ2|γ1). After that, we cut the same part from the domain as portrayed in
fig.5.31, obtaining LPPD/γ1

(γ2)

Figure 5.31: The lattices for LPPD/γ1
(γ2)

As well as before, we can see a difference between the two probabilities: LPPD (γ2|γ1) 6=
LPPD/γ1

(γ2). If we obtain the distance 5.36 for sizes L = 8, L = 16, we can clearly see it
does not tend to zero, as shown in fig 5.32

We conclude that the Domain Markov Property is certainly violated for these sizes
of lattices (L = 8, 16, 24). Furthermore, the property does not seem to recover increasing
the size (at this level). This indicates that most probably it will remain violated in the
thermodynamic limit.
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Figure 5.32: Distance between PD(γ2|γ1) and PD/γ1
(γ2) on a triangular lattice for sizes L= 8, 16.

5.7.5 Driving function analysis

All the information we gathered led us towards the conclusion that the curve is influ-
enced by the border too much to simulate its behaviour in the thermodynamic limit.
The winding angle proved to be a really local variable, whereas left passage probability
is influenced by long-range correlation.

To test the SLE hypothesis we decided to analyse the driving function by mapping the
curve γ into the real axis at discretised steps, remembering that ξ∆t = g∆t(τ(∆t)) must
be normally distributed with variance 〈ξ2

∆t〉 = κ∆t.
This analysis performed on the curves on the open square leads to discording re-

sults as the border is influencing the evolution of the curve. To minimise this effect, we
decided to study contractible loops on the torus, performing the thermodynamic limit
by considering only a small portion of the curve, after some considered manipulations
inspired by Gherardi (2009).

First of all, we unfold the torus as shown in fig. 5.33 . Now that we have a loop on
a plane, we brake and deform it in order to use SLE analysis for the chordal geometry.
To break the loop and consider the new initial and final points independent, as created
by the SLE evolution process in the upper half-plane, we will choose k steps and discard
them. We carve a disk between two adjacent points, obtaining an open curve attached
to two diametrically opposite points on a circumference. As shown in 5.34, by inversion
and subsequent Möbius mapping we can map the curve to H. The exact maps for each
described step are

f =
√
z + 1

√
z − 1 (5.37)

g = 1/z (5.38)

h = i
1 + z

1− z
(5.39)

f(z) maps only the complement in C of the real segment [−1,+1] to the complement
in C of the unit disk, so our zeroth step is to rotate and translate each loop in order to
have the two vertices of an edge in (−1, 0) and (+1, 0) and then we perform all the above
steps. The discard of k points will be obtained simply by absorbing the first k steps into
the real axis by conformal transformations once the curve in transformed.

We can now proceed to analyse the resulting curve with the so-called Zipper algorithm,
the details of which are exposed in Appendix A and more thoroughly in Kennedy (2008);
Marshall and Rohde (2007), to extract its driving function as depicted in fig. 5.35
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Figure 5.33: Unfolding the torus

k

f g h

Figure 5.34: All the steps used to map the loop to a curve in the upper half-plane H. The picture is
simplified since carving a disk with the initial k steps is operationally unwise because the rest of
the curve may very well intersect it. To overcome this we actually carve a disk containing just one
step and absorb into H the rest after all maps are performed.

We fix k = 60, 90, 120 and consider L = 200, 400. We condition the ensemble to
s > smin = k+ 10 so as to ensure that k < s and that there are at least a few points in the
remaining curve. However, we did check, that the results do not depend appreciably on
the particular choice of smin. For each pair L, k we measure the s− k pairs (ti, ξti)

s−k−1
i=0

as described above, for ∼ 105 independent realizations. We first performed our analysis
on the Q model. The leftmost panels in fig. 5.36 show the ensemble-averaged mean
square displacement of ξt as a function of time. For small times, up to tmax ' 0.012

〈
ξ2
t

〉
,

is approximately linear in t. While the time tmax does not seem to change appreciably
with lattice size, the average number of steps needed to reach it, 〈s(tmax)〉, increases with
L and k. Note that the quantity 〈s(tmax)〉 is computed without taking into consideration
the first k steps of the original curve, which get mapped to the boundary of the domain.
For L = 200 we find 〈s(tmax)〉 ' 110/157/188 for k = 60/90/120 respectively. For
L = 400 we find 〈s(tmax)〉 ' 174/268/325. The ratios between 〈s(tmax)〉 and the average
number of steps of the curves are 0.43, 0.49, 0.51 for L = 200 (again for k = 60, 90, 120)
and 0.46, 0.58, 0.61 for L = 400. To compute κ we performed linear fits of

〈
ξ2
t

〉
versus t,

using only the data at the larger size, L = 400. We performed fits in intervals [0, tmax]
with varying tmax. Fit results are shown in fig. 5.36.

Let us first focus on the square lattice. The fitted values for the square lattice stabilize
around tmax ' 0.01. The three values of κ that we considered yield compatible esti-
mates at the plateau. We estimate κ = 2.07(8). Besides the scaling of the mean squared
displacement, SLE predicts that the normalized process ξt/

√
t is distributed normally

with mean 0 and variance κ. To obtain sufficient statistics, we considered the data for
k = 60, 90, 120 combined, and all times from tmin = 0.001 and tmax = 0.012 (for smaller
values of tmin lattice artefacts become apparent, affecting the tails of the distribution).
Fig. 5.36 shows that the normalised process is approximately Gaussian as expected. The
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small discrepancies, especially apparent in linear scale for L = 200, are reduced by in-
creasing the size. Repeating the same procedure for the T model we obtain κ = 2.16(13),
see also fig. 5.37. However, notice that, in the T model, the three values of κ give slightly
inconsistent estimates, see fig. 5.38 .The values for k = 60 do not reach a well-defined
plateau. Excluding them from the overall estimate, we get κ = 2.20(8).

All the above results are in perfect agreement with the fractal dimension of the curves
Df = 1 + k/8 ' 1.25/1.27. We conclude that in the thermodynamic limit, curves gener-
ated by excitation of the Random Dimer Model, are critical, conformal and are described
by SLE. We claim that the monopartite models are in the same universality class as 2d
Edwards-Anderson spin glasses Melchert and Hartmann (2009); Wang et al. (2017); Cor-
beri et al. (2019). Excitations produced in bipartite lattices, instead, are compatible with
a loop-erased self-avoiding random walk process Majumdar (1992); Middleton (2000); ’t
Hooft and Veltman (1972).

Figure 5.35: Left. A contractible loop with s = 522 in the T model with L = 400 (top) is split into
two parts (red, of k = 90 steps, and black, of s−k steps). By a conformal transformation, the black
part is mapped into a curve in the upper half-plane stemming from the origin (bottom). Right.
Probability distribution function of the driving function for L = 400 on the Q lattice and on the T
lattice. The numerical results have been obtained averaging over a wide range of time t and are
compared with a normal distribution N(0, κ) having zero mean and variance κ = 2.1.
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Figure 5.36: Driving function analysis on the Q model. Leftmost panels. Mean square displace-
ment as a function of time, binned in intervals δt = 0.0008. The three symbols correspond to
three values of k (the number of steps of the walks that get mapped to the boundary of H):
k = 60 (squares), k = 90 (circles), k = 120 (diamonds). Dashed lines are the SLE prediction
for κ = 2.07. Central and rightmost panels. Empirical probability distribution function of the
rescaled process ξt/

√
κt in linear and logarithmic scale (center and right, respectively) for times

in range 0.001 < t < 0.012. Dashed lines are the SLE prediction for κ = 2.07, i.e., Gaussian
distributions with mean 0 and variance κ.



74 5.7 SLE observables

Figure 5.37: Driving function analysis of the T model. Leftmost panels. Mean square displacement
as a function of time, binned in intervals δt = 0.0008. The three symbols correspond to three values
of k (the number of steps of the walks that get mapped to the boundary of H): k = 60 (squares),
k = 90 (circles), k = 120 (diamonds). Dashed lines are the SLE prediction for κ = 2.07. Central
and rightmost panels. Empirical probability distribution function of the rescaled process ξt/

√
κt in

linear and logarithmic scale (center and right, respectively) for times in range 0.001 < t < 0.012.
Dashed lines are the SLE prediction for κ = 2.16, i.e., Gaussian distributions with mean 0 and
variance κ
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Figure 5.38: Fitted values of κ from simulations on the square lattice (top) and triangular lattice
(bottom) as functions of the upper cutoff tmax. The three symbols refer to the three values of κ
considered. Shaded bands indicate our final estimates (dashed line) and their variability.



5.8 Summary

Rigorously proving that a discrete system exhibits critical behaviour in the thermody-
namic limit is no easy task. When the system is imbued with quenched disorder, this
task becomes even harder. As of today, there is no rigorous proof that a single disor-
dered system exhibits SLE-compatible excitations. This thesis, albeit not providing any
such proof, analyses numerically and extensively shows under which conditions such
behaviour can be observed in a system with quenched disorder, namely the Random
Dimer Model.

It is shown that topological modification of a lattice induces, in the ground state of
RDMs, excitations in the form of fractal curves which are compatible with excitations of
a critical system, namely their correlation length diverges and observables behave like
power-laws. By numerically evaluating critical exponents, we are able to determine the
universality class of various RDM. As it turns out, the latter depends on the topology
of the graph. Bipartite graphs exhibit exponents compatible with loop-erased random
walks, in particular, the fractal dimension of curves in both models is Df = 1.250(3).
Non-bipartite graphs are compatible with the Edwards-Anderson Ising model and the
fractal dimension of curves is compatible with the dimension of domain walls of the EA
at zero temperature, namely Df = 1.272(2).

In addition to this, our work inquires the possibility of a conformal description of
said curves at the thermodynamic limit. As it is known, conformal curves generated by
a random process can be described by SLE. The winding angle ϑ of excitation curves was
numerically evaluated to behave as in the case of conformal curves:

〈
ϑ2
〉
∼ Df−1

2 logL
just as predicted, for instance, by the Coulomb gas method. Furthermore, another impor-
tant observable is studied: the Left Passage Probability, for which SLE predicts a peculiar
behaviour. Our study shows how this observable is affected by border conditions and
thus can yield misleading values even at sizes for which other observables behave as in
the thermodynamic limit. Namely, we show how the LPP of curves on the open square
does not behave as expected, though it is compatible with some different SLE (mostly
with κ = 4). Moreover, we show that in the open square, even Domain Markov Property
seems violated, thus preventing any form of LPP analysis. Nonetheless, we overcome
these difficulties by recreating the thermodynamic limit considering short portions of
curves on the torus. We were able to conformally map such portions to the complex
half-plane H and subsequently absorb them into the real axis by other conformal map-
pings. In this way, we extracted information about the driving function of the possible
SLE, showing that it is indeed a Brownian walk with Normally distributed steps around
the mean value κ = Df−1

2 for each model.
The accordance of κ, ϑ and Df strongly suggests that the RDM at zero temperature is

critical, conformal and SLE-compatible, a result that casts light on the yet vastly unex-
plored question of conformal behaviour for disordered models at critical temperature in
the thermodynamic limit.
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APPENDIX A

The Zipper algorithm

A.1 Conformal mapping algorithms

Conformal maps have useful applications in mathematics, physics and engineering, aid-
ing in the solution of problems from electrostatics to fluid dynamics Schinzinger and
Laura (2012). Although it’s a well-known fact that any two compact subsets of C can
be mapped conformally into each other, there is no general procedure to find such map-
ping. This problem affects us since we would like to map the upper half-plane H into
the complicated region drawn by the Schramm-Loewner evolution of a curve and vice-
versa, in order to extract information about the Brownian motion of ξ(t) in

∂gt(z)

∂t
=

2

gt(z)− ξ(t)
. (A.1)

Approximating the curve by a series of straight segments as we saw in chapter 3, is
surely a first step towards a general algorithm. In the early 1980s, Kühnau and Marshall
proposed a fast and accurate algorithm for finding both the conformal map and it in-
verse, that can be viewed as a discretisation of the Loewner differential equation. Here
we aim to briefly introduce the argument, for a more detailed explanation the reader is
invited to consult Marshall and Rohde (2007); Kennedy (2008) .

A.1.1 The Geodesic algorithm

The most elementary version of the conformal mapping algorithms is based on the sub-
division of the curve in subsequent arcs perpendicular to R at 0. Each arc will be mapped
to R by fa : H/γ → H, as shown in fig. A.1. This can be done by the composition of a
linear fractional transformation, the square and the square root map as in fig A.1. The
orthogonal circle also meets R orthogonally at point b = |a|2/Rea, whereas c = |a|2/Ima.
The inverse f−1

a can be easily found by composing the inverses of these elementary maps
in the reverse order.

A.1.2 The Slit algorithm

We can improve the previous approximation by using straight lines instead of orthog-
onal arcs. In this case, instead of having the previous f−1

a , we will have the maps
ga : H→ H/L, where L is a segment from 0 to a, as shown in fig. A.2. The mapping is

ga(z) = C(z − p)p(z + 1− p)1−p, (A.2)

where p = arga/π and C = |a|/pp(1 − p)1−p. As in the maps of the geodesic algorithm,
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Figure A.1: The geodesic algorithm mapping. fa is the composition of a linear fractional transfor-
mation, the square and the square root map. b = |a|2/Rea, c = |a|2/Ima.

Figure A.2: The Slit algorithm. ga maps the segment [p− 1, p] ∈ R to the oblique slit L.

the line segment from 0 to a is opened to two adjacent intervals on R by fa = g−1
a with

fa(a) = 0 and fa(∞) = ∞. The new map fa cannot be written in terms of elementary
functions, but can quickly be found by iterations using Newton’s method, as described
in Marshall and Rohde (2007).

A.1.3 The Zipper algorithm

Since our curves are constructed on lattices and are thus composed of straight segments,
the Slit algorithm is the natural best choice to perform the conformal mappings.

However, a last improvement for smooth curves was devised and bears the name
Zipper algorithm. We can further improve the approximation by replacing the linear
slits with arcs of (nonorthogonal) circles. By a linear fractional transformation la this arc
is mapped to a line segment (assuming the arc is not tangent to R at 0), as shown in fig.
A.3.

The complement of this segment in H can then be mapped to H as described in the slit
algorithm, using g−1

d , where d = a/(1 − a/b). Thus, as the authors say, at each stage we



The Zipper algorithm 81

Figure A.3: The Zipper algorithm. la ◦ g−1
d maps the arc [0, a] to the segment [p− 1, p] ∈ R.

are giving a “quadratic approximation” instead of a linear approximation to the (image
of) the boundary.

Whichever is our choice of approximation, after mapping the n portions of the curve
to the real axis by the composition

φ = φn ◦ φn−1 ◦ φn−2 · · · ◦ φ2 ◦ φ1, (A.3)

we can recover statistics for the points p, which ought to be normally distributed with
variance κ if the process is a Schramm-Loewner evolution.





APPENDIX B

Edmond’s Blossom algorithm

B.1 Perfect matchings on graphs

When presented a graph G(V,E), consisting of a set of vertices V connected by edges E,
the task of finding a perfect matching in not a quickly solvable one. By matching vertices
to random adjacent ones, one can easily incur in lone vertices that can not be matched
since all the adjacent are taken by one’s previous random matching. Intuitively, such a
search may require a complete enumeration of all the possible subgraphs, thus rendering
the problem intractable. Luckily, in 1961 Jack Edmonds developed an algorithm capable
of solving the task in polynomial time O

(
|E||V |2

)
, where |E| is the number of edges,

and |V | is the number of vertices Edmonds (1965b).
The core idea is that a matching M should be found by starting from a minimal

matching of two vertices and augmenting the ”matched subset” adding vertices and
modifying matching edges, following a set of rules that prevents the inconvenient sce-
nario of obtaining an isolated unmatchable vertex. In this way, no extensive enumeration
is required, since the final matching is found by growth.

The algorithm, following the botanic naming tradition, was called by Edmonds ”Paths,
trees and flowers” and today is known as Edmond’s Blossom algorithm. In it, a fundamen-
tal role is found in the contraction of odd cycles called blossoms, hence the name.

au
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 P

edges in matching
M 

edges in matching
M ⊕ P 

exposed
vertex

exposed
vertex

augmentation

Figure B.1: An example of augmenting path. Courtesy of Wikipedia

The basic idea, as said, is to start with a randomly chosen matching M and find
an augmentation path P, which starts and ends with two unmatched vertices. This way,
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Figure B.2: The contracting of a blossom. Courtesy of Wikipedia

the initial matching M can be augmented by the inclusion of the new vertices and a
subsequent rearrangement of the edges in M⊕P, as shown in fig. B.1. In the simplest
scenario, this can be enough to find the perfect matching. However, the augmentation
path P is not always so trivially constructed. Starting from an unmatched vertex, the
algorithm will explore along the graph, until it reaches another unmatched vertex in
order to perform the augmentation. The biggest enemy of such a blind exploration, are
loops. Nonetheless, by alternating numeration along the explored edges, we are able to
spot contractible cycles of length 2k + 1 and deal with them simply by contracting them
as shown in fig. B.2.

In this way, despite the fast blind search for an augmentation path, we will end up
with an augmentation path as in fig. B.1.

Now, since we are dealing with weighted graphs and our desire is to find the opti-
mal dimer cover, i.e. the matching with minimal (maximal) total weight, we also need a
polynomial-time algorithm for this last search. Luckily, Edmond also solved this prob-
lem. Instead of obtaining and then comparing all matchings, one can augment paths
in such a way, that the new matching is always optimal and therefore the minimal-
weighted matching is constructed.

In order to find which edges can be used to augment paths, the algorithm solves a
constrained minimum problem for a vector xe:∑

e∈δ(u)

xe = 1 ,∀u ∈ V (B.1a)

∑
e∈γ(B)

xe ≥ 0 ,∀B ∈ O (B.1b)

xe ≥ 0 ,∨e ∈ E (B.1c)

where δ(X) is the set of edges incident to a vertex in X , γ(X) is the set of edges with
both endpoints in X and O is the set of odd cardinality subsets of the nodes. In Linear
Programming a theorem states that for any constrained-minimum problem, there is a dual
problem in which dual variables are maximised. In our case, the algorithm solves both the
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original and the dual problem to find so-called tight edges, for which the original weight
we is equal to the newly found dual.

The optimal solution will be a solution of both the original and the dual problem, by
assuring that paths are augmented only via tight edges, at the end one obtains a perfect
matching which satisfies the constrained maximum problem, and thus, is the minimal.

More on the subject and also a nice review of the algorithm’s speed evolution through
the years can be found in Cook and Rohe (1999).
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