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A B S T R A C T   

The Comparison Model Method (CMM) is a relatively simple and computationally efficient direct method for the 
identification of the transmissivity of a confined aquifer by solution of an inverse problem. However, it suffers 
some of the classical drawbacks related to ill-posedness and ill-conditioning of inverse methods. Effectiveness of 
the CMM can be improved by some approaches. First of all, the introduction of a factor which permits to limit the 
negative effects of small hydraulic gradients by selection of a single parameter of the algorithm. Moreover, the 
CMM can be cast in a tomographic framework, i.e., by profiting of multiple sets of data, corresponding to 
different flow situations, produced by different boundary conditions or sources terms. Numerical tests are per
formed on a synthetic aquifer, by means of an open-source implementation based on the use of flopy for the 
solution of the forward problems. The tests show that the above mentioned approaches improve the robustness of 
the CMM with respect to error on the input head data.   

1. Introduction 

The identification of the spatial distribution of aquifer transmissivity 
is crucial to model groundwater flow and transport in aquifers. This 
operation is still challenging in practical applications; the solution of an 
inverse problem is the most rigorous approach, but is nevertheless 
affected by several difficulties, related to ill-posedness (non-uniqueness 
and instability) and ill-conditioning (Giudici, 2003; Giudici et al., 2008, 
2019). In the last couple of decades, some reviews or comparison tests 
have been published on this topic (de Marsily et al., 2000; Carrera et al., 
2005; Hill and Tiedeman, 2006; Kitanidis, 2007; Franssen et al., 2009; 
Zhou et al., 2014; Linde et al., 2015). 

The variety of approaches proposed to tackle inverse problem can be 
divided in two main groups: direct approaches and indirect approaches 
(Neuman, 1973). Direct approaches are based on manipulations of the 
forward problem equation, and are often based on the assumption that 
the state of the system can be interpolated on the whole domain of in
terest and on some additional restrictions (Giudici et al., 2019). Quite 
often, they rely on the availability of data sets for different flow condi
tions. One example of these approaches is the Differential System 

Method (Parravicini et al., 1995; Giudici et al., 1995); this method al
lows to identify the transmissivity T of a confined aquifer by combining 
two or more sets of data (piezometric heads and source terms) and at 
least one value of T at one point of the simulation domain. Another 
example of direct approach is the Double Constraint Method (Brouwer 
et al., 2008; El-Rawy et al., 2014), where the results of two forward 
problem runs, one that uses pressure head constraints and one using 
flow rate constraints, and a prior estimate of the permeability field, are 
combined in an iterative fashion to identify the hydraulic permeability 
field of an aquifer. 

On the other side, and most commonly, inverse problems are cast in 
an indirect approach. The indirect approach usually exploits the infor
mation available only on a limited set of locations, and an optimization 
method to minimize an objective function. A vast literature exists on 
indirect approaches (Zhou et al., 2014; Linde et al., 2015); UCODE 
(Poeter and Hill, 1999) and PEST (Doherty, 2015) are among the most 
commonly used tools. 

In general, direct approaches are frugal in terms of computational 
resources, because they only require one or few runs of the forward 
model, in addition to some processing of the results and the preliminary 
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step to interpolate data on the discretization grid. On the other hand, 
indirect approaches require a substantial number of forward problem 
(model evaluation) runs. Despite the growing capabilities of parallel 
computing, dealing with the high number of forward problem runs re
mains an open research question. A possible solution are hybrid opti
mization methods, that blend in a smart way global and local 
optimization methods, as proposed for example by Vesselinov and Harp 
(2012). Another possibility is to find a proxy or a surrogate for the 
forward model, as proposed for example by Dagasan et al. (2020) with 
the use of Generative Adversarial Networks. Alternatively, one can also 
look for improving the robustness of direct approaches, as it is done in 
this work. 

In this paper, the Comparison Model Method (CMM) is considered. 
The CMM is a direct inversion method first proposed by Scarascia and 
Ponzini (1972). Its basic properties and further improvements are 
described by Ponzini and Lozej (1982); Ponzini and Crosta (1988); 
Ponzini et al. (1989). In real cases applications, the CMM was used to 
identify the parameters of coastal aquifers (Giudiciet al., 2012; De Fili
ppis et al., 2016, 2017, 2019), of regional models to support 
groundwater-surface water interactions (Baratelli et al., 2016), of 
hydrogeological models of highly irrigated alluvial plains Vassena et al. 
(2008, 2012). Moreover, its applications are not limited to hydrology, as 
the method was successfully applied by Lesnic (2010) to determine the 
flexural rigidity of a beam and by Ponzini et al. (1989) to identify 
thermal conductivities. In addition, the CMM was also included in the 
groundwater modeling software YAGMod (Cattaneo et al., 2015). Some 
recent developments of the CMM include an hybrid approach that 
blends this direct inversion method with multiple-point statistics 
(Comunian and Giudici, 2018). 

The CMM is a direct method of inversion based on an auxiliary 
model, hereinafter called Comparison Model (CM), and on the knowl
edge of the head field and of the source terms throughout the whole 
domain. The CM shares the same boundary conditions and source/sink 
terms with the predictive model to be developed, but the transmissivity 
field corresponds to a first guess, possibly informed by the results of field 
tests, geological or geophysical information. Basically, the CMM esti
mates the transmissivity field by correcting the initial guess with the 
ratio of the hydraulic gradients computed from the solution to the for
ward problem for the CM and the reference hydraulic gradients. The 
basic physical idea behind such an approach is that, if the initial guess is 
not far from the real transmissivity field, the flow rates computed with 
the CM should be a reasonable approximation of the real ones, obtained 
as the product of the real transmissivity times the reference hydraulic 
gradient. 

Similarly to any other inverse method, the CMM suffers from some 
drawbacks. Some of the most important problems are related to the good 
knowledge of the head field and to the non-boundedness of derivative 
operators. The inverse problem is very prone to errors on heads and, in 
particular, even very small errors at short wavelength might induce huge 
errors in the estimate of the hydraulic gradient and finally of the 
transmissivity field. 

Like other direct methods of inversion, e.g., the Differential System 
Method (Parravicini et al., 1995; Giudici et al., 1995; Giudici and Vas
sena, 2006), the head field has to be known everywhere. Since mea
surements are available at possibly few, sparse points, an interpolation is 
necessary. Often, interpolation can be a critical step: for example, if one 
uses kriging, the available data might not be sufficient to build up a 
reliable variogram model, and the errors made in the model selection 
will affect the interpolated head field. In order to reduce the uncertainty 
intrinsic in this procedure, it is good practice to use any other additional 
information, e.g., no flow conditions related to the outcropping of 
impermeable rocks. Furthermore, interpolation errors add themselves to 
measurement errors at the monitoring points. This might be critical, 
above all, in areas of low gradients, because the relative error in those 
areas could be particularly great, and in extreme cases the estimated 
hydraulic gradient could show a direction opposite to the real one. 

Moreover, it should be recalled that the balance equation acts as a 
low pass filter for wave number components of the head field (Giudici 
and Vassena, 2008). In other words, the high wave number (short 
wavelength) components of the transmissivity field are filtered out by 
the balance equation, so that the head field does not carry correct in
formation about the variability of the transmissivity field at short dis
tances. This aspect was also investigated by Comunian and Giudici 
(2018), where the CMM was used in conjunction with the Direct Sam
pling multiple-point statistics simulation method (Mariethoz et al., 
2010) in a hybrid approach to improve the reproduction of small scale 
details. 

In order to overcome some of these difficulties, the approaches 
considered in this work are twofold. 

First, the correction initially proposed by Ponzini and Lozej (1982) 
and lately improved by Vassena et al. (2012) to limit the heavy effects of 
low hydraulic gradients is considered. In particular, the factor β which 
was introduced in the aforementioned studies is defined in a more 
precise and general way in this paper. This factor depends on a coeffi
cient γ, which permits to tune the amount of cells where low hydraulic 
gradients should be corrected. Besides studying the implications of 
different choices of γ, in this work a straightforward criterion to select 
this parameter based on the percentage of cells where the hydraulic 
gradient has to be corrected is proposed. 

Second, the CMM can be cast in a “tomographic” framework, by 
profiting of the availability of multiple data sets related to different flow 
conditions. If this is the case, the forcing of the natural system in such a 
way as to produce different flow directions, which is the basic idea of 
any tomographic approach, might be useful to reduce the dramatic ef
fects of the data noise and to estimate a transmissivity field which is 
more appropriate to model different flow situations. This is done by 
applying the CMM to each data set separately and then by merging the 
resulting estimates of transmissivity by means of some different algo
rithms. These algorithms could be standard averaging (arithmetic, 
geometric or harmonic mean, median value), or could be based on 
physical arguments. 

Therefore, this paper is devoted to understand the effect of the 
parameter used to limit the dramatic effects of low hydraulic gradients 
and to the extension of the CMM for its application to multiple data sets. 
This is done by means of numerical tests, with different flow conditions, 
which permit to perform a critical analysis of the optimal parameter for 
the control of low hydraulic gradients and to assess the advantages and 
possible limitations of the application of CMM with multiple data sets. 

In addition to the two aforementioned developments, aimed at 
improving our knowledge about the CMM, this work also illustrates the 
implementation of the CMM with well known free and open source 
software tools like Python and the USGS flopy and MODFLOW codes. This 
is done to share the implementation of the CMM with the scientific and 
professional community, in accordance with the concept of open science 
and with the aim of demonstrating and fostering practical application of 
inverse methods. 

This paper is structured ad follows. Section 2 provides the theoretical 
background related to the CMM and to the approaches used to tackle the 
challenges posed by small hydraulic gradients and to improve the 
method’s robustness by the use of multiple data-sets (tomographic 
approach). In Section 3 more technical details are given about the 
simulation settings used to test the CMM, the reference transmissivity 
field and the multiple data-set used for the tomographic approach are 
provided. Results are presented in Section 4, while Section 5 and Section 
6 are devoted to discussion and conclusions, respectively. 

2. Methods 

It is assumed that a simulation model has to be developed and 
applied to predict the groundwater flow in a confined aquifer, under 
stationary conditions and by applying the hydraulic (2D) approximation 
(Bear, 2012). 
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The Comparison Model Method (CMM) is a direct method of inver
sion based on an auxiliary model, hereinafter called Comparison Model 
(CM). CM is based on a first guess of the transmissivity field T(CM) and 
shares the same source/sink terms and boundary conditions as the for
ward problem to be developed to simulate the dynamics of the confined 
aquifer. In practice, the transmissivity field is estimated by modifying 
T(CM) through the ratio of the hydraulic gradients computed by solving a 
forward problem (FP) for the CM and the reference hydraulic gradients: 

T (est) = T(CM)

⃒
⃒∇h(CM)

⃒
⃒

⃒
⃒∇h(ref)

⃒
⃒
. (1) 

In real case applications, the difficulties in the definition of an initial 
guess of the field T(CM) and the errors on h(ref) can be handled by applying 
the method in an iterative fashion, that is 

T (est)
k = T(est)

k− 1

⃒
⃒∇h(est)

k− 1

⃒
⃒

⃒
⃒∇h(ref)

⃒
⃒

with k ∈ {1,…,K}. (2) 

In (2) k is the index corresponding to the k-th iteration of the method, 
T(est)

k− 1 and h(est)
k− 1 correspond to the transmissivity field of the CM at itera

tion k − 1 and to the hydraulic head computed by solving the FP for that 
CM, respectively. In particular, for k = 0, T(est)

0 = T(CM). Different criteria 
can be used to stop the CMM iterations, for example based on the 
reduction of a given error on hydraulic heads h or simply based on the 
number of iterations. Hereinafter, as one of our aims is to compare the 
various settings given similar computational resources, a stopping cri
terion based on the number of iterations is considered. 

Note that in (1), (2) and in the remainder of this paper, a node-to- 
node relationship is applied between the transmissivities and the head 
gradients, i.e. node T values are updated by considering the corre
sponding local node head gradient. However, other alternative ap
proaches could be useful to limit some of the drawbacks of the crude 
node-to-node approach. For instance, a node-to-area relationship 
could be used to update node T values by the mean hydraulic gradient 
over an area centered on the node. 

2.1. Dealing with small gradients 

By looking at equation (2) it is quite evident that for a trivial 

formulation of the CMM small values of 
⃒
⃒
⃒∇h(ref)

⃒
⃒
⃒ will entail numerical 

instabilities or ill-conditioning (Giudici et al., 2019). To cope with this 
issue, one possibility is to reformulate equation (2) by adding a tuning 
factor β 

T (est)
k = T(est)

k− 1

(

1+ β
⃒
⃒∇h(est)

k− 1

⃒
⃒ −

⃒
⃒∇h(ref)

⃒
⃒

⃒
⃒∇h(ref)

⃒
⃒

)

with k ∈ {1,…,K}. (3)  

as done for example in Vassena et al. (2012). The β factor is selected 
according to the following rule 

β=min
{

γ
⃒
⃒∇h(ref)

⃒
⃒, 1

}
with γ ∈ R+. (4) 

Notice that if γ = 1, eq:cmm_beta reduces to the standard version (2). 
By means of eq:betasel different values of the parameter γ, and therefore 
of the factor β, permit to fine tune the number of cells where the value of 
T(ref) will be computed using the standard formula (2) or with a 

correction to avoid the influence of small values of 
⃒
⃒
⃒∇h(ref)

⃒
⃒
⃒. In the 

following the percentage of nodes where the correction is applied will be 
reported, because this seems more intuitive than the raw values of γ, but 
the two data are equivalent. 

2.2. Tomographic approach 

When hydraulic head measurements are made under different 
boundary/flow conditions, the corresponding data-sets can be easily 

integrated into the CMM with a tomographic approach, as it is often 
done in many fields where inverse problems find application. This 
possibility was already explored by some of the earliest applications of 
the CMM (Scarascia and Ponzini, 1972; Ponzini and Crosta, 1988; 
Ponzini et al., 1989), but only in a one-dimensional (1D) framework. In 
this work the full potential of this approach is explored in 2D, together 
with the implications of using different approaches to merge the infor
mation coming from each data-set. 

The tomographic approach can be implemented as follows. Suppose 
some reference heads are available for a given number of data sets L. 
Then, at each iteration, T can be estimated for each data set by eq: 
cmm_beta, so that L fields T(est)

k,l , l = 1,…, L are obtained. They are suc
cessively aggregated into a unique estimated field with the formula 

T (est)
k =M

(
T (est)

k,1 ,…,T (est)
k,L

)
with k ∈ {1,…,K}, (5)  

where the function M is a merging operator. 
Which merging operator M is best suited to stack the T fields esti

mated for each data set is one of the research questions that will be 
tackled by this work. Hereinafter, six merging operators are considered, 
namely: arithmetic mean, geometric mean, harmonic mean, median, 
minimum correction and Darcy residuals. While the meaning of the first 
four operators is straightforward, the minimum correction and the Darcy 
residuals operators deserve more details. 

With the minimum correction operator, at each point it is selected 

the value of T(est)
k,l for which 

⃒
⃒
⃒T(est)

k,l − T(est)
k− 1

⃒
⃒
⃒ is minimum. This approach, 

although not physically based, should favor the more conservative es
timates of T, i.e., those with the smallest variation between successive 
iterations, and therefore the solutions that are more stable through the 
CMM iterations. 

With the Darcy residuals merging operator, a more physically based 
approach is chosen. One possible definition of Darcy residuals, inspired 
by the works of Kohn and Vogelius (1987) and Kohn and McKenney 
(1990), can be found in the supporting information of El-Rawy et al. 
(2014). Given a flow rate integrated over the aquifer thickness Q, the 
Darcy residuals can be defined at each point as a function J = J(

̅̅̅
T

√
)

such that 

J =
⃒
⃒
⃒Q

/ ̅̅̅̅
T

√
+

̅̅̅̅
T

√
∇h

⃒
⃒
⃒. (6) 

In eq:darcy_res, Q and ∇h, for each l = 1,…, L are the values ob
tained from forward modeling with T(est)

k− 1,l, and T = T(est)
k,l is the CMM 

estimated transmissivity and iteration k. 
The closer the function J approaches to 0, the better Darcy’s law is 

satisfied. Therefore, with the Darcy’s residual criterion the merging 
operator will select, at each point, the value of T(est)

k,l , l = 1,…, L for 
which the function J attains its minimum. 

3. Testing CMM 

This section provides more details about the flow simulation settings, 
the synthetic reference T field, the input data used, the multiple-set of data 
for h(ref) and the criteria used to investigate the features of the CMM. 

3.1. Forward problem implementation and settings 

For testing in detail the various features of the CMM, the first 
requirement is the setting up of a flow simulation platform to solve the 
FP for a confined aquifer where the hydraulic approximation of two- 
dimensional (2D) flow is valid, under stationary conditions. To 
demonstrate and promote the usage of the CMM, in this work the well 
established USGS MODFLOW simulation platform, and in particular 
MODFLOW 6 (Hughes et al., 2017; Langevin et al., 2017, 2019; Provost 
et al., 2017) is used. Note however that the CMM can be easily adapted 
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to diverse simulation platforms, including ad hoc Fortran simulation 
codes (Scarascia and Ponzini, 1972; Ponzini and Lozej, 1982; Ponzini 
and Crosta, 1988; Ponzini et al., 1989; Vassena et al., 2012; Cattaneo 
et al., 2015), or the ParFlow simulation platform (Ashby and Falgout, 
1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006), as done 
by Comunian and Giudici (2018), or again by using the previous version 
MODFLOW-2005 during the preliminary part of this study. 

An additional advantage of the MODFLOW platform is the availability 
of flopy (Bakker et al., 2016), a Python package that allows to easily 
write scripts to manage the execution and the access to the input/output 
files of MODFLOW and the related software. In this study, flopy (and 
Python) were extensively used to automate the implementation of the 
CMM, by running the FP simulations required by each CMM iteration, 
and to plot and analyse the results. 

All the flow simulations are performed on a rectangular domain 
composed of 57 × 40 square cells of side 25 m (Fig. 1a) and one vertical 
layer. In Fig. 1a, grey color is used for internal cells (code I), blue is used 
for fixed head boundary conditions (Dirichlet boundary conditions, code 
D). It is of course possible to define domains of arbitrary shape by using 
the concept of external cells (here in green, code E), but for the sake of 
simplicity here a simple rectangular domain is used. The yellow crosses 
(Fig. 1a) are used to indicate the position of eight pumping wells that 
will be used in some of the simulation settings described hereinafter in 
diverse configurations. When activated, each of the wells will pump a 
volumetric flow rate of 25 L/s. Moreover, a diffuse recharge term of 250 
mm/y is applied to all the cells, in most tests. 

3.2. Reference and initial transmissivity field 

The reference transmissivity field considered throughout this work is 
the synthetic T field represented in Fig. 1b. It is obtained with the Python 
package gstools (Müller and Schüler, 2019), that allows to easily 
generate random fields, and in particular a Gaussian covariance model 
generated with the algorithm proposed by Heβe et al. (2014). The T field 
shown in Fig. 1b is obtained by 

T (ref)(xi)= T0 × 10Z(xi), (7)  

where Z is a spatial random field with zero mean and variance 0.3, 
following an isotropic Gaussian covariance with scale length 5 cells and 
estimated for each cell of coordinates xi = (xi,yi); T0 is a constant value 
chosen to obtain a transmissivity that varies from about 2 × 10− 4 m2/s 
up to 0.66 m2/s. In this work, the initial value of T(CM) was set homo
geneous and equal to the arithmetic mean of T(ref). 

3.3. Boundary conditions and source terms to generate multiple data sets 

In this study, two groups of multiple data sets are considered to test the 
tomographic approach described in Section 2.2. The first group of data 
sets is created by imposing linearly-varying fixed-head boundary condi
tions along four flow directions, all rotated by 45◦ increments. This results 
in four h fields, with main flow direction towards south, south-west, west 

and north-west (in the following these flow conditions will be labeled with 
the corresponding letters S, S–W, W, N–W). The resulting reference heads 
for the aforementioned linearly-varying boundary conditions are repre
sented in Fig. 2. Hereinafter, this group of data-sets will be referred as ROT 
(data-sets group with rotated main flow directions). Clearly, changes of 
45◦ of the main flow directions are not expected under seasonal variations 
on real world aquifers. Nevertheless, here this setting was considered to 
demonstrate some of the benefits of the tomographic approach under 
ideal conditions. A test made by using more realistic ranges of variability 
10◦ was performed and reported in Appendix A.1. Notice that ROT for null 
source terms satisfy the conditions for univalent σ-harmonic mappings 
(Alessandrini and Nesi, 2001). 

The second group of data sets considered is created by running flow 
simulations with a uniform, prescribed-head boundary condition (Fig. 1a) 
and by alternatively turning on one of the wells defined in the same Fig. 1a. 
In this way, eight data sets of h(ref) are obtained, corresponding to eight 
different flow conditions, each induced by a single pumping well. Here
inafter, this group of data-sets will be referred as WEL (data-sets group 
created with diverse configurations of pumping wells). 

The computation of the hydraulic gradients is performed with the numpy 
function gradient, using second order accurate central differences. 

3.4. Testing CMM robustness 

To assess the robustness of the method against noisy reference data, 
the CMM was run by using one or more h(ref) data-sets affected by a noise 
having a uniform Gaussian spatial structure with scale length 5 cells, and 
a standard deviation ranging from 1 cm to 10 cm; the comparisons also 
included a setting with noiseless h(ref). 

In the case of noisy data, it was also tested the importance of the use 
of multiple data sets to improve the method’s robustness. In particular, 
the impact of noisy data with variable standard deviation was assessed 
by using a multiple data set of four head conditions (main flow di
rections along directions S, W, SN and NW), a multiple data set of two 
head conditions (main flow directions along directions S and W) and a 
unique data set (main flow direction along S). 

Note that for a real case application, only sparse measurements of h(ref)

are available, possibly affected by noise, and one should interpolate them, 
for example using kriging, at all the nodes of the domain before applying 
the CMM. In this work, to avoid the possible subjectivity inherent in the 
interpolation, e.g., for the selection of the variogram model used in the 
kriging interpolation, it was preferred to directly add a structured noise to 
the noiseless h(ref) data, which can mimic the effect of interpolation errors. 

3.5. Evaluation criteria 

The results obtained with the diverse inversion setting explored for 
the CMM are evaluated using a number of criteria to provide a com
parison with the results obtained for T(ref). A first group of indicators are 
the statistics computed at all the N nodes where a T value is estimated, 
which are defined for each iteration step k as: 

Fig. 1. a) Geometry of the domain considered in 
this work: grey color is used for internal cells 
(code I), blue for fixed head boundary condi
tions (Dirichlet boundary conditions, code D) and 
green for external cells (code E, not used here but 
available if needed). The yellow crosses repre
sent the locations of the pumping wells used for 
some of the following simulation settings. b) 
Reference T field. (For interpretation of the ref
erences to color in this figure legend, the reader 
is referred to the Web version of this article.)   
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λk =
1
N
∑N

i=1

[
log

(
T (ref)(xi)

)
− log

(
T (est)

k (xi)
)]

(8)  

λ2
k =

1
N

∑N

i=1

[
log

(
T (ref)(xi)

)
− log

(
T (est)

k (xi)
)]2

, (9)  

with a straightforward meaning. In particular, λ2 represents the mean 
squared error (MSE). In addition to these three statistics, other in
dicators were also computed for a given iteration step k: maps of the 
head anomaly Ak = h(ref) − h(est)

k , that is the difference between the 
reference hydraulic heads and the hydraulic heads corresponding to the 
estimated T field; the mean value of |Ak| over the considered domain; 
maps of log(T(ref)) − log(T(est)

k ). 

4. Results 

Table 1 lists the settings used to run the CMM according to the aim of 
each test, namely: selection of the γ parameter; selection of the M 

operator; tests of robustness with respect to errors on head data. 

4.1. Selecting the parameter γ 

To explore the impact of the choice of the parameter γ, the CMM was 
run with six different choices of this parameter. Actually, the Python 
implementation of the CMM presented in this work allows to directly set 
the percentage of cells where the correction defined by eq:betasel ap
plies rather than defining explicitly the value of γ. In fact, in general, the 
choice of the parameter γ depends on the considered data set, and setting 
up only the percentage of the modified cells is much more intuitive. 
Therefore, once defined the percentage of affected cells, the value of the 
parameter γ is automatically computed from h(ref). 

The set up of the FP was deliberately kept simple, by considering 
only one data set (main flow directed along the south direction, Fig. 2a), 
a recharge term and three wells activated, well1, well2 and well3 (see 
the column “γ selection” in Table 1 for more details). 

Fig. 3 represents the T fields obtained after 10 CMM iterations for a 
percentage of corrected data of 100%, 60%, 30%, 15% and 0%. Visual 
inspection of the T fields reveals that when 100% of the gradients are 
corrected, then a big part of the information concerning the trans
missivity contrasts is lost, resulting in a very smooth T field (Fig. 3b). 
Results obtained by correcting 60%, 30%, 15% and 0% of the cell 

Fig. 2. The reference h fields for the first group of multiple data sets (ROT) with main flow along the a) south direction (S); b) west direction (W); c) south-west 
direction (S–W) and d) north-west direction (N–W). 

Table 1 
Summary of the settings used to run the CMM in this work.  

setting test aim 

γ selection M selection  robustness test 

noiseless data noisy data 

corrected ∇h(ref) (%)  100, 60, 30, 15, 0 15 15 15 

merging operator M  arithmetic mean alla geometric mean geometric mean 
recharge m/s 7.9× 10− 9  0 0 or 7.9× 10− 9  0.0 
active wells (ID)b 1,2, and 3 none none or one wellc none 
noise σ cm 0 0 0 from 0.1 to 10 
data-sets group ROT ROT ROT or WEL ROT 
specific data-set S S, SW, W, NW S, SW, W, NW/single welld S, SW, W, NW  

a Arithmetic mean, geometric mean, harmonic mean, median, Darcy’s residuals, minimum correction. 
b Wells are numbered from 1 to 8; their location is illustrated in Fig. 1a. 
c Only when the data-set group WEL is used, the well related to the corresponding data set is activated. 
d h(ref) data-set corresponding to one of the eight wells activated one by one. 
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gradients are comparable (Fig. 3b, c, d, e and f). Nevertheless, low 
percentages of corrected data provide better estimates of the high T peak 
observed in the center of the domain. In addition, a non-null percentage 
of corrected cells allows to avoid the unrealistic T values obtained for 
very small values of the gradient, for example in the cells south of well2, 
or in the high T region south of well3 (Fig. 3f). 

The same results are represented in Fig. 4 in terms of λ2 for all the 
iterations. To illustrate the comparison tools adopted in this work, some 
additional plots are reported here, for the particular case of a percentage 
of corrected data equal to 15%. The first group of these plots represents 
the trend of the errors λ and λ2 (Fig. 5a and b) and the mean value of the 
anomaly |A| (Fig. 5c). The two other plots represent a map of the 
anomaly |A| (Fig. 6a) and a map of log(T(ref)) − log(T(ref)

5 ) (Fig. 6b), 
where for both plots the CMM iteration step 5 was selected only for 
illustration purposes. Note that plots like Fig. 5 are drawn for each CMM 
settings, and plots like Fig. 6 are drawn for each iteration of CMM set
tings. Clearly, here only summary plots are reported. 

On the basis of these results, which will be discussed more in detail in 
Section 5, it has been decided to set the percentage of cells where β < 1 

to 15% for all the tests presented in the following sections. 

4.2. Selecting the merging operator 

No wells were activated and no recharge was applied, and the four 
different data sets obtained by imposing linear varying Dirichlet 
boundary conditions with a main direction of flow oriented toward four 
directions described in Section 3.1 and Fig. 2 were used simultaneously 
as multiple data sets (data sets group ROT). With these settings, 10 CMM 
iterations were performed by using one of the six merging operators 
proposed in Section 2.2 at a time. The resulting T fields are reported in 
Fig. 7 for the arithmetic mean (Fig. 7a), the geometric mean (Fig. 7b), 
the harmonic mean (Fig. 7c), the median (Fig. 7d), the Darcy residuals 
(Fig. 7e) and the minimum correction (Fig. 7f) merging operators. The 
same six merging operators are compared in terms of λ2 (Fig. 8). 

Overall, by considering both the visual inspection of the T fields 
(Fig. 7) and how λ2 evolves with the iterations (Fig. 8), apart from the 
minimum correction, the results obtained with the other merging op
erators are comparable. Given the good performances of the geometric 
mean as merging operator (for a detailed discussion see Section 5) and 
some theoretical considerations concerning effective parameters 
(Matheron, 1967), the tests described in the following sections are 
performed by using this merging operator. 

4.3. Usefulness of the tomographic approach 

To verify the usefulness of the tomographic approach, tests were 
performed by using both a noiseless h(ref) and an h(ref) affected by a 
gradually growing structured noise. The details of the two tests are 
provided in the following sections. 

4.3.1. Noiseless reference h 
This test was performed by using two different groups of data-sets. In 

the first group of data-sets, multiple reference h fields were obtained by 
changing some linear varying Dirichlet boundary conditions, as 
explained in Section 2.2 and Fig. 2 (ROT). In the second group of data- 
sets, multiple reference h fields were obtained by activating alterna
tively one and only one pumping well among the eight wells represented 
in Fig. 1a, and by considering a constant h value on the boundaries of the 
domain (WEL). 

By using the first group of data-sets (ROT), four settings of the CMM 
were run using a growing number of data-sets, ranging from one data-set 
(flow direction towards south, that is data-set S), two (S and SW), three 

Fig. 3. Comparing the resulting T fields for different choices of the parameter γ. a) Reference T field; b), c), d), e), f) T computed after 10 iteration steps of the CMM 
for diverse values of the parameter γ. The corresponding percentage of corrected data reported close to each label from b) to f). Units are m2/ s. 

Fig. 4. λ2 vs CMM iteration for different values of the parameter γ. The legend 

reports the percentage of domain cells where 
⃒
⃒
⃒∇h(ref)

⃒
⃒
⃒ was corrected for the 

corresponding value of γ. 
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(S, SW and W) and finally four data-sets (S, SW, W, and NW). From the 
visual inspection of the T fields it is already evident that there is an 
improvement of the reproduced reference transmissivity field (Fig. 9), 
and that the greatest differences are introduced by using at least two 
data-sets. The same observations can be made on the comparison of the 
four CMM runs in terms of λ2 (Fig. 10a), where at the 10th iteration the 
value of λ2 for the settings where all the four data-sets are used (S, SW, 

W, and NW) is about 1/5 of the λ2 that corresponds to the usage of one 
data-set only (S). 

The second group of data sets (WEL) was used to run eight settings of 
the CMM with an approach similar to that adopted for ROT: the first 
CMM setting makes use of only one h(ref) data set, corresponding to the 
conditions were only one pumping well is activated (well1); the second 
CMM setting makes use of two h(ref) data sets, one corresponding to 

Fig. 5. Diagnostic plots for the case when 15% of small 
⃒
⃒
⃒∇h(ref)

⃒
⃒
⃒ are corrected (tests performed for the selection of γ): a) error λ, b) λ2 and c) mean value of |A|.  

Fig. 6. Maps of anomaly on h and error on T for CMM iteration 5.  

Fig. 7. T fields obtained with different merging operators after 10 CMM iterations: a) arithmetic mean; b) geometric mean; c) harmonic mean; d) median; e) Darcy 
residuals and f) minimum correction. Units are m2/s. 
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well1 activated, the other corresponding to well2 activated; and so on up 
to the last CMM setting, which makes use of eight h(ref) data-sets, each 
one corresponding to the flow conditions where only one of the available 
pumping wells is activated. In analogy to the first group of data-sets, the 
values of λ2 are plotted against the number of CMM iterations (Fig. 10b). 
For this second group similar improvements when adding an additional 
h(ref) can be noticed like for the first group. However, λ2 values are 
overall greater than those recorded for the ROT data-set group (Fig. 10). 

4.3.2. Noisy reference h 
One important part of this work was to asses the robustness of the 

CMM in case of noisy data. To check this, a noise with a standard de
viation growing from 1 cm to 10 cm and having the same scale length of 
the reference T field (but generated with a different random seed) was 
added to all the h(ref) data-sets corresponding to the flow conditions 
illustrated in Section 2.2 (Fig. 2). The results of this test are shown in 
Fig. 11 in terms of λ2. As the differences in the improvement from λ2 

computed with tree data-sets (S, SW, and W) and four data-sets (S, SW, 
W, and NW) were minor, for the sake of brevity only the results obtained 
by using four data-sets (S, W, SW, and NW; Fig. 11a), two data-sets (S, 
and W; Fig. 11b), and one data-set (S only; Fig. 11c) are shown here. In 
Fig. 11 the three subplots share the same axes. This allows to clearly 
illustrate the importance of using multiple sets of data: in fact, even if for 

Fig. 8. λ2 vs CMM iteration for different merging operators.  

Fig. 9. T fields obtained considering a different number of data sets from the ROT group: a) reference T; b) one data set used, flow direction S; c) two data set used, 
flow direction S and SW; d) three data set used, flow direction S, SW and W; e) four data set used, flow direction S, SW, W and NW. Units are m2/s. 

Fig. 10. λ2 vs CMM iteration for increasing 
number of data sets considered: a) four data sets 
in total (ROT) corresponding to different flow 
directions, starting from only one direction (blue 
line) and adding up to four directions considered 
simultaneously (red line); b) eight data sets in 
total (WEL), where for each data set only one 
well is activated, and uses incrementally from 
one (blue line) to eight (grey line) data sets. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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a noise of about 10 cm the λ2 starts to diverge after 10 iterations 
(Fig. 11a) when using four data-sets, the values of λ2 always remains 
much smaller than the values attained when two data-sets (Fig. 11b) or 
one data-set (Fig. 11c) are used. 

5. Discussion 

One of the research questions investigated here was related to the 
selection of the best values for the parameter γ, a parameter that allows 
to select which proportion of ∇h(ref) data-set should be corrected to 
avoid numerical instabilities. The results presented in Figs. 3 and 4 show 
that correcting a small percentage of the small ∇h(ref) should be suffi
cient to prevent the numerical instabilities that would lead to unrealistic 
values of T. It is quite clear that when 100% of the gradients are cor
rected, a big part of the information contained in the data-set is lost 
(Fig. 4b). Instead, without any correction, the estimated T field presents 
some very high values, for example few cells south of well1 and well3. 
While in all the previous works (see i.e., Vassena et al., 2012) it was 
required to explicitly define a value of the factor β, here a simple and 
practical procedure, that allows to select a value for γ as a function of the 
number of corrected gradient data, is implemented. 

Another important aspect systematically investigated in this work is 
the selection of the best merging operator M to pool estimates of T 
coming from diverse data-sets. Among the six methods investigated, five 
methods (arithmetic mean, geometric mean, harmonic mean, median 
and the more physically based Darcy residuals) provided comparable 
results, while another tested method (minimum correction) creates 
some artifacts for intermediate values of transmissivity (Fig. 7) and 
performs worst in terms of λ2 (Fig. 8). Given the very small differences 
both in terms of visual inspection of the estimated T fields and in terms 
of λ2, one could select as merging operator the geometric mean also on 
the basis of some theoretical findings related to effective hydraulic pa
rameters (Matheron, 1967). 

To demonstrate the usefulness of the tomographic approach, two 
tests were performed using noiseless h(ref) data and one test was per
formed using noisy data. All the three tests demonstrate the usefulness of 
multiple data-sets. The first two tests were conducted on two groups of 
data-sets, one based on different flow conditions created by using line
arly varying Dirichlet boundary conditions (ROT, Fig. 2), the other 
based on different flow conditions created by activating one by one eight 

different pumping wells (WEL). For the former, Figs. 9 and 10a show 
that by using more than one data-set both reduces λ2 and improves the 
reconstruction of the contrasts of T (Fig. 9). Actually, already by adding 
one additional data-set (S and SW) allows to drastically improve the 
results, and in particular λ2 (Fig. 10a). The differences between the re
sults obtained with three and four data-sets are relatively small and 
hardly detectable by the visual inspection of the T fields, although still 
noticeable in the λ2 plots (Fig. 10). 

Similar results were obtained for the WEL group of multiple data-set, 
obtained by activating alternatively one by one the pumping wells. In 
this case, however, the trend in the improvements of the results is less 
obvious than the one obtained by setting flow condition along four 
different directions as done for the previous test. Here, the additional 
information provided when one well alone is pumping might depend on 
its location within the domain and the corresponding T(ref) value. In 
particular, one can notice a good improvement on λ2 when the data-set 
corresponding to well2 is added (orange line, Fig. 10b). However, 
adding a third data-set (corresponding to well3, green line, Fig. 10b) 
only provides small improvements on λ2. Similar observations can be 
made concerning the addition of data-sets related to other wells. 

It is also interesting to compare the results obtained with the first 
group of data-sets (ROT, four main flow directions, S, SW, W, and NW) 
against the second group (WEL, eight wells turned on with pumping one 
by one): the improvements obtained by adding few data-sets corre
sponding to the first group are much more marked than for the second 
case because, as expected, changing the boundary conditions in such a 
way that the h field over the whole domain is affected is much more 
effective than changing flow conditions only locally by activating one 
pumping well. This is also demonstrated when multiple data sets having 
smaller differences in terms of main flow directions are used (see ap
pendix A.1 for details). 

The last test performed in this study verified the robustness of the 
method in presence of noisy data (Fig. 11c). When only one data-set is 
used, T(est)

k converges with a growing number of iterations k only for 
noise with a standard deviation on h(ref) below 2 cm. However, by just 
adding another data-set (Fig. 11b) the divergence of λ2 remains rela
tively limited, even with a noise with a standard deviation of 5 cm. When 
all the four data-sets are used there is a further improvement: when the 
standard deviation on the noise is greater than 6 cm, λ2 starts to diverge, 
but its values remain nevertheless below 0.2 m4/s2. 

Fig. 11. λ2 vs CMM iteration for increasing number of data sets and increasing noise on reference h for the group ROT: a) four data sets, flow along S, W, SW and NW 
directions; b) two data sets, flow along S and W direction; c) one data set, flow along S direction. The labels reported at the end of each line represent the standard 
deviation of noise on h m, which varies from m (blue lines) to m (cyan lines) with steps of m. Some labels are omitted due to overlapping with other labels. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

A. Comunian and M. Giudici                                                                                                                                                                                                                 



Computers and Geosciences 149 (2021) 104705

10

As a final comment, it is important to stress that the MSE λ2 obtained 
with a single, noise-free data set is very close to the one which corre
sponds to the application of the CMM with four sets of data with noisy 
hydraulic heads, up to a standard deviation of 10 cm. The absolute value 
of the standard error is not significant per se, but should be compared, for 
instance, with the total variation of the h(ref) field, which in this example 
is of the order of few meters. Therefore, in these numerical tests, the 
application of the CMM to multiple sets of data provides results com
parable to those of the standard CMM with a single set of data at least for 
a “signal-to-noise-ratio”, estimated as the ratio between the standard 
deviation of noise and the total variation of h(ref), approximately equal to 
0.05. 

6. Conclusions 

This work allowed to explore more in detail many features of the 
Comparison Model Method by using a synthetic but realistic and chal
lenging reference transmissivity field T(ref) (Fig. 1b). The first feature 
explored provides guidelines for the selection of the parameter used to 
correct very low values of the gradient of h(ref): it is proposed a 
straightforward procedure to select the parameter based on the per
centage of domain cells where the gradient is corrected, and it was 
demonstrated that already with small percentages there is an improve
ment on the results. Another aspect explored in this work concerns the 
selection of a reliable merging operator when multiple data-sets are used 
for the solution of the inverse problem with a tomographic approach. 
Among the method tested, apart from the minimum correction method, 
all the other merging operators provided comparable results, and one 
can for example select the geometric mean operator as also supported by 
some theoretical background (Matheron, 1967). 

Besides aspects related to the merging operator, in the framework of 
a tomographic approach one can also test the impact of the usage of a 
diverse number of data-sets, both noiseless and noisy. Here we tested 
this aspect by using two groups of data-sets, and in all the cases it was 
demonstrated that using more data-sets allows to better identify the T 
field. Of course, depending on the nature and the variability of the 
available data-sets, one can reveal a different amount of information on 
the parameters of the investigated transmissivity field. For example, the 
group of data-sets representing diverse main flow directions allowed to 
identify the T(ref) better than the group of data-sets obtained by turning 
on/off one pumping well. 

Another important point demonstrated by this work is the robustness 
of the CMM in the presence of noisy data, and in particular the useful
ness of the tomographic approach. In fact, as the application of the CMM 
requires an interpolation step, measurements errors, the interpolation 
algorithm and the values of the algorithm’s parameters (e.g., the semi
variogram model for interpolation with kriging) can noticeably affect 
the final results. Therefore, the robustness of the CMM was verified by 
running the method with reference h data affected by a noise with a 
spatial structure and a growing standard deviation. When four data-sets 
are used, λ2 remains moderate even for a noise with a standard deviation 
greater than 5 cm. One could observe that this error would be relatively 
small for a typical hydraulic head measurement network. Nevertheless, 

one should also consider that in the CMM, all the reference data used for 
the inversion were considered as affected by noise, and this for each one 
of the data-sets. 

One of the aim of this work was also to foster the usage of direct 
inversion methods as an alternative to other more computational 
demanding inversion paradigms, and to provide for this aim ready to use 
tools to demonstrate its applicability in diverse settings. Section “Com
puter code availability” provides the link for the download of almost all 
the CMM related implementation used to obtain the results presented in 
this study. 

Based on the achievement of this work, and in particular the ones 
related to the tomographic approach, one could extend the works done 
by Comunian and Giudici (2018) by using multiple-data sets to avoid the 
strong influence of a unique flow condition when used as a secondary 
variable in a direct-sampling simulation framework (Mariethoz et al., 
2010). 

Also, additional reference T(ref) fields having a diverse spatial nature 
could be used; nevertheless, the authors believe that the synthetic test 
already represents a realistic and challenging heterogeneous field. 
Concerning the CMM, other future research direction could include tests 
made by changing the aquifer resolution or strategies for a better se
lection of the initial value for the T(CM), the latter being another critical 
aspect of the methodology. 

Clearly, many research questions remain open in the realm of model 
calibration in groundwater hydrology, from the perspective of both 
direct and indirect inversion techniques. This work explores some im
provements and provides a tool to foster the usage of the CMM, a direct 
inversion method that in some cases could represent a frugal alternative 
(or a syde by syde companion) to the widely used indirect approach. 

Computer code availability 

An implementation of the CMM based on flopy and MODFLOW 6, 
called cmmpy (version 0.1.3) is provided, together with the accompa
nying scripts and parameter files, at the following link:https://bi 
tbucket.org/alecomunian/cmmpy with a GNU General Public License. 
The corresponding Python package is also included in the Python 
Package Index (PyPI), and it can be easily installed with the command 
pip install cmmpy. The documentation is available at the link htt 
ps://cmmpy.readthedocs.io. 
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A. Further remarks 

A.1. Tomographic approach in a natural setting 

In section 4.3.1 the usefulness of the tomographic approach was demonstrated by using multiple data-sets, and in particular by using multiple 
reference h fields obtained by changing some linearly-varying Dirichlet boundary conditions to obtains settings with the main flow direction oriented 
along S, SW, W and NW. These differences in orientation of 45◦ were useful to enlighten some features of tomographic approach. However, such a high 
difference in orientation would be hardly attained under natural conditions in an aquifer. Therefore, in this appendix we test the usefulness of the 
tomographic approach with a more realistic group of data, with orientations of the main flow directions that differ by 10◦ each other (Fig. 12) and a 
gradient of 1 mm/m. 
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Fig. 12. Reference h fields used to test the tomographic approach with multiple data with having closer main flow directions, ranging from 0◦, 10◦, 20◦, 30◦ north.  

The results illustrated in Fig. 13 clearly show the improvements in terms of λ2 even when multiple data having only small changes in the main flow 
directions are used. Similar consideration can be drawn by comparing the obtained T fields against the reference ones (results not shown here).

Fig. 13. λ2 vs CMM iterations for increasing number of data sets considered. Each data set corresponding to different flow directions, starting from only one direction 
0◦, blue line) and adding up to four directions considered simultaneously 0◦, 10◦, 20◦ and 30◦; red line). 
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A.2. Effects of errors on h for different head gradients 

Further tests were performed to verify the behaviour of the CMM for diverse magnitudes of the input head gradient in response to a growing error 
on the head field. In particular, the example illustrated in Appendix A.1 is expanded by considering groups of data sets with two different average h 
gradients, 1 mm/m 2 mm/m. Moreover, in addition to the noiseless head condition, the tests were also performed by adding to each group of data sets 
a structured noise with standard deviation of 5 cm, 10 cm and 20 cm. The results of these tests are summarized in Fig. 14. This test is important to 
enlighten the different impact of the noise on different discrete hydraulic gradients, as discussed for example by Giudici (2003), Remark 4.3. Con
cerning this topic, see also pp11-12 of Giudici et al. (2019). 

In Fig. 14a) is represented the RMSE (λ2) for different values of standard deviations of the noise added to the noiseless data and for different values 
of the average gradient of the reference h data sets. The different colours used in the plots correspond to the different standard deviations, ranging from 
0 cm (cyan), 5 cm (yellow), 10 cm (green) and 20 cm (red). The different markers correspond to the average gradients of the input data sets: crosses are 
used for the 1 mm/m gradient, while circles are used for the 2 mm/m gradient. When noiseless data are used, regardless of the average magnitude of 
the gradient, the behaviour of the curve for an increasing number of iterations is almost the same, with a rather good convergence trend (see the 
overlapping blue lines with circle and cross markers). Instead, when the standard deviation of the error on the h data set rises, the responses of the data 
set with different gradients is quite different, with the smallest gradient 1 mm/m, cross markers) reacting much more than the highest gradient 2 mm/ 
m, circle markers). After a couple of iterations, in fact, the curves corresponding to the smallest gradient rise quickly to a value of λ2 close to 3, and are 
almost indistinguishable despite the diverse standard deviation errors. Differently, for the highest gradient, the dependence on the standard deviation 
errors is more differentiated and lower values of λ2 are attained. 

With the same notation introduced for Fig. 14a), in Fig. 14b) are represented the mean absolute errors (MAE) on h as a function of the iteration 
number. As in the test illustrated in Appendix A.1, in this and in the following tests four h data sets with the same average gradient and main flow 
direction ranging from 0◦ to 30◦ north are used for each couple of gradient/error parameter sets. However, only the MAE corresponding to the data set 
oriented along 0◦ is shown here, because the MAE computed for the other directions yield very similar results. Fig. 14b) shows that, when compared 
with the MAE corresponding to the highest gradient (circle markers), the MAE obtained with the smallest gradient converges towards a value few cm 
below the corresponding standard deviation error (cross markers). Differently, the MAE on the highest gradient starts with values above 20 cm in the 
first iteration, and then converges towards values very close to the standard deviation error after a few of iterations. In all the test described up to this 
point, whenever a noise is added to the reference h, the noise had a spatial structure (structured noise).   

Fig. 14. a) λ2 vs CMM iterations for different values of standard deviation error on the h data sets (cyan 0 cm, yellow 5 cm, green 10 cm, and red 20 cm) and for 
different values of average gradient on h (1 cm/m cross markers, 2 cm/m circle markers). b) Mean absolute error (MAE) on the reference h fields vs iterations, with 
the same notation of part a). (For plot b) only the MAE on the data set with main flow direction along 0◦ is shown). 

An additional test was performed with the same settings of the test summarized in Fig. 14 but using an unstructured Gaussian noise. The results of 
this test are summarized, with the same notation used for Fig. 14, in Fig. 15, where the overall features retrace the features of the results obtained for a 
structured noise. However, some differences can be noticed. First, when unstructured noise is added to the reference heads, an overall degradation of 
the values of λ2 can be observed (Fig. 15a). For the smallest gradients (cross markers) the curves do not differ much from the same curves corre
sponding to the structured noise, because even the structured noise was great enough to give unsatisfactory results for the identification of T, with λ2 ≃

3. On the other hand, for the highest gradients (circle markers) the values of λ2 deteriorate faster than for the structured noise. Concerning the MAE on 
h, the curves for the smallest gradients are comparable with the curves obtained for the structured noise, whereas the curves related to standard 
deviations greater than 5 cm (Fig. 15b) do not show a clear convergence pattern. 
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Fig. 15. Same results shown in Fig. 14, but for an uncorrelated noise.  
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