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ABSTRACT

This work introduces the few-shot learning paradigm in the speech emotion recognition domain. Emo-
tional characterization of speech segments is carried out through analogies, i.e.. by assessing simi-
larities and dissimilarities between novel and known recordings. More specifically, we designed a
Siamese Neural Network modeling such relationships on the combined log-Mel and temporal mod-
ulation spectrogram space. We present thorough experimentations assessing the performance of the
proposed solution holistically, where it is demonstrated that it reaches state of the art rates when fol-
lowing the standard leave-one-speaker-out protocol, while at the same time being able to operate in
non-stationary conditions, i.e. with limited knowledge of speakers and/or emotional classes. Finally,
we investigated the activation maps in a layer-wise manner in order to interpret the predictions made

by the model.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Affective computing including speech emiotion recognition
(SER) is attracting the interest of a constantly-increasing num-
ber of researchers during the last decades (Schuller, 2018;
Akcay and Oguz, 2020). Speech comprises the most relevant
way of communication between humans and, in extension, is of
significant importance in human computer interaction systems.
As such, designing, developing and deploying emotionally-
aware solutions serving applications such as smart homes, robot
assistants, etc. comprises a research domain of great interest.
The field of SER exploits signal processing and pattern recog-
nition algorithms to predict the speaker’s emotional state (Song
and Zheng, 2018; Ntalampiras, 2020).

SER, like generalized sound and speech recognition, is based
on the assumption that audio content distributions associated
with different emotional states exhibit consistent patterns over
time. The overall aim is to reveal and capture such distri-
butions using suitable features and models in order to detect
them in novel audio signals. In SER literature we can see the
usage of a wide variety of time, frequency and wavelet do-
main features (Firoz Shah A. and Babu Anto P., 2017; Saste
and Jagdale, 2017; Ntalampiras and Potamitis, 2014) mod-

**Corresponding author: Tel.: +39-02-50316240
e-mail: stavros.ntalampiras@unimi.it (Stavros Ntalampiras)

eled by discriminative (Lotfidereshgi and Gournay, 2017), non-
discriminative (Zhiyan and Jian, 2013) as well as hybrid clas-
sifiers (Ntalampiras and Fakotakis, 2012). The vast majority
of approaches are focused on a single language and only few
language-agnostic methods are present in the literature, e.g.
(Ntalampiras, 2020b). Moreover, it is typical that the emo-
tional space is organized in the so-called big-six emotions, i.e.
class dictionary D = {angry, disgust, happy, sad, neutral, fear}
(Miller, 2016). In general, the literature relies on the availability
of domain experts for feature/model engineering or on massive
quantities of labeled data so as to address the problem in an
end-to-end fashion (Tzirakis et al., 2018). Exhaustive surveys
of SER literature are available in (Chandrasekar et al., 2014,
Ayadi et al., 2011).

Motivated by the gaps existing in the current literature, this
work introduces a scheme learning emotional speech through
analogies. In other words, we transform the present classifica-
tion problem into a relationship learning one. Such a scheme
is able to learn similarities and dissimilarities existing in input
data, and through such a functionality, carries out not only clas-
sification but addresses non-stationarities altering . To the
best of our knowledge, there is no solution present in the litera-
ture able to consider unknown classes in their dictionary.

The present work describes the few-shot learning paradigm,
where we may observe only a few samples belonging to each
class before making inference(s) regarding test samples. Such
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Fig. 1. The pipeline of the proposed few-speaker learning scheme using
Siamese neural networks. Each input is passed though a series of convolu-
tional, ReLU and max-pooling layers completed by a common end based
on binary cross-entropy loss.

a line of thought has been explored in handwritten character
recognition (Koch et al., 2015) reaching state of the art results.
In the audio signal processing domain, such learning schemes
remain unexplored with the exception of generative speech con-
cepts (Lake et al., 2014).

Keeping in mind the above mentioned gaps, this work

e minimizes the need of feature engineering,

e reaches state of the art accuracy with a small amount of
training data, and

e designs a reliable mechanism to detect and react to
changes in D.

More specifically, we employ two spectrogram representations
emphasizing different characteristics of the audio content. Re-
lationship learning is accomplished by means of a Siamese
Neural Network composed by convolutional layers. The spe-
cific choice is motivated by the recent success of such kernels
in audio pattern recognition applications (Purwins et al., 2019;
Ntalampiras, 2020a), thus they could provide a solid basis for
learning analogies existing between audio signals. Finally, we
demonstrate the efficacy of the proposed solution via exhaus-
tive experiments on Emo-DB dataset (Burkhardt et al., 2005)
including the big-six emotional states.

In the following, we a) formalize the problem, b) delineate
the proposed solution, c¢) describe the experimental protocol
along with a detailed analysis of the obtained results, d) draw
conclusions and briefly discuss potential extensions.

2. Problem formulation

In addressing speech emotion recognition, here we assume
availability of a training set 7* encompassing single-channel
recordings annotated according to speaker’s emotional state the
classes of which come from dictionary ©. Composition and
cardinality of O are known only up to a certain extent, i.e. dic-
tionary O = {Ey,..., E,}, where E; denotes the i-th emotional
state, meaning that a-priori unknown states may appear during
system’s operation. At the same time, we assume that each class
follows a consistent, yet unknown probability density function,
which is typical for generalized audio processing systems (Nta-
lampiras, 2019).

Overall goal of the system is to identify speaker’s emotional
state in a speaker-independent manner, while at the same time

2

being able to detect changes in composition of D and incorpo-
rate new appearing classes.

3. Few-shot Learning for Speech Emotion Recognition

The proposed system consists in a set of a-priori known
vocalizations, so-called support set, and Siamese Neural Net-
work (SNN) learning similar and dissimilar relationships of the
classes in D. The pipeline is illustrated in Fig. 1, where we see
that the predicted class is the one achieving maximum similar-
ity score. The next subsections detail the a) SNN architecture,
b) feature extraction stage, and c) how the SNN carries out emo-
tion recognition in unknown recordings.

3.1. Siamese Neural Networks

The SNN encompasses a twin network where each one pro-
cesses a different input, while connected to a common ending
point (Bromley et al., 1994) (see Fig. 1). There, the distance be-
tween two representations produced by each network is quanti-
fied via a predefined distance metric. Even though the networks
perform their processing interdependently, their goal is to sat-
isfy the same optimization function, hence coupling the learned
weights and providing closely-located representations in the
feature space. At the same time, such a learning process leads
an interchangeable architecture, i.e. if the networks/inputs were
to be reversed (top/bottom), the output distance value would be
the same. The proposed SNN incorporates binary cross entropy
loss followed by a sigmoid activation during distance assess-
ment.

Convolutional Neural Networks (CNNs) have provided ex-
cellent performance in audio signal processing systems (Pur-
wins et al., 2019), thus each SNN twin includes convolutional
layers. Interestingly, CNNs consist in a series of stacked lay-
ers, where convolutions are succeeded by max-pooling oper-
ations. Such processing emphasizes local patterns in the 2D
plane, while each hidden unit accesses only a limited part of
the input, the so-called receptive field. Dimensionality of the
learned weights is suitably controlled by max-pooling layers
rendering the network indifferent to translational shifts (Piczak,
2015). It should be noted that we employed rectified linear units
(ReLu), i.e. the activation function is f(x) = max(0, x).

3.2. SNN architecture and learning

As shown in Fig. 1, each SNN twin encompasses three con-
volutional layers, where the initial two are followed by ReLu
and max-pooling ones. The last layer concludes processing
with a fully-connected form. SNN is completed by a distance
operation succeeded by a fully connected layer and a sigmoid
function assessing similarity between the elements of input’s
pair.

Convolutional filters have a stride equal to 1 and kernels as
shown in Fig. 1, while max-pooling layers have 2 x 2 kernels
with stride = 2. Learning targets the minimization of binary
cross-entropy loss among network’s prediction and ground truth
using the standard version of backpropagation algorithm. Mini-
batch size is chosen according to the T'S size at a learning rate
of 6e—5. Weight initialization is carried out via narrow normal
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Fig. 2. Log-mel spectrograms extracted out of samples representing every available emotional state.

distributions with zero-mean and 0.01 standard deviation. The
maximum number of allowed iterations is 2000.

3.3. Feature extraction

Following recent advances in affective computing (Ntalam-
piras, 2017), we considered two feature sets capturing different
properties of the sound structure. More specifically,

Log-Mel spectrogram. the first feature set consists in Mel-
scaled spectrograms representing each emotional state. We
used the short time Fourier transform with size equal to 1024,
while the audio signals were hamming windowed with a win-
dow size of 0.03s and 0.015s overlap. Moreover, we employed
128 equal-width log-energies following the standard Mel fil-
ter bank. Such spectrograms representing the big six emotions
considered in this work are illustrated in Fig. 2.

Temporal Modulation Features. the second feature set is based
on a modulation-frequency analysis conducted via Fourier
transform and filtering theory as presented in (Clark and At-
las, 2009; Schimmel et al., 2007; Vinton and Atlas, 2001) using
spectral center of gravity method. The main aim is to keep slow
varying envelopes of spectral bands along with information re-
garding signals phase and structure. The algorithm assigns high
values to regions of spectrum stimulating the listener’s cochlea
taking into account the associated temporal modulation.

Different to log-mel spectrogram, the modulation one mod-
els the human cochlea, where inner-ear vibrations are converted
to electrically-encoded signals. In brief, incoming audio ex-
cites the basilar membrane which responds based on the exci-
tation frequency. As long as such excitations differ, they stim-
ulate unique areas of the membrane dividing cochlea’s output
into frequency bands. Importantly, a harmonic sound event oc-
cupying several different auditory channels exhibits analogous
modulation patterns across every band. Such redundancy is
the main advantage of modulation spectrogram over traditional
ones when representing harmonic sounds (Klapuri, 2008).

Fig. 3 demonstrates the relationship existing between the
acoustic and modulation frequency w.r.t every considered class.
Temporal modulation features were extracted based on the
Modulation Toolbox (Les Atlas and Schimmel, Sept. 2010).

1. Input: test speech segment V', trained SNN N,
dictionary D, where each class is represented by
extracted features of the support set (SZ'D Y

2. Extract features f of V' ;

3. Initialize similarity vector V = [];

4. for j=1:|D| do

5. for i=1:|S| do
6. Query N with the pair {f, S’} and get
similarity score V(}, i);
end

end

7. Predict the class maximizing the similarity score
S* = argmax{V(:, 1)} and assign it to V',

S

Algorithm 1: The proposed speech emotion recognition al-
gorithm based on few-shot learning (| | denotes the cardi-
nality operator).

3.4. Change Detection and Emotion Prediction

The above-described Siamese network assesses similari-
ties/dissimilarities existing between pairs of features (log-mel
and/or temporal modulation spectrogram) extracted from data
available in 7°. As such, the few-shot learning paradigm can

be extended to address classification tasks in a straightforward

way. This is carried out by assigning the class producing the
maximum similarity score to the unknown audio signal. At the
same time, changes in D are detected when every similarity
score falls below a predefined threshold. In that case, D is

amended with a new class populated with the corresponding
recording. Subsequently, the specific class is considered when
processing further speech segments.

The proposed prediction algorithm, outlined in Alg. 1, ex-

tracts the spectrogram s of the unknown speech segment V'

(Alg. 1, line 2) and initializes similarity vector V (Alg. 1, line
3). Subsequently, we query A using the existing pair combi-

Table 1. Confusion matrix (in %) obtained with SNN trained on data com-

ing from 9 speakers. The average recognition rate is 81.2%.
Predicted . .o
Similar | Dissimilar
Presented
Similar 84.3 15.7
Dissimilar 21.9 78.1
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Fig. 3. Temporal modulation features extracted out of samples representing every available emotional state.

nations which outputs the corresponding similarity scores, thus
updating V (Alg. 1, line 4-6). The last step of the algorithm as-
signs to V' the label of the class maximizing the similarity score
in V (Alg. 1, line 7).

4. Experimental set-up and results

This section describes the a) employed dataset, b) suitably
formed figures of merit, c) contrasted method, d) obtained re-
sults, and e) interpretation of SNN’s operation towards class
assignment.

4.1. Dataset

The German language database (Emo-DB) (Burkhardt
et al., 2005) encompasses voices of 10 different actors
(Smale/5female) expressing the following emotional states:
anger, disgust, fear, happiness, neutral, and sadness. The audio
is sampled at 16kHz with 16bit quantization. The distribution
of samples per emotional state and actor along with age infor-
mation is tabulated in Table 2.

4.2. Feature and model parameterization

To extract the feature vectors, each audio signal is framed
into parts of 30ms overlapping by 15ms. The FFT size is 0.064s
and the hamming window type is employed. We present results
using both feature sets concurrently since their combination al-
ways outperformed their individual use. As regards to SNN,
the maximum number of permitted epochs is 2000 with early

90 80 —

// 76.1%

-
o

=
=l

=)
S

Recognition rate (%)
Recognition rate (%)

=)
S

3 5 7 9 T24 33 42 >1
Number of known speakers # of train classes - # of test classes

Fig. 4. Recognition rate w.r.t number of known speakers (left subfigure)
and classes (right subfigure).

Table 2. Number of samples per speaker and emotional state available in
EMO-DB. Speakers’ sex and age are included in column S,A.

s, Alass anger | disgust | fear | happy | neutral | sad
M, 31 14 1 4 7 11 7
F, 34 12 0 6 11 10 9
F, 21 13 8 1 4 9 4
M, 32 10 1 8 4 4 3
M, 26 11 2 10 8 9 7
M, 30 12 2 6 2 4 4
F, 32 12 8 7 10 9 5
F, 35 16 8 12 8 7 10
M, 25 13 5 8 6 11 4
F, 31 14 11 7 11 5 9

stopping, the mini bath size 50, test batch 200 while the num-
ber of similarity/dissimilarity tests is 20. It should be noted that
equally distributed similar and dissimilar input pairs were pro-
duced randomly. Lastly, we experimented with SNN of three
and four convolutional layers; here, we report results achieved
by the best-performing one, i.e. the three-layered one.

4.3. Figures of merit

We employed effective and widely-used figures of merit thor-
oughly assessing the performance in SER. One interesting de-
tail for the case of few-shot learning is that we can additionally
employ confusion matrices demonstrating the algorithm’s effi-
cacy in recognizing similarities and dissimilarities. To this end,
the following matrix was defined:

M = [Sll 512] ) (1)
where

e 511 (in %) denotes the number of times that samples fed in
the first input of SNN were identified as similar to samples
coming from the same class,

e 517 (in %) denotes the number of times that samples fed
in the first input of SNN were identified as dissimilar to
samples coming from the same class,
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Table 3. M* (in %) achieved by SNN trained on data coming from 9 speakers (maximum rates are emboldened).

Input Ouiput Anger | Disgust | Fear | Happiness | Neutral | Sadness
Anger 86.4 - - 13.6 -
Disgust 8.3 76.3 - 0.5 10.8 4.1
Fear 8.8 - 78.5 12.7 - -
Happiness 10.4 - 774 12.2 -
Neutral 4.9 - 10.6 84.5 -
Sadness - 8.5 3.2 4 - 84.3

e 55 (in %) denotes the number of times that samples fed
in the second input of SNN were identified as similar to
samples coming from the same class,

e 5,; (in %) denotes the number of times that samples fed in
the second input of SNN were identified as dissimilar to
samples coming from the same class.

In this case, the objective it to maximize the values appearing
in the diagonal. A matrix assessing the dissimilarities M? can
be defined in an analogous way with the difference being that
we are aiming at minimizing its diagonal. Interestingly, the
sum of similarity and dissimilarity matrices characterizing the
accuracy of a given method is 100%, i.e. M* + M? = 100 for
every element.

4.4. Results

This subsection summarizes the obtained results after carry-
ing out diverse experiments aiming at assessing different as-
pects of the proposed methodology. The initial phase assessed
generalization over speakers. The majority of related literature
follows the leave-one-speaker-out (LOSO) of T experimental
protocol. Following the learning through analogies paradigm,
we experimented with leaving several speakers out of 7° with
the number of known speakers ranging from 3 to 9 (LOSO
case). For each such configuration, the speakers were selected
randomly, the experiment was iterated 50 times, and we report
average recognition rates and standard deviation in Fig. 4a. We
see that even with only 3 known speakers, the rate (68.2+5.4%)
is significantly higher than chance level (16.6%).

Importantly, achieved rates increase with the number of
known speakers reaching state of the art levels (Lotfidereshgi

conv 2 conv. 3 fear conv. 1

e

conv. 1 conv 2 conv. 3 dlsgust conv.1
,\fl‘\‘l
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Fig. 5. Activation maps with respect to each convolutional layer for every
available emotional state.

conv. 2 conv. 3

conv. 2 conv. 3

and Gournay, 2017; Chen et al., 2018) in the LOSO case,
ie. 82.1% vs. 82.8% (Chen et al.,, 2018). Unlike exist-
ing approaches, the proposed solution is able to operate in
non-stationary environments by detecting and accommodating
changes which may alter size and/or composition of 9. The
corresponding matrix M’ is tabulated in Table 3. We observe
that the class recognized best is anger, while disgust presents
the highest amount of misclassifications. Such rates are in line
with the ones reported in (Chen et al., 2018) where anger, sad-
ness and neutrality are well-recognized, while the rest of classes
is associated with lower recognition rates. Additionally, in the
LOSO setting, we provide the confusion matrix w.r.t identifica-
tion of similarities and dissimilarities in Table 1. There, we see
that SNN learns similarities (84.3%) better than dissimilarities
(78.1%).

The following phase evaluated generalization capabilities
over emotional states. Here, only a limited amount of classes
in O is assumed available during training, which ranges from 2
to 5. For each setting, the classes were selected randomly, the
experiment iterated 50 times, and we report average recognition
rates and standard deviation in Fig. 4b. Care was taken so that
data coming from the same speaker is not included in both train-
ing and testing sets during the same experiment. As expected,
the performance strengthens as the amount of known classes
increases. We observe that the proposed solution generalizes
more appropriately over speakers than classes. However, even
under extremely small amount of known classes, SNN is able
to learn analogies and provide rates well above chance level.

Finally, we examined the way SNN processes features by
means of the considered convolutional layers emphasizing on
the regions employed to assess similar/dissimilar relationships.
Overall, each convolutional layer outputs a a simplified view
of the obtained input image, while focusing on distinctive parts
w.r.t to each class. For example, more emphasis is placed on
the shape of temporal modulation spectrogram when process-
ing anger w.r.t neutral emotional states.

5. Conclusion

This work presented a solution learning analogies for speech
emotion recognition. Importantly, current model is not specifi-
cally trained for classification but only learns similar/dissimilar
relationships between input pairs. The proposed system oper-
ates via a standardized feature extraction mechanism and more
importantly, is able to operate under non stationary conditions,
i.e. with limited knowledge of speakers and/or class dictionary
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D. Interestingly, the incorporated change detection mechanism
allows the system to react to the appearance of new emotional
states and incorporate them in the class dictionary on-the-fly.
It provided satisfactory performance during every experimen-
tal phase and reached state of the art accuracy in the widely
used LOSO setting. At the same time, its predictions are in-
terpretable by examining the activation maps of each convolu-
tional layer. Large part of the success of the present learning
paradigm is due to its ability to consider both similarities and
dissimilarities to known classes at the same time.

In the future we are going to investigate sufficient conditions
w.r.t T* composition and quantity in order to improve the per-
formance achieved in non-stationary environments, and extent
the present framework towards transferring learned analogies to
other languages.
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