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Abstract 

How can Qualitative Comparative Analysis contribute to causal knowledge? The article’s 

answer builds on the shift from design to models that the Structural Causal Model 

framework has compelled in the probabilistic analysis of causation. From this viewpoint, 

models refine the claim that a ‘treatment’ has causal relevance as they specify the 

‘covariates’ that make some units responsive. The article shows how QCA can establish 

configurational models of plausible ‘covariates’. It explicates the rationale, operations, 

and criteria that confer explanatory import to configurational models, then illustrates how 

the basic structures of the SCM can widen the interpretability of configurational 

solutions and deepen the dialogue among techniques. 
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INTRODUCTION  

The explanatory standing of Standard Qualitative Comparative Analysis 

(hereafter, QCA: Ragin, 2014, 2000, 2008; Rihoux and Ragin, 2009) seldom 

proves plain. Recently, Møller and Skaanig (2019: 81) maintained that QCA 

and set-theoretic methods ‘provide little in the way of distinguishing between 

logical and causal relationships’. Munck (2016: 777) clarified that 

‘causation is not a logical relation but, rather, a relation between events or, 

more precisely, between changes in the properties of things’ and, as such, 

‘must be understood ontologically’ – which he deemed beyond QCA. Although 

‘causal theories should be built with due attention to the rules of logic, both 

qualitative and quantitative researchers are better off presenting their causal 

arguments in the general form Δ𝑋 → Δ𝑌, meaning that a change in property 

𝑋 causes a change in property 𝑌, and treating the covariation between 𝑋 and 

𝑌 as an essential means for checking whether their causal arguments are true’. 

In the social and political domains, convincing covariational models identify 

mediation effects (e.g. Seawright, 2019: 33) – which, once again, QCA would 

be unable to render. 

Against this backdrop, the article addresses the question of whether Standard 

QCA as a technique is ill-equipped to contribute to causal knowledge. It 

considers the specificity of its analytic strategy in three sections. The first 

summarizes the state of the art in causal analysis, and brings attention to the 

move from design to models that the Structural Causal Model framework has 

developed to improve the counterfactual approach. In light of that move, the 

second section portrays QCA as a technique equipped for specifying models 

with credible explanatory import, with special diagnostics for omitted factors, 

irrelevant additions, and confirmation bias. The third section illustrates how 

the causal structures of the Structural Causal Model framework can 

illuminate the relationship between explanatory configurational findings. 

The conclusions highlight the special contribution that the explanatory usage 

of QCA can bring to the methodological agenda on causation in the social 

and political sciences. 

 

 

THE ISSUES WITH CAUSATION AS THE  RESPONSE TO A ST IMULUS  

The Potential Outcome framework (hereafter, PO: Rubin, 1974, 1978; 

Rosenbaum and Rubin, 1983; Imbens, 2004; Morgan and Winship, 2015) 

provides the default choice for analyzing causal relationships. The framework 

narrows on a stimulus T with two mutually exclusive states, either realized (1) 

or not (0). T is recognized a causal effect when the claim stands that any 𝑖-th 
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unit under the realized stimulus 𝑇(1) returns a response 𝑌𝑖(1) that would not 

have been yielded under the unrealized stimulus 𝑇(0). The claim that the 

difference between the actual response 𝑌𝑖(1) and its counterfactual 𝑌𝑖(0) 

gauges the causal effect lies on a design that ensures statistically comparable 

samples of units except for the state of 𝑇. The design circumvents a reality in 

which each unit instead comes as a specific bundle of covariates 𝑢𝑖 that blur 

comparability and make the calculation of the effect inaccurate. 

Rubin’s canon conventionally conceives of covariates as features that are 

exogenous to the stimulus–response relationship, yet bias the ‘unit’s 

propensity to receive’ 𝑇(1) through some ‘mechanism of self-selection’ that 

the analysis holds as unknown. The experimental setting, the argument goes, 

rules out this bias by randomly exposing the units to the realized or the 

unrealized stimulus. Together, randomization and forced exposition defuse the 

self-selection mechanism and license two key tenets about the average net 

effect: first, the covariates do not confound it; second, the assignment 

mechanism bias is (strongly) ignorable. Beyond randomization, the canon 

maintains that unconfoundedness and strong ignorability can still be ensured 

by discounting the units’ heterogeneity through their propensity score. Thus, 

estimations of the average treatment effect become valid on units that display 

a comparable propensity to self-select into the treatment.  

Despite the efforts to make propensity scores as little ‘model-dependent’ as 

possible, the strategy adopted to deal with units’ natural heterogeneity decides 

the credibility of the causal claim in observational studies and raises a modeling 

issue. In their structural rendering of the potential outcome, Winship and 

Morgan (1999: 668 ff) define the issue by decomposing the error term 𝑢𝑖 

of the individual response 𝑌𝑖 to the stimulus 𝑇𝑖 into 𝑢𝑖 = 𝑢𝑖
𝑇0 + 𝑇𝑖(𝑢𝑖

𝑇1 −

𝑢𝑖
𝑇0). Their decomposition emphasizes that the set of covariates 𝑢𝑖

𝑇1, featuring 

the group under 𝑇𝑖 = 𝑇(1), is possibly different from that of the baseline group 

𝑢𝑖
𝑇0. Moreover, they consider that the value of the assignment mechanism 𝑇𝑖 

ultimately depends on two sources of self-selection bias: the set 𝑍𝑖 of 

observed exogenous variables, and the set 𝑉𝑖 of unobserved or missing 

variables. When the ‘selection on the observables’ occurs, the propensity 

score 𝑃𝑟(𝑍𝑖) can license the assumptions of unconfoundedness and 

ignorability of the assignment. Under the ‘selection on the unobservables’, 

instead, estimates call for further assumptions about the shape of the 

unobservables and, eventually, lose interpretability. 

The key issue, in short, remains how to ensure that the relevant covariates are 

identified so that the unobservables only contain irrelevant ‘noise’. To address it, 

the Structural Causal Model framework (hereafter, SCM: Pearl and Paz, 1987; 

Pearl and Verma, 1991; Pearl, 2009; Bareinboim and Pearl, 2016; Pearl and 

Mackenzie, 2018) invites researchers to shape the setting of counterfactuals 
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along the lines of Simon (1977). 

While working on the definition of political power, Simon noted that 

conventional representations via single equations could not render the intuition 

of a relationship between two agents, 𝐴 and 𝐵, such that 𝐴’s preferences cause 

𝐵’s choices while the converse does not hold. To him, power relationships 

unveiled the intrinsic asymmetry of any causal relationship and called for a 

decomposition. ‘To say that 𝑋 is a cause of 𝑌 is to say that there is a 

certain order in which the equations must be solved – specifically, that we 

must first solve for 𝑋 and insert its value in another equation which we 

then solve for 𝑌. Correspondingly, to say that 𝑃 causes 𝑄 is to say that we 

have a set of propositions (Boolean equations) such that we first determine the 

truth or falsity of P from some subset of these, and then use the truth value of P 

to determine the truth value of 𝑄’ (ivi: 50, notation adapted). 

The SCM trades design for models that render structural assumptions of 

dependence. Any structural model consists of three sets – the exogenous 

variables 𝒰, collecting the covariates; the endogenous variables 𝐕:𝑋, 𝑌, 𝑍, . .., 

selected from 𝒰 as the causal model of the response; and the functions 

𝐅: {𝑓𝑋𝑍, 𝑓𝑋𝑌, 𝑓𝑌𝑍, … } that connect them. The model is then ‘augmented’ by a 

causal graph 𝒢𝑀 in which variables are ‘nodes’, functions are (missing) 

directed arrows or ‘edges’, and any consecutive edges build a ‘path’ between 

nodes. The outcome becomes the end-point of at least one path whose 

structure conveys the mechanism of data-generation – the ‘mechanism’ being 

the type of process to the outcome that the equation captures in some aspect 

of interest (Simon, 1977: 115). Then, the SCM framework identifies three 

ideal graphs to which any causal structures can be reduced – namely, the 

linear chain 𝒢𝑙, the fork 𝒢𝑓  , and the collider 𝒢𝑐. 

The linear graph 𝒢𝑙 entails a model ℳ𝑙 with four key relationships: of 

dependence of 𝑌 from 𝑍; of dependence of 𝑍 from 𝑋; of ‘likely’ dependence of 

𝑌 from 𝑋 when the connecting functions grant transitivity; and, more 

important, of independence of 𝑌 on 𝑋 conditional on 𝑍. 

 

𝒢𝑙 ≔ 𝑋 
𝑓𝑍𝑋
→  𝑍 

𝑓𝑌𝑍
→   𝑌 

 

ℳ𝑙 ≔

{
 

 
𝑃(𝑦|𝑧) ≠ 𝑃(𝑦)

𝑃(𝑧|𝑥) ≠ 𝑃(𝑧)

𝑃(𝑦|𝑥) ≠ 𝑃(𝑦)

𝑃(𝑦|𝑥, 𝑧) = 𝑃(𝑦|𝑧)

 

 

The relationships in ℳ𝑙 convey that two nodes arranged in a linear chain are 
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independent conditional on the mediator in between that captures the whole of 

the relevant variation. Effective mediators, then, support the claim of a causal 

connection between 𝑋 and 𝑌 by dissolving it. 

The second prototypical shape is the fork. Two variables, 𝑋 and 𝑌, both 

descend from a third variable, 𝑍 – as in 𝒢𝑓. In the corresponding model ℳ𝑓, 

𝑍, 𝑌 are dependent; 𝑍, 𝑋 are dependent; 𝑌, 𝑋 are likely dependent and again 

become independent when conditioned on 𝑍. 

 

𝒢𝑓 ≔ 𝑋 
𝑓𝑋𝑍
←  𝑍 

𝑓𝑌𝑍
→   𝑌 

 

ℳ𝑓 ≔

{
 

 
𝑃(𝑦|𝑧) ≠ 𝑃(𝑦)

𝑃(𝑥|𝑧) ≠ 𝑃(𝑥)

𝑃(𝑦|𝑥) ≠ 𝑃(𝑦)

𝑃(𝑦|𝑥, 𝑧) = 𝑃(𝑦|𝑧)

 

 

The fork renders the confounder that makes the dependence of 𝑌 on 𝑋 

spurious and, again, explains it away. It shares all the features of the chain 

except the dependence between 𝑋 and 𝑍, which in 𝒢𝑓 runs in the opposite 

direction. 

The last fundamental shape is the collider as in graph 𝒢𝑐. Here, 𝑋 and 𝑌 

together determine the values of 𝑍. Thus, the model ℳ𝑐 renders that 𝑋, 𝑍 are 

dependent; 𝑌, 𝑍 are dependent; 𝑋, 𝑌 are independent but display a 

dependence when conditioned on 𝑍. 

 

𝒢𝑐 ≔ 𝑋 
𝑓𝑍𝑋
→  𝑍 

𝑓𝑍𝑌
←   𝑌 

 

ℳ𝑐 ≔

{
 

 
𝑃(𝑧|𝑥) ≠ 𝑃(𝑧)

𝑃(𝑧|𝑦) ≠ 𝑃(𝑧)

𝑃(𝑥|𝑦) = 𝑃(𝑥)

𝑃(𝑥|𝑦, 𝑧) ≠ 𝑃(𝑥|𝑧)

 

 

The collider portrays the situation in which the output has two inputs. The 

shape makes knowing the value of the one input irrelevant when we know the 

value of the other and the output. Beyond that, a collider does not establish any 

backward causation – instead, it provides a further reason to handle the 

relationship of correlation and causation with caution. 

In SCM, the three basic shapes with their sets of conditionalities offer criteria to 

accept or reject hypotheses about the relevant covariates beneath an 
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outcome. The acceptable hypothesis may not be univocal, though, as graphs 

with the same edges and ‘v-structures’ arise the same testable implications, 

hence belong to the same equivalence class. Mostly, they offer ‘inference rules 

for deducing which propositions are relevant to each other, given a certain 

state of knowledge’, and conceptual tools to develop models where ‘knowing z 

renders x irrelevant to y’ (Pearl and Paz, 1987). Against this backdrop, the 

covariates are relevant that turn dependence into independence and vice 

versa (Kuroki and Pearl, 2014). 

 
 

MODELING COMPLEX CONDIT IONALITY  

Explanatory QCA, too, is interested in the bundle of relevant factors that, 

together, make the ‘stimulus’ effective and, hence, account for its 

relationship with an outcome. The viewpoint is slightly different, however. 

The strategy follows Mackie (1965, 1980) in observing that, although we 

usually explain the burning of a house by a short-circuit, this explanation is 

‘gappy’ unless we bring specific background features to the fore. The short-

circuit initiated the fire because, for instance, it fired a spark on an oily rag, 

and there was enough oxygen in the room, and the sprinklers were broken. 

Thus, the causal response only takes place under the right conditions beyond 

the initiating factor. Moreover, the conditions and the ‘initiating’ factor stand on 

an equal footing. ‘Cause’ is just a conventional label for the anomaly in the field 

that attracts our attention: had the fire followed from a gas leak, we would have 

mentioned it instead of the sparkle. Besides, different particular conditions can 

unleash the same type of outcome in equivalent situations: a burning match or 

enough pressure would have done the same job as the spark. If we abstract 

the details away, eventually fire can be reduced to the consequence of 

‘heating’, and ‘combustible’, and ‘oxygen’ being in the same place at the same 

time under ‘no impediments’. The abridged formula pinpoints the types of 

elements that, together, sort the same type of effect irrespective of any other 

features of the context. Hence, such a formula is complete enough to travel 

and, once that the labels are properly assigned to actual things and events, 

specific enough to allow us to expect and explain the outcome at any 

timepoint and place. 

The hallmark of this perspective lies in the relationship that the elements 

entertain with each other and their consequent. That any of them is in the 

right state is insufficient to the outcome: the causal power lies in their 

compound. Each of them, however, is non-dispensable: a component in the 

wrong state makes the compound fail. In turn, the compound is sufficient for 

the outcome, but its occurrence is an unnecessary event that only happens 

when all the components are properly arranged. In Mackie’s terms, then, 
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each component is a partial, inus cause – an insufficient yet necessary part 

of an unnecessary yet sufficient compound. 

Cartwright (2017) enhances the understanding with a functional account that 

makes further sense of the compound. She assumes the entities in the world 

ground capacities to do some job, such as, operate a change or preserve 

stability. Capacity, then, is a concept close to those of ‘potential’, ‘disposition’, 

‘tendency’ in other accounts, and related to that of ‘causal power’. It entails 

a productivity that relationships of sheer association do not display: it is only at 

the intersection of the right capacities that something happens. The compound 

of these right capacities arises a ‘nomological machine’ – a ‘sufficiently stable 

arrangement’ (Cartwright, 2017) that makes a realization certain until all the 

relevant elements remain in the right state. Working nomological machines 

make sure that anything else is irrelevant before the same type of outcome 

across time and space. Neurons, engines, scientific labs are illustrations of 

these arrangements. Their relevant components can be understood as inus 

factors that, in the right team, perform basic tasks such as triggering (𝑇 =

{𝑇1, 𝑇2, … }), enabling (𝐸 = {𝐸1, 𝐸2, … }), and shielding (𝑆 = {𝑆1, 𝑆2, … }) the special 

process to a state of an outcome. 

Thus, a basic inus model can read 𝑇 ∩ 𝐸 ∩ 𝑆 → 𝑌 (∩ reading ‘and’, → ‘is 

sufficient to’). With binary variables, the probabilistic illustration of this model 

would portray head (1) and tail (0) flips from three coins (𝑇, 𝐸, 𝑆), and an 

unmodeled endogenous data-generation process ensuring a bell (𝑌) always 

rings (1) when all the three coins land on head, else leaving it silent (0). This 

model arises a finite sample space with eight possible realizations, Ω𝑇𝐸𝑆 =

{𝑇𝐸𝑆, 𝑇𝐸𝑆̅, 𝑇𝐸̅𝑆, 𝑇𝐸𝑆̅̅̅̅ , 𝑇̅𝐸𝑆, 𝑇̅𝐸𝑆̅, 𝑇𝐸̅̅ ̅̅ 𝑆, 𝑇𝐸𝑆̅̅ ̅̅ ̅}. Of them, the first only, 𝜔1 ∶=  𝑇𝐸𝑆, 

yields 𝑌 given the mechanism in place. QCA dubs the sample space ‘truth 

table’ and the realizations ‘primitive configurations’, but still understands them 

as possible states of the world and sets or partitions of the universe of 

reference 𝒰 = {𝑢1, … , 𝑢𝑛}. 

The peculiarity of QCA lies in its eliminative nature. Its solutions arise from the 

dismissal of logically irrelevant conditions from sufficient primitives (Ragin 

2014: 125 ff; cfr. Thiem, 2019). In itself, hence, pruning cannot determine 

causality. However, its protocol can be geared to probing the claim that a 

selection of conditions is a credible inus machine (Mackie, 1980: Appendix) 

when 

a) the same bundle of conditions accounts for both states of the 

outcome without  contradictions; 

b) the solutions of each outcome are properly specified to their respective 

subpopulation. 
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Requirement (a): establishing sufficiency for explanatory purposes 

As a technique, QCA relies on an algebra of set that preserves the equivalence 

to a first-order logic (Stone, 1936). Thus, the technique addresses Simon’s 

knowledge problem – the determination of the truth or falsity of 𝑃 – as the 

problem of gauging a unit’s membership in the set of things that are or have 𝑃 

(e.g. Sartori, 1984; Ragin, 2008; Goertz and Mahoney, 2012; Ragin and Fiss, 

2017).  

QCA affords two such gauges: crisp and fuzzy. The crisp gauge assigns binary 

truth values in line with the Boolean canon: the 0-membership in 𝑃 means 1-

membership in the negated set 𝑃 ̅. The fuzzy gauge refines the assignment 

with that which, from an explanatory perspective, can be understood as an 

ambiguity penalty. Fuzzy scores incorporate such a classification error in the 

value assigned to each unit. They span from 0.00 to 1.00 and have their point 

of highest ambiguity at 0.50: thus, units scoring 0.50 are instances of neither 𝑃 

nor 𝑃 ̅; units with extreme values, instead, are sure instances of either the set 

or its negation. The difference in gauging slightly changes the 

operationalization of the three logical axioms on which QCA can build valid 

causal claim.  

 

Table 1. Axioms, set renderings, and gauges in QCA 

Axiom Set rendering Crisp gauge for unit 𝒖𝒊 Fuzzy gauge for unit 𝒖𝒊 

Negation 𝑃̅ ∶=  𝒰\𝑃  𝜓𝑃̅𝑖
𝑐𝑠 = 1 − 𝜓𝑃𝑖

𝑐𝑠  𝜓𝑃̅𝑖

𝑓𝑠
= 1− 𝜓𝑃𝑖

𝑓𝑠
  

Non-contradiction 𝑃̅ ∩ 𝑃 ≔ ∅  𝜓𝑃𝑖∩𝑃̅𝑖
𝑐𝑠 = 𝑚𝑖𝑛(𝜓𝑃𝑖

𝑐𝑠, 𝜓𝑃̅𝑖
𝑐𝑠) = 0  𝜓𝑃𝑖∩𝑃̅𝑖

𝑓𝑠
= 𝑚𝑖𝑛 (𝜓𝑃𝑖

𝑓𝑠
, 𝜓𝑃̅𝑖

𝑓𝑠
) < 0.5  

Excluded middle 𝑃̅ ∪ 𝑃 ∶= 𝒰  𝜓𝑃𝑖∪𝑃̅𝑖
𝑐𝑠 = 𝑚𝑎𝑥(𝜓𝑃𝑖

𝑐𝑠, 𝜓𝑃̅𝑖
𝑐𝑠) = 1  𝜓𝑃𝑖∪𝑃̅𝑖

𝑓𝑠
= 𝑚𝑎𝑥 (𝜓𝑃𝑖

𝑓𝑠
, 𝜓𝑃̅𝑖

𝑓𝑠
) > 0.5  

 
Notes:  𝜓𝑐𝑠 is for the crisp-set membership score, 𝜓𝑓𝑠 is for the fuzzy-set membership score. 

 𝜓𝑃𝑖
 refers to membership score that the 𝑖-th unit from a universe 𝒰 of size N takes in the set of 

instances sharing the condition 𝑃 in a state. 𝜓𝑃̅𝑖
 is the membership score of the same unit in the set of the 

condition in the negated state. 

 The overbar reads ‘not’. The alternative notation in QCA is the curl ∼, or the lowercase set 

name.  

 The backlash \ indicates the set difference. 

 ∪ reads ‘union’ and corresponds to the logical inclusive (weak) ‘or’. The alternative logical 

notation is the vee ∨. In QCA’s applications, the plus sign (+) is common. 

 ∩ reads ‘intersection’ and corresponds to the logical ‘and’. The alternative logical notation is the 

wedge ∧. In QCA’s applications, the operator is a dot (⋅) and often omitted. 

 ∅ indicates the empty set; the corresponding logical notation is the empty curly braces {}. QCA 

conventionally renders it with a 0, although 0 is also assigned to the observed instance that is ‘fully out’ to 

a set. 
 

As summarized in Table 1, the three rules establish, respectively, the negation 

of a state as its arithmetic complement in the universe of reference; the 

rule of non-contradiction as the impossibility for the same unit to be in a 

state and its negation at the same time; the rule of the excluded middle as the 

necessity of a unit to display either one or the other of the two possible states. 
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These gauges allow enforcing the conventional understanding of sets as 

‘conceptually uniform’ partitions of the universe with respect to a condition’s 

state. The construction of sets as uniform partitions provides the ground of the 

set-theoretical gauge of sufficiency. The relationship is, quite conventionally, a 

conditional. The parameter that captures it in any QCA application is the 

‘consistency of sufficiency’ (S.cons for short: Ragin, 2000, 2008; Duşa, 2018 

names it ‘inclusion’). The parameter is defined as the ratio of the size of the 

intersection of the outcome and a primitive, and the size of the primitive itself:  

𝑆. 𝑐𝑜𝑛𝑠𝜔𝑗⊂𝑌
≔

|𝜔𝑗∩𝑌|

|𝜔𝑗|
.  

It closely recalls Kolmogorov’s gauge of conditional probability as the ratio of 

success to trials of a certain kind (e.g. Hájek, 2011). Indeed, without any loss, 

the 𝑆. 𝑐𝑜𝑛𝑠𝜔𝑗⊂𝑌
 can be rewritten as 𝜋(𝑌|𝜔𝑗), being 𝜋 the size of the sets. In the 

special case of crisp QCA, the size of the set is the number of its instances and 

Kolmogorov’s conditional probability coincides with the consistency of 

sufficiency. In both cases, moreover, the parameter renders the long-honored 

regularity criterion that ‘if 𝜔𝑗 causes 𝑌, then any instance of 𝜔𝑗 is an instance of 

𝑌’. At the same time, it accounts for the challenge that contradictory evidence 

rises to the modal understanding of causal regularity as ‘if 𝜔𝑗 causes 𝑌, it 

cannot be the case that an instance of 𝜔𝑗 is an instance of 𝑌̅.’ 

The regularity claim of the 𝑆. 𝑐𝑜𝑛𝑠 stands when the parameter takes either 

its highest value of 1.00 or its lower value of 0.00, indicating that the primitive 

draws a uniform partition of the positive or the negative outcome set. For 

explanatory purposes, violations of this subset relationship make the primitive 

‘contradictory’. Contradictions weaken the claim that the team of conditions 

renders an inus machine, and suggest that the team is ill specified – possibly, 

due to some omitted components. From a logical perspective, a contradiction 

makes the inus hypothesis ‘false’ as its realizations cannot establish the 

subpopulation of 𝑌-instances as a separate set from that of 𝑌̅-instances. 

The diagnosis of the contradiction through the 𝑆. 𝑐𝑜𝑛𝑠 is straightforward with 

crisp scores (Rihoux and De Meur, 2009) but can prove harder with fuzzy 

scores. The violation can be downgraded to an acceptable inconsistency when 

it arises from units for which 𝑌𝑖 ≥ 𝜔𝑗𝑖 +  0.1 (Ragin, 2000); truly contradictory 

instances instead remain those crisp ‘consistency outliers’ for which 𝜔𝑗𝑖 >  0.5 

while 𝑌𝑖 <  0.5 (Rohlfing and Schneider, 2013; Rubinson, 2013; Rohlfing, 2020). 

The misalignment of the crisp and the fuzzy consistencies depends on the 

fuzzy scores leaving arithmetic residuals in intersections: to witness, 𝜓𝑃
𝑓𝑠
= 0.8 

yields 𝜓𝑃𝑖∪𝑃̅𝑖

𝑓𝑠
=  0.2, which indicates an empty intersection by the rules in Table 

1, yet inflates the diagnostic of the 𝑆. 𝑐𝑜𝑛𝑠. To overcome the problem, a 

corrected version of the parameter has been devised. The Proportional 
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Reduction of Inconsistency (𝑃𝑅𝐼), calculated as  

𝑃𝑅𝐼𝜔𝑗⊂𝑌
≔ 

|𝜔𝑗∩𝑌|−|𝜔𝑗∩𝑌∩𝑌̅|

|𝜔𝑗|−|𝜔𝑗∩𝑌∩𝑌̅|
,  

explicitly borrows the rationale of the Proportional Reduction of Error. The 

gauge of inconsistency is |𝜔𝑗 ∩ 𝑌 ∩ 𝑌̅|, which assigns higher penalties to fuzzy 

values of the outcome closer to 0.5. The 𝑃𝑅𝐼, hence, displays a steep fall in its 

values, often for primitives with 𝑆. 𝑐𝑜𝑛𝑠 equal to 0.85 or lower. The convention 

maintains that a configuration is usually sufficient to an outcome when its 

𝑆. 𝑐𝑜𝑛𝑠 is 0.85 or higher and supported by a similar 𝑃𝑅𝐼 – although model 

specifications may suggest otherwise (Schneider and Wagemann, 2012). 

 

Requirement (b): handling the overspecification of inus machines 

The additional relevant information in Standard QCA comes from the coverage 

of sufficiency, or 𝑆. 𝑐𝑜𝑣 for short, defined as 

𝑆. 𝑐𝑜𝑣𝜔𝑗⊂𝑌
≔ 

|𝜔𝑗∩𝑌|

|𝑌|
.  

The parameter indicates the empirical relevance of the realization 𝜔𝑗 to the 

instances of the outcome 𝑌 (Ragin, 2006, 2008). It takes its highest value of 

1.00 when the 𝑗-th realization is shared by all the instances of 𝑌 and tends 

toward 0.00 the more there are instances of the outcome set (𝜓𝑌𝑖
> 0.50) 

outside the configuration set (𝜓𝜔𝑗𝑖
< 0.50). 

These uncovered instances or ‘coverage outliers’ may follow from omitted 

alternative paths to the outcome (e.g. Rohlfing and Schneider, 2013; Oana 

and Schneider, 2018). Usually, their presence is deemed of little or no threat 

to the standing of a consistent hypothesis: if we are only interested in the 

machine triggered by our model, any uncovered instances of 𝑌 can be a red 

herring. However, coverage outliers can have another and more concerning 

source. They are also diagnosed on the overspecification of the model that 

occurs when unrelated conditions are added. In explanatory QCA, the 

minimization algorithm offers a strategy to handle this threat while providing an 

argument in favor of the often-deplored practice of selecting on the dependent 

(e.g. King et al., 1994: 130). Indeed, a renowned ‘paradox of confirmation’ 

illustrates the absurd conclusions that standard analyses can reach when 

blindly applied to instances selected on a ‘wrong’ independent (Salmon, 1989: 

50). 

The paradox portrays the case of the table salt that is believed to dissolve (𝑌) 

once put in hexed (𝐻) water (𝑊). The underlying inus model, then, reads 

𝐻𝑊 → 𝑌. The paradox arises when natural diversity presents us with the 

primitives as in Table 2. 
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Table 2. Truth table from the model 𝐻𝑊 → 𝑌 

Id 𝐇 𝐖 𝐘 

𝝎𝟏 1 1 1 

𝝎𝟐 1 0 0 

𝝎𝟑 0 1 1 

𝝎𝟒 0 0 0 

 

An analysis narrowing on 𝜋(𝑌|𝜔1) would consider the relationship sound, even 

by contrast with 𝜋(𝑌|𝜔4). The proof of the irrelevance of 𝐇 only emerges 

from the evidence that 𝜋(𝑌|𝜔1) = 𝜋(𝑌|𝜔3) and 𝜋(𝑌|𝜔2) = 𝜋(𝑌|𝜔4), after the 

analytical distinction is made between hexed and non-hexed water. Under such 

improved model specification, the comparison of configurations to the same 

outcome pinpoints the irrelevant component as the one whose variation does 

not affect the state of the outcome. Its removal follows from a logical operation 

that the original pruning algorithm of QCA, the Quine-McCluskey, performs 

systematically. The algorithm compares primitives pairwise and drops the 

single different literal in otherwise identical trains. To witness: in Table 2, 

either 𝜔1 or 𝜔3 goes with 𝑌. The two primitives differ by one literal only, that is, 

the state of 𝐇. We can rewrite the two as (𝐻 ∪ 𝐻)𝑊𝑌. By the axiom of the 

Excluded Middle in Table 1, 𝐻 ∪ 𝐻̅  = 𝒰; hence, 𝐻 can be dismissed as a 

true ‘noisy’ background variation. The primitives to 𝑌̅, i.e., 𝜔2, 𝜔4, suggest the 

same conclusion. Together, these ‘minimizations’ license the inference that the 

inus model is truer to the cases at hand when specified as 𝑊 → 𝑌. 

 

Addendum to requirement (b): handling unobserved realizations 

The previous example has assumed a saturated truth table in which all the 

possible realizations were observed. Technically, observed realizations are 

those in which at least one unit has a crisp membership score of 1. In actual 

explanatory QCA, however, an inus model easily allows for a wider array of 

realizations than the units may afford from a certain universe. The problem is 

understood as ‘limited diversity’ and provides a further version of the curse 

of dimensionality. It is independent of the mere ratio of the number of cases 

and variables, and may not be properly addressed by adding cases: infinite 

instances of the same primitive in an analytic space of four still make three 

primitives unobserved and provide no analytic leverage. 

The strategies to handle unobserved realizations are many, each addressing a 

possible source of the problem. Observed diversity may increase if we widen 

the space-time region of the analysis – the ‘scope condition’ for case selection 

(Marx and Dusa, 2011). The dimensionality of the analytic space can decrease 

if some gelling interactions are hardened into measures of coarser factors 
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(Berg-Schlosser and De Meur, 2009; Schneider, 2019). If inadvertently added, 

empirical constants may be dropped before the analysis of irrelevance as 

they double the analytic space but leave half of the primitives unobserved 

(Goertz, 2006). 

The latter consideration has evolved into a whole step of the standard protocol. 

The ‘analysis of individual necessity’ calculates the same parameters as the 

analysis of sufficiency, but of single conditions and with a reverse meaning. 

Constants are degenerate necessary conditions, that is, limiting cases of 

supersets of an outcome-set. They arise when |𝑌| ≤ |𝑃| and entail a lower-

triangular fit. The membership in the condition given that in the outcome 

renders the individual consistency of necessity 

𝑘𝑁. 𝑐𝑜𝑛𝑠𝑌⊂𝐴 ≔ 𝜋(𝐴|𝑌) =
|𝐴∩𝑌|

|𝑌|
    

whereas the membership in the outcome given that in the condition provides 

the individual coverage of necessity: 

𝑘𝑁. 𝑐𝑜𝑣𝑌⊂𝐴 ≔ 𝜋(𝑌|𝐴) =
|𝐴∩𝑌|

|𝐴|
    

– where ‘individual’ refers to the 𝑘-th inus condition.  

The Relevance of Necessity (𝑅𝑜𝑁: Schneider and Wagemann, 2012) is a later 

addition to detect skewed inus components. It is calculated as the reciprocal of 

the (Boolean) complements in the individual coverage of necessity: 

𝑅𝑜𝑁𝑌⊂𝐴 ∶=
1

1− 𝜋(𝑌|𝐴)
=

|𝐴̅|

|𝐴̅∪𝑌̅|
 . 

Conventionally, the condition with 𝑘𝑁. 𝑐𝑜𝑛𝑠 equal or greater than 0.9 but 𝑅𝑜𝑁 

lower than 0.5 could be dismissed as trivial. However, the crucial test and 

consistent with the inus rationale remains whether the model requires that 

special condition to prevent the rising of contradictions in the truth table 

(Damonte, 2018; Rohlfing, 2020). 

However, the protocol of reference to handle limited diversity treats 

unobserved primitives as counterfactuals (Ragin, 2008; Schneider and 

Wagemann, 2012) and, ultimately, a problem of missing outcomes. The related 

counterfactual question asks whether any instance of these known yet 

unobserved configurations would have displayed 𝑌̅ instead of 𝑌 (Ramsey, 

1929). The standard protocol provides three answers – ‘conservative’, 

‘parsimonious’, and ‘intermediate’ – and draws its conclusions under as many 

alternative assumptions: 

- the conservative stipulates that no unobserved realization would have 

obtained; so, its minimizations only operate on observed diversity.  

- the parsimonious maintains that any unobserved realization would have 

obtained that finds a perfect observed match but for a single minimizand 

(the component to be declared irrelevant).  
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- the intermediate corrects the parsimonious assumption with plausibility 

concerns. It requires the unobserved minimizand to be in the state that the 

inus theory considers ‘right’ to the outcome. The minimization under such 

‘directional expectation’ provides the intermediate or ‘plausible’ solution. 

Given all non-contradictory primitives, the conservative and the parsimonious 

solutions provide the tighter and looser boundaries of a ‘confidence solution 

space’ in which the intermediate solution usually offers the plausible estimate 

to the best of knowledge – with a caveat. 

Concerns have been raised that directional expectations might introduce 

confirmation bias in solutions. Minimizations are geared toward disconfirming 

the relevance of a factor, not to establish it; hence, relying on directional 

expectations to drop a term rather uses the theory against itself. Instead, the 

blind application of the plausibility rules may arise a different version of the 

‘paradox of confirmation’ in which the belief in a wrong theory prevents the 

dropping of irrelevant conditions from the solution. To witness, let us take the 

hexed salt example of Table 2, but now with an unobserved realization as is 

𝜔3
∗ ∶=  𝐻𝑊 in Table 3.  

 
Table 3. Truth table from the model 𝐻𝑊 → 𝑌 with unobserved 𝜔3 

Id 𝐇 𝐖 𝐘 

𝜔1 1 1 1 

𝜔2 1 0 0 

𝜔3
∗  0 1 ? 

𝜔4 0 0 0 

 

Let also assume that our directional expectations about 𝐻 boil down to the 

belief that, teamed with the right inus factors 𝛷, hexing becomes an inus 

component of the machine to 𝑌 when present. In short, we can expect 𝐻𝛷𝑌, 

but 𝐻𝛷𝑌̅.  

Given Table 3, 

- 𝜔1 is the only realization to 𝑌, and the conservative solution reads 𝐻𝑊: the 

salt dissolved because it was hexed and in water. 

- the parsimonious minimization matches 𝜔1 and 𝜔3
∗  and yields 𝑊 as the 

prime implicant: the salt dissolved because in water, regardless of hexing. 

- the intermediate minimization considers that 𝜔3
∗  is an implausible or ‘hard’ 

counterfactual instead: according to our directional expectations, it carries 

the minimizand in the wrong state. Thus, 𝜔3
∗  is barred from the 

minimization with 𝜔1. The resulting ‘plausible’ solution overlaps the 

conservative, and 𝐻 is not dropped. 
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To some, the proven inability of the intermediate solutions to get always rid of 

known irrelevant components disqualifies it as valid, and leaves the 

parsimonious solutions as the only finding worth discussing (e.g. Thiem, 2019). 

To others, parsimonious solutions are too dependent on observed realizations, 

and their sufficiency far less ‘robust’ when tested on shrinking diversity for 

providing reliable results (e.g. Duşa, 2019). Besides, assumptions are required 

to make causal structures emerge (e.g. Fiss, 2011; Damonte, 2018; Schneider, 

2019).  

The debate assumes theory disregards the fact that data contain handy 

information to establish the plausibility of our inus theory in the cases. The 

values of the analysis of individual sufficiency provide indications on the 

tenability of our directional expectations in 𝒰. 

 

Table 4. Analysis of individual necessity of the conditions in Table 3 

 Outcome: 𝒀 o Outcome: 𝒀̅ 

Conditions 
 

𝑘𝑃𝑅𝐼 
𝑘𝑁. 𝑐𝑜𝑣 
𝑘𝑆. 𝑐𝑜𝑛𝑠 

𝑘𝑁. 𝑐𝑜𝑛𝑠 
𝑘𝑆. 𝑐𝑜𝑣 

𝑅𝑜𝑁 

 
 

 
𝑘𝑃𝑅𝐼 

𝑘𝑁. 𝑐𝑜𝑣 
𝑘𝑆. 𝑐𝑜𝑛𝑠 

𝑘𝑁. 𝑐𝑜𝑛𝑠 
𝑘𝑆. 𝑐𝑜𝑣 

𝑅𝑜𝑁 

 

𝑊 1.000 1.000 1.000 1.000  0.000 0.000 0.000 0.667 

𝑊̅ 0.000 0.000 0.000 0.333  1.000 1.000 1.000 1.000 

𝐻 0.500 0.500 1.000 0.500  0.500 0.500 0.500 0.500 

𝐻̅ 0.000 0.000 0.000 0.667  1.000 1.000 0.500 1.000 

 

When calculated on the conditions of the hexed salt model as in Table 4, the 

𝑘𝑃𝑅𝐼 and the 𝑘𝑆. 𝑐𝑜𝑛𝑠 values show 𝐻 being equally insufficient to 𝑌 and 𝑌̅, 

while the 𝑅𝑜𝑁 values warn that expectations of necessity are untenable, too. 

In short, the analysis of individual necessity may suggest whether directional 

expectations stand evidence and can be forced onto solutions. 

 

 

QCA  A ND  L O CA L  CA US A L  S T R UCT UR ES  

The previous section showed that explanatory QCA is equipped to identify inus 

compounds with established tools, although adapted to its special gauges; 

moreover, it can diagnose the challenges from both ill-selected conditions and 

untenable theoretical expectations. Once the sufficiency requirements are 

satisfied and the irrelevant conditions dismissed, the solutions provide a 

regularity answer to why the outcome occurred in some of the cases at hand 

and why it failed in others. The answer is, the complete realizations of the inus 

machine were at work in the positive instances of the outcome, and its 

incomplete or obstructed realizations prevented the generative process in the 
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negative instances. That the two answers make two halves of the same causal 

story ultimately depends on both being based on a single bundle of inus 

conditions (Verba, 1967; cfr. Schneider and Wagemann, 2012). 

Still, the further question remains open whether QCA solutions can be granted 

a causal interpretation beyond the theory that drove the original definition of 

the inus machine. The shapes that the SCM assumes as causal – namely, the 

chain 𝒢𝑙, the fork 𝒢𝑓, and the collider 𝒢𝑐 – all capture conditionality as 

Kolmogorov’s probability; hence, they can be applied to illuminate the 

relationship between intermediate and parsimonious solution, as in the 

example below. 

 

Drawing an inus model 

The illustrative model accounts for the differences in the national perception of 

corruption – the outcome – with the differences in how effective the 

accountability constraints are perceived to be to the discretion of the policy-

makers in the public sector – the explanatory factors. 

The underlying theory connects corruption to Elinor Ostrom’s second-order 

social trap in which perceptions play the role of triggers. The basic mechanism 

considers that high perceived corruption fuels distrust in the fair working of 

institutions; distrust, in turn, makes people convinced that resorting to 

corruption remains the safest way of accessing public services and benefits 

even when they hold the right to it. These ‘tragedies,’ in Ostrom’s framework, 

can be fixed if communities restore fairness and delegate the task of detecting 

and sanctioning violations to an independent ‘monitor’. The fixing can 

nevertheless fail, too, when the monitor is perceived as ineffective or 

complacent. Unsanctioned violations and forbearance trigger a ‘second-order’ 

social trap: the choice of free-riding control becomes individually rational, and 

corruption institutionalizes. In short, the mechanism suggests that the trigger 

fires when accountability designs are perceived as poor or incomplete; vice 

versa, a credible accountability design should provide the inus machine that 

preserves trust and keeps the perception of corruption low (e.g. Ostrom, 

1998). 

The next question asks which components constitute such an inus machine. 

The theories of public accountability distinguish between internal and external 

systems, and assign higher effectiveness to the latter. While internal 

managerial or somehow hierarchical lines of oversight may invite forbearance 

to avoid blame, external systems are expected to deter corrupt practices by 

making oversight public, and be more effective when the institutional design 

maintains the chances low that a single concern can capture the whole 

attention of the decision-maker. The mechanism also suggests that a special 

place in the inus machine should be granted to the perceived effectiveness of 
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the judicial system as the warrant against complacency and forbearance (e.g. 

Weingast, 1984; Mungiu-Pippidi, 2013; Damonte, 2017). 

The operationalization borrows the raw explanatory conditions from the sub-

indices of the Rule of Law Index maintained by the World Justice Project. 

These gauges are composite, but their contents are consistent with the 

underlying concept, and all point in the same direction (Lazarsfeld and Henry, 

1968). From the dataset related to 2017, the following gauges are used: 

- subindex 1.3. ‘Government powers are effectively limited by independent 

auditing and review’, for the condition ‹𝐴𝑇𝐸𝐶›. The raw variable gauges 

the perception that comptrollers or auditors, as well as national human 

rights ombudsman agencies, have sufficient independence and the ability 

to check on and oversight of the government. 

- subindex 1.5 ‘Government powers are subject to non-governmental 

checks’, to calibrate the condition ‹𝐴𝑆𝑂𝐶›. The raw variable gauges the 

perception that independent media, civil society organizations, political 

parties, and individuals are free to report and comment on government 

policies without fear of retaliation. 

- subindex 3.1 ‘Publicized laws and government data’ to calibrate the 

condition ‹𝐴𝑃𝑈𝐵›. The raw measure gauges the perception that basic laws 

and information on legal rights are publicly available, offered in everyday 

language, and accessible. It also captures the quality and accessibility of 

the information published by the government in print or online, and 

whether administrative regulations, drafts of legislation, and high court 

decisions are promptly accessible to the public. 

- subindex 3.2 ‘Right to information’ to calibrate the condition ‹𝑅𝑇𝐴›. The 

underlying raw measure gauges the perception that requests for relevant 

information from a government agency are timely granted, that 

responses are pertinent and complete, and that the cost of access is 

reasonable and free from bribes. 

- subindex 7.6 ‘Civil justice is effectively enforced’ as the condition ‹𝐸𝑁𝐹𝑂𝑅›. 

The raw variable gauges the perception of effectiveness and timeliness of 

the enforcing practices of civil justice decisions and judgments in 

practice. 

The operationalization of the outcome ‹𝐶𝐿𝐸𝐴𝑁›, instead, relies on the 

Corruption Perception Index maintained by Transparency International. This 

again provides a suitable gauge of the perceived level of corruption of the 

administrative bodies, collected from surveys, and, since 2012, validated 

through a transparent methodology. 

As the measures of the outcome and the inus factors come from surveys and 

discount the variations in the year of reference, no need for lagging the 
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effect is envisaged. The perception of the accountability of the administration 

and the perception of corruption in the public sector count as aggregate 

responses to the same state of the policymaking system. 

The data of the Corruption Perception Index and the World Justice Project 

are all collected from a variety of world regions, although not from the same 

countries. When combined, the more comprehensive coverage is of the 

countries in the European Union, the European Free Trade Area, and the core 

Anglophone countries. Together, their administrative and institutional systems 

provide enough diversity to ensure that patterns will emerge. At the same time, 

they all are uninterrupted democratic systems, although at different degrees of 

maturity, which ensures the gauges of the conditions in the model can be 

given unambiguous interpretations. 

After dropping the cases with missing values, the population suitable for the 

analysis includes 26 cases, whereas the specification of the model includes 

five explanatory conditions and reads 

𝐴𝑇𝐸𝐶 ∗ 𝐴𝑆𝑂𝐶 ∗ 𝐴𝑃𝑈𝐵 ∗ 𝑅𝑇𝐴 ∗ 𝐸𝑁𝐹𝑂𝑅 → 𝐶𝐿𝐸𝐴𝑁. 

The raw values are reported in the online Appendix. 

 

Analysis and findings 

Following theory and gauging, directional expectations are that each condition 

contributes to low perceived corruption (𝐶𝐿𝐸𝐴𝑁) when present, and high 

perceived corruption (𝑐𝑙𝑒𝑎𝑛) when absent. The individual parameters of the 

calibrated measures, reported in Table 5, support all of them.  

 

Table 5. 𝑘-parameters of fit 

 Outcome: 𝑪𝑳𝑬𝑨𝑵  Outcome: 𝒄𝒍𝒆𝒂𝒏 

Conditions 𝑘𝑁. 𝑐𝑜𝑛𝑠 𝑅𝑜𝑁 𝑘𝑁. 𝑐𝑜𝑣  𝑘𝑁. 𝑐𝑜𝑛𝑠 𝑅𝑜𝑁 𝑘𝑁. 𝑐𝑜𝑣 

𝑎𝑡𝑒𝑐 0.106 0.685 0.170  0.760 0.956 0.916 

𝐴𝑇𝐸𝐶 0.948 0.776 0.840  0.311 0.411 0.207 

𝑎𝑠𝑜𝑐 0.147 0.639 0.202  0.884 0.942 0.914 

𝐴𝑆𝑂𝐶 0.937 0.893 0.915  0.228 0.460 0.167 

𝑎𝑝𝑢𝑏 0.233 0.589 0.272  0.923 0.845 0.808 

𝐴𝑃𝑈𝐵 0.836 0.937 0.935  0.168 0.528 0.142 

𝑟𝑡𝑎 0.361 0.571 0.377  0.932 0.756 0.732 

𝑅𝑇𝐴 0.744 0.950 0.936  0.207 0.599 0.196 

𝑒𝑛𝑓𝑜𝑟 0.203 0.610 0.252  0.924 0.894 0.861 

𝐸𝑁𝐹𝑂𝑅 0.888 0.934 0.940  0.197 0.503 0.157 

 

The conditions’ states are consistent with one outcome’s state as expected 
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and symmetric in their set-relationships with the outcome and its negation. 

Moreover, their 𝑘𝑁. 𝑐𝑜𝑛𝑠 is never trivial. Together, they yield the truth tables 

as in Table 6. 

 

Table 6. Truth tables: observed realizations and consistency to the outcomes 

𝝎 𝑨𝑻𝑬𝑪 𝑨𝑺𝑶𝑪 𝑨𝑷𝑼𝑩 𝑹𝑻𝑨 𝑬𝑵𝑭𝑶𝑹 n 
𝑪𝑳𝑬𝑨𝑵 
𝑺. 𝒄𝒐𝒏𝒔 

𝑪𝑳𝑬𝑨𝑵 
𝑷𝑹𝑰 

𝒄𝒍𝒆𝒂𝒏 
𝑺. 𝒄𝒐𝒏𝒔 

𝒄𝒍𝒆𝒂𝒏 
𝑷𝑹𝑰 

26 1 1 0 0 1 2 1.000 1.000 0.348 0.000 

30 1 1 1 0 1 2 1.000 1.000 0.291 0.000 

24 1 0 1 1 1 1 1.000 1.000 0.706 0.000 

32 1 1 1 1 1 10 0.999 0.999 0.135 0.000 

25 1 1 0 0 0 1 0.662 0.204 0.858 0.665 

17 1 0 0 0 0 1 0.333 0.009 0.994 0.991 

01 0 0 0 0 0 9 0.137 0.002 0.996 0.996 

 

Of 32 possible realizations, seven only are observed and neatly associated with 

either one outcome or the other with one exception (𝜔25), which does not 

affect the analysis when run with crisp scores. Units concentrate in the two 

polar realizations: nine of 11 instances of the negative outcome are the best 

instances of 𝜔1 while ten out of 15 positive instances are best instances of 𝜔32. 

Were the model already a well-specified inus machine, the concentration 

should be higher. Dispersion suggests alternative specifications and/or 

redundancies, which justifies minimizations. 

The minimizations retrieve the solutions in Table 7. 

 

Table 7. Implicants 

Outcome Solution Id Implicant 𝑺. 𝒄𝒐𝒏𝒔 𝑷𝑹𝑰 

𝐶𝐿𝐸𝐴𝑁 
Cons Int 

1 𝐸𝑁𝐹𝑂𝑅 ∗ 𝐴𝑇𝐸𝐶 ∗ 𝐴𝑆𝑂𝐶 ∗ 𝑟𝑡𝑎 1.000 1.000 

2 𝐸𝑁𝐹𝑂𝑅 ∗ 𝐴𝑇𝐸𝐶 ∗ 𝐴𝑃𝑈𝐵 ∗ 𝑅𝑇𝐴 0.999 0.999 

Pars 3 𝐸𝑁𝐹𝑂𝑅 0.940 0.932 

𝑐𝑙𝑒𝑎𝑛 
Cons Int 

4 𝑒𝑛𝑓𝑜𝑟 ∗ 𝑎𝑝𝑢𝑏 ∗ 𝑟𝑡𝑎 ∗ 𝐴𝑇𝐸𝐶 0.923 0.886 

5 𝑒𝑛𝑓𝑜𝑟 ∗ 𝑎𝑝𝑢𝑏 ∗ 𝑟𝑡𝑎 ∗ 𝑎𝑠𝑜𝑐 0.997 0.996 

Pars 6 𝑒𝑛𝑓𝑜𝑟 0.861 0.832 

 

Notes:  Of the 15 instances of 𝐶𝐿𝐸𝐴𝑁,  

- Prime Implicant 1 covers four, namely, AUT, BEL; AUS, CAN; PI 2 covers eleven: FRA; NZL, 

DEU, DNK, EST, FIN, GBR, NLD, NOR, SWE, USA.  

- PI 3 covers all. 

 Of the 11 instances of 𝑐𝑙𝑒𝑎𝑛, 

- PI 4 covers two – namely, ITA; PRT. 

- PI 5 covers ten: BGR, CZE, ESP, GRC, HRV, HUN, POL, ROU, SVN; ITA.  

- PI 6 covers all. 



Damonte | Modeling configurational explanation 

Page 19 of 25 

 

The parsimonious solutions identify a single factor (the effectiveness of civil 

justice enforcement) whose variation captures the whole difference between 

the instances of the positive and the negative outcome. The intermediate 

solution instead overlaps the conservative; their prime implicants use all the 

conditions in the model, but differently specified to special subpopulations. 

They suggest that alternative inus machines are at work in groups of instances 

of the realized and unrealized outcome. The instances of the unrealized 

outcome contain one overdetermined case, in which the failure can be 

ascribed to one or the other of the two compounds. 

Letting the substantive interpretation aside, the last open question asks 

which causal standing can be recognized to the information in the 

parsimonious and intermediate solutions. 

 

Exploring the relationship between solution types 

Fiss (2011, Soda and Furnari 2012) dubs the conditions in the parsimonious 

term the ‘core’ element of the solution, while the conditions added under 

directional expectations are ‘peripheral’ contributors. The 𝑆. 𝑐𝑜𝑛𝑠 and 𝑃𝑅𝐼 

values reported in Table 6 prove that the core provides a worse explanation 

when alone than in conjunction with the peripheral terms. Hence, the 

peripherals are relevant to the outcome, although maybe not causally so. The 

in/equalities of the models ℳ(.) that qualify the graphs 𝒢(.) in the SCM 

framework provide the suitable diagnostic device that clarifies the causal 

nature of their relationship. 

Tables 8 and 9 report the conditionalities that identify the structures of a chain, 

a confounder, and a collider, computed for the dependencies between the 

core condition (𝑧), the peripheral conditions in each solution term (𝑥1, 𝑥2), and 

the outcome (𝑦) for each outcome state after turning the fuzzy scores into 

crisp. A fundamental causal structure is assigned to the solution term when all 

the identifying conditionalities are satisfied. The conditionalities are inevitably 

deterministic given the gauges and the single observation point. Nevertheless, 

in such a thin slice of the world, recognizable structures do emerge. 
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Table 8. Structures of the intermediate implicants to 𝐶𝐿𝐸𝐴𝑁 

Chain 

𝒘 → 𝒛 → 𝒚  

 
𝑤 = 𝑥1  

 
𝑤 =  𝑥2  

Confounder 
𝒙𝟏 ← 𝒛 → 𝒙𝟐   

 
Collider 
𝒙𝟏 → 𝒛 ← 𝒙𝟐  

 

𝑃(𝑦|𝑧)  1.000 1.000 𝑃(𝑥2|𝑧)  0.267 𝑃(𝑧|𝑥1)  1.000 

𝑃(𝑦)  0.577 0.577 𝑃(𝑥2)  0.192 𝑃(𝑧)  0.577 

! =  TRUE TRUE ! =   TRUE ! =   TRUE 

𝑃(𝑧|𝑤)  1.000 0.800 𝑃(𝑥1|𝑧)  0.733 𝑃(𝑧|𝑥2)  0.800 

𝑃(𝑧)  0.577 0.577 𝑃(𝑥1)  0.423 𝑃(𝑧)  0.577 

! =   TRUE TRUE ! =   TRUE ! =   TRUE 

𝑃( 𝑦|𝑤)  1.000 0.800 𝑃(𝑥2|𝑥1)  0.000 𝑃(𝑥1|𝑥2)  0.000 

𝑃(𝑦)  0.577 0.577 𝑃(𝑥2)  0.192 𝑃(𝑥1)  0.423 

! =   TRUE TRUE ! =   TRUE =  FALSE 

𝑃(𝑦|𝑤, 𝑧)  1.000 1.000 𝑃(𝑥2|𝑥1, 𝑧)  0.000 𝑃(𝑥1|𝑥2, 𝑧)  0.000 

𝑃(𝑦|𝑧)  1.000 1.000 𝑃(𝑥2|𝑧)  0.267 𝑃(𝑥1|𝑧)  0.733 

=  TRUE TRUE =  FALSE ! =   TRUE 

TRUE   FALSE  FALSE  

 

Keys:  the nodes in the graphs are given the following values: 

 𝒚 =  𝐶𝐿𝐸𝐴𝑁;   𝒛 =  𝐸𝑁𝐹𝑂𝑅;   𝒙𝟏 = 𝐴𝑇𝐸𝐶 ∩ 𝐴𝑃𝑈𝐵 ∩ 𝑅𝑇𝐴;   𝒙𝟐 = 𝐴𝑇𝐸𝐶 ∩ 𝐴𝑆𝑂𝐶 ∩ 𝑟𝑡𝑎. 

 N = 26 for each node. 

 

 
Table 9. Structures of the intermediate implicants to 𝑐𝑙𝑒𝑎𝑛 

Chain 

𝒘 → 𝒛 → 𝒚  

 
𝑤 = 𝑥1  

 
𝑤 =  𝑥2  

Confounder 
𝒙𝟏 ← 𝒛 → 𝒙𝟐   

 
Collider 
𝒙𝟏 → 𝒛 ← 𝒙𝟐  

 

𝑃(𝑦|𝑧)  1.000 1.000 𝑃(𝑥2|𝑧)  0.909 𝑃(𝑧|𝑥1)  0.182 

𝑃(𝑦)  0.423 0.423 𝑃(𝑥2)  0.423 𝑃(𝑧)  0.423 

! =  TRUE TRUE ! =   TRUE ! =   TRUE 

𝑃(𝑧|𝑤)  0.182 0.909 𝑃(𝑥1|𝑧)  0.182 𝑃(𝑧|𝑥2)  0.909 

𝑃(𝑧)  0.423 0.423 𝑃(𝑥1)  0.423 𝑃(𝑧)  0.423 

! =   TRUE TRUE ! =   TRUE ! =   TRUE 

𝑃(𝑦|𝑤)  0.182 0.909 𝑃(𝑥2|𝑥1)  0.091 𝑃(𝑥1|𝑥2)  0.091 

𝑃(𝑦)  0.423 0.423 𝑃(𝑥2)  0.423 𝑃(𝑥1)  0.423 

! =   TRUE TRUE ! =   TRUE =  FALSE 

𝑃(𝑦|𝑤, 𝑧)  1.000 1.000 𝑃(𝑥2|𝑥1, 𝑧)  0.500 𝑃(𝑥1|𝑥2, 𝑧)  0.100 

𝑃(𝑦|𝑧)  1.000 1.000 𝑃(𝑥2|𝑧)  0.909 𝑃(𝑥1|𝑧)  0.182 

=  TRUE TRUE =  FALSE ! =   TRUE 

TRUE   FALSE  FALSE  

 

Keys:  the nodes in the graphs are given the following values: 

 𝒚 =  𝑐𝑙𝑒𝑎𝑛;   𝒛 =  𝑒𝑛𝑓𝑜𝑟;   𝒙𝟏 = 𝐴𝑇𝐸𝐶 ∩ 𝑎𝑝𝑢𝑏 ∩ 𝑟𝑡𝑎;   𝒙𝟐 = 𝑎𝑝𝑢𝑏 ∩ 𝑎𝑠𝑜𝑐 ∩ 𝑟𝑡𝑎. 

 N = 26 for each node. 
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In the example, the core and peripheral components in the implicants to both 

states of the outcome satisfy the conditionalities of the ‘chain’ structure. From 

this viewpoint, the core provides the mediating node between the peripheral 

conditions and the outcome. The conditionalities, moreover, support the 

claim that the core term provides neither the ‘confounding’ background 

common factor nor the ‘collider’ in any subpopulations – regardless of whether 

the peripheral terms display full set-independence [𝑃(𝑥2|𝑥1)  =  0.00 and 

𝑃(𝑥1|𝑥2) =  0.00 in Table 8] or a slight dependence [𝑃(𝑥2|𝑥1)  =  0.091 and 

𝑃(𝑥1|𝑥2)  =  0.091 in Table 9]. 

These findings suggest that each of the solutions identified by the plausible 

minimizations renders the settings of a mechanism, and the core elements 

provide the ‘mediator’. Moreover, the shape suggests that the peripheral 

conditions do not offer alternative starting points, but equivalent backgrounds. 

 

 

CONCL U DI N G R EMA R KS  

The article offers arguments and evidence that important reasons for 

discontent with QCA may apply to the inductive usage of the technique, yet are 

unjustified when addressed to its explanatory, theory-driven application (cfr. 

Schneider and Wagemann 2012, Thomann and Maggetti 2020). 

When carefully implemented, explanatory QCA inevitably displays some 

commonalities with the probabilistic family. Both identify causality with the 

capacity to affect a key state of special units and consider causation as an 

asymmetric phenomenon. The quasi-experimental scholarship recognizes the 

issue as the difference in ‘propensities’ or ‘covariates’ presiding over the self- 

selection mechanisms to receive the stimulus. Explanatory QCA models the 

covariates and the stimulus as the team of inus conditions entailing the 

capacity to arise or maintain a state of the outcome. Thus, explanatory QCA 

offers a set-theoretic answer to the question asking which combination of 

conditions ensures the units’ response to a key factor and which ones make 

the units unresponsive instead. The PO may work it out as the unwelcome 

heterogeneity that biases the estimation of the effect. Just the opposite, 

explanatory QCA joins the SCM in considering settings as the special 

background that accounts for the firing of a trigger. Along this line, the 

solutions from explanatory QCA can provide the credible specification of the 

bundle of features that make units responsive or ‘inert.’ 

Moreover, the article shows that QCA solutions from an inus model can be 

tested for SCM causal structures, and meaningfully so. In the example, the 

parsimonious solution term – the ‘difference-making’ components of the model 
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– is proven to take the position of a mediator to the outcome. In turn, the 

peripheral conditions provide the ‘covariates’ that complete the inus machine 

and account for its effectiveness. 

These considerations speak to the QCA scholarship interested in the debate 

on the standing of the intermediate solution. The findings suggest that the 

parsimonious solution remains a key component but seldom makes the whole 

of an explanation. In terms of the example in section 3, a civil justice perceived 

as effective supports the perception of low public sector corruption as it backs 

the belief that other accountability devices and holders are trustworthy, first. 

The sole perceived effectiveness of civil justice makes a ‘gappy’ explanation, 

as it does not clarify the ground on which such effectiveness stands. 

These considerations possibly speak to the wider causal scholarship, too. They 

suggest the equivalence of SCM mediators and core QCA conditions, and of 

PO-SCM ‘covariates’ and peripheral conditions. The equivalences establish the 

relevance of configurational results to probabilistic models, as they offer logical 

devices to diagnose the misspecification of a graph and refine its composition. 

Moreover, the equivalence suggests the possibility of cumulating and 

improving causal knowledge by nesting and triangulating techniques. 

Hopefully, these considerations will contribute to widen the dialogue across 

causal strategies. 
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