The shell fabric of Palaeozoic brachiopods: patterns and trends

Facheng Ye, Claudio Garbelli, Shuzhong Shen and Lucia Angiolini

Abstract

The varied microstructures of brachiopod biominerals represent a robust archive to understand the evolution and adaptations of marine calcifiers in time. Therefore, a detailed study of the shell microstructure of Cambrian to Devonian brachiopods from Iran is here presented. The shell of 38 brachiopod species, representatives of 22 families and nine orders, have been analysed using Scanning Electron Microscope (SEM) and a database has been built, including macro- and micro-morphological features used to characterize the two- or three-layered brachiopod shells. Two main microstructural variants of the secondary layer have been analysed: fibrous and laminar fabrics. The fibrous layer has a fabric comparable to that of recent brachiopods, whereas the laminar fabric is more complex in its structural organization and has no recent analogue. In cross section, the laminae are thinner than the fibres, and much less variable in size. There is evidence that taxa with laminar microstructure have diverged from the Billingsellida and then followed a trend implying a decrease in thickness of the laminae.

Our Linear Discriminant Analysis (LDA) shows that shell fabric and shell thickness are powerful predictors of shell shapes, which in turn approximate the brachiopod lifestyles and ecological strategies. Taxa with a fibrous fabric are mostly biconvex, whereas the groups with a laminar secondary layer are associated to a variety of shell shapes and lifestyles. Even if the relations between shell fabric and shell thickness remain enigmatic, as well as the metabolic cost they imply, shell fabrics, and the possible structural and mechanical
advantages conferred, could have played a role in the evolutionary success of the Strophomenata during the Palaeozoic.

Facheng Ye [facheng@uow.edu.au], Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli, 34, Milan, Italy; Facheng Ye [facheng@uow.edu.au], School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia;

Claudio Garbelli [claudio.garbelli@unife.it]. Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44121 Ferrara, Italy;

Shuzhong Shen [szshen@nju.edu.cn]. School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Lucia Angiolini [lucia.angiolini@unimi.it]. Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli, 34, Milan, Italy.

The calcite shells of brachiopods are well known to be excellent archives of proxies for studying climate and environmental change and reconstructing the state of the oceans in deep time (e.g. Popp et al. 1986; Grossman et al. 1991; Azmy et al. 1998; Parkinson et al. 2005; Angiolini et al. 2008, 2009; Brand et al. 2013; Cusack & Pérez-Huerta 2012; Garbelli et al. 2017, 2019; Brand 2018). However, the fidelity of the brachiopod archive and the interpretation of the archived proxies are dependent on the knowledge of the overall structural organization of the shell at different scales, from its general shape to its microstructure, of the ecological strategies of the group and of its evolution in time. Particularly important in this perspective is the analysis of the brachiopod shell microstructure, which is essential to test the archive preservation (e.g. Brand et al. 2011), and
notable to derive information on the chemical composition and the state of an ocean (England et. al. 2007; Ye et al. 2018a, 2019), but also a useful tool to reconstruct the macro-
evolutionary history of the phylum (e.g. Williams 1968, 1970; Williams & Brunton 1993;
Dewing 2004). In phylogenetic analyses, shell fabrics have been employed mostly at high
taxonomic level (Williams 1956; Baker 1990; Williams & Brunton 1993), but it has been
suggested that the overall fabric organization has the potential to provide indications also at
low taxonomic ranks (Garbelli 2017).

The fabric of the secondary layer is the most identifiable microstructural feature in a
brachiopod shell, and the more variable, as it comprises stratiform, tabular laminar, cross-
bladed laminar, foliate, and fibrous fabrics (Williams & Cusack 2007). In the early
evolutionary history of brachiopod biomineralization, the most significant transformation was
the passage from an organophosphatic shell to an organocarbonate one, which characterizes
the most successful classes of the Rhynchonelliformea: the Strophomenata and
Rhynchonellata (Williams & Cusack 2007). However, the early evolution of the two main
microstructural types that form the secondary layer of the Strophomenata and Rhynchonellata
shells – i.e., the laminar and fibrous fabrics - remains to be investigated in details.
The typical laminar fabric of the orders of the Class Strophomenata seems to have
independently evolved more than one time. Based on the similar nature of their
pseudopunctate fabrics, Williams (1968) proposed that the laminae of the Strophomenida
originated from the fibrous fabrics of the Plectambonitoidea. On the other hand, Dewing
(2004) considered the impunctate laminae of the primitive Orthotetida to be derived from the
laminae of the Billingsellida. Brunton (1972) proposed that the Chonetidina of the Order
Productida evolved from the Plectambonitoidea, indirectly suggesting that the laminar fabric
of the Productida evolved independently from the Strophomenida. Alternatively, the
Strophomenida-Productida lineage should have had a common fibrous-like lath ancestor. The
most recent consensus cladogram of the phylum agrees with this last view since the
Strophomenata is considered as monophyletic, with the Billingsellida being the most
primitive group originated in the Cambrian (Carlson & Leighton 2001; Popov et al. 2007;

Since the shell microstructure has the potential to provide information about poorly
understood kinship ties (Williams 1970; Brunton 1972; Williams & Cusack 2007; Garbelli
2017), here we use a quantitative approach to investigate some representative brachiopod
orders from Cambrian to Devonian. Specific aims of this study are:
1) to quantify the microstructural features of early stocks, some of which are still poorly
known;
2) to compare the microstructural organization of these early brachiopod stocks and discuss
their evolutionary ties;
3) to assess if there is a pattern suggesting a relationship between shell fabric, shell thickness,
and shell shape and ecological strategies and discuss its implications.

Materials and methods
Shell specimens
A total of 94 specimens collected from different localities in Iran (Fig. 1) were selected for
this study. The specimens are representative of 38 species belonging to 9 orders, spanning
from Cambrian to Devonian (Table 1, S1). Most of the shells are articulated, with only a few
of them being incomplete or fragmented, but all the specimens can be identified at generic
level, and the shell orientation is still distinguishable. The material is housed at the
Dipartimento di Scienze della Terra “A. Desio”, Università di Milano and has been collected
during several campaigns of field work in Iran. In particular, specimens labelled MRAN and
NiB (Table S1) have been acquired based on the funded research contract “Paleontology and
Biozonation of Paleozoic Sediments of Central Iran and Zagros Basins” with the Dipartimento di Fisica e Geologia dell’Università di Perugia and the Pars Geological Research Center, Tehran (Angiolini, unpublished reports 2013–2016). Specimens labelled KE have been collected during field work in the Kerman region, Central Iran in October 2016 (for details on the section see Percival et al. 2009). A few specimens (labelled LA) belong to older collections, housed at the Dipartimento di Scienze della Terra “A. Desio”, Università di Milano.

Data collection

All the specimens were measured with a caliper ruler (length, width and height, Fig. 2), and subsequently prepared following the method suggested by Crippa et al. (2016). The fossil shells were sectioned along longitudinal or transverse axes; fragile specimens were embedded in epoxy resin before cutting. Sectioned surfaces were smoothed with silicon carbide powder (SiC), etched with 5% hydrochloric acid (HCl) for 10–15 s, then rinsed under tap water and dried. The surfaces were gold-coated and then inspected using a Cambridge S-360 scanning electron microscope with a lanthanum hexaboride (LaB₆) source and operating at an acceleration voltage of 20 kV. The instrument is located at Dipartimento di Scienze della Terra “A. Desio”, Università di Milano.

Measurements of the size of the structural units of the fabric (i.e. laminae and fibres) and the thickness of individual valve shell substance (later referred to as shell thickness) of well preserved specimens were performed on SEM images, using the software Photoshop. As the boundaries of each lamina and fibre are not always very neat, and the contact surfaces of each unit (fibre/lamina) are not straight, to reduce the error, the thickness of each structural unit was measured on a set of 5 laminae/fibres dividing the obtained value by 5 (Fig. 3). The
width of fibres was also measured when their outline was well preserved and symmetrical following the indications of Ye et al. (2018a, p.224-225).

Shell thickness has been measured along a longitudinal section of each specimen at half the length of the shell for all the specimens.

Statistical analyses

We conducted a Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison (Dunnett 1979) to evaluate the differences of the mean thickness of the structural units between Rhynchonelliformean groups at the main nodes of the phylogenetic tree (Carlson 2016). We applied this test because data are normally distributed, but the sample size and the variance is strongly unequal between the groups used for comparison (see Tables S7, S8).

To recognize if there is a pattern indicating a relationship between the shell microstructure and the ecology of the early stocks, we employed a Linear Discriminant Analysis (LDA).

Given a number of independent quantitative variable which describe the data, classified in classes using a categorical variable, this method calculates a within-class scatter matrix and a between-class scatter matrix, with the purpose to maximize the between-class measure while minimizing the within-class measure (Martínez & Kak 2001). The outcome are the Linear Discriminants, each of which is a linear function of the measurements (i.e. the predictor variables) by which different groups are best discriminated (Fisher 1936). We employed shell shapes as categorical classes (biconvex, concavo-convex, plano-convex, flat) as a fairly accurate proxy for different ecological strategies (Harper 1997). As predictor variables, beyond the shell microstructure, we included shell thickness, shell size, and aspect ratio (width/length) since these characters are connected to morpho-functional, ecological and phylogenetic aspects of brachiopods (Leighton 1998; Balthasar et al. 2020) and they can be assessed in a consistent way on the studied material. For the shell microstructure, we included
the thickness of its basic structural units, since it is promptly and consistently measurable in most of the analysed specimens. For the size, we calculated the log-transformed shell area, where the shell area is the product of measured width and length (Zhang et al. 2015). All the measures were standardized to avoid distortion of the LDA, caused by the different scale of variables. Before preforming the analysis, we inspected the statistical distribution and verify that the data are normally distributed and homoscedastic. We also validated the poor level of correlation between the predictors (Table S6).

To test how well the variables can predict the shape of the shell (i.e. the ecology), we divided the data into two random subsets. The largest comprised 80% of the observations and it was used to build the model. The remaining data were used to quantify how good the model is to predict the shape. All the calculations were performed using R. 3.5.1.

Results

Generally, the primary layer is not preserved in the specimens under investigation (Figs. S1–S10). Two main types of secondary layer fabrics (laminar and fibrous) were observed, plus a unique laminar microstructure in taxa of Chonetidina, all of which are described below.

Laminar fabric

Four investigated orders have a laminar secondary layer. The basic units of the laminae are flat-lying crystallites in the Billingsellida (Figs. 4A, 5B, S1C, S1F), and lath-shaped (blades) crystallites in the Strophomenida, Productida and Triplesiida (Figs. 6B, 6F, 6G, 6I, S2H, S3D, S5A). These crystallites amalgamate laterally to form laminae, which are grouped into packages, where the axes of blades are general parallel to each other (e.g. Figs. S2D, S3C). In the Strophomenida, Productida, and Triplesiidina, overlapping groups of packages are oriented with the ‘blades’ axis at different angles (e.g. Figs. 6F, S2G). The mean thickness of the laminae ranges from 1.26 to 2.8 µm (Fig. 7, Table S2). Thicker laminae were observed in Billingsellida, where they also show local thickening in terms of radial folds (Fig. 5) and in
Strophomenida, with values generally exceeding 2 μm, while thinner ones, have been observed in the orders Productida and Triplesiida (Fig. 7). The thickest and thinnest laminae were measured in *Ingria* sp. ind. (> 5 μm, Figs. S5B, S5D) and *Spinulicosta* sp. ind. (< 1 μm, Figs. S9E, S9F) respectively. In the suborder Chonetidina, unlike the other taxa, the structural features of the laminae are not clearly detectable (Fig. 8), and the cross-bladed pattern was not observed.

Obliquely stacked packages of laminae were occasionally found in several groups (e.g. in Billingsellidae gen. et sp. ind., *Martella shabdjerehensis, Ingria* sp. ind.). Instead of being regularly disposed, some packages of laminae are just obliquely stacked at an acute angle forming wedge-like microstructures (e.g. Figs. S1A, S1D, S2A).

Columnar tertiary layers were observed in the innermost part of the shell in *Leptellina* sp. ind. (Fig. S2E), and *Ingria* sp. ind. (Figs. 6A).

Pseudopunctae crossing the laminar layer were observed in *Leptellina* sp., *Productella* cf. *P. belanskii*, *Productella* sp. ind., *Rhytialosia* sp. ind., *Spinulicosta* sp. ind., and *Striatochonetes* sp. ind. (e.g. Figs. 6C-E, 6H, S2F, S3B, S3F, S3H, S4B). The pseudopunctae are formed by several deflected laminae, in which there is often a calcite core, the taleola (lateral view: Fig. 7H). The maximum diameter of the taleola (core of the pseudopuncta) can be up to 10 μm, while the overall diameter of a pseudopuncta can exceed 30 μm.

Spines were observed in *Martellia shabdjerehensis, Productella* cf. *P. belanskii, Productella cf. P. subaculeata*, and *Productella* sp. ind. (e.g. Figs. S1H, S3A, S3E, S3G). Spines were hollow, but often filled by secondary calcite or micrite. The diameter of the spines in the analysed taxa of Billingsellida (*Martellia shabdjerehensis, ca. 50 μm*) is significantly narrower than in the analysed Productida (*Productella* cf. *P. belanskii and Productella* sp. ind. ca. 100 μm).

Fibrous fabric
The taxa of the five examined orders possess a secondary layer with a fibrous fabric. The basic structural units, the fibres (Figs. 9, 10), have a “keel and saddle” (e.g. Figs. 9G, S6G, S10A) or a sub-diamond outline in cross section (e.g. Fig. 9H). The mean width of fibres spans from 8.4 to 23.0 μm in cross-section; the mean thickness, measured in longitudinal section, varies from 2.5 to 6.0 μm (Fig. 7, Table S3). Specimens of the Orthida have the thinnest observed fibres, with mean values ~ 2.7 μm, and result significant thinner than those of other orders, which are generally > 3.3 μm (Table 2, S3). The thickest fibres were observed in Spinatrypina cf. S. chitralensis shows the thickest measured fibres, ~6.0 μm. In a different species of the same genus, Spinatrypina sp. ind., the mean thickness of the fibres is about 3.6 μm (Table S3). The fibres show an evident variation of the size in different position of the same valve (e.g. Paralenorthis sp. ind., Fig. S6H and Hedeinopsis sp. ind., Fig. 9I), becoming wider and thicker inwardly. In the umbonal region of Howellites ultima, the fibres arrangement gives rise to obliquely stacked structure (Fig. S6C).

The columnar tertiary layer, as well as punctae, were not observed in the taxa belonging to the orders Atrypida and Rhynchonellida. However, a persistent columnar tertiary layer is present in species of Orthida, Pentamerida and Spiriferida, such as Nicolella actoniae, Paralenorthis sp. ind., Howellites ultima, Isorthis (Ovalella) inflata, Cyrtospirifer sp. ind., and Uchtospirifer aff. Uchtospirifer nalivkini (e.g. Figs. S6E, S7C, S10H). Punctae were only observed in Howellites ultima (Fig. S6F).

Statistical analyses and model

The Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison shows that there are significant differences in the mean thickness of the structural units at the nodes of the phylogenetic tree (Table 2). The Strophomenata have significant thinner units compared to the Rhynchonellata; a similar result is obtained for the Orthida, which has thinner fibres than
the other derived groups with a fibrous fabric. The Billingsellida shows significantly thicker
laminae than other derived groups bearing a laminar fabric.

Counting the frequencies of shell shapes based on the type of fabric, the laminar taxa show a
higher frequencies of concavo-convex shape, instead the fibrous have and higher number of
biconvex shells (Table 3).

The predictor variables results to follow a normal distribution, excluding the shell thickness,
which was log transformed to make the data suitable for the analyses. Once the shell
thickness was transformed, all variables were homoscedastic and no significant correlation
was detected among them (Table S6). Therefore, the model includes the log of the size, to
perform the LDA under robust assumptions. The thickness of structural units and the log of
the shell thickness are the variables with the highest absolute values for coefficients of the
Linear Discriminants (LDs) 1 and 2 respectively (Table 4). These two LDs return a
percentage of groups separation equal to 97.82 %, with the LD1 achieving alone the 80.82%.

The Linear Discriminants 1 and 2 plotted in Fig. 11 represents only the observation used to
build the model. The accuracy of prediction, calculated using the remaining 20% of the data
not included in the model, is equal to 0.875 (i.e. the model predict correctly the 87.5 % of the
shapes employing the measured variables). An alternative model including only the two
variable describing features of the shell wall, returns an accuracy of prediction equal to 1,
instead for the size combined with the aspect-ratio, the accuracy drops to 0.625.

Discussions

Laminar fabric

One of the micro-morphological traits characterizing the class Strophomenata is the laminar
secondary layer. In this monophyletic group (Carlson 2016), the fabric organization of the
Strophomenida-Productida group probably diverged from a common Billingselloid-like
ancestor (Williams 1970), characterized by laminae with radial folds (Williams & Cusack, 2007). In the Billingsellida, the secondary layer is composed of flat crystallites that are ordered and amalgamated laterally into a succession of laminar plates or sheets, as previously observed by Williams (1970) (Figs. 4, 5B-D). In cross-section, the Billingsellida shows laminae with radial folds (e.g. Figs. 5A, 5D), comparable to those of *Billingsella lindströmi* (Linnarsson) and *Billingsella plicatella* (Walcott 1905) illustrated by Williams (1970).

In turn, the Billingsellida laminar fabric may have originated from the fibrous fabric of the Nisusiidae in the Cambrian (Williams 1970), or it may have derived from the Orthidina [All Nodes Occupied Phylogeny analysis by Carlson (2007)]. Our findings suggest that the Billingsellida laminae with radial folds, may represent a distinct, possibly intermediate, type of fabric; they differ from the laminae of the Strophomenida and Productida as they consists of flat-lying individual units which are not composed by lath-shaped (blades) crystallites (Fig. 4); also they are not arranged in groups of packages oriented with the 'blades' axis at different angles (which is characteristic of the Strophomenida and Productida secondary layer, Figs. 6F, S2G) and they are thicker than those of the Strophomenida and Productida taken together (Table 2); neither are they typical fibres as no sub-diamond or “keel and saddle” structural unit has been found in cross section and they are thinner than the fibres.

According to Williams *et al* (2000a) and Dewing (2004), the Strophomenida is considered to have an intermediate fabric between the Billingsellida and Productida. The average thickness of the laminae of the Strophomenida (ca. 2.2–2.6 μm) is closer to that of the Billingsellida (ca. 2.0–2.8 μm), but it is thicker than that of the Productida (ca. 1.2–1.6 μm) (Fig. 7, Table S2). This may indicate that, in taxonomic groups appearing later in the evolution, the size of the structural units tends to be smaller (Fig. 12). Brunton (1972) has already reported a change of the microstructure size, i.e. the tendency of the structural units to become smaller in “geologically younger” taxa of the Chonetidina. This trend is also evident at a higher
taxonomic level – order and class – based on data from the literature. According to Dewing (2004), Ordovician and Early Silurian representatives of Strophomenida have laminae with a thickness of 4 to 10 μm; Permian Productida taxa have much thinner laminae, 0.2 to 0.6 μm (Garbelli et al. 2012; Garbelli 2017). Our data underscore the same tendency, i.e. a decrease in the thickness of the laminae. The Billingsellida and Strophomenida, considered as early representatives of laminar fabric brachiopod taxa, show laminae with a thickness ranging 2.0–2.8 μm, with a maximum value of 5.6 μm (Fig. 7, Table S2). Instead, the Productida, which is a late representative of laminar fabric taxa, has thinner and less variable laminae, with average thickness of 1.3–1.7 μm (excluding the Chonetidina) (Fig. 7, Table S2).

The shell microstructure of the Chonetidina has been described either as an intermediate laminar or a lath-like fibrous fabric (Brunton 1972). For example, *Strophochonetes primigenius* (Twenhofel, 1914) (Ordovician) is described as showing transitional fibre-like element; *Dawsonelloides canadensis* (Billings, 1874) (Devonian) bears lath-like fibres, where the units are only 2–4 μm in width; also *Retichonetes vicinus* (Castelnau, 1843) (Devonian) seems to have “fibres” 8–10 μm wide (Brunton 1972). On the other hand, Carboniferous species, like *Rugosochonetes silleesi* Brunton, 1968, show more distinct lath-like units, which are more similar to a true cross-bladed fabric (Brunton 1972). In this study, in two species of Chonetidina, *Striatochonetes* sp. ind. and *Devonochonetes* sp. ind., the shape of the structural units is more similar to a blade than to a fibre (Figs. S4), and the width of the structural unit (ca. 5–10 μm, Fig. 8) is smaller than that of the fibres (ca. 9–25 μm, Table S2, S3). Therefore, also for Devonian species, the fabric of the secondary layer of the Chonetidina must be described as a laminar one. Since the fabric does not bear well-developed pseudopunctae and clear cross-bladed arrangement, the organization of the fabric appears simpler than that of the Productida (Figs. 6, 8).
In the Productida (excluding the Chonetidina), the typical microstructure of the secondary layer is laminar cross-bladed, and pseudopunctae with taleolae and spine internal cavities are frequently observed to cross this layer (Brunton et al. 2000) (Fig. 6). According to Alexander (1999b), laminar pseudopunctate Strophomenata should have had an advantage in deflecting fractures and in shell repair.

In the analysed Productida taxa, the laminae are the thinnest recorded and those with the most uniform thickness (Fig. 7, Table S2). If we base our consideration as a whole on the shape of the structural units, the thickness of the laminae and the fabric organization, these features in the Productida may be considered as the most derived stages of the laminar microstructure evolution.

Only one Orthotetida taxon (Triplesia alata) was available for this study and, even if not very well preserved, it shows groups of laminae with different orientation (Figs 6I, S5C). Previous works (Garbelli et al. 2012; Garbelli 2017) have shown that representatives of this order have a typical cross-bladed laminar fabric in the Permian.

To summarize, two different types of laminar fabric were observed: (1) laminae formed by flat-lying crystallites, locally thickened by radial folds in the Billingsellida; (2) cross-bladed lamination in the Strophomenida, Productida (excluding the Chonetidina) and Orthotetida; laminar fabric, with no evidence of cross-lamination in the Chonetidina. A tendency towards a decrease in the size of the structural units has been observed, but it is difficult to discern a clear trend in the pattern of microstructural organization, except that it probably reaches the highest degree of complexity in the most derived Productida, confirming previous observations (Garbelli 2017).
Fibrous fabric

Due to diagenetic alteration, the typical sub-diamond shape or “keel and saddle” cross-sections of the fibres was rarely observed (Figs. 9G, S6G, S10A). The size of the fibres measured in this analysis (average thickness ranges from 2.5 to 6.0 μm, average width ranges from 8.4 to 23.0 μm, Table S2) is similar to published data on fossil shells [Angiolini (1993; thickness 2–10 μm, width 8–30 μm), Dewing (2004; thickness 4–5 μm; width 10–25 μm) and Garbelli (2017; width 6–27 μm)] and on Recent shells (Ye et al. 2018a, b; width 10–15 μm).

Additionally, our observation of a change in fibres size inwardly, i.e. with growth (Figs. 9I, S6H), fits well with the findings of the same trends in recent brachiopods (Ye et al. 2018a, b).

An order-specific variability of the size of the fibres can be detected based on previously published data (cf. Mackinnon & Williams 1974; Angiolini 1993; Williams & Brunton 1993; Dewing 2004; Garbelli et al. 2012; Garbelli 2017). The fibres observed in the Orthida - which evolved very early in the Cambrian (Williams & Harper 2000a, b) - are significantly thinner than those of other orders (Table 2, S3), their thickness average values being 2.5–3.3 μm and width being 9.6–16.6 μm, smaller than those recorded in other fibrous fabric taxa (e.g. Pentamerida, Atrypida, Rhynchonellida, Spiriferida) (Tables 2, S3). If we consider the Orthida as the earliest representative of the Rhynchonellata (Williams et al. 2000a; Carlson 2007), we can detect a trend toward an increase in the thickness of the fibres in some of the Palaeozoic groups (Table S3, Fig. 12). However, the largest measurement variations were recorded right on fibrous taxa (Table S3, Fig. 5); these large variations might be partly dependent on the angle at which a fibre is cut (see discussion in Ye et al. 2018a, and fig. 5), even if we always tried to cut the specimens at a consistent angle and do the measurements on symmetric fibre profiles. These variations, accompanied with the limited number of available specimens, advise caution in supporting the trend towards an increase in thickness of the fibres during the Palaeozoic, which has not been reported before. One of the main
problems in testing this hypothesis is that there is a change of size and shape of the fibres in each single shell along an ontogenetic direction (from outward to inward, from the umbo to the anterior) (Figs. 9I, S6H), as already envisaged in fossil brachiopods (e.g. Mackinnon & Williams 1974; Garbelli 2017) and in recent ones (Ye et al. 2018a, b). Not only the size and shape of the individual fibres, but also their organization into the overall shell fabric has the potential to give information on the ontogeny and, thus, to understand the phylogenetic history (Garbelli 2017). In this study, the Orthida *Howellites ultima* and *Paralenorthis* sp. ind. show an obliquely overlapping stacked fabric structure in the umbonal part (Figs. S5B-C), not previously found in other species. In general, the fibrous shell fabrics have a monotonous microstructural organization (Figs. 9-10), with abrupt changes in the orientation of the fibres only in the umbonal part of the shell, the fibres being nearly parallel to the shell external surface in the central and anterior parts. However, changes in the orientation of the fibres also in the middle part of the shells have been reported in recent brachiopods (Schmahl et al. 2004, 2012; Griesshaber et al. 2008; Gaspard et al. 2018; Ye et al. 2018a, 2019).

The columnar tertiary layer is not very common in the studied taxa; it could be detected only in seven species (*Nicolella actoniae, Paralenorthis* sp. ind., *Howellites ultima, Isorthis (Ovalella) inflata, Clorinda* sp. ind., *Cyrtospirifer* sp. ind., *Uchtospirifer aff. Uchtospirifer nalivkini*). A thick (more than 800 μm) columnar layer was observed in the umbonal part of *Clorinda* sp. ind., (Fig. S7C); parallel growth lines were also found in cross section, which are comparable with previous observations (Angiolini et al. 2012, 2019; Garbelli 2017). An alternation of secondary and tertiary layer was observed only in *Uchtospirifer aff. Uchtospirifer nalivkini* (Fig. S10H). However, the preservation is not always good and the transition between the columnar layer and internal shell filling is not always clear.
Relationships between shell shape, shell thickness, and shell fabric

Ecological adaptations and morphological features are strongly related in organisms with shells consisting of two valves, which have several functional constraints (e.g. Leighton 1998, Alexander 1999a). In modern brachiopods, the type of microstructure is strictly related to the performance of functions such as the resistance to mechanical stresses and the capacity of shell repair (Alexander 1999b; Pérez-Huerta et al. 2007; Goetz et al. 2009; Ye et al. 2018a, 2019). Modern biconvex brachiopods (e.g. terebratulids) with a fibrous fabric shell, because of their consistent crystallographic orientation of calcite crystals, may also possess a high capacity of shock absorbance and of preventing propagation of fracture across the shell (Pérez-Huerta & Reed 2018; Pérez-Huerta et al. 2007; Schmahl et al. 2008).

The shell thickness of Ordovician and Silurian brachiopods has been proven to reflect environmental conditions, but also to be under phylogenetic control (Balthasar et al. 2020) and impose functional constraints on the organisms (Leighton 1998). Flow-channel experiments also indicate that there is a strong relationship between the shell shape and hydrodynamic energy (Shiino 2010; Shiino & Suzuki 2011, 2015; Shiino & Angiolini 2014).

In summary, the morphology and size of the valves, their shell thickness, and shell fabric affect the functional performance of the shell (Alexander 1989, 1990; Zuschin et al. 2003), thus a link between these characters and the ecological strategies is predictable, as suggested for certain brachiopod taxa (Garbelli 2017).

In this study, 90% of the species with a fibrous layer have a biconvex shell, whereas 67% of the laminar species have a concavo-convex shell (Table 3, Fig. 13). Indeed, most of the Rhynchonellata (fibrous fabric) occupies a biconvex morphospace which maximises shell internal volume to external surface area (McGhee 1999a; Williams & Carlson 2000), whereas the Strophomenata (laminar fabric) is also non biconvex (McGhee 1999b) and has the most variable shapes (e.g. Williams et al. 2000b).
Our LDA model (Fig. 11) points out that not only shell fabric (in terms of thickness of its microstructural units), but also shell thickness are powerful predictors of the shell shape class, which in turn approximates the lifestyle of calcite shelled brachiopods, which are very diversified as shown by Harper & Moran (1997). The biconvex shells mainly relate to pedicle-attached or free-lying epifaunal lifestyles, whereas the concavo-convex and plano-convex shells allowed exploitation of the free seminausal lifestyle (= pseudoinfaunal of Harper & Moran, 1997) on one side and or of several strategies of shell cementation, or attachment by mantle fibres or clasping spines to the substrate on the other (e.g. Grant 1966; Rudwick 1970).

Therefore, shell thickness and its fabric can be considered determining factors in shaping the evolutionary adaptations of brachiopods. Alongside, it has been advocated that shell thickness and its fabric, coupled with specific ecological strategies, entails a differential cost on the overall energetic budget of these animals (Garbelli et al. 2017, Garbelli 2017, Balthasar et al. 2020), because the metabolic cost of calcium carbonate deposition is about 5% of that required for the proteinaceous organic fraction (Palmer, 1992). The amount of costly organic component in a shell depends on its fabric, and on the size of the structural units (Garbelli 2015; Garbelli et al. 2017; Ye et al. 2018a). If the metabolic cost of shell secretion for recent taxa with fibrous fabric is between 3% and 14% (Watson 2009; Balthasar et al. 2020), it should have been higher in taxa with laminar fabric (Garbelli et al. 2014, 2017). A higher shell organic content, aside from conferring advantages against predation by enhancing shell elastic strength (Zuschin et al. 2003), may have provided a greater capability of shell repair; in fact, high frequencies of shell repair have been observed in the Strophomenata (Alexander 1986b, 1999b; Forcino et al. 2017). Alexander (1999b) pointed out that the laminar layer may have had a similar function of nacre in bivalves to stop propagation of fractures and that pseudopunctae may have served as well to deflect fractures.
On the contrary, in a survey of shell breakage and repair in recent Rhynchonellata with fibrous fabric from New Zealand, Harper et al. (2019) observed that in general, few individuals are able to repair shell damage, and most of the breakages are fatal. Therefore, the organic rich laminar shell fabric may have been one of the key characters in determining the variety of shell shapes and life styles adopted by the Strophomenata and its ability in shell repair and surviving predation; a quick snapshot of this variety is neatly shown in plates 13.1-13.5 of Seilacher & Gishlick (2015, p. 205-213). Even if the brachiopods had already acquired many of their life styles by the Middle Cambrian (Topper et al. 2017), the Strophomenata reached an extreme diversification in shell shapes and life styles in the Carboniferous-Permian with the Productida. The most elaborate adaptations were exploited by the Permian coral-like richthofenioids and bizarre lytoniidines (Wardlaw et al. 2000; Williams et al. 2000b), both taxa characterized by a laminar fabric. Balthasar et al. (2020) have shown that the Strophomenata included both thick- and thin-shelled species and had the largest variety of shell thicknesses, which is consistent with the observations above. Shell fabric was also suggested to be one of the factor responsible of the differential response of brachiopods during the Late Permian global change, which ended up with the selective extinction of the Productida during the end-Permian crisis (Garbelli et al. 2017). Even if we did not find any significant correlation between shell thickness and the thickness of the structural units in our dataset (Table S6), a complex interaction between these two features is likely, since a failure to fulfill some of the functional or energy requirements of specific ecological types could be detrimental for the survivorship. Remarkably, brachiopod taxa seem to have employed different solutions to obtain shell thickening. For example, many spiriferids thicken their shell producing a massive columnar layer or by convolution of the secondary layer fibres (Angiolini et al. 2008), instead, productids show taxa with shell thickened by thin laminae with a sub-micrometric thickness,
as well as producing thick prismatic layers (Angiolini et al. 2012, 2019; Garbelli 2017). In any case, there is never a simple solution such as obtaining a thicker shell by increasing the size of its structural units, as in our data set there is no correlation between shell thickness and fibre/laminae thickness at specific level, nor in most of the orders (Table 5), except for the Orthida which shows a negative correlation at the limit of significance (p=0.05).

Interestingly, Garbelli et al. (2017, fig. DR6) found a negative correlation between shell thickness and fibres size in a Permian spiriferid species (Paracrurithyris sp.) and Balthasar et al. (2020) showed that the early stocks, as the Orthida or the Ordovician Strophomenata, have a thicker shell substance than the other groups, implying a more costly shell secretion.

Both the thickness of the structural units and the shell thickness show significant differences at the order level, suggesting that, beyond a functional intrinsic link between thickness and microstructure, phylogenetic constraints affect these features.

The observed differences in shell fabrics, and thus shell shape and ecological strategy, should be related to the underlying biomineralization process. Recently Simonet Roda et al. (2019a, b) have provided an extremely detailed multidisciplinary analysis of the formation of the secondary layer fibres in recent brachiopods and offered a model which revise the traditional view of Williams (1966, 1968, 1997). In the model by Simonet Roda et al. (2019a, b), fibre formation results from the activity of several outer epithelial cells, and each fibre, not only is not produced by a single cell, but it is not encased in a single membrane; also Simonet Roda et al. (2019b) did not find evidence of an amorphous precursor during fibres secretion.

It is impossible to acquire a comparable knowledge about the biomineralization process of the extinct Strophomenata, but, assuming that it had a similar mechanism of shell formation, their laminar fabrics, characterized by smaller structural units, could arise from a higher degree of organic matrix compartmentalisation, and possibly form via an amorphous precursor. Organic matrices are, in fact, mineralization sites under chemical, spatial,
structural, and morphological control that regulate mineral deposition and ultimately the
shape of the exoskeletons (Mann 2001).

Conclusions

Based on very detailed microstructural observations in representative brachiopod taxa from
the Cambrian to the Devonian, the following conclusions can be drawn out:
1. A key difference between laminar and fibrous fabrics is related to the size of the structural
units; the laminae are significantly thinner than the fibres; the latter are also more variable in
their overall size (i.e. they show a larger range of variability), whereas the thickness of the
laminae is rather uniform;
2. Our research supports that taxa with laminar microstructure diverged from the
Billingsellida as hypothesised by Williams & Harper (2000a) and that there is a trend
implying a decrease in thickness of the structural units from the primitive taxa to the most
derived taxa with laminar fabric;
3. The Chonetidina acquired a true laminar fabric by the Devonian, indicating that the trend of
reduction of the size of structural units occurs in also in this clade since their early
representatives seem to have had a fabric composed of larger ‘lath like-fibres’;
4. Dimensional trends among taxa with fibrous fabric are more difficult to discern, because
the size of fibres is high variable also in the same individual; noteworthy, the earliest
representative, the Orthida, has fibres significantly thinner than the other fibrous shelled
groups;
5. Our data show that the most important predictors of the shell shape and of the intrinsically
related ecological strategies, are the shell thickness and the shell fabric. Brachiopods with a
fibrous secondary layer are mostly biconvex, whereas brachiopods with a laminar secondary
layer display a variety of shell shapes, entailing diverse epifaunal and seminfaunal lifestyles and a different response to shell repair; the relationships between shell thickness and size of the structural units that compose the shell fabric are very complex and have important consequences on the metabolic costs of shell secretion, suggesting the need of further investigation.

Acknowledgements

This project was supported by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 643084 (BASE–LiNE Earth). We warmly thank Maryamnaz Bahrammanesh of GSI for support during field work in Iran. We acknowledge technical supports by Curzio Malinverno and Agostino Rizzi (Università di Milano) for specimen preparation and SEM analysis. We thank an anonymous reviewer and Uwe Balthasar for their very helpful suggestions on an earlier draft of this paper.

References

Brunton, H.C. 1972: The shell structure of chonetacean brachiopods and their ancestors.

Carlson, S.J. & Leighton, L.R. 2001: The phylogeny and classification of

Crippa, G., Ye, F., Malinverno, C. & Rizzi, A. 2016: Which is the best method to prepare
invertebrate shells for SEM analysis? Testing different techniques on recent and fossil

Cusack, M. & Pérez-Huerta, A. 2012: Brachiopods recording seawater temperature—A
matter of class or maturation? *Chemical Geology* 334, 139–143.

Dewing, K. 2004: Shell structure and its bearing on the phylogeny of late Ordovician-early
Silurian Strophomenoid brachiopods from Anticosti Island, Québec. *Journal of
Paleontology* 78, 275–286.

Watson, S.A. 2009: Latitudinal gradients in marine invertebrate shell morphology: production costs and predation pressure. Southampton: University of Southampton, Faculty of Science, School of Ocean and Earth. PhD thesis

Fig. 1. Sampling localities of fossil brachiopods in Iran.

Fig. 2. Acquired measurements to estimate the size of brachiopod shell.
Fig. 3. Measurements to estimate the size of the laminae and fibres.

Fig. 4. Schematic illustration showing organization of laminar fabric: ‘flat-lying crystallites’ (typical of Billingsellida, reconstructed based on Fig. S1C) and ‘lath-shaped (blades) crystallites’ (typical of Strophomenida and Productida, reconstructed based on Figs. 6F, S2G). Note that the two sketches are drawn at different scales.

Fig. 5. A: Laminae seen from above, near the posterior part of the shell (*Billingsella* aff. *B. seletensis*, MRAN 898-3-3, ventral valve); B: detail of the laminae (*Billingsellidae* gen. et sp. ind., MRAN 8760-2, ventral valve); C: enlarged detail of laminae (*Billingsellidae* gen. indet., MRAN 8760-1, dorsal valve); D: laminar layer near the posterior part of the shell (*Protambonites* cf. *P. primigenius*, MRAN 8763-2, ventral valve). Ext: external part of the shell; Int: internal part of the shell; rf: radial fold; bc: blocky calcite.
Fig. 6. A: transition between laminar secondary layer and columnar tertiary layer (*Ingria* sp. ind., MRAN 1108-2C, ventral valve); B: laminar layer near the anterior part of the shell (*Ingria* sp. ind., MRAN 1108-2C, ventral valve); C-E: pseudopunctae in posterior, central, anterior part of the shell respectively (*Leptellina* sp., KE-45-4, ventral valve); F, G: cross-bladed laminar layer (*Spinulicosta* sp. ind. MRAN 6162-21, ventral valve); H: pseudopuncta (*Spinulicosta* sp. ind., MRAN 6162-21, dorsal valve); I: laminar layer (*Triplesia alata*, MRAN 1181-7, ventral valve). Ll: Laminar layer; Cl: Columnar layer; ps: pseudopuncta; ta: taleola; Ext: external part of the shell; Int: internal part of the shell.

*F6: Clorinda sp. ind. only has two measurement data, plotted as individual data points here.
Fig. 8. A: detail of laminae (*Devonochonetes* sp. ind., MRAN 3648-13, ventral valve); B: laminar layer in the central part of the shell (*Striatochonetes* sp. ind., MRAN 9136-3, ventral valve); C: detail of the laminae (*Striatochonetes* sp. ind., MRAN 9159-2, ventral valve); D: laminar layer (*Devonochonetes* sp. ind., MRAN 3648-4, ventral valve); Ext: external part of the shell; Int: internal part of the shell. Yellow line: measured unit width.
Fig. 9. A, B: fibrous layer in the posterior and central part of the shell respectively (*Spinatrypina* sp. ind. MRAN 1180-3, ventral valve); C: fibrous layer in the external part of the shell (*Spinatrypina* sp. ind. NiB5-2-S, ventral valve); D: fibrous layer in the posterior part of the shell (*Cyrtospirifer brodi*, MRAN 6162-12, ventral valve); E, F: fibrous layer in the central part of the shell (*Cyrtospirifer brodi*, MRAN 6162-12, ventral valve); G: detail of the fibres in cross section, fibre with a neat profile has been marked in yellow (*Cyrtospirifer brodi*, MRAN 6162-12, dorsal valve); H: detail of the fibres, fibre with a neat profile has been marked in yellow (*Cyrtospirifer cf. C. kermanensis*, MRAN 6162-18, ventral valve); I: enlarged detail of the fibres (*Hedeinopsis* sp. ind., MRAN 6904-5, ventral valve). Ext: external part of the shell; Int: internal part of the shell.
Fig. 10. A, B: fibrous layer in the posterior and central part of the shell respectively (Hesperonomiella sp. ind., MRAN 8761-3, ventral valve); C: longitudinal section of the fibrous layer in the anterior part of the shell (Isorthis sp. ind., MRAN 6903-1, ventral valve); D: fibrous layer in the posterior part of the shell (Clorinda molongensis, NiB5-10A, ventral valve); E, F: fibrous layer in the central and anterior part of the shell respectively (Syntrophioides sp. ind., MRAN 8291-5, ventral valve); G: fibrous layer in the posterior part of the shell (Cyphoterorhynchus arpaensis, MRAN 6162-10, ventral valve) H, I: longitudinal section of the fibrous layer (Rhynchotrema sp. ind., MRAN 6784-1, ventral valve). Ext: external part of the shell; Int: internal part of the shell.
Fig. 11. Plot of the Linear Discriminants 1 and 2 for the specimens included in the dataset employed to build the model.
Fig. 12. Thickness of the structural units of the secondary fabrics from the Cambrian to the Devonian; every dot represents the mean value of each species; fibrous and laminar taxa are shown in red and blue colour respectively; the number on each dot represents the number of measurements; the length of bars reflects the size of the confidence interval.
Fig. 13. Pie chart illustrating the numerical proportion of shell shape for the laminar (left) and fibrous (right) fabrics; the percentages refer to the number of species, which are in parentheses. Different brachiopod shell shapes (red: ventral valve; blue: dorsal valve).
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Order</th>
<th>Class</th>
<th>Age</th>
<th>Shape of shell</th>
<th>Layers</th>
<th>Other microstructure</th>
<th>Number of Individual</th>
<th>Sampling localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billingsella aff. B. setiferus (Nikitin, 1956)</td>
<td>Straphomenata</td>
<td>Cambrian</td>
<td>Biconvex</td>
<td>laminar</td>
<td></td>
<td></td>
<td>4</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Billingsellidae gen. et sp. ind.</td>
<td>Straphomenata</td>
<td>Middle Cambrian to the Lower Ordovician</td>
<td>Concave-convex</td>
<td>laminar</td>
<td></td>
<td></td>
<td>2</td>
<td>Haftman (32°27'47.8"N,49°55'53.7"E)</td>
</tr>
<tr>
<td>Protambonites cf. P. primigenius (Havlíček, 1972)</td>
<td>Straphomenata</td>
<td>Late Cambrian to Early Ordovician</td>
<td>Biconvex</td>
<td>laminar</td>
<td>pseudopunctae?</td>
<td></td>
<td>2</td>
<td>Haftman (32°27'47.8"N,49°55'53.7"E)</td>
</tr>
<tr>
<td>Martellicella shabdjerehensis (Puczial et al., 2009)</td>
<td>Straphomenata</td>
<td>Ordovician</td>
<td>Biconvex</td>
<td>laminar, columnar layer?</td>
<td></td>
<td></td>
<td>6</td>
<td>Shabdjereh (31°04'35.1"N,56°09'58"E)</td>
</tr>
<tr>
<td>Leptella sp. ind.</td>
<td>Straphomenata</td>
<td>Late Ordovician</td>
<td>Flat</td>
<td>laminar, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>4</td>
<td>Shabdjereh (31°04'35.1"N,56°09'58"E)</td>
</tr>
<tr>
<td>Leptellina depressa (Sowerby, 1825)</td>
<td>Strophomenata</td>
<td>Silurian</td>
<td>Concave-convex</td>
<td>laminar</td>
<td></td>
<td></td>
<td>2</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Productella cf. P. belianszki (Stansbrook, 1943)</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar, columnar layer?</td>
<td>pseudopunctae?</td>
<td>spines?</td>
<td>2</td>
<td>Poldahit (39°50'31.1"N, 45°17'03"E)</td>
</tr>
<tr>
<td>Productella cf. Productella subaculeata (Murchison, 1840)</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar, columnar layer?</td>
<td>pseudopunctae?</td>
<td>spines?</td>
<td>2</td>
<td>Naorable (34°36'52.9"N, 57°11'17.7"E)</td>
</tr>
<tr>
<td>Rhytia cincta sp. ind.</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar</td>
<td>pseudopunctae?</td>
<td></td>
<td>5</td>
<td>Shotor (33°20'14"N, 57°20'28"E)</td>
</tr>
<tr>
<td>Spinulicosta sp. ind.</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar</td>
<td>pseudopunctae?</td>
<td></td>
<td>1</td>
<td>Anaruk (33°11'30"N, 53°53'30"E)</td>
</tr>
<tr>
<td>Striatocostellata sp. ind.</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar</td>
<td>pseudopunctae?</td>
<td></td>
<td>2</td>
<td>Naorable (34°36'52.9"N, 57°11'17.7"E)</td>
</tr>
<tr>
<td>Devonocostellata sp. ind.</td>
<td>Strophomenata</td>
<td>Devonian</td>
<td>Concave-convex</td>
<td>laminar, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>3</td>
<td>Jama (35°44'10"N, 53°48'41"E)</td>
</tr>
<tr>
<td>Triplaxia alata (Ulrich and Cooper, 1936)</td>
<td>Orthocostellata</td>
<td>Silurian</td>
<td>Biconvex</td>
<td>laminar</td>
<td></td>
<td></td>
<td>1</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Hesperonemellia sp. ind.</td>
<td>Orthocostellata</td>
<td>Middle Cambrian to Early Ordovician</td>
<td>Biconvex</td>
<td>fibrous</td>
<td></td>
<td></td>
<td>3</td>
<td>Haftman (32°27'47.8"N,49°55'53.7"E)</td>
</tr>
<tr>
<td>Nicollea asconiensis (Sowerby, 1839)</td>
<td>Orthocostellata</td>
<td>Ordovician</td>
<td>Plano-convex, Concave-convex</td>
<td>fibrous, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>4</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Paralemonella sp. ind.</td>
<td>Orthocostellata</td>
<td>Ordovician</td>
<td>Plano-convex, Concave-convex</td>
<td>fibrous, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>9</td>
<td>Shabdjereh (31°04'35.1"N,56°09'58"E)</td>
</tr>
<tr>
<td>Homellites ulmei (Bancroft, 1945)</td>
<td>Orthocostellata</td>
<td>Late Ordovician</td>
<td>Biconvex</td>
<td>fibrous, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>2</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Isothelus (Ouladea) inflata (Hirajegan et al., 2012)</td>
<td>Orthocostellata</td>
<td>Early Silurian</td>
<td>Biconvex</td>
<td>fibrous, columnar layer?</td>
<td>pseudopunctae?</td>
<td></td>
<td>2</td>
<td>Zarand (30°51'48"N,56°39'00"E)</td>
</tr>
<tr>
<td>Isothelus sp. ind.</td>
<td>Orthocostellata</td>
<td>Early Silurian to Early Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td></td>
<td></td>
<td>2</td>
<td>Garikuh (32°58'45.8"N,49°36'48.8"E)</td>
</tr>
<tr>
<td>?Clonuelida sp. ind.</td>
<td>Pentamerida</td>
<td>Late Cambrian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td></td>
<td></td>
<td>2</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Clonuelida meleagrensis (Mitchell, 1921)</td>
<td>Pentamerida</td>
<td>Silurian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td></td>
<td></td>
<td>3</td>
<td>Shigeshi (34°12'32"N, 56°48'20"E)</td>
</tr>
<tr>
<td>Species</td>
<td>Family</td>
<td>Subphylum</td>
<td>Age</td>
<td>Shape</td>
<td>Description</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinatrypina sp. ind.</td>
<td>Atrypida</td>
<td>Rhynchonellata</td>
<td>Silurian to Late Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Shirgesht (34°12'32"N, 56°48'20"E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinatrypina cf. S. chitralensis</td>
<td>Atrypida</td>
<td>Rhynchonellata</td>
<td>Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Nasrolah (34°36′52.9″N, 57°11′17.7″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhynchotrema sp. ind.</td>
<td>Rhyynchonellida</td>
<td>Rhynchonellata</td>
<td>Late Ordovician and Middle Silurian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Zarand (30°51′48″N, 56°39′00″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stegocorna dmitiae (Hassapetian et al., 2012)</td>
<td>Rhyynchonellida</td>
<td>Rhynchonellata</td>
<td>Silurian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Zarand (30°51′48″N, 56°39′00″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepholoteacornus arsenensis (Abramian, 1957)</td>
<td>Rhyynchonellida</td>
<td>Rhynchonellata</td>
<td>Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Nasrolah (34°36′52.9″N, 57°11′17.7″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedeinopsis hispanica hispanica (Gourvennec, 1990)</td>
<td>Spiriferida</td>
<td>Rhynchonellata</td>
<td>Silurian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Shirgesht (34°12′32″N, 56′48′20″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedeinopsis sp. ind.</td>
<td>Spiriferida</td>
<td>Rhynchonellata</td>
<td>Silurian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Zarand (30°51′48″N, 56′39′00″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtospirifer brodi (Venjukov, 1886)</td>
<td>Spiriferida</td>
<td>Rhynchonellata</td>
<td>Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Nasrolah (34°36′52.9″N, 57°11′17.7″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtospirifer cf. C. kemamongiensis (Brice, 1999)</td>
<td>Spiriferida</td>
<td>Rhynchonellata</td>
<td>Devonian</td>
<td>Biconvex</td>
<td>fibrous</td>
<td>Behabad (31°54′35″N, 55°53′53.6″E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uchtospirifer aff. Uchtospirifer nalivkini (Lyubchenko, 1957)</td>
<td>Spiriferida</td>
<td>Rhynchonellata</td>
<td>Devonian</td>
<td>Biconvex</td>
<td>fibrous, columnar layer?</td>
<td>Behabad (31°54′35″N, 55°53′53.6″E)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Results of Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison between the thickness of structural units among specimens belonging to different taxonomic groups. The alpha significant level is settled to 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Mean difference</th>
<th>95% CI</th>
<th>Sign of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strophomenata vs Rhynchoellata</td>
<td>1.8</td>
<td>1.3 – 2.2</td>
<td>negative</td>
</tr>
<tr>
<td>Billingsellida vs Other Laminar taxa</td>
<td>0.5</td>
<td>0.1–1.0</td>
<td>positive</td>
</tr>
<tr>
<td>Orthida vs Other Fibrous taxa</td>
<td>1.4</td>
<td>0.8–2.0</td>
<td>negative</td>
</tr>
</tbody>
</table>

Table 3. Relationships between shell shapes and secondary layer fabrics.

<table>
<thead>
<tr>
<th>Laminar</th>
<th>Fibrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biconvex</td>
<td>4</td>
</tr>
<tr>
<td>Concavo-convex</td>
<td>10</td>
</tr>
<tr>
<td>Flat</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4. Linear discriminant coefficients for the variables included in the model, plotted in Fig. 12.

<table>
<thead>
<tr>
<th></th>
<th>LD1</th>
<th>LD2</th>
<th>LD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of shell thickness</td>
<td>-0.39</td>
<td>1.05</td>
<td>-0.17</td>
</tr>
<tr>
<td>Structural unit thickness</td>
<td>-0.95</td>
<td>-0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>Size</td>
<td>-0.47</td>
<td>-0.37</td>
<td>0.22</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>-0.49</td>
<td>-0.23</td>
<td>-0.95</td>
</tr>
</tbody>
</table>

Table 5. Correlation coefficients between the shell thickness and the thickness of the structural units at order (and specific) level.

<table>
<thead>
<tr>
<th>Order</th>
<th>Shell thickness</th>
<th>Log of shell thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p-values</td>
</tr>
<tr>
<td>BILLINGSELLIDA</td>
<td>-0.72</td>
<td>0.17</td>
</tr>
<tr>
<td>PENTAMERIDA</td>
<td>-0.43</td>
<td>0.72</td>
</tr>
<tr>
<td>STROPHOMENIDA</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>PRODUCTIDA</td>
<td>0.46</td>
<td>0.15</td>
</tr>
<tr>
<td>ORTHIDA</td>
<td>-0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>SPIRIFERIDA</td>
<td>-0.08</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Species

- *Cyrtospirifer cf. C. kermanensis*: 0.74 0.26 0.74 0.26
- *Martellia shabdjerehensis*: -0.14 0.91 -0.21 0.87
- *Striatochonetes* sp.: -0.67 0.53 -0.67 0.53