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29 ABSTRACT

30 The development of non-destructive methodology based on Near-Infrared Reflectance spectroscopy 

31 (NIRs), Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance 

32 Imaging (MRI) techniques to determine quality characteristics of fresh meat has been reviewed in 

33 this study, which has been mainly focused on researches published in the last decade. 

34 This review has put special attention on the instrumentation, data acquisition and main applications 

35 of each technique, finding a wide variety of possibilities of systems and methodologies as well as 

36 evidences of accurate and promising results. Most analysed samples have been pork and beef, 

37 followed by lamb and chicken, while there are few studies on fresh meat from rabbit and duck.

38 The evaluation of the methodology exposed in the revised articles has been carried out in an 

39 experimental way but lacking real application in the meat industry. For that, these non-destructive 

40 techniques should be improved, especially regarding the speed, price and influence of external 

41 factors.
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47 1. INTRODUCTION

48 Meat and meat products are high appreciated, which is principally due to their sensory properties, but 

49 their nutritional composition is also relevant. Evaluation of meat and meat products by means of many 

50 physico-chemical, sensory and microbiological analysis is the subject of the industry, laboratories 

51 and researches, in order to i) guarantee the global quality of these kind of food, ii) assure that they 

52 accomplish the legal requirements and iii) give response to the demands of the consumers.

53 Physico-chemical characteristics, such as pH, colour, water activity, content of moisture, lipids, 

54 protein or salt, and sensory attributes are the most demanded parameters to be determined. However, 

55 traditional methodology applied to carry out these analyses require the destruction of the meat pieces 

56 to correctly take a representative sample. These techniques also consume solvents, take long times 

57 and are tedious. Besides, a trained panel is needed to evaluate the samples in the case of the sensory 

58 analysis (Pérez-Palacios, Caballero, Caro, Rodríguez, & Antequera, 2014). 

59 As response to these drawbacks, several studies have been developed to evaluate the capability of 

60 different techniques based on images and/or spectra to analyse quality parameters of meat and meat 

61 products in a non-destructive way, with the final aim of proposing the evaluated techniques as 

62 alternative and/or complementary to the traditional methods. Couple-Charges Devices cameras 

63 (Cameras CCD), computed tomography (CT), Near-Infrared Reflectance spectroscopy (NIRs), 

64 Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and the Magnetic Resonance 

65 Imaging (MRI) are some of these proposed techniques.

66 The present manuscript was focused on reviewing the published studies at evaluating the use of NIRs, 

67 HSI, NMR and MRI to determine the quality of fresh meat, paying special attention to the 

68 methodologies used (instrumentation, data acquisition and data analysis) and their applications.

69 Thus, this review article has been organized as follow: section 2 exposes the scientific searches that 

70 have been carried out; section 3 is about the instrumentation of each of the focused technologies; 

71 section 4 deals with the procedure for the data acquisition and methods for the data analysis; section 

72 5 presents the latest applications of NIRs, HSI, NMR and MRI techniques for the analysis of fresh 

73 meat; section 6 discusses the advantages and disadvantages of these non-destructive methodologies; 

74 and section 7 summarizes conclusions for each technology and points out some future goals.

75

76 2. SCIENTIFIC SEARCHES

77 The searches on the scientific literature were carried out by using Scopus, Science Direct and Web of 

78 Science. The key words used were “meat” in combination to “Near Infrared Reflectance 

79 spectroscopy” or “NIR” or “NIRs” or “Hyperspectral Imaging” or “HSI” or “Nuclear Magnetic 
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80 Resonance” or “NMR” or “Magnetic Resonance Imaging” or “Magnetic Resonance Images” or 

81 “MRI”, and the areas of interest were limited to Food Science and Technology and Science 

82 Technology Other Topics. In this way, around 140, 200, 170 and 150 documents were retained for 

83 NIRs, HSI, NMR and MRI, respectively. Then, only the publications that fulfilled the research aim 

84 (research papers at evaluating the use of NIRs, HSI, NMR, or MRI to analyse fresh meat) in 

85 approximately the last ten years were selected (25 + 31 + 9 + 10 documents, respectively) to be 

86 exhaustively analysed.

87

88

89 3. INSTRUMENTATION

90 3.1.  NIRs 

91 The NIRs method works in the region of the electromagnetic spectra from approximately 780 nm to 

92 2500 nm, although quite often VIS wavelengths (~400-700 nm) are also collected. Generally 

93 speaking, there are three formats of NIRs equipment – benchtop, portable, and miniature, all of which 

94 are being used in fresh meat research. Benchtop equipment, such as the FOSS family of analysers, 

95 may be operated under controlled environmental conditions (temperature, humidity, airflow) and are 

96 often used in laboratory situations, usually with ground meat. Portable equipment such as the ASD 

97 range of spectrometers may or may not be more compact, but are more tolerant to environmental 

98 operating conditions, and are often used on intact meat. With the advent of microelectromechanical 

99 systems (MEMS) and micro-optical electromechanical systems (MOEMS), the numbers and types of 

100 miniature and micro-NIR spectrometers has been increasing in recent years. Some companies 

101 currently offering miniature equipment that has been tested on meat include Tellspec Inc., Consumer 

102 Physics (SCiOTM), and Viavi Solutions Inc..

103 In the field of meat analysis, several labs have reported custom made equipment. Gentilin et al. (2016) 

104 and Zhang, Peng, Zhao, and Sun (2017) have both pursued prediction of moisture content, with the 

105 former developing a hardware/software platform with rapid response and a high signal to noise (S:N) 

106 ratio, and the latter developing equipment for use on the fresh meat conveyor line which, once 

107 triggered, will automatically make multiple measurements, dynamically display and then preprocess 

108 spectra, then generate predictions. Piao, Okura, and Irie (2018) reported on small portable equipment 

109 developed by them, then manufactured to be used under cold conditions for the prediction of fat 

110 quality, successfully transferring calibrations from a master unit to up to 5 slave units.

111 Moving towards miniaturization and/or reduced costs, Kandpal, Lee, Bae, Lohumi and Cho (2019) 

112 report the development of a system based on a monochrome camera and multiple LEDs spanning 
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113 458-950 nm for rapid evaluation of fresh meat quality. Some researchers have been working with the 

114 reduction of full spectra wavelengths to only those of importance to meat. Habib and Ullah (2016) 

115 performed computer simulation and testing of NIRs bandpass filters, specifically for regions 

116 important to meat classification or meat quality determination, that block wavelength contamination 

117 which would otherwise occur from the Distributed Bragg Reflectors (DBR) stopband. In an 

118 alternative solution to the DBR stopband restrictions, Ullah, Butt, Fomchenkov, and Khonina (2016) 

119 has reported filters composed of indium phosphide (InP) and air-gap layers to replace the alternating 

120 InP/SiO layers of the of DBRs of the Fabry-Pérot filters in miniaturized spectrometers in the 930-

121 1450 nm range which is commonly used for meat.

122 3.2.  HSI

123 The HSI technique is based on collecting and processing information from across the electromagnetic 

124 spectra. Hyperspectral devices marge the whole advantages of spectroscopy with the advantages of 

125 spatial information of surfaces (Amigo, 2020). Thus, they can be defined as fast and non-destructive 

126 instruments able to characterize sample from a chemical (chemical interactions) and physical 

127 (properties of the surface) point of view, after the proper data collection and analysis.

128 Nowadays, there are different commercial hyperspectral cameras, and their technology is 

129 continuously advancing in terms of acquisition speed and spectral/spatial resolution. 

130 Even if there are different commercial HSI instruments, their setup is based on the interaction light-

131 matter, or better, on the interaction between photons (with a specific energy and trajectory) with 

132 molecules of the sample understudy (Weisskopf, 2010). Thus, the instruments are mainly composed 

133 by a light source, a set of optical lenses, a wavelength dispersive device and a detector. 

134 The photons are emitted by the light source (halogen lamps, LEDs or lasers) which should emit in the 

135 spectral range of interest, with high energy, without effects on the sample and guaranteeing 

136 illumination homogeneity (Amigo & Grassi, 2020). The latter is often achieved by light sources 

137 forming a 45° angle with the sample. 

138 Most of the HSI systems take advantages of the reflection and transmission phenomenon to collect 

139 information about the chemical and physical properties of a samples. Indeed, when a photon striking 

140 a molecule, its energy is absorbed only if it has the same vibration frequency of the electron of the 

141 molecule. In case the frequencies of the photon waves are not the same than the natural frequencies 

142 of the molecules of the sample, they are reflected or transmitted. They are reflected in case molecules 

143 are “opaque” to those frequencies, which means that, when interacting with the matter, the electrons 

144 of the molecules on the sample surface vibrate just for short periods before allowing the photon with 

145 different energy to arrive to the detector. Depending on the properties of the molecules, as well as the 
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146 physical characteristics of the sample, the photon can be reflected in a specular mode (the same angle 

147 than the incident) or in a scattered mode (different angle than the incident). The photons are 

148 transmitted in case they hit “transparent” molecules, a.k.a. the vibrations pass through the matter and 

149 are reemitted on the opposite side of the object and reach the detector (Abbott, 1999). 

150 After the emission, before or after interacting with the sample, the radiation is dispersed into narrow 

151 wavelength bands which are recorded individually by the detector. Among the wavelength dispersive 

152 devices, the most common are variable and tunable filters, imaging spectrographs and Fourier-

153 Transform spectrometers (Amigo & Grassi, 2020). 

154 At the end of the acquisition procedure the detector collects the coming incident light and convert it 

155 into electrical signals. Even if present in the market with different variation in the architecture and 

156 composition, mainly charge-coupled devices (CCDs) and the complementary metal-oxide-

157 semiconductor detectors (CMOS) are implemented in HSI cameras (Amigo & Grassi, 2020).  

158 3.3.  NMR

159 In NMR, and also in MRI, the signal is produced by excitation of the nuclei of the samples with radio 

160 waves into nuclear magnetic resonance. High (HF) or low field (LF) NMR systems can be used for 

161 analyzing fresh meat. The LF-NMR systems generate magnetic field between 0.15 and 0.50 T. These 

162 systems are cheaper than the HF-NMR ones and do not have maintenance costs. However, their 

163 obtained spectra are of lower quality and sensitivity than those from HF-NMR systems, which 

164 generate magnetic field higher than 2T. However, HF-NMR systems are very expensive and require 

165 high maintenance costs, since they need to be cooled with helium or liquid hydrogen (Feig, 2011). 

166 The radiofrequency (RF) for LF-NMR systems is between 30 MHz and 100 MHz, and in HF-NMR 

167 system, it is higher than 100 MHz. Besides the type of magnetic field, there are several types of 

168 antennas oriented to excite the spin of different isotopes of chemical elements (Hornak, 1997), being 

169 1H the most used. And the spectra can be weighted on two different relaxation time: T1 and T2. T1 

170 spin relaxation time (spin-lattice relaxation time) is the time from the longitudinal magnetization of 

171 the molecule of the sample from which the spectra will be obtained until their equilibrium value has 

172 been reduced by an “e” factor. T2 spin relaxation time (spin-spin relaxation time) describes the same 

173 process for the transverse magnetization. In this case, T2 is always smaller than T1, although both 

174 processes happen simultaneously. As acquisition sequence, most studies have applied the Carr-

175 Purcell-Meiboom-Gill sequence (CPMG) that allows measuring relaxation times intensity of any 

176 nucleus (McIntosh, 2013).

177 3.4.  MRI
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178 The MRI acquisition in fresh meat has been carried out by using HF and LF scanners. HF MRI 

179 scanners offers images with a high quality, however, they are very high-priced and involve high 

180 maintenance costs (Feig, 2011). The LF MRI scanners are cheaper and do not require maintenance 

181 costs, but they have lower S:N ratio and, consequently, their images are of lower quality than those 

182 from the HF MRI ones. Among the obtained publications on MRI for this revision, most of the studies 

183 carried out in meat with HF MRI scanners have analysed dry-cured hams, there being a low number 

184 of works focused on fresh meat. However, the use of LF MRI scanners to analyse fresh meat is higher 

185 and it has experimented an increase in the last years.

186 For MRI, besides the type of magnetic field (HF or LF), the antenna, the relaxation time and the 

187 acquisition sequence are critical parameters for the image acquisition. The antennas that excite 1H are 

188 the most used in meat (Pérez-Palacios, Caballero, Antequera, Durán, Ávila, & Caro, 2017). 

189 Nevertheless, some studies have also been carried out with antennas that excite 23Na (Hansen, Van 

190 Der Berg, Ringgard, Stodkilde-Jorgensen, & Karlsson, 2008; Vestergaard, Risum, & Adler-Nissen, 

191 2005), which are more specific for determining the salt content in meat and meat products. T1 is the 

192 spin relaxation time usually applied in most studies (Pérez-Palacios et al., 2017). Different acquisition 

193 sequences can be selected, such as Multi-Slice (MSE), Inverse-Recovery (STIR), Gradient Echo 

194 (GE), Spin Echo (SE) or Volumetric (T3D), among others. Moreover, the echo time (TE) and the 

195 repetition time (RT) must be set for the image acquisition. TE is the time from the center of the radio 

196 frequency pulse to the center of the echo, and RT represents the length of time between corresponding 

197 consecutives series of pulses and echoes (Hendrick, 2005). SE sequences are characterized by long 

198 TE (around 20-30 ms) and short RT (less than 800 ms) and present a high S:N, while GE sequences 

199 have short TE (12 to 20 ms) and long RT (between 1200 and 2500 ms), with a lower S:N than SE. 

200 T3D sequences are a special GE sequences with 3D reconstruction, with a similar TE than GE and a 

201 very short RT (between 30 and 100 ms) (Ávila, Caballero, Antequera, Durán, Caro, & Pérez-Palacios, 

202 2018; Caballero et al., 2017a). SE is the most used sequence acquisition in the MRI studies of meat, 

203 while GE and T3D have been recently proved (Pérez-Palacios et al., 2017).

204 Coils are also supporting elements to receive the MR signal. They have to be placed as near as 

205 possible to the area to be scanned. Coils can be classified as a function of their shape, volume or 

206 surface coils, or of their technology, linear or quadrature coils. In the case of musculoskeletal systems, 

207 the use of volume and quadrature coils, which surround almost completely the scanned area and 

208 receive the signal through two orthogonal channels, respectively, is the optimum combination. The 

209 size of the coil is also considered in the MRI studies in meat, using body coils for hams and carcass 

210 and hand/wrist, head or knee coils for smaller samples such as pork loins or chicken breast (Perez-
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211 Palacios, Antequera, Durán, Caro, Rodríguez, & Palacios, 2011; Bernau et al., 2015; Frelka et al., 

212 2019).

213 4. DATA ACQUISITION AND ANALYSIS

214 4.1.  NIRs

215 Successful and reliable data acquisition must take into account equipment, environment, and sample 

216 condition. Firstly, a measurement method appropriate to the sample preparation must be chosen, then 

217 the equipment be calibrated. The most common measurement methods, shown in Figure 1, are 

218 reflectance (R) where most of the recorded light is reflected directly from the illuminated surface, or 

219 transmittance (T) where the light which travels through the sample is recorded. Both can be converted 

220 to absorbance for data analysis following a log transformation (log 1/R or log 1/T; Cortés, Blasco, 

221 Aleixos, Cubero, & Talens, 2019); interactance, records the light reflected from the interior of the 

222 sample and often uses fiber optics for illumination and detection as they can be placed in direct contact 

223 with the sample; and transflectance, in which light travels through the sample, encounters a reflector, 

224 then travels back through the sample before detection (Alander, Bochko, Martinkauppi, Saranwong 

225 & Mantere, 2013).  Reflectance and interactance require thick samples to accommodate the long 

226 travel distances of NIRs wavelengths, while transmittance and transflectance require thin samples to 

227 facilitate sufficient light travel through the sample. In all cases, meat fiber direction should be 

228 consistent among samples. Long-standing do’s and don'ts for equipment and sampling (Williams & 

229 Norris, 2004) include keeping equipment temperature constant, and operating under similar relative 

230 humidity during each data collection session to keep the amount of noise in the spectra similar for all 

231 samples. Samples may be homogenized, minced or ground, or intact, and of a thickness appropriate 

232 to the measurement method. Sample temperature must be consistent to prevent alterations to the 

233 spectral baseline and position of absorption bands. If samples have been dehydrated, measures must 

234 be taken to ensure moisture level is similar in all before reading. Sampling must be done to truly 

235 represent the subject, thus intact samples may require multiple reading locations; fiber orientation 

236 may be of importance for fresh intact meat samples. A recent review by Pasquini (2018) fully 

237 addresses NIRs fundamentals, chemometrics, and instrumentation while Xu, Xie, and Ying (2019) 

238 focus on identifying error sources.

239 The most common approach to analysis of NIRs spectra is pre-processing followed by processing. 

240 The pre-processing may be accomplished in a number of different ways and generally involves 

241 removal of noise at spectra extremes, further noise reduction over the remaining wavelengths 

242 (smoothing), and scattering and slope corrections. The lowest S:N is usually found at the extremes of 

243 the spectra, which is often removed simply by clipping the spectra. In the remaining body of the 
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244 spectra where S:N is higher, correction of scattering due to physical structure variations of the sample 

245 is usually performed with Multiplicative Scatter Correction (MSC), while Standard Normal Variate 

246 (SNV) is performed to correct spectra slope. 

247 Reduction of random noise is often achieved by smoothing with a least squares polynomial fit, or in 

248 combination with 1st or 2nd derivative transformation, a method established by Savitzky and Golay 

249 (1964), although some authors have chosen to use Extended MSC (EMSC), such as Andersen, 

250 Veiseth-Kent & Wold (2017) who explored the effect of pH-related changes in extracted pork 

251 myofibrils as part of an equipment comparison study.  Prevolnik Povse et al. (2017) and Soladoye et 

252 al. (2018) both used SNV and Detrend (SNVD), the former for quality prediction in intact pork fat 

253 layers and homogenized pork lean (n=56-130), and the latter for overall pork belly firmness from 

254 intact pork fat layers and lean (n=198). 

255 By far, the most common processing approach for data exploration is principle component analysis 

256 (PCA) followed by regression or classification algorithms depending on the purpose of the study. In 

257 the case of regression, which is quantitative analysis, partial least squares (PLS, or PLS regression 

258 (PLSR)), is frequently used. All but two of the studies in Table 1 reported using this approach. Perez-

259 Palacios, Caballero, González-Mohíno, Mir-Bel, & Antequera (2019), preferred to use the simpler 

260 algorithm, multiple linear regression (MLR), when predicting texture-related characteristics of pork 

261 loin cooked sous-vide at 70°C for 1, 2, 4, 6, or 8 h. In the case of classification, Moran, Andres, Allen, 

262 & Moloney (2018) whose research is discussed in more detail in ‘Section 5.1 NIRs’, used PLS 

263 discriminant analysis (PLS-DA).

264 Some recent alternative data analysis approaches in the meats field have included pre-processing 

265 synchronous 2D correlation spectroscopy to identify the key wavelengths, which were then used in 

266 SVM models (Wang, W., Peng, Sun, Wei, & Zheng, 2018a), and multi-index statistical information 

267 fusion (MISIF) for variable selection, (Qu et al., 2018). Wu, Zhong, and Yang (2018) chose to forego 

268 preprocessing and instead establish a prediction model for freshness by using a double-layer stacked 

269 denoising autoencoder neural network (SDAE-NN) algorithm, which proved to out-perform PLSR 

270 and back propagation neural network (BP-NN). Processing has been approached by using combined 

271 stacked interval partial least squares (siPLS) and sparse partial least squares regression (SPLSR) to 

272 create stacked interval sparse PLSR (sisPLSR), which aims to "find favorable rotations of the 

273 classical PLS solutions while also utilizing local information in a spectra" (Poerio & Brown, 2017). 

274 Harrington (2018) modified an algorithm for training a restricted Boltzmann Machine, a type of 

275 neural network, to improve PLS calibrations for moisture, fat, protein.

276 4.2.  HSI
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277 Before sample acquisition, HSI systems should be calibrated for spectral and spatial information. The 

278 spectral calibration is performed with a black and a background reference as for spectroscopic 

279 devices. In detail, an image of the dark response is recorded by turning off the light sources or 

280 covering the lenses with non-reflective opaque black cap, thus, obtaining a 0% of reflectance image; 

281 and an image of the background response is recorded by a high reflectance standard or a spectra with 

282 100% reflectance (ElMasry and Sun, 2010). Moreover, a spatial calibration is needed to set the ground 

283 coordinates (X-Y spatial directions) of the measuring scene by a printed checkerboard.

284 The proper acquisition mode is fundamental to obtain reliable results when performing an HSI 

285 analysis of sample, as it is for all the considered non-destructive techniques. There are different 

286 system configurations according to the procedure of image acquisition: spectral scanning (area 

287 scanning), spatial scanning (point and line scanning), and snapshot imaging (Qin, 2010). 

288 In spatial scanning system, the intensity spectra of one or multiple spatial positions are acquired. In 

289 the case of one-point scanning, so called whisker-broom imaging, the spectra of each single pixel is 

290 acquired at a time by moving the sample in the measuring position which will have constant lighting 

291 path and diffusion (Figure 2.a). Actually, it will be the HSI systems more similar to normal 

292 spectrometers. The light source, the lens, the dispersive device (normally prism or optical gratings) 

293 and the line detector array remain fixed in a position, whereas the sample is moved systematically in 

294 two spatial dimensions.

295 The main advantages are the constant lighting path between the optical system and the sample and 

296 the high spectral resolution; resulting, however, in time-consuming measurements.

297 In the case of multiple spatial position scanning, so called line scanning or push-broom imaging, the 

298 intensity spectra of a portion of the sample is acquired at a time (Figure 2.b). Actually, a set of pixels 

299 dispose in a line (2-D spatial-spectral information) is acquired and then the sample is moved in just 

300 one direction, which normally is transverse to the slit. 

301 The setup of those systems requires two-dimensional dispersing element (normally prism or optical 

302 gratings) and a two-dimensional detector array perpendicular to the surface of the sample.

303 Nowadays, these systems are the ones preferred for benchtop instruments applied for research 

304 purposes, but their setup is promising for industrial applications; indeed, they reach spectral resolution 

305 comparable to point scanning instruments, being faster up to one hundred times (ElMasry, Mandour, 

306 Al-Rejaie, Belin, & Rousseau, 2019).

307 The most common spectral scanning setups are area or plane scanning, which collect a global spatial 

308 information one single wavelength at a time. In this configuration, the whole system remains in a fix 
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309 position; i.e. the camera, the lens, the dispersive device and the field of view of sample location are 

310 in plane parallel to the detector (Figure 2.c). The main advantage of these systems is the affordable 

311 prize, the speed of acquisition; however, they normally return poor chemical information, with 

312 exception of cameras implemented with acousto-optic tunable filters (AOTF), which allows to 

313 acquire a higher wavelengths respect to variable filter ones. Their application for HSI benchtop 

314 instruments is not common, even though they are gaining importance in microscopy (Gottschall, 

315 Meyer, Schmitt, Popp, Limpert, & Tünnermann, 2018), as biological samples could be sensitive to 

316 the heating produced by the source lamps. 

317 The last step of HSI acquisition is the file storage in the so called hyperspectral datacube, i.e. a 3D 

318 matrix in which along the 2D matrix (m rows and n columns) are stored the two orthogonal spatial 

319 directions and along the third dimension is store the spectra information (λ). There are different ways 

320 to ordered in a logical manner the collected spatial and spectral information, such as band interleaved 

321 by pixel (BIP), by line (BIL) and band sequential (BSQ). Dedicated software allows the proper 

322 management of the datacube, whichever is the storage format, for further data analysis.

323 As discussed previously, the result of HSI analysis is an image with spectral information combined 

324 with spectral information stored in each pixel. The large amount of data and their high correlation 

325 need a proper handling to extract the relevant results by the adaptation of the multivariate data analysis 

326 techniques. In this section the steps required previously to multivariate data analysis performance are 

327 discussed, indeed, there are different “cleaning” procedures to properly pre-process the acquired 

328 images for discarding erroneous data values and non-informative background. For more detailed 

329 information, refer to Vidal & Amigo (2012).

330 The determination of dead pixels and spikes is fundamental to get rid of spurious information which 

331 may affect the performance of multivariate data analysis techniques. 

332 Dead pixels are those pixels with missing or zero values and can be isolated or grouped in a specific 

333 location (line or area) of the image as they result from anomalies of the HSI detector. Several 

334 techniques are present in software dedicated to image analysis (Mobaraki & Amigo, 2018), such as 

335 thresholding techniques from median spectra calculated from the data, or more robust methods like 

336 genetic. Once located they are normally corrected by interpolation (by mean or median) with 

337 neighbour pixels ensuring a good representation of the information, as the neighbour pixels are 

338 generally highly correlated.

339 Other failures to be detected, and corrected accordingly, are rapid and sharp rise-fall of the signal, 

340 defined as spikes, resulting from failures of the detector or of the electronic circuits. Even if it is quite 

341 simple to detect spikes by visual inspection of the spectra, there are several approaches which can be 
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342 used to automatically correct them in huge dataset as the ones generated by HSI. For a comprehensive 

343 revision refer to Vidal & Amigo (2012).

344 Most of the time the acquired HSI is not containing just the information of the sample understudy but 

345 it covers all the scanned area; thus, this area should be discarded. The more direct, but tedious and 

346 long, strategy is the manual selection of the sample area by image visualisation at one, combine or 

347 whole spectral variables or by visualization of the scores image obtained by after a PCA. From the 

348 same visualisation (wavelength or scores) a threshold value, defined manually or by histogram 

349 inspection, can be applied to discriminate the sample from the background. Anyway, it should be 

350 considered that thresholding is always a critic point in image analysis as it could be affected by many 

351 factors, mainly the type of data and the personal experience. 

352 After the mentioned “cleaning” procedures the data stored in as HSI are normally pre-treated and 

353 analyzed adopting the techniques of classical spectroscopy, including clustering, classification and 

354 regression methods.

355 4.3. NMR

356 Prior to analyze the spectra acquired from the NMR systems, it must be pre-processed. For that, 

357 firstly, the chemical shift misalignment must be corrected by using shifting algorithms, being the 

358 most commonly applied the icoshift algorithm (Savorani, Tomasi, & Engelsen, 2010). This algorithm 

359 optimizes by shifting of spectral intervals, aligning the peaks of the spectral intervals and the spectra 

360 simultaneously. For that, correlations among the spectral data are used.  After that, the noisy regions 

361 must be removed and then, NMR spectra must be normalized and scaled (Craig, Cloarec, Holmes, 

362 Nicholson, & Lindon, 2006). These algorithms allow increasing the representation of lower 

363 concentrations and minimizing the contribution of noise. Finally, some pre-processing techniques in 

364 classical spectroscopy are applied, being the most used the algorithms: Savitzky-Golay that aims to 

365 reduce the noise of the spectra, which is often achieved by smoothing algorithms in combination with 

366 1st or/and 2nd derivative transformation; Standard Normal Variate (SNV), which aims to correct the 

367 slope of the spectra in order to optimize the spectral data; Multiplicative Scatter Correction (MSC), 

368 which aims to correct the scattering due to external interactions with the sample, i.e., lights, 

369 temperature,...  (Rinnan, Van Der Berg, & Engelsen, 2009). As example, Figure 3 shows a NMR 

370 spectra of beef. Then, for extracting the data from the spectra, the identification of each peak is related 

371 to each component of the sample. For that, the MMCA (Metabolite-Metabolite correlation analysis) 

372 is commonly used to identify the component of each spectra (Craig et al., 2006). Finally, the intensity 

373 of each peak is measured as concentration value of each component.
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374 For the data analysis, in general, Partial Least Square (PLS), Principal Component Analysis (PCA) 

375 or Multiple Linear Regression (MLR) have been usually applied in order to obtain accurate results in 

376 NMR.

377 Other statistical tools such as ANOVA, Pearson’s correlation coefficient, Naïve-Bayes, first-order 

378 and second-order statistics have been applied for analyzing the data obtained from the spectra 

379 (Delorme, Sejnowski, & Makeig, 2007). From all these statistical techniques, PCA must be noted. 

380 PCA is the most used exploratory data analysis technique, since it is usually used to identify patterns 

381 in measured data and to visualize the distribution of the data. This technique allows evaluating the 

382 relationship among the variables by using mapping and displays techniques for understanding the 

383 structure of the complex multivariate datasets (Bro, & Smilde, 2014). PLS (Bro, 1996) aims to 

384 maximize the covariance between the predictor and the response data. Its popularity can be ascribed, 

385 in part, to its speed, since the model parameters for each component can be calculated easily. Its ease 

386 of use because of the only meta-parameter to be optimized is the number of components. Its 

387 interpretation since the PLS scores, loadings and weights can be investigated in order to determine 

388 whether the model components have a meaning for the meat and meat products (Martens, & Naes, 

389 1989). MLR is used to represent linear relationship between a dependent variable and several 

390 independent variables. This technique obtains a linear regression equation, which can be used to 

391 predict future values (Hastie, Tibshirani, & Friedman 2001).

392 4.4. MRI

393 Once the MRI image has been acquired, it is analysed to extract numerical information. Pre-

394 processing and/or segmentation techniques are firstly applied. The objective of the pre-processing is 

395 to improve the obtained image by outstanding certain features or eliminating noise (Sonka, Hlavac, 

396 & Boyle, 1999). The segmentation techniques extract elements of interest from the images (Maravall, 

397 1993), such as the thresholding methods (Cheriet, Said, & Suen, 1998; Otsu, 1979) or fuzzy logic 

398 (Raof et al., 2008). Other applied segmentation techniques in MRI from meat are active contour, 

399 which detect the muscle of interest (Caro, Rodríguez, Cernadas, Durán, & Villa, 2001; Caro, 

400 Rodríguez, Durán, & Antequera, 2012), and the algorithms for selecting region of interest (ROI) 

401 (Molano, Rodríguez, Caro, & Durán, 2012), which is the maximum area inscribed in the muscle 

402 previously selected. The last step of the image analysis is the extraction of the computational 

403 characteristics. This process allows describing the MRI as a vector of features. For this task, 

404 algorithms based on texture features have been the most used: Gray-Level Co-occurrence Matrix 

405 (GLCM), Gray-Level Run Length Matrix (GLRLM) and Neighbouring Gray-Level Dependence 

406 Matrix (NGLDM). GLCM counts the number of times that each pair of gray levels (i,j) occurred at a 
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407 given distance d in all directions. GLRLM measures runs into the image, i.e., a set of consecutive 

408 pixels in the image with the same gray level value. NGLDM considers the relationship between an 

409 element and all its neighbouring elements at one time rather than one direction at a time. The 

410 application of these algorithms results on the values of different computational texture characteristics.

411 The use of fractal algorithms for analysing MRI from meat has been recently studied. They study the 

412 degree of symmetry or self-similarity found in a structure at all scales, allowing the identification of 

413 recurring patterns and removing the possibility of image compression (Hibbert, 1991). Three fractal 

414 algorithms have been used in meat: the traditional algorithm to compute the fractal dimensions, the 

415 fractal texture algorithm (FTA) and the one-point fractal texture algorithm (OPFTA). The traditional 

416 algorithm measures the number of boxes (small fractions of the image depending of the size of the 

417 original image) needed to cover an area occupied by the object as a function of the size of boxes. FTA 

418 (Caballero, Caro, Ávila, Rodríguez, Antequera, & Pérez-Palacios, 2017b) is a novelty texture 

419 algorithm based on the number of times that a pattern is repeated in each image depending of box 

420 size calculated in each case. These fractal features are gathered in a vector, and each vector was 

421 computed based on second order statistics. OPFTA (Caballero et al., 2018) is an algorithm based on 

422 features obtained from fractal properties values into smaller rectangles of 32x32 pixels. From all these 

423 values, the value for the box size equal to eight is selected. After that, these values are gathered in 

424 order to create a matrix, so, each cell of the matrix represents one ROI from the image. Finally, the 

425 features were calculated on the matrix by applying second order statistics. 

426 Other algorithms to analyse the MRI images of meat are the mapping techniques (Zarei, & Sepyani, 

427 2016), the use of contrast on the images (Vala, & Baxi, 2013), the histograms (Bajd, Skrlep, Candek-

428 Potokar, & Sersa, 2017), and the 3-D version of the texture (Ávila, Caballero, Durán, Caro, Pérez-

429 Palacios, & Antequera, 2015). The mapping techniques is based on geometric transformation of 

430 images, re-locating the points in the source images on different coordinates in a destination image. 

431 This allows describing some features of the images (Zarei, & Sepyani, 2016). The contrast on the 

432 images stands out some zones of the images. The use of this technique joins to the thresholding 

433 methods allow describing some features of the images and characterize them (Vala, & Baxi, 2013). 

434 The 3D version of the texture algorithms has also been applied for the analysis of 3D reconstructed 

435 MRI images (Ávila et al., 2015).

436 Regarding the data analysis, in the case of MRI, most studies have applied usual statistical tools such 

437 as Pearson’s correlation coefficients, analysis of variance (ANOVA), PCA or statistics measurements 

438 as the first and second order statistics. In the last years, the application of data mining in these studies 

439 has increased. Data mining is one of the steps of a larger process known as Knowledge Discovery in 
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440 Databases (KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996), and it is related to large volume of 

441 data. Most of the data mining techniques applied in the MRI studies of meat are MLR and Isotonic 

442 Regression (IR). IR estimates ordered values for an independent variable as a function of one of the 

443 input variables (Barlow, Bartholomew, Bremner, & Brunk, 1972), only selecting the input parameters 

444 with the best adjustment results. Partial Least Square (PLS) has also been applied the MRI studies in 

445 meat. 

446 Most of the MRI studies based on regression methods have applied the common cross-validation 

447 methodology (Kohavi, 1995), which divides the data in two sets, training and testing, with 

448 information of images from the same sample. Recently, a modified of the usual method has been 

449 developed. It consists of three sets (training, validation and test) and leaving one meat piece out when 

450 creating the dataset (Ávila et al., 2019). 

451 5. APPLICATIONS OF NON-DESTRUCTIVE METHODOLOGIES FOR FRESH MEAT 

452 ANALYSIS. 

453 5.1. NIRs

454 Since the excellent and comprehensive reviews by Dixit et al. (2017), Kademi, Ulusoy, and Hecer, 

455 (2019), and Prieto, Pawluczyk, Dugan, and Aalhus (2017), there have been roughly 6 types of NIRs 

456 studies, depending on their objective, that have analysed fresh meat in the last 4 years. The first type 

457 of study used NIRs as a standard laboratory method. Konarska, Kuchida, Tarr and Polkinghorne 

458 (2017) used correlation analysis to compare three approaches to measuring beef marbling on 12 

459 muscles: image analysis, and subjective evaluation from images of the intact sample, and NIRs on 

460 the homogenized sample using the NIRFlex N-500 (Buchi, Switzerland) with its built-in prediction 

461 algorithm. The overall strength of correlation for % marbling between NIRs and image analysis was 

462 0.60 (P ≤ 0.01) while for individual muscles it varied from 0.13 (gluteus medius) to 0.77 (serratus 

463 ventralis cervicis; ≥ 0.56 significantly different from 1 at P ≤ 0.01). Mínguez, Sánchez, Hernández, 

464 Ragab, El Nagar and Baselga (2017) used NIRs to predict fatty acid composition and % protein from 

465 crossbred ground freeze-dried rabbit longissimus lumborum in order to evaluate the genetic groups 

466 used in the crossbreeding and to estimate genetic contributions to meat quality. A difference in fatty 

467 acid composition (P ≤ 0.05) was detected for one genetic line, but no differences in % protein. The 

468 second type of study used NIRs for authentication. Moran et al. (2018) tested various pre-processing 

469 approaches to confirm degree of ageing of three different, intact, bloomed, beef muscles following 3, 

470 7, 14 and 21 d of vacuum-packaged storage. In this preliminary study, it was found that the best 

471 prediction model was specific for each muscle, and was best following spectral pre-treatment such as 

472 Savitsky-Golay 1st or 2nd derivatives on the full spectra (400-2400 nm). When tested, model 

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

473 sensitivity ranged from 96.3-100%, specificity from 98.8-100%, and overall correct classification 

474 from 99.1-100%. Pieszczek, Czarnik-Matusewicz, & Daszykowski (2018) explored two class 

475 modelling techniques: one-class classifier partial least squares (OCPLS) and soft independent 

476 modelling of class analogy (SIMCA) to recognize pure minced beef, pork, or lamb from NIRs spectra. 

477 For beef, models offering the best performance, with an emphasis on specificity, were either SIMCA 

478 preceded by SNV (sensitivity = 99.8% ± 0.78; specificity = 98.98% ± 0.56) or OCPLS preceded by 

479 MSC (sensitivity = 99.11% ± 5.07; specificity = 99.9% ± 0.37). SIMCA performed best for pork and 

480 lamb, with no pre-processing for the former (sensitivity = 99.94% ± 0.49; specificity = 87.20% ± 

481 4.00), and preceded either by MSC (sensitivity = 99.98% ± 0.20; specificity = 98.00% ± 0.58) or ISC 

482 (sensitivity = 99.48% ± 0.79; specificity = 99.06% ± 0.47) for the latter. Table 1 summarizes the 4 

483 other types of studies along with their calibrations and performances: detecting adulteration, 

484 prediction, equipment testing, and exploration into various spectra pre-processing and processing 

485 approaches.

486 Prediction studies have been diverse (Table 1). Li, Z., Jia, Wang, Liu and Dong, (2016) reported 

487 predicting cooked beef texture from the raw meat. Pork studies include prediction of pork components 

488 with particular emphasis on fat composition (Richli, Kaufmann & Scheeder, 2016; Prevolnik Povse 

489 et al., 2017), identifying potential PSE (Li, X. et al., 2016), determining cholesterol levels (Wang, H. 

490 et al., 2017), post mortem meat quality (Andersen, Wold, Gjerlaug-Enger & Veiseth-Kent, 2018a) 

491 and belly firmness (Soladoye et al., 2018). Lamb studies looked at lipid peroxidation to replace 

492 TBARS (Ripoll, Lobón & Joy, 2018), and classification for eating quality (Knight et al., 2019). 

493 Equipment used was a mix of benchtop and portable, and usually intact samples were tested. The 

494 wavelength range was more frequently VIS-NIRs than NIRs alone. Pre-processing commonly 

495 consisted of smoothing, 1st or 2nd derivative, and SNV, while processing was always PLS or PLSR.

496 NIRs is a growing field, therefore new equipment is continuously under development. There have 

497 been a number of reports on testing results in recent years. Dixit and his research group have reported 

498 a group of studies centering around equipment developed in–house, and which consists of a Fabry-

499 Pérot interferometer, a 4-point photodiode array, and collimating lenses, enabling multipoint data 

500 capture (Dixit et al., 2016a; 2016b; 2016c). The equipment has been designed for rapid on-line 

501 detection and prediction of ground meat composition, thus performance has been reported for 

502 different sample stand-off distances, movement speeds, and combinations of both. Several equipment 

503 testing reports were based on technology comparisons (eg. NIRs, hyperspectral imaging (HSI), 

504 Fourier transform-NIRs (FT-NIRs), Raman, fluorescence, etc.), and the NIRs results can be found in 

505 Table 1 (Andersen et al., 2017; Andersen, Wold, & Veiseth-Kent, 2018b; Nolasco-Perez et al., 2019). 
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506 Piao et al. (2018) explored the efficacy of transferring calibration equations for beef fatty acid groups 

507 developed on master equipment, to slaves. Wang, W., Peng, Sun, and Li (2017) tested custom in-

508 house equipment constructed of two spectrometers with different wavebands, operated in sequence, 

509 for the ability to predict pork freshness on a conveyor line. This team also explored different data pre-

510 processing and processing approaches (Wang, W., Peng, Zheng, Tian, & Wei, 2016; Wang, W., Peng, 

511 Sun, Zheng, & Wei, 2018b) and included reducing the spectra to key wavelengths to potentially 

512 increase the rate of data collection (Wang W., et al., 2018a).

513 5.2. HSI

514 Hyperspectral imaging for the assessment of meat quality by chemical composition has been applied 

515 mostly for moisture, fat content and composition and protein. Also, and Total Volatile Basic Nitrogen 

516 (TVB-N), TBARS and K-value have been investigated as quality indexes for meat freshness 

517 evaluation. As concern technological and sensory attributes, WHC (water holding capacity), WBSF 

518 (Warner–Bratzler shear force), SSF, (slice shear force) and colour by CIE - Lab* chromatic scale 

519 have been considered. Thus, the works dealing with their determination by HSI are here revised 

520 (Table 2), excluding reference dealing with microbiological quality determination; in case of interest 

521 in this field please refers to the review by Kamruzzaman, Makino, and Oshita (2015).   

522 Different line scanning approaches (or push-broom imaging) have been proposed for moisture content 

523 determination. Kandpal, Lee, Kim, Mo, and Cho (2013) proposed a VIS/NIRs – HSI system ranging 

524 from 400 to 1000 nm to predict moisture content in chicken breast. 52 samples were used to calibrate 

525 the PLSR model, whereas other 20 chicken breasts were used to validate the model reaching optimal 

526 levels (R2
P of 0.94 and SEP of 0.71%.) when only the NIRs (700-1000 nm) range was used. The 

527 laboratory-based push-broom NIRs hyperspectral imaging system (900–1700 nm) proposed by 

528 Barbin, ElMasry, Sun, and Allen (2013) allowed the construction of good PLS regression models, 

529 developed from feature-related wavelengths, to predict moisture content in minced pork samples (RP 

530 of 0.91 and SEP of 0.62). The same research group developed moisture content prediction models for 

531 fresh minced beef samples collected from different muscles reaching prediction abilities for RP of 

532 0.89 and accuracy (SEP) of 0.46 (ElMasry, Sun & Allen, 2013).

533 By a larger NIRs range (880 – 1720 nm), Zhao, Esquerre, Downey and O’Donnell (2017) 

534 demonstrated higher prediction ability for moisture content in ground beef samples (R2
P of 0.99; 

535 RMSEP of 0.64 w/w). However, the samples used by Zhao et al. (2017) to calibrate (n=36) and 

536 validate (n=9) the model were quite small compared to Barbin et al. (2013) and ElMasry et al. (2013), 

537 both considering around 80 samples for the training set, and 40 samples for the testing set.
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538 Also lamb meat has been tested for moisture prediction by push-broom hyperspectral imaging system 

539 in the spectral range of 900–1700 nm (Pu, Sun, Ma, Liu & Kamruzzaman, 2014). In their study a 

540 relevant number of samples has been used, being 127 lamb meats including semimembranosus, 

541 semitendinosus and longissimus dorsi muscles. Results comparable to those of Barbin et al. (2013) 

542 and ElMasry et al. (2013) have been obtained by applying MLR models after a hierarchical variable 

543 strategy (UVE-SPA-CSA), being the RP of 0.92, the RMSEP of 0.58 and the RPD equal to 2.53.

544 Fat content as total amount, intermuscular fat (IMF), or specific classes composition (SFAs, saturated 

545 fatty acids; UFAs, unsaturated fatty acids and oleic acid) have been widely investigated across 

546 different meat species. 

547 The study by Wold, O’Farrell, Høy, and Tschudi (2011) revealed how simplified HSI instrument 

548 (multispectral imaging system with 15 wavelengths between 760 and 1040 nm) can be used for the 

549 online estimation of fat content in beef trimming. Indeed, they reached high fat prediction accuracy 

550 (RMSEP of 0.6%) in 100 batches. More recently, Lohumi, Lee, Lee, Kim, Lee and Cho (2016) 

551 calibrated models for fat content in beef from different quality grades by ANOVA, spectral angle 

552 measure (SAM), and Euclidean distance measure (EDM) methods, reaching R2
C of 0.91, 0.95, and 

553 0.96 however, they used a small number of samples (n = 24) and they did not perform any validation 

554 using independent samples. By revising the last decade literature, it seems that the best model on term 

555 of prediction for fat in raw beef samples was develop by Zhao et al. (2017); they obtained R2
P of 0.99 

556 and RMSEP of 0.73% w/w of fat by applying EMCV-PLSR algorithm. Similarly, Pu et al. (2014) 

557 developed MLR models after a hierarchical variable strategy (UVE-SPA-CSA) obtaining RP of 0.98, 

558 RMSEP of 0.36 and RPD of 4.13. The strength of their work over Zhao et al. (2017) is due to the 

559 high number of samples and they representability as they considered 126 lamb meats including 

560 semimembranosus, semitendinosus and longissimus dorsi muscles (84 samples used to calibrate the 

561 model and 42 for its independent validation). 

562 The research group by Kobayashi developed models for the prediction of specific fat categories in 

563 beef samples (Kobayashi, Matsui, Maebuchi, Toyota & Nakauchi, 2010 and Kobayashi, Mori, 

564 Nishino, Toyota & Nakauchi, 2012). They obtained reliable models for the prediction of saturated 

565 fatty acids (R2
P = 0.87, RMSEP =1.69, RPD=2.43), unsaturated fatty acids (R2

P = 0.89, RMP =3.41, 

566 RPD=2.84) and oleic acid (R2
P= 0.71, RMSEP =3.13, RPD=1.855) by predicting at least 32 meat 

567 samples from three 25-month-old Japanese Black (Wagyu) cattle.

568 Both Liu and Ngadi (2014) and Huang, Liu and Ngadi (2017) developed regression models to predict 

569 IMF in porcine meat by combining different image features – from WLD to Gabor filter and improved 

570 GLCM (gray level co-occurrence matrix) - with spectral information. Liu and Ngadi (2014) reached 

571 an optimal model performance in prediction with an adjusted RP
2 and RMSEP of 0.93 and 0.17%, 
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572 respectively; whereas the rib by rib models developed by Huang et al. (2017) reached a RP of 0.90 

573 and an RMSEP of 0.92% for the 3rd last rib even if the model was constructed with only 18 samples 

574 and validated with 6. 

575 A relevant study for IMF prediction was developed by Craigie et al. (2017). Indeed, they performed 

576 HSI acquisition of 2454 samples of lamb loin (M. longissimus lumborum) at processing plant level 

577 over consecutive years. They evaluated the performance of more than ten different regression 

578 algorithms reaching prediction abilities up to R2
P of 0.72 and RMSEP of 0.45 with a Gaussian process 

579 regression (GPR) approach. 

580 Prieto Osika, Aalhus, Lopez-Campos, Juarez, and Pawluczyk, (2018) reported that models based on 

581 HSI to predict protein are generally less accurate than the ones for moisture or fat. Indeed, Pu et al. 

582 (2014) only reached RP of 0.67, RMSEP of 0.41 and RPD of 1.31 when predicting protein content by 

583 the UVE-SPA-CSA-MLR model calibrated with 126 lamb samples. Certainly, the estimation of 

584 protein content by HSI data seems highly dependent on the sample form: models developed based on 

585 minced meat generally reached higher performances over intact muscles analysis. This is proved by 

586 the studies of Kamruzzaman, ElMasry, Sun and Allen (2012a) and ElMasry et al. (2013). The latter 

587 developed models for protein prediction in beef samples from three different muscles (M. longissimus 

588 dorsi, M. semitendinosus and M. psoas major) reaching high performance (R2
P of 0.86, SEP of 0.29) 

589 and for pork samples reaching RP
2 of 0.88 and SEP of 0.40. It has been hypothesized that 

590 homogenized samples, such as minced meat, overcome interferences of muscle fibre organization 

591 and muscle physical characteristics (Prieto et al., 2018) leading to better prediction capabilities.

592 Khulal, Zhao, Hu and Chen (2017) developed models to predict TVB-N in poultry by back 

593 propagation neural network (BPNN) algorithm. They analysed fifty chicken breast fillets by an ad 

594 hoc developed hyperspectral imaging system and, by combining the spectral variables with the texture 

595 ones, they calibrated a good regression model, further validated by other 25 samples, reaching a RP 

596 of 0.75, and a RMSEP of 6.39mg/100g of meat. 

597 Great interest has been posed by the scientific community in predicting TVB-N in pork meat in recent 

598 years. Both Li, Chen, Zhao and Wu (2015) and Guo, Huang, Zhu, Guo and Qin (2018) developed 

599 methods based on NIRs-HSI systems based on line-scanning in the 400-1000 nm range to predict 

600 TVB-N in fresh pork. Even if they used different regression strategies, namely Least-squares support 

601 vector machine (LS-SVM) and Back propagation artificial neural network (BPANN), they were able 

602 to obtain optimal models in terms of coefficient of determination (R2
P>0.93).  However, the error 

603 (RMSEP) obtained by Li et al. (2015) resulted considerably lower (RMSEP= 1.86mg/100g) in respect 

604 to the one obtained by the BPANN model (5.52mg/100g). 
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605 Differently, Lee, Kim, Lee and Cho (2018) proposed the use of a hyperspectral fluorescence imaging 

606 system, based on high-intensity light-emitting diodes at 365 nm, for the determination of TVB-N 

607 contents in pork meat. In their work, 186 fresh pork longissimus muscles were purchased from a local 

608 supermarket, trimmed and shaped in size of 5cm x 4cm x 2.5cm to be analysed. The developed model 

609 was based on LS-SVM, leading to an optimal prediction capability (R2
P of 0.967 and RMSEP of 

610 1.90%).

611 As far as concern lipid oxidation, a research by Xiong, Sun, Pu, Xie, Han, and Luo (2015a) studied 

612 the possibility of developing a regression model based on HSI data to predict TBARS in chicken 

613 breast slices during storage at 4 °C for 0, 3, 6, 9 days. They established a simplified model by selecting 

614 10 optimal wavelengths using the successive projections algorithm (SPA) able to predict TBARS 

615 with good performance, being the RP of 0.80 and the RMSEP of 0.16 mg/100g.

616 Cheng, Sun, Pu and Liu (2016) proposed a feature level fusion of HSI spectral data and textural data 

617 to develop PLSR model for the prediction of another important freshness indicator of meat, K-value. 

618 They selected six feature wavebands (407, 481, 555, 578, 633, and 973 nm) and merged them with 

619 texture data of the grayscale images extracted by GLCM at the selected wavebands. The data fusion 

620 approach resulted in improved models with R2
P of 0.92 and RMSEP of 4.0%. 

621 If the success of HSI is expected for chemical composition analysis, its application for technological 

622 attributes has also been investigated - with more or less success - in the recent years. 

623 Indirect measure of pH has been proposed for beef (ElMasry et al., 2013), pork (Barbin et al., 2012) 

624 and lamb (Kamruzzaman, ElMasry, Sun & Allen, 2012b). Even if applying different regression 

625 approaches models developed for beef and lamb did not performed well (R2
CV lower than 0.70). The 

626 same authors hypnotised that the considered pH variation in animal flash after-post mortem process 

627 could be too small to construct a robust model.  However, the model developed for pork gave R2
P of 

628 0.90 and RMSEP of 0.10, when considering a similar variation range was 5.31 – 6.43.

629 HSI systems demonstrated to be useful for colour determination intuitively when the spectral range 

630 covered also the visible part (400-700 nm). This is the case of the models developed by Wu, Peng, 

631 Li, Wang, Chen, and Dhakal, (2012) for beef and by Kamruzzaman, Makino, and Oshita (2016a) for 

632 beef, pork and lamb. Those models reached high prediction capabilities for a* determination, which 

633 describes the colour space from green (−) to red (+), thus, the expected variation in red meat. Also, 

634 models developed for L* - lightness from black (0) to white (100) – gave high predictive 

635 performances (R2
P>0.96). 

636 WHC modelling brought to heterogeneous results. Barbin et al. (2012) and ElMasry, Sun and Allen 

637 (2011) obtained good models after variable selection in prediction (R2
P=0.89, RMSEP=0.79%) and 

638 cross-validation (R2
CV=0.89, RMSECV=0.26%), respectively. The variable selection strategy (RC-
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639 LS-SVM optimal wavelengths) resulted successful for the models developed by Kamruzzaman, 

640 Makino, and Oshita (2016b) leading to excellent WHC predictions and clear distribution maps for 

641 beef, pork and lamb samples. Less promising results were obtained by the authors using the full NIRs 

642 spectral range (Kamruzzaman et al., 2012b).

643 Models based on HSI for the prediction of meat texture, highly relevant for consumer acceptance, has 

644 been recently investigated. For instance, Xiong et al. (2015b) achieved acceptable results (RP of 0.87 

645 and RMSEP of 0.05) by applying PLS regression to images collected in the Vis/NIRs-HSI range (400 

646 to 1000 nm) to predict hydroxyproline in poultry meat. For extensive details about recent application 

647 of HSI for texture prediction in meat products refer to Reis et al. (2018).

648 5.3.  NMR

649 Several studies have been found in the scientific literature by applying LF-NMR and HF-NMR 

650 systems to estimate quality traits of fresh meat (Table 3). 

651 The use of LF-NMR to analyse pork samples was firstly tested with the aim of study the relationship 

652 between cooking temperature, the water distribution and some sensory attributes (Bertram, Aaslyng, 

653 & Andersen,, 2005). T2 as relaxation time and CPMG sequence for the spectra acquisition were 

654 applied, while PLS was selected for the data analysis. High correlation coefficients were found 

655 between the changes in the sensory attributes, which were caused by the temperature of cooking, and 

656 the spectral data, i.e. juiciness (R² = 0.82), tenderness (R² = 0.87)). Moreover, Straadt, Rasmussen, 

657 Andersen, and Bertram, (2006) demonstrated the relationship between the water holding capacity and 

658 the water distribution of loins with different days of aging while are cooking and the NMR data (R > 

659 0.75). These authors used a LF-NMR system (23.2 MHz) with T2 relaxation time and CPMG 

660 sequence. 

661 In the case of chicken samples, most studies used LF-NMR and T2 relaxation time. Thus, Li, Wang, 

662 Xu, Xing, and Zhou (2014) tried to determine the effect of freezing-thawing with different conditions 

663 of high pressure on water holding capacity or cooking loss of chicken by means of LF-NMR. These 

664 authors used CPMG sequence and applied correlation coefficients as data analysis technique. Thus, 

665 good to excellent but inverse relationship were found both parameters (water holding capacity R= -

666 0.707, cooking loss R= -0.920). Under the same analytical conditions, previous studies had also found 

667 high correlation coefficients between T2 signal intensity and water activity (R > 0.90) (Venturi, 

668 Rocculi, Cavani, Placucci, Dalla Rosa, & Cremonini, 2007), cooking loss (R = 0.986) and moisture 

669 content (R = 0.953) (Shaarani, Nott, & Hall, 2006). 

670 The use of LF-NMR has also been evaluated in beef. Pereira and Colnago (2012) determined the 

671 moisture content on beef samples by applying CPMG sequences weighted on transverse 
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672 magnetization relaxation time (T2) on LF-NMR (8.9 MHz), and using PLS and PCA as data analysis 

673 techniques. Correlation coefficients obtained between moisture content and T2 intensity values of 

674 NMR were higher than 0.96. Moreover, mixes of beef and horse were tried to be classified as a 

675 function of the quantity of each type of meat by LF-NMR (60 MHz). For that, T1 and T2 relaxation 

676 times were applied and PCA and Naïve Bayes statistics were used as classification techniques. Results 

677 showed that 106 of 107 samples were correctly classified, showing the accuracy of this methodology 

678 to differentiate mixtures of different meat (Jakes et al., 2015).

679 The effect of thawing and post-thawing on a number of quality parameters of rabbit meat (lipid 

680 oxidation, water holding capacity, instrumental color and texture) has also been studied by applying 

681 LF-NMR (70 MHz) (Jia, Liu, Nirasawa, & Liu, 2017). For that, transverse magnetization relaxation 

682 time (T2) and CPMG pulse sequence were used on LF-NMR. ANOVA and correlation coefficients 

683 were applied as data analysis techniques. Correlation coefficients higher than 0.95 were achieved for 

684 all parameters studied in this work. 

685 HF-NMR has not been highly used in fresh meat, with only a study being found in duck samples (Liu, 

686 Pan, Ye, & Cao, 2013). These authors evaluated the capacity of HF-NMR to discriminate meat 

687 samples as a function of the age of the ducks and to determine 22 metabolites. These authors used T1 

688 relaxation time and CPMG pulse sequence on HF-NMR (400 MHz), and PCA and PLS as data 

689 analysis techniques. Results showed accurate classification results (percentage of correct 

690 classification higher than 60 %), differentiating among meat samples from duck of 27, 50, 170 and 

691 500 days old, and correlations coefficients (higher than 0.70 for most metabolites).

692 5.4.  MRI

693 Most of the MRI studies in meat have been published after the year 2000, and they have been mainly 

694 carried out by using HF scanners, being the dry-cured ham the most sampled meat product in this 

695 kind of works. However, the interest on LF-MRI is experimenting a significant increase nowadays.

696 Regarding the publications about the use of MRI to analyse fresh meat in the last years, which are 

697 summarized in Table 4, the earliest works (2011-2016) used HF-scanners, whereas LF ones have 

698 been preferred in the latest researches (2015-2019). It is also noted that these recent studies on MRI 

699 and fresh meat can be fairly gathered as a function of their main objective: classifying of the meat 

700 samples, analysing the percentage of intramuscular fat or lean, optimization of the MRI methodology 

701 to predicted the quality parameters of meat and evaluation of the changes due to freezing/thawing the 

702 meat samples.

703 Studies centred on classification purposes have been carried out with hams (Perez-Palacios et al., 

704 2011; Caballero et al., 2016). These authors aimed to discriminate between hams from pigs fed with 

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298



23

705 different diets (acorn and grass vs. high oleic acid enriched feeding) (Perez-Palacios et al., 2011), and 

706 as a function of their salt content (Caballero et al., 2016). In both studies the images were acquired 

707 by using HF-H1 MRI scanners with a quadrature whole-body coil and applying T1-weighted spin 

708 echo sequences. Three similar steps were carried out in both studies for the MRI analysis. Active 

709 Contours was applied on the images to recognize the Biceps femoris, in both studies, and the 

710 Semimembranosus muscles, only in the salt study. Then, the Region of Interest (ROI) was selected 

711 on each muscle. In the salt study, each ROI was divided into minor rectangles, which can be called 

712 mini-ROIs. Finally, the analysis of the ROIs and mini-ROIs was done by applying three 

713 computational texture algorithms (GLCM, GLRLM, NGLDM), obtaining a vector of 15-17 

714 computation texture features. 

715 Results obtained in the study of Perez-Palacios et al. (2011) showed visual differences between the 

716 MRI of hams from pigs fattened with acorn and grass (darker grey colour that represents the muscle) 

717 and high oleic acid concentrates (brighter white colour that represents the fat) (Figure 4). Besides, 

718 ANOVA showed statistical differences in the values of the texture features between the two batches 

719 and PCA displayed a clear separation of the two groups of hams. 

720 In the case of the salt study, Caballero et al. (2016) applied classification techniques of data mining, 

721 getting a 77-79% of correct classification of ham muscles with different salt content when applying 

722 the J48 decision tree technique. These authors also achieved to predict the salt content as a function 

723 of the computational texture features with high accuracy by MLR.

724 As for the studies based on determining the content of fat and lean by MRI, Lee, Lohumi, Lim, Gotoh, 

725 Cho, and Jung, (2015) scanned different beef samples (ribeyes of four categories) by using a LF-H1 

726 MRI with a head coil and SE-T1 sequences. Then, the threshold method was applied to calculated 

727 total area of the image and of the intramuscular fat, as well as their number of pixels. The percentage 

728 of intramuscular fat was then calculated considering these data and the density of the fat and muscle 

729 = (total pixel number of intramuscular fat * fat density) / (total pixel number of muscle * muscle 

730 density) + (total pixel number of intramuscular fat * fat density) * 100. Results on this study were 

731 more precise for samples with high fat percentage than for that with low fat content, which authors 

732 have ascribed to thresholding method. It classifies each pixel as pure fat or not, but some pixel may 

733 contain both tissues. 

734 In the same line, Bernau et al. (2015) investigated about the use of MRI to evaluate the carcass 

735 composition of boars, instead of the standard protocol. Samples were scanned in a LF-H1 MRI with 

736 a large body coil and GE-T1 sequences. Images were analysed semi-automatically by the interactive 

737 segmentation function to separate muscles from fat and removing bone and cartilage tissues manually. 

738 Total volume and the volume of fat and lean were calculated on the different regions and muscles of 
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739 the carcass and compared with the results from the standard protocol. A stepwise regression analysis 

740 was carried out on these traits, resulting in a regression equation for the percentage of lean meat with 

741 a high coefficient of determination (R2 = 0.88).

742 The principal objective of most studies using LF MRI scanners has been the optimization of the 

743 procedure to achieve high accurate results (Perez-Palacios et al., 2017; Caballero et al., 2017a; Ávila 

744 et al., 2018). In these works, pork loins were scanned by using a LF-H1 MRI with a hand/wrist coil. 

745 Different combinations of acquisition sequence, image analysis methods and prediction techniques 

746 of data mining techniques have been tested to reach the best option for predicting the quality 

747 characteristics of pork loins most precisely. Perez-Palacios et al. (2017) focused on the texture 

748 algorithms (GLCM, GLRLM, NGLDM), Caballero et al. (2017a) on fractal algorithms (CFA, FTA, 

749 OPFTA) and Ávila et al. (2018) on 3D texture algorithms (3D GLCM, 3D GLRLM, 3D NGLDM), 

750 whereas the same acquisition sequences (SE, GE and T3D weighted in T1) and data mining 

751 techniques (MLR and IR) were evaluated in the three works. 

752 Perez-Palacios et al. (2017) observed visual differences in the MRI of loins depending on the 

753 acquisition sequence, with SE offering sharper and better-defined images than GE and T3D, and also 

754 found the significant influence of the acquisition sequence on the values of all computational texture 

755 features. Prediction equations of the different physico-chemical parameters analysed (percentage of 

756 moisture and lipid, water activity and instrumental colour coordinates) showed accurate correlation 

757 coefficients when applying SE or GE in combination with any of the acquisition sequences or data 

758 mining techniques tested, while the use of T3D sequence lead to less precise results. In view of that, 

759 it was considered the time consumed and the required resources to choose the best option, which was 

760 SE-GLCM-MLR. 

761 As for the research of Caballero et al. (2017b) with fractal algorithms, there were also found 

762 significant differences in all fractal features among GE, SE and T3D acquisition sequences. The 

763 prediction results were affected by the sequence acquisition, the fractal algorithm and the data mining 

764 technique, finding the best prediction results with the combination SE-OPFTA-MLR. In fact, SE 

765 offers a better performance in terms of signal to noise ratio than GE and T3D, OPFTA simulates the 

766 texture of the MRI better than FTA and CFA (Caballero et al., 2018), and MLR is recommended 

767 when the values of the database are not highly correlated (Pérez-Palacios et al., 2014). 

768 In the 3D study of Ávila et al. (2018), the MRI analysis initiated with the selection of a ROI of 20 x 

769 20 pixels. The ROIs of all the images of a piece were reconstructed in three dimensions by linear 

770 interpolation methods. Then, the 3D reconstructed MRI of loins were analysed by the three classical 

771 algorithms for texture analysis adapted to work with three-dimensional images. Again, the influence 
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772 of the sequence acquisition on the values of the computational texture features was detected. As 

773 occurred in the study of Perez-Palacios et al. (2017) with two-dimensional images, combinations of 

774 SE or GE with any texture algorithm and any regression technique offered precise prediction results 

775 for the physico-chemical parameters of loins. However, Ávila et al. (2018), taking into consideration 

776 the computational cost apart from the accuracy of the methodology, proposed the combination of GE-

777 3D GLCM-IR as the best option. 

778 In these studies, to validate the optimum procedure achieved, the adjustment between real and 

779 predicted values of the physico-chemical parameters analysed were statistically compared, having 

780 both groups of data the same performance and not being significantly different.

781 Another recent study on pork loins has been published by Ávila et al. (2019), who used a LF-H1 MRI 

782 scanner with a hand/wrist coil and SE T1-weighted acquisition sequences to predict physico-chemical 

783 characteristics of fresh loins. The authors of this study considered that conclusions of the previous 

784 works at evaluating the use of MRI to analyse meat might be preliminary, due to the use of 

785 conventional texture descriptors and regressors instead of stronger methods and of optimistic 

786 methodology to measure the performance. In this sense, experiments of this study were developed 

787 with 15 texture descriptors to analyse the MRI (such as Haralick descriptors, local binary patterns, 

788 fractal features, Gabor or wavelet features), in combination to 28 regression techniques to analyse the 

789 data (linear regressors, neural networks, deep learning, support vector machines, regression trees, 

790 ensembles, boosting machines and random forests, among others), having 720 combinations in total. 

791 To guarantee a realistic evaluation, three data partitions (for training, validation and test) were used 

792 instead of the usual two sets (training and test sets), and the dataset was created leaving one meat 

793 piece out, instead of the common random partitioning of the image collection. The test set was 

794 composed by one meat piece, while the images of the remaining meat pieces were divided into the 

795 training and validation sets at random. Good to excellent prediction results were achieved for most 

796 physico-chemical parameters analysed, but there was not possible to set a common combination of 

797 texture vector and regressor that provides accurate correlations for all characteristics tested. 

798 Most recent studies on MRI and fresh meat have been focused on analysing the effect of 

799 freezing/thawing. Cheng et al. (2019) worked with beef semimembranosus muscles that were scanned 

800 by using a LF-H1 and SE acquisition sequences weighted in T1 and T2. The image analysis of this 

801 study consists of measuring the relative intensity of the MRI from samples subjected to 0, 1, 2, 3, 4, 

802 5, 6, 7 freeze-thaw cycles. The obtained data were analysed by ANOVA followed by the Tukey 

803 procedure. The signal intensity of T1 and T2 images significantly decreased as the number freeze-
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804 thaw cycles increased. Besides, it was observed a decrease in the brighter of the T1 and T2 images 

805 from external to centre regions with the increase of the freeze-thaw cycles.

806 The assessment of the loss of quality of chicken breast due to freezing/thawing was study by Frelka 

807 et al. (2019), who used a HF-H1 MRI with a knee coil. Three different sequences acquisition were 

808 tested (3D T1 – rapid GE, proton density – turbo SE and T2 – turbo SE). The analysis of the images 

809 was done visually and by measuring the percentage of pixels. The water changes that take place 

810 during the freezing/thawing cycles were clearly observed in the images from the three sequence 

811 acquisitions. The quantitative analyses based on the percentage of pixels were only done in the images 

812 from proton density and T2 sequences, noting differences between unfrozen and frozen/thawed 

813 samples, especially in proton density images.

814 6. ADVANTAGES AND DISADVANTAGES OF NON-DESTRUCTIVE TECHNIQUES 

815 METHODS 

816 Some of the greatest advantages of NIRs in meat quality evaluation are that it is non-destructive, can 

817 be non-contact, and has varying degrees of portability to meet different application needs. The typical 

818 halogen light source is easily available, and technological advances are ever increasing compactness, 

819 ruggedness, and accuracy, as well as decreasing cost. The technology also has a number 

820 disadvantages particularly related to the inhomogeneity and high moisture content of meat. The 

821 former requires that intact samples have large or multiple reading areas, and the latter that both sample 

822 and ambient temperature remain consistent. Additionally, in an industrial situation where NIRs could 

823 be used for monitoring or sorting on a moving belt, samples are not static, due to shape variations the 

824 distance from a fixed reading head is inconsistent, and data collection and analysis must be rapid. As 

825 discussed above, there has been some progress in several of these areas and the future looks 

826 promising.

827 The main advantage of HSI technology is the ability in predicting the concentration gradient of 

828 chemical constituents as spatial distribution, which can be especially useful for visualizing meat 

829 quality traits. HSI allows to merge the digital imaging spatial resolution with the chemical information 

830 obtainable by point spectroscopy. This is particularly relevant for fat content and distribution 

831 modelling, indeed the success in intramuscular fat determination could permit producers to exploit to 

832 the maximum level the quality of each meat cut answering the specific needs of the market.

833 The huge disadvantage of HSI technology is related to the long acquisition time and the large amount 

834 of produced data for each single measure. However, simplified instruments (multiband cameras) 

835 developed for specific applications could reduce the spectral range to be scanned up to few selected 
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836 wavelength, thus minimizing both acquisition time and generated data, which anyway will be fast 

837 managed with the proper ad hoc chemometric method.

838 One of the benefits of using NMR is the high sensitivity for distinguishing the different component 

839 of the meat, which is due to the strength of the magnetic field and it is dependent on the presence of 

840 the magnetic atom on the sample to analyze. Thus, the evaluation of fresh meat, which has a high 

841 content of 1H, by NMR with antennas for exciting 1H spin, achieves accurate results. It is also notable, 

842 the low time of analysis of NMR systems, being lower than 2 minutes per sample. However, this 

843 technique is quite sensitive to changes of the temperatures, being necessary low room-temperature to 

844 have accurate results. In addition, the size of the samples to be analyse should be very small, which 

845 require their destruction in some cases. 

846 The use of MRI-computer vision as an alternative methodology to analyse different quality 

847 parameters of meat offers the advantage of being a non-destructive, non-invasive, non-radiant and 

848 innocuous techniques. Besides, it takes less time than traditional and destructive methods. However, 

849 some improvements, mainly on the image acquisition time and software, should be developed in order 

850 to work automatically, give the results on-line and fulfil the requirements of the meat industries. This 

851 is the only technique be able to take information from the inner of solid samples of medium-large 

852 volume, and consequently, it is really interesting for meat pieces such as loins or hams. 

853 CONCLUSIONS AND FURTHER STUDIES. 

854 The use of NIRs in the laboratory for objective assessment of meat quality is developing, with best 

855 results for composition-related measurements. Colour, pH, and drip loss are predicted best when the 

856 VIS-NIRs spectra is used. Routine use of NIRs on a production line is still in the future, although 

857 possibly a very near future. Technological advances reducing size, cost, and data analysis time are 

858 making NIRs more easily available, although new equipment should not be blindly used, but tested 

859 for accuracy and precision before being relied upon.

860 Most of the reported works are feasibility studies mainly developed at laboratory scale, whereas there 

861 is a lack of studies proving model’s robustness at processing plant level. Thus, more effort is desired 

862 to bridge the gap between spectroscopic devices’ potential and their implementation as Process 

863 Analytical Technology tool, and this way should involve both researchers and industries. 

864 Furthermore, few cases present a data fusion approach, which could be considered a strategic way to 

865 improve quality attribute prediction by non-destructive techniques. For instance, the combination of 

866 HSI and digital image analysis could provide improved models for quality assessment at industrial 

867 level.
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868 NMR systems noted for their high sensitivity and accurate in the detection of the component of the 

869 meat and for the analysis speed. The most studies developed with NMR on fresh meat have been 

870 carried out with LF-NMR systems, with CPMG as pulse sequence and T2 as relaxation time. The 

871 results obtained show the ability of this technique to determine main physico-chemical parameters of 

872 fresh meat, and to evaluate the effects of cooking and freezing/thawing. 

873 In the last decade, most studies developed with MRI on fresh meat have been carried with low-field 

874 scanners, to optimize the methodology and predict quality parameters of loins. Nevertheless, the use 

875 of high-field scanners has been reduced in the last years, being mainly applied with classification 

876 purposes. The latest publications on MRI have been focused on evaluating of the effect of 

877 freezing/thawing on meat. The accurate results obtained on these MRI studies allow you to indicate 

878 that the combination of different acquisition parameters, algorithms for analysing the images and data 

879 analysis techniques can be proposed as an alternative methodology to analyse fresh meat with high 

880 reliability in a non-destructive way. Nevertheless, the future work will be to operate as a quality 

881 assessment system in the meat industries, by improving the time for image acquisition and to develop 

882 a software that analyses the images automatically and provides the results on-line.
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1257 FIGURE CAPTIONS

1258 Figure 1. Illustration of common modes of measurement employed with NIRs.

1259 Figure 2.  Hyperspectral systems configurations: a) One-Point, 2) Multiple spatial scanning, and c) 

1260 area/plane scanning.

1261 Figure 3. NMR spectra of a beef sample by using a HF-NMR system.

1262 Figure 4. MRI of hams from pigs fattened with different diets (A: acorn and grass; B: high oleic acid 

1263 concentrate).
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Table 1. Summary information about the use of NIRs to analyse fresh meat since 2016.

Meat 
sample

Sample 
preparation

Equipment 
type

Wavelength 
range (nm)

Data pre-
processing

Data 
Processing Variable Calibration performance Cross validation or 

Prediction performances References

      Adulteration      
beef, pork, 
chicken

ground benchtop 400-1700 PLSR Full spectrum 
of known 
species & 
mixes

rc = 57-88% RMSEC = 
0.23-0.51

rp = 53-83% RMSEP = 
0.24-1.36

Rady & 
Adedeji, 
2018

    

included: none, 
smooth with 1st  
& 2nd der.a, 
normalization, 
SNV, MSC, 
median center.

 Selected 
wavelengths 
of known 
species & 
mixes

rc = 90-96% RMSEC = 
0.09-0.26

rp = 78-86% RMSEP = 
0.17-0.40

 

            
beef, pork ground portable; 

NirScan 
Nano

900-1700 none, MSC, SNV, 
1st or 2nd der. 

PLSR Beef r2
c = 0.91-0.93 RMSEC = 

5.48-6.05
r2

p = 0.33-
0.70 

RMSEP = 
13.07-
19.72

Nolasco-
Perez et al., 
2019

      Pork r2
c = 0.16-0.69 RMSEC = 

11.40-18.67
r2

p = 0.01-
0.28

RMSEP = 
20.32-
23.90

 

      Prediction      
beef intact portable; 

ASD 
FieldSpec

800-2500 PLS Hardness (N) rc = 0.74-0.94 RMSEC = 
6.25-10.19

rp = 0.60-.079 RMSEP = 
8.89-
10.89

Li, Z. et 
al., 2016

     Springiness 
(mm)

rc = 0.54-0.93 RMSEC = 
0.69-1.11

rp = 0.35-0.71 RMSEP = 
0.91-1.27

 

    

wavelet analysis 
to denoise; 
smooth, 1st order 
differential, 2nd 
order differential, 
SNV.  Chewiness 

(mJ)
rc = 0.69-0.94 RMSEC = 

14.01-25.16
rp = 0.52-0.66 RMSEP = 

22.06-
27.31

 

      Adhesiveness 
(N·mm)

rc = 0.44-0.72 RMSEC = 
0.30-0.40

rp = 0.22-0.69 RMSEP = 
0.24-0.32

 

            
beef intact benchtop; 

FAT-
Analyzer 
S-7040

920-970 SG smoothing, 
2nd der.

PLSR Moisture 
content, over 
time (g/g-d·s)

- - r2
p = 0.81 RMSEP = 

0.34
Ishikawa et 
al. 2017

            



pork intact benchtop 833-2500 PLSR pH r2
c = 69.70-

78.10
RMSEC = 
0.09-0.10

r2
cv = 64.55-

70.10
RMSECV 
= 0.10-
0.11

Li, X. et 
al., 2016

     CIE L* r2
c = 66.31-

81.90
RRMSEC = 
1.72-2.32

r2
cv = 60.02-

11.18
RMSECV 
= 1.91-
2.51

 

    

SG smoothing, 
then 1st or 2nd 
der. & combined 
with SNV or 
MSC; COE.

 CIE a* r2
c = 17.26-

54.55
RMSEC = 
0.96-1.30

r2
cv = 13.48-

31.61
RMSECV 
= 1.16-
1.32

 

      CIE b* r2
c = 40.82-

61.46
RMSEC = 
0.51-0.63

r2
cv = 38.38-

45.49
RMSECV 
= 0.60-
0.64

 

            
pork intact  1st der., and 

normalization
 SFA (%) r2

c = 0.96 SEC=0.52 r2
v = 0.92 SEV = 

0.62
Richli et 
al., 2016

     MUFA (%) r2
c = 0.83 SEC=0.63 r2

v = 0.76 SEV = 
0.67

 

  

benchtop; 
NIRFlex 
N-500 
(Buchi)

   PUFA (%) r2
c = 0.94 SEC=0.43 r2

v = 0.92 SEV = 
0.49

 

      IV r2
c = 0.98 SEC=0.68 r2

v = 0.98 SEV = 
0.67

 

      Fat (%) r2
c = 0.86 SEC=1.57 r2

v = 0.62 SEV = 
1.97

 

      Moisture (%) r2
c = 0.71 SEC=1.71 r2

v = 0.64 SEV = 
1.67

 

            
pork lean - 

homogenized;  
fat - intact

benchtop; 
FOSS NIR 
Systems 
6500

400-2500 1100-2400nm: 1st 
der., SNVD

PLSR IMF (%). 
Lean

r2
c = 0.98-0.99 SEC = 0.14-

0.23
r2

cv = 0.95-
0.97

SECV = 
0.25-0.30

Prevolnik 
Povse et 
al., 2017

      Moisture (%). 
Lean

r2
c = 0.90-0.91 SEC = 0.39-

0.45
r2

cv = 0.63-
0.82

SECV = 
0.65-0.75

 

      Protein (%). 
Lean

r2
c = 0.45-0.92 SEC = 0.48-

0.92
r2

cv = 0.28-
0.81

SECV = 
0.73-1.05

 

      SFA 
(g/100g). Fat; 
Lean

r2
c = 0.95; 0.98 SEC = 0.44; 

0.26
r2

cv = 0.83; 
0.58

SECV = 
0.79; 1.33

 



      MUFA 
(g/100g). Fat; 
Lean

r2
c = 0.98; 0.18 SEC = 0.35; 

2.39
r2

cv = 0.91; 
0.11

SECV = 
0.70; 2.54

 

      PUFA 
(g/100g). Fat; 
Lean

r2
c = 0.97; 0.78 SEC = 0.32; 

1.51
r2

cv = 0.89; 
0.53

SECV = 
0.57; 2.21

 

      n-3 PUFA 
(g/100g). Fat; 
Lean

r2
c = 0.96; 0.62 SEC = 0.04; 

0.12
r2

cv = 0.83; 
0.55

SECV = 
0.08; 0.13

 

      n-6 PUFA 
(g/100g). Fat; 
Lean

r2
c = 0.97; 0.77 SEC = 0.29; 

1.43
r2

cv = 0.89; 
0.52

SECV = 
0.51; 2.08

 

      n-6/n-3 
PUFA 
(g/100g). Fat; 
Lean

r2
c = 0.80; 0.12 SEC = 0.48; 

1.44
r2

cv = 0.30; 
0.02

SECV = 
0.89; 1.52

 

            
pork intact portable; 

Sup-NIR-
1520

1000-1799 SG 1st der., SG 
smoothing, OSC

PLS Cholesterol 
(mg/100g)

rc = 0.91 SEC=2.56 rp = 0.66 SEP = 
4.99

Wang, H. 
et al., 2017

            
pork Intact 400-2500 PLSR pH (400-1850 

nm)
- - r2

cv = 0.28 RMSEV 
= 0.07

Andersen 
et al., 
2018a

   

Divided into 400-
1850 and 780-
1850 then SNV 
applied to each 
region.

 EZ-Drip (%) 
(780-1850 
nm)

- - r2
cv = 0.06 RMSEV 

= 1.69
 

  

benchtop; 
FOSS 
NIRSystem 
XDS rapid 
content 
analyzer.

   Vacuum drip 
(%) (780-
1850 nm)

- - r2
cv = 0.12 RMSEV 

= 1.00
 

      IMF (%) 
(780-1850 
nm)

- - r2
cv = 0.57 RMSEV 

= 0.11
 

            
pork intact portable; 

ASD 
LabSpec4

350-1900 One of: SG 
smoothing and 1st 
or 2nd order der.,  
SNV, SNVD, 

PLSR Subjective 
firmness 
score

r2
c = 0.74-0.80 RMSEC=0.41-

0.48
r2

v = 0.44-
0.72

RMSEP = 
0.45-0.66

Soladoye 
et al., 2018



    SNVD plus SG 
smoothing and 1st 
or 2nd order der. 

 Bar bend 
angle

r2
c = 0.73-0.99 RMSEC=0.97-

14.76
r2

v=0.51-.072 RMSEP = 
13.71-
17.99

 

            
lamb homogenized benchtop; 

FOSS 
NirSystems 
6500

400-2500 Included scatter 
correction,  der.s, 
smoothing

PLS, PCR TBARS r2
c = 0.80-0.85 RMSEC=0.32-

0.38
r2

cv = 0.77-
0.80

RMSECV 
= 0.37-
0.41

Ripoll et 
al., 2018

            
lamb intact portable; 

ASD 
Labspec 
Pro

500-2000 SG 1st der. PLS 24 h pH r2 = 0.37-0.70 - - SECV = 
0.10

Knight et 
al., 2019

      IMF (%) r2 = 0.55-0.60 - - SECV = 
0.50-0.70

 

      Shear force 
(N)

r2 = 0.20-0.34 - - SECV = 
7.00-8.90

 

Analysis Testing           
pork intact custom; in-

house
350-2500 SG smoothing, 

SNV
Moisture (%) 
CARS; siPLS

rc = 0.95; 0.95 SEC = 0.58; 
0.60

rp = 0.91; 
0.90

SEP = 
0.38; 0.40

Wang et 
al., 2016

     

PLSR, with 
CARS or 
siPLS Cook loss (%) 

CARS; siPLS
rc = 0.95; 0.93 SEC = 0.01; 

0.02
rp = 0.92; 
0.91

SEP = 
0.02; 0.03

 

      Tenderness 
(N) CARS; 
siPLS

rc = 0.94; 0.94 SEC = 3.59; 
3.99

rp = 0.90; 
0.88

SEP = 
6.90; 7.26

 

            
pork intact 350-2500 L* rc = 0.93 SEC = 0.72 rp = 0.93 SEP = 

1.16
Wang et 
al., 2018b

  

portable; 
custom; in-
house  

PLSR, 
using 
selected 
wavelengths

a* rc = 0.97 SEC = 0.46 rp = 0.96 SEP = 
0.64

 

    

Included: none, 
SNV, SG 1st der., 
or combinations; 
model clustering 

 b* rc = 0.97 SEC = 0.28 rp = 0.96 SEP = 
0.42

 

      pH rc = 0.95 SEC = 0.05 rp = 0.95 SEP = 
0.06

 

      TVB-N 
(mg/100g)

rc = 0.97 SEC = 2.04 rp = 0.95 SEP = 
2.20

 

      Fat (%) rc = 0.96 SEC = 0.13 rp = 0.94 SEP = 
0.18

 



      Protein (%) rc = 0.96 SEC = 0.32 rp = 0.96 SEP = 
0.33

 

    Equipment 
Testing 

     

Beef fat and 
lean 
trimmings

minced custom; in-
house; 
multi-point

1515-1900 SNV, SG 
smoothing.    

PLSR Static r2
c = 0.95 SEC = 5.93 r2

p = 0.82 SEP = 
3.05

Dixit et al., 
2016a

      Slow motion r2
c = 0.9 SEC = 5.62 r2

p = 0.92 SEP = 
3.98

 

      Fast motion r2
c = 0.95 SEC = 5.99 r2

p = 0.85 SEP = 
3.97

 

fat beef 
trimmings & 
lean beef

minced custom; in-
house; 
multi-point

1515-2000 PLSR Fat (%) r2
c = 0.98-0.99 RMSEC = 

2.60-4.25
r2

p = 0.95-
0.99

RMSEP = 
2.79-5.67

Dixit et al., 
2016b

    

SNV, SG 
smoothing, MSC, 
1st & 2nd order 
der.,  SNV plus 
SG smoothing. 

 Moisture (%) r2
c = 0.98-0.99 RMSEC = 

1.69-2.90
r2

p = 0.94-
0.98

RMSEP = 
2.75-4.62

 

      Protein (%) r2
c = 0.96-0.98 RMSEC = 

0.96-1.36
r2

p = 0.90-
0.95

RMSEP = 
1.56-2.28

 

      Ash (%) r2
c = 0.98-0.99 RMSEC = 

0.02-0.04
r2

p = 0.95-
0.99

RMSEP = 
0.03-0.06

 

            
Beef fat and 
lean 
trimmings

minced custom; in-
house; 
multi-point

1515-2050 PLSR Fat (%) r2
c = 0.99 SEC = 1.94 r2

p = 0.78-
0.94; 
baseline 
correction = 
0.77-0.83

SEP = 
6.75-8.61; 
baseline 
correction 
= 11.12-
11.40

Dixit et al., 
2016c

    

SNV, SG 
smoothing, MSC, 
1st & 2nd order 
der., SNV + SG 
smoothing

 Moisture (%) r2
c = 0.99 SEC = 1.76 r2

p = 0.76-
0.94; 
baseline 
correction = 
0.74-0.84

SEP = 
4.96-6.75; 
baseline 
correction 
= 8.49-
9.22

 

      Protein (%) r2
c = 0.99 SEC = 0.43 r2

p = 0.85-
0.91; 
baseline 
correction = 
0.85-0.86

SEP = 
1.71-2.27; 
baseline 
correction 

 



= 2.31-
2.54

      Ash (%) r2
c = 0.98 SEC = 0.04 r2

p = 0.75-
0.83; 
baseline 
correction = 
0.57-0.75

SEP = 
0.11-0.13; 
baseline 
correction 
= 0.14-
0.19

 

            
pork 
myofibril 
extracts

extracted benchtop - 
FOSS 
NIRSystem 
XDS rapid 
content 
analyzer

400-2500 divided into 400-
700, 1100-1700, 
and 1700-2400, 
then EMSC on  
each.

PLSR pH (1100-
1700 nm)

- - r2
cv = 0.14 RMSECV 

= 0.42
Andersen 
et al., 2017

            
pork intact custom; in-

house
350-2500  pH rc = 0.84-0.94 SEC=0.05-

0.18
rp = 0.79-0.91 SEP = 

0.08-0.23
Wang, W. 
et al., 2017

    

Combinations of 
SG smoothing, 
SNV, and 1st der.  TVB-N 

(mg/100g)
rc = 0.93-0.94 SEC=2.06-

2.33
rp = 0.90-0.92 SEP = 

2.62-2.86
 

            
beef intact in-house, 

portable
700-1050 2nd der., SG 

smoothing
PLS MUFA - - Master r2

cv = 
0.79; 
Slave 
r2

p=0.69

Master 
SECV(%) 
= 1.69; 
Slave 
SEP(%) = 
2.03

Piao et al., 
2018

      Oleic - - Master r2
cv = 

0.71; 
Slave 
r2

p=0.64

Master 
SECV(%) 
= 1.86; 
Slave 
SEP(%) = 
2.06

 

      SFA - - Master r2
cv = 

0.81;
Slave 
r2

p=0.67

Master 
SECV(%) 
= 1.67; 
Slave 

 



SEP(%) = 
2.19

            
pork 
myofibril 
extracts

extracted Benchtop - 
FOSS 
NIRSystem 
XDS rapid 
content 
analyzer

400-2500 PLSR Degree of 
proteolysis; 
dried

- - r2
cv = 0.74 RMSECV 

= 1.42
Andersen 
et al., 
2018b

    

Wet samples: 
divided into 400-
900, 1100-1700, 
and 1700-2350 
nm, then EMSC 
on each. Dry 
samples: EMSC 
in 1100-2500 nm 
only. 

 Degree of 
proteolysis; 
liquid

- - r2
cv = 0.10 RMSECV 

= 2.61
 

* 1st or 2nd order der.: First or second order derivative; CARS: Competative Adaptive Reweighted Sampling; COE: Constant Offset Elimination; MSC, E-: Multiplicative Scatter 
Correction, Extended-; OSC: Orthogonal Signal Correction; PC1: Principal Component 1; PCR: Principal Component Regression; PLS, -R, si-: Partial Least Squares, -regression, synergy 
interval-; rc,p: coefficient of correlation for -calibration, -prediction; r2

c, cv, p, v: coefficient of determination for -calibration, -cross validation, -prediction, -validation; RMSE, -C, -CV, -P, -
V: Root Mean Square Error of -calibration, -cross validation, -prediction, -validation; SE, -C, -CV, -P, -V: Standard Error of -calibration, -cross validation, -prediction, -validation; SG: 
Savitzky Golay; SNV, -D: Standard Normal Variate, -detrend;  CIE: Commission internationale de l'éclairage; GC: Gas Chromatography; IMF: Intramuscular fat; IV: Iodine Value; 
MUFA: Monounsaturated Fatty Acids; PUFA: Polyunsaturated Fatty Acids; SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis; SFA: Saturated Fatty Acids; 
TBARS: Thiobarbituric Acid Reactive Substances; TPA: Texture Profile Analysis; TVB-N: Total Volatile Base Nitrogen.



Table 2. Use of HSI in the analysis of fresh meat in the last decade.

Model evaluation

Calibration or Cross-validation PredictionMeat 
sample

Quality 
Parameter Type od HSI Data analysis

Sample Accuracy Sample Accuracy

Reference

Moisture Line scan system 
(400–1000 nm)

PLS 52 R2
CV

 = 0.9                 
SECV = 0.55 %

20 R2
P = 0.94                     

SEP = 0.71 %
Kanpal et al. 
(2013)

TVB-N Line scan system 
(450–950 nm)

BPNN 50 R2
c = 0.94                    

RMSEC= 3.95 mg/100 g
25 RP = 0.75                    

RMSEP = 6.39 mg/100 g
Khulal et al.  
(2017)Chicken

TBARS Line scan system 
(400–1000 nm)

SPA 95 Rcv = 0.83                 
RSECV = 0.14 mg/100 g

63 RP = 0.80                    
RMSEP = 0.16 mg/100 g

Xiong et al. 
(2015b) 

Moisture Line scan system 
(900–1700 nm)

PLS 80 R2
CV = 0.88               

SECV = 0.76 %
40 R2

P = 0.91                    
SEP = 0.62 %

Barbin et al. 
(2013)

IMF Line scan system 
(900–1700 nm)

PLS 13 R2
CV=0.94 

RMSECV=0.17 % 
7 R2

P=0.97                     
RMSEP=0.17 %

Liu and Ngadi 
(2014) 

IMF Line scan system 
(900 -1700 nm)

MLR 18 Rc = 0.97                      
RMSEC=0.89 %

6 RP = 0.90                 
RMSEP = 0.92 %

Huang et al., 
(2017)

TVB-N Line scan system 
(400-1000 nm)

LS - SVM 48 - 24 RP = 0.95                             
RMSEP = 1.86 mg/100 g

Gou et al. (2015)

TVB-N Line scan system 
(400-1000nm)

BP NN - 
Adaboost

48 RC = 0.94    
RMSEC = 5.30 mg/100 g

24 RP = 0.93                   
RMSEP = 5.52 mg/100 g

Li et al. (2015)

TVB-N Fluorescence system 
(400–1000nm)

LS - SVM 68 R2
C = 0.97             

RMSEC 1.88 %
22 R2

P = 0.97                    
RMSEP = 1.90 %

Lee et al. (2018)

K - value Line scan system 
(328–1115 nm)

PLS 140 R2
CV=0.95                 

RMSECV=3-5
70 R2

P = 0.92               
RMSEP = 4

Cheng (2016)

pH Line scan system 
(900–1700 nm)

PLS 50 R2
CV=0.87                          

RMSECV= 0.11
25 R2 = 0.90                  

RMSEP = 0.09
Barbin et al. 
(2012)

Pork

Colour (L*, 
a*, b*)

Line scan system 
(900–1700 nm)

PLS 50 L*, R2
CV=0.93      

RMSECV= 1.36   a*, 
R2CV=0.75      
RMSECV= 0.67   b*, 
R2CV=0.89      
RMSECV= 0.49

25 L*, R2
P=0.90              

RMSEP= 1.63                
a*, R2

P=0.72               
RMSEP= 0.78               
b*, R2

P=0.85              
RMSEP= 0.50     

Barbin et al. 
(2012)

Moisture Line scan system 
(897–1753 nm)

PLS 54 R2
CV=0.89       

SECV=0.51 %
27 R2

P
 = 0.89                          

SEP = 0.46 %
Kamruzzaman et 
al. (2016)

Moisture Line scan system
 (880 - 1720 nm) 

EMCV-PLS 36 R2
CV=0.99    

RMSECV=0.72 %
9 R2

P=0.99                
RMSEP = 0.64 %

M. Zhao et al. 
(2017)Beef

Fat Line scan system 
(970–2500 nm)

PLS 60 R2
CV = 0.89             

RMSECV = 4.87 %
30 R2

P = 0.90             
RMSEP = 4.81 %

Kobayashi et al. 
(2010)



Fat Multispectral system (15 
wavelength between 760 
- 1040 nm)

RCV = 0.98               
RMSECV=3.0%

RP=0.99                 
RMSEP=0.6 %

Wold et al. 
(2011)

Fat Area imaging system 
equipped with a filter 
wheel (1000–2350 nm)

PLS 126 R2
CV = 0.85         

RMSECV =5.85
66 R2

P = 0.739               
RMSEP =5.15

Kobayashi et al. 
(2012)

Fat Line scan system 
(897–1753 nm)

PLS 54 R2
CV = 0.88                    

SECV = 0.66 %
27 R2

P=0.84                    
SEP=0.65 %

ElMasry et al. 
(2013) 

Fat Line scan system 
 (400–1000 nm)

EDM 24 R2=0.96               
RMSECV = not reported

-
-

S. Lohumi et al. 
(2016)

Fat Line scan system  
(880 - 1720 nm) 

EMCV - PLS 36 R2
CV = 0.99            

RMSECV = 0.79 %
9 R2

P = 0.98                    
RMSEP = 0.73%

Zhao et al. (2017)

UFAs Area imaging system 
equipped with a filter 
wheel (1000–2350 nm)

PLS (filter 
based method)

126 R2
CV = 0.86            

RMSECV = 4.11 %
66 R2

P = 0.64               
RMSEP =3.95 %

Kobayashi et al. 
(2012)

Oleic acid Area imaging system 
equipped with a filter 
wheel (1000–2350 nm)

PLS (filter 
based method)

126 R2
CV = 0.85                  

RMSECV =3.57 %
66 R2

P = 0.71                 
RMSEP =3.13 %

Kobayashi et al. 
(2012)

SFAs Line scan system 
(970–2500 nm)

PLS 61 R2
CV = 0.84                       

RMSECV =1.78 %
31 R2

P = 0.87                              
RMSEP =1.69 %

Kobayashi et al. 
(2010)

UFAs Line scan system 
(970–2500 nm)

PLS 62 R2
CV = 0.88                      

RMSECV =3.32 %
32 R2

P = 0.89               
RMSEP =3.41 %

Kobayashi et al. 
(2010)

Protein Line scan system 
(897–1753 nm)

PLS 54 R2
CV = 0.88                 

SECV = 0.31 %
27 R2

P = 0.86                       
SEP = 0.29 %

ElMasry et al. 
(2013)

pH Line scan system 
(900–1700 nm)

PLS 321 R2
CV = 0.73        

RMSECV = 0.06
- - ElMasry et al., 

(2012)
Colour (L*, 
a*, b*)

Line scan system
(900–1700 nm)

PLS 321 L*, R2
CV= 0.88      

RMSECV = 1.21             
b*, R2

CV= 0.81    
RMSECV = 0.57

- - ElMasry et al. 
(2012)

Colour (L*, 
a*, b*)

Line scan system 
(400–1100 nm)

MLR 65 L*, R2
CV= 0.96                      

SECV = 0.61                 
a*, R2

CV= 0.96                 
RMSECV = 0.75                
b*, R2

CV= 0.97    
RMSECV = 0.19

- - Wu et al. (2012)

Moisture Line scan system 
(900-1700 nm)

UVE -SPA - 
MLR

84 RCV= 0.91                 
RMSEC=0.56 %

42 RP= 0.92                       
RMSEP = 0.58 %

Pu et al. (2014)

Fat Line scan system 
(900-1700 nm)

UVE -SPA - 
MLR

84 RCV= 0.95            
RMSECV=0.38 %

42 RP = 0.98                      
RMSEP = 0.36 %

Pu et al. (2014)
Lamb

IMF Line scan system 
(550 - 1700 nm)

GPR 1628 R2
CV = 0.75                 

RMSEC = 0.43 %
829 R2

P= 0.72                                    
RMSEP = 0.45 %

Craig et al. 
(2017)



Protein Line scan system 
(900-1700 nm)

UVE -SPA - 
MLR

84 Rc= 0.80               
RMSEC=0.36 %

42 RP= 0.67                       
RMSEP 0.41 %

Pu et al. (2014)

pH Line scan system 
(900-1700 nm)

PLS 201 RCV= 0.65               
RMSEC=0.085

- - Kamruzzaman et 
al. (2012b)

Colour (L*) Line scan system 
(900-1700 nm)

PLS 201 RCV= 0.91               
RMSEC=1.32

- - Kamruzzaman et 
al. (2012b)

*  IMF: Intramuscular fat; SFA: Saturated Fatty Acids; TBARS: Thiobarbituric Acid Reactive Substances; TVB-N: Total Volatile Base Nitrogen; UFA: 
Unsaturated Fatty Acids; BP NN: back propagation neural network; EDM: Euclidean distance measure; EMCV: ensemble Monte Carlo variable selection; 
GPR: Gaussian process regression; MLR: Multiple Linear Regression; PLS: Partial Least Squares regression; LS – SVM: Least Square - Support Vector 
Machine; UVE-SPA-MLR: UVE-SPA-MLR: Uninformative Variable Elimination - Successive Projections Algorithm - Multiple Linear Regression; Rc,CV, p: 
coefficient of correlation for -calibration, - cross-validation, -prediction; R2

c, cv, p: coefficient of determination for -calibration, -cross-validation, -prediction; 
RMSE, -C, -CV, -P: Root Mean Square Error of -calibration, -cross-validation, -prediction; SEP: Standard Error of Prediction.



Table 3. Summary information about the use of NMR to analyse fresh meat in recent years.

Meat sample Objective Type of 
System

Acquisition 
sequences Data analysis techniques Main results Reference

Relationship between cooking 
temperature and the water distribution 

within cooked pork loin.
LF T2 PLS

High correlation 
coefficient on some 
sensory attributes 

(Juiciness, Tenderness)

Bertram et al., 2005

Pork
Relationship between water holding 
capacity and the water distribution of 

cooked pork meat.
LF T2 Correlation coefficients

High  correlations as a 
function of different days 

of aging
Straadt et al., 2006

Determining the effect of the water on 
frozen and thawed chicken. LF T2 Correlation coefficients

High correlation for 
water activity and 

cooking loss
Li et al., 2014

Determining the water activity in chicken LF T2 Correlation coefficients
High correlation between 

water activity and T2 
intensity signal.

Venturi et al., 2007Chicken

Monitoring the cooking loss and the 
moisture percentage during the cooking of 

chicken meat.
HF T2 ANOVA and correlation 

coefficients

High correlation between 
moisture and T2 intensity 

signal
Shaarani et al., 2006

Determining the moisture content of beef 
meat. LF T2 PLS and PCA

High correlation between 
moisture and T2 intensity 

signal
Pereira, and Colnago, 2012

Beef
Discriminating between beef meat and 

horse meat on meat mixing. LF T1 and T2 PCA and Naïve-Bayes

High percentage of 
samples with different 

meat mixing were 
correctly classified

Jakes et al., 2015

Rabbit
Monitoring the effect of thawing and post-
thawing on the quality information from 

frozen rabbit meat.
LF T2 ANOVA and correlation 

coefficients
High correlation 

coefficients Jia et al., 2017

Duck Discriminating duck samples as function 
of age and its quality HF T1 PCA and PLS

High percentage of 
correct classification for 

duck samples.
Liu et al., 2013

* HF: High Field; LF: Low Field; PLS: Partial Least Square: ANOVA: Analysis of Variance; PCA: Principal Component Analysis



Table 4. Summary information about the use of MRI to analyse fresh meat in the last decade.

Methodology
Meat sample Main goals Type of 

meat Scanner - 
coil

Sequence 
acquisition Image analysis Data 

analysis

Main results Reference

Ham Classifying as a 
function of pig diet Ham HF – H1, 

body coil SE - T1
Contour Active

ROI
 Texture algorithms

ANOVA
Pearson`s 

Correlation
PCA

Visual differences 
Statistical 

differences in 
computational 

texture

Pérez-Palacios et 
al., 2011b

Ham

Classifying as a 
function of salting 

stage

Prediction of salt 
content 

Ham HF – H1, 
body coil SE - T1

Contour Active
ROI

Texture algorithms

Data mining 
(OneR, J48 

decision tree 
MLR)

High percentages 
of correct 

classification
Very good 
correlation 

coefficients of 
prediction

Caballero et al., 
2016a

ROI 
Texture algorithms

Data mining 
(MLR, IR)

SE – GLCM – 
MLR 

(best option for 
prediction)

Pérez-Palacios et 
al., 2017

Fractals algorithms Data mining 
(MLR, IR)

SE – OPFTA - 
MLR 

(best option for 
prediction)

Caballero et al., 
2017a

SE - T1 
GE - T1

 T3D - T1

Interpolation and 3D 
reconstruction

3D Texture algorithms
MLR and IR

GE - 3D GLCM - 
IR 

(best option for 
prediction)

Ávila et al., 
2018bPork Loins

Optimization of the 
methodology 

Prediction of quality 
parameters

Pork 
Loins

LF - H1, 
hand/wrist 

coil 

SE - T1 
A collection of 15 texture 

features from different 
algorithms

A collection of 
28 regressors 

Any option 
provides the best 

result for all 
attributes tested.
All combinations 

achieved
good to excellent 

correlation for 
most parameters 

analysed.

Ávila et al., 2019



Pork carcass Determining the lean 
meat percentage 

Pork 
carcass

HF – H1, 
large body 

coil
GE - T1

Interactive segmentation 
function for separating 

muscle

Stepwise 
regression

Accurate 
prediction

Bernau et al., 
2015

Beef

Visualization and 
prediction of 
intramuscular
fat distribution

Beef HF – H1, 
head coil SE - T1 Thresholding Correlation 

coefficients

High correlation 
coefficients 

between real and 
predicted data

Lee et al., 2015

Chicken breast Assessment of drip 
after freeze/thaw 

Chicken 
breast

HF – H1, 
knee coil

3DT1 - rapid GE
Proton density - 

turbo SE
T2 - turbo SE

- -

MRI showed 
freeze/thaw 

changes, 
especially when 

using 3DT1 - rapid 
GE

Frelka et al., 
2019

Beef

Investigating the 
water distribution 

changes in 
frozen/thawed 

samples 

Beef LF – H1 SE - T1
SE – T2 Signal intensity measure -

T1 and T2 MRI 
displayed the 

decrease of water 
in frozen/thawed 

samples

Cheng et al., 
2019

* HF: High Field; LF: Low Field. Sequence Acquisition: SE: Spin Echo; GE: Gradient Echo; T3D: Turbo 3D. Image Analysis: ROI: Region of Interest. Data Analysis: ANOVA: One-Way 
Analysis of Variance; PCA: Principal Component Analysis; MLR: Multiple Linear Regression; IR: Isotonic Regression. Main Results: GLCM: Gray Level Co-Occurrence Matrix; OPFTA: 
One-Point Fractal Texture Algorithm.





AUTHOR CONTRIBUTION

Teresa Antequera: investigation and methodology in the MRI section; review; 

conceptualization; administration; supervision.

Daniel Caballero: investigation, methodology, writing and editing the NMR section; 

review.

Silvia Grassi: investigation, methodology, writing and editing the HSI section; review.

Bethany Uttaro: investigation, methodology, writing and editing the NIR section; 

review.

Trinidad Perez-Palacios: investigation, methodology, writing and editing the MRI 

section; review; conceptualization; administration; supervision.


		2019-12-18T09:22:01+0100
	ANTEQUERA ROJAS MARIA TERESA - 06976064A




