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ABSTRACT
In this work we address the problem of critical source selection in
social sensing. We propose an approach to the ranking of informa-
tion streams, which is aware of the interdependence among stre-
ams (redundancy and synergies), of the cost of individual streams,
and of the cost related to the integration of multiple streams. The
method is based on the use of the Coalitional Game Theory con-
cept of Power Index, and relies on the polynomial-time estimate of
the stream sets characteristics. With respect to other works using
a power index, the method takes into account that the problem has
a non-trivial cost structure.

CCS CONCEPTS
• Information systems→Extraction, transformation and load-
ing; Multimedia information systems.
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1 INTRODUCTION
The proliferation of various kinds of sensors, in the availability
of many people (e.g. smart-phones), along with the wide adoption
of online social media (e.g. Twitter, Instagram, Facebook), has fos-
tered the development of social sensing, a paradigm for collecting,
organizing and analyzing observations, originated from individu-
als.

1.1 Truth discovery
The �nal goal of sensing is the so-called truth discovery – e.g. in
the form of detection of a speci�c kind of event occurring in the
real world (such as a tra�c jam on a highway [12]), or the deter-
mination of the state of a�airs of a given area (e.g. localization of
dangerous potholes [23]) or in a wide region (e.g. monitoring the
spread of a disease [26]). In the process, the information – origi-
nated from the diverse, possibly heterogeneous sources, that rep-
resent as many views of the phenomenon of interest – has to un-
dergo some form of fusion [35], whose complexity may vary con-
siderably from one case to the other, but is typically characterized
by some recurrent challenges.

Due to the presence of humans in the loop, the possible unre-
liability, inaccuracy and imprecision of the gathered information
(e.g. malicious claims) represent one of the main challenges [34].
A wide literature addresses this point, e.g. some authors approach
the problem by gauging the contents of a multiplicity of observa-
tions to hedge against the di�erent reliability of the observers (for
a review see [1]).

1.2 Critical Source Selection
Another very frequent challenge is posed by the sheer number of
sources itself. In relation to this challenge, the task of critical source
selection consists in "identifying a subset of critical sources that can
help e�ectively reduce the computational complexity of the original
truth-discovery problem at the same time improving the accuracy
of the analysis results" [17]. Indeed, not only gathering and scan-
ning a large number of sources is by de�nition burdensome, but
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the analysis algorithms have to work on combinations of di�erent
streams. For instance event detection algorithms typically have to
compare and merge several streams into a synthesis information
�ow, richly annotated and more suitable for the detection task: as
a consequence, the computational complexity is often at least qua-
dratic in the number of streams. Being able to single out a set of
high quality sources (known as critical source set, that here we call,
for short, the golden bucket), therefore, becomes a must.

The relationships among sources add an additional complexity
to this selection challenge: on one side a human source can forward
claims received from others (a re-tweet to followers), thus creating
undesirable redundancy, on the other, sources providing comple-
mentary information can bring to light a truth that each individual
source would not be able to convey if taken alone. Indeed, the lat-
ter is the main motivation behind the fusion of diverse information
�ows: one performs the fusion under the assumption that at least
some of the di�erent sources are synergetic in reconstructing the
actual state of a�airs.

Finally, the character of sources (speak rate, reliability, etc.) in
general evolves with time, so that the golden bucket has to be kept
up to date: sources have to be reassessed from time to time. Overall
this involves a considerable management e�ort, considering that
sources are note exploited in isolation, but become useful when all
their synergetic relations are taken into account.

In this work we propose an approach to support the source se-
lection and management (within the latter we restrict our atten-
tion to the periodical updates of the golden bucket) based on a
concept related to the Coalitional Game Theory notion of Power
Index [11]. Our approach relies on the polynomial-time estimate
of the stream sets characteristics. With respect to other works us-
ing a power index, the method takes into account that the problem
has a non-trivial cost structure.

The reminder of the paper is structured as follows. In Section 2
we overview the structure and rationale of the approach; in Section
3 we point to the related work and stress the di�erence between the
proposed approach and the existing works using the power indices
as a ranking criterion, both in terms of semantics and in terms of
structural di�erences; in Section 4 we develop the approach.

2 OVERVIEW AND RATIONALE OF THE
APPROACH

Power Indices are used in Coalitional Game Theory (CGT) to quan-
tify the contribution by an individual player to a coalition in terms
of the achievement of a given payo� (or return) by the coalition.
They take into account the fact that, in typical collaborative tasks,
the contributions do not compose additively.

2.1 Preliminaries and de�nitions
A Power Index based approach in social sensing can take into ac-
count the redundancy and synergy (i.e. negative and positive inter-
activity) of the information streams in a principled way: it assigns
to each source a synthesis score representing a balance of its power
in isolation plus its average level of interactivity with two or more
other sources. This allows for more e�ective source selection and,

at the same time, simpli�es the periodic reassessment of the in-
formation source, allowing for source-by-source oriented decision
about the inclusion in the golden bucket.

2.1.1 Some definition and notation. We provide the formal de�ni-
tion of the CGT power indices in the appropriate section. For the
present preliminary discussion is su�cient to recall the terms of
the analogies used along this work, and some basic characteristics
of those indices.

In the present context a player corresponds to an information
stream, whereas a coalition S corresponds to a set of streams fused
together by a detection algorithm.

The performance of the coalition can be de�ned in many ways
depending on the context, and based on the usefulness of the pre-
diction results (e.g. it could be some measure of accuracy): we as-
sume, for the sake of simplicity, that the performance metric is a
real valued.

We denote an individual player by p, a coalition by S and its
performance by A(S). If there is a set N of n = |N | players there
are 2n possible coalitions, 2n−1 of which contain player p.

The marginal contribution ∆p (S) by a player p to a coalition S is
de�ned as the di�erence between the performance of the coalition
with and without that player

∆p (S) ≡ A((S \ p) ∪ p) −A((S \ p)) (1)

2.1.2 Power Index definition. In order to take into account all the
ways in which the player p can interact with others, one can con-
sider the marginal contributions w.r.t. all the coalitions and take
an average. A power index αp for a player p is always de�ned as
suitably weighted average over all the coalitions of the marginal
contributions by the player:

αp =
∑

S ∈2(N \i )
wS∆p (S) (2)

where the wS are prede�ned weights (the symbol 2(N \i) denotes
the power set of the set {N \ i}). For instance, if all the marginal
contributions enter into the average with the same weight wS =

1/2n−1, irrespectively of the coalition size, we obtain the Banzhaf
Value αBan

p [5, 20], whereas if the cardinality s = |S | of the coali-

tion is taken into consideration by wS = (1/n)/(
(n−1

s
)
), one gets

the Shapley Value αSha
p [24, 28, 29].

The di�erent CGT power indices have been de�ned to ful�ll
di�erent sets of axioms. E.g. the Shapley and the Banzhaf Value
are the unique solutions to two slightly di�erent sets of axioms
expressing fair division of the revenue of a coalition: such a value
is meant to quantify the in�uence of each player in achieving that
revenue and to assign to the player a fair share of the revenue.

This is the intuitive reasoning behind the choice of a power in-
dex as a measure of player importance. By assigning the informa-
tion streams a Game Theoretic importance and keeping the most
valuable, intuitively, one can approximate the best coalition, in
some sense.

2.2 The approach at a glance
An approach to the selection of the information streams based on
a power index can be synthesized as follows:



Selection of Information Streams in Social Sensing: an Interdependence- and Cost-aware Ranking MethodMEDES ’20, November 2–4, 2020, Virtual Event, United Arab Emirates

(1) compute the power index of each stream based on recent
historical data;

(2) use the power index as a score of the stream
(3) keep only the k top scored streams, in the golden bucket;
(4) periodically re-assess the streams
(5) decide on a stream-by-stream basis whether to add it to the

bucket, keep it in the bucket, or drop it.

2.2.1 Rationale. Beyond the CGT intuitive justi�cations, the me-
chanics behind the Power Index approach is the following. The
di�erent coalitions and their performances de�ne the set function
A : 2N → R. Such function can be represented [14] as a polyno-
mial of degree n

A(S) =
∑

T ⊂2N

aT

∏

p∈T

xp (3)

of the Boolean variables xp ,

xp ≡

{
1 i f p ∈ S

0 i f p < S
(4)

The aT ’s are called Moebius coe�cients. The function can be ap-
proximated by a �rst degree function α (S) which minimizes some
distance criterion

α (S) = α0 +
∑

p∈S

αpxp (5)

where α0 is an o�set constant.
The coe�cient αp turns out to coincide with a power index of

the element p. Which power index precisely depends on the def-
inition of distance and minimization criterion: for instance if the
distance is the Euclidean distance between A and α computed over
all the sets of 2N considered equivalent, one obtains the Banzhaf
Value (it was shown by Hammer and Holzman [13]).

We are normally interested in the optimal coalition, which would
be the maximum of A, an that we denote Smax = arg max(A). Be-
ing unfeasible to check all the 2n coalitions to �nd the max of the
n-degree functionA, one uses the �rst degree function α as a proxy.

If α is given, i.e. if the coe�cients αp are available, the maxi-
mum of α can be found easily: gathering the k highest coe�cients
αp and setting their indicator variables xp to 1 (on), and keeping to
0 (o�) the other (n−k) variables one gets the maximum of the func-
tion α over the level of sets of size k : the "on" variables identify the
set maximizing α . That set can be used as a candidate maximum
for A. Of course this is a rough approximation but can be com-
puted in linear time and is appropriate to the situations in which
the requirement of �nding the actual maximum is not stringent,
whereas �nding a high performing coalition is accepted as a prac-
tical solution.

2.2.2 Feasibility. The feasibility of the overall approach relies on
the assumption that one can compute the power indices αp with
little e�ort. Indeed, although the de�nition (2) suggests that the
computation of the power indices has exponential complexity, in
practice, a su�ciently useful estimate of the index can be obtained
in polynomial time by sampling a reasonable number of coalitions
[10]: in fact one does not have to discover the exact value of the
indices, but for the proposed approach one just needs to �nd out
which ones are the highest k indices.

3 RELATEDWORK

3.1 Social Sensing
A vast literature addresses the problem of source selection in the
communities of networked sensing and data mining [4, 8, 15, 27,
33]. For example: Rekatsinas et al. [27] consider dynamic sources
whose contents change with time; Dong et al. [8] focus on integra-
tion cost aware source selection. Uddin et al. [33] focus on diversi-
fying the source selection based on the social connections among
sources; and previous papers.

Previous works [16, 25, 34] have considered the source depen-
dency by partitioning into mutually independent groups. Huang
and Wang [17] propose a scheme to �nd the critical set of sources
by explicitly exploring both interdependency and speak rate of
sources in the context of social sensing. They formulate the prob-
lem as a multi-objective constraint optimization problem and de-
velop an e�cient solution algorithm.

3.2 Power Indices
The power indices in general, and the Shapley value [29] in partic-
ular, are the subject of wide literature [24], where they are consid-
ered as a solution of the fair division problem [28], as a centrality
measure [30] or even as a transform within the Dempster-Shafer
Theory of Evidence [31] (or Theory of Belief Functions).

It has often been used to assess the importance of components in
a composite systems or processes. Among the recent examples, we
can mention its application in tag sense disambiguation [19], and
neural network pruning [32]. It has also been used in algorithm
portfolio selection [9], feature selection [6, 7] and it has been pro-
posed within Explanatory Arti�cial Intelligence for optimal model
approximation [21, 22].

3.3 Comparison with a similar setting
The approach of the present work bears some analogy with the
problems of classi�cation rule selection and rule pool management
in fraudulent credit card transaction detection as it is addressed in
the work [10] (that work uses the Shapley Value as a scoring in-
dex). However the very nature of the involved objects (classi�ca-
tion rules on one side and information streams on the other) makes
the actual details of the methods rather di�erent.

3.3.1 A semantic di�erence. In the so-called fraud detection sce-
nario, the rule pool is confronted with a very well de�ned event
at time, coming from a single source: the transaction (there is a
given, relatively simple, and �xed set of attributes associated to
the transaction which take values in prede�ned ranges and one
precise time-stamp). Furthermore the transactions used to assess
the rules have a precise classi�cation either in the category legit-
imate or in the category fraudulent. Thus we are dealing with a
classi�cation task.

In an event detection scenario (as an example of truth discovery)
we have to reconstruct the event form di�erent sources. We have
categories, but not only the two most obvious (the event of interest,
e.g. a tra�c jam, being present or absent).

In fact there can be even an intensity associated to the event
presence (a tra�c jam has several degrees of severity, going from
the slowing down of the tra�c to the complete stop for extreme
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congestion/accidents [2, 3]). Furthermore, an event has a space
structure (the speed of the tra�c �ow is space-variant, and time-
variant, there might be waves of car density).

In short, an event, or more in general, the truth to be discovered,
are richly structured phenomena and their description is very dif-
ferent from the one of credit card transactions.1 Even so, should
one manage to formulate the performance metric in terms of a sin-
gle real number the formalism could be the same used in reference
[10]. However the two setting are distinguished also by a struc-
tural di�erence, which forces the adoption of di�erent modeling
tools.

3.3.2 A structural di�erence: presence of costs. The main di�er-
ence between the two scenarios is that whereas the the fraud detec-
tion scenario the players (the classi�cation rules) have essentially
the same utilization cost, the information fusion scenario players
have an associated cost (intended in a sense that we specify below),
which can change considerably from one stream to the other.

Indeed, within fraud detection, each rule has a computation cost
but the di�erences from one rule to the other in terms of compu-
tation costs for a given transaction are negligible. On the contrary,
being the information streams very complex objects, they can dif-
fer greatly in terms of the resources that have to be employed for
their treatment. The di�erences between two sources can be due to
their di�erent information rate (e.g. number of tweets in Twitter),
type of information communicated (text, images, videos) which de-
termine a single stream cost in terms of processing complexity etc.
Not last, one can assume that the use of di�erent streams can be
associated to di�erent economic costs (e.g. the cost corresponded
to the stream provider).

In short, using a player in the information fusion setting has
a cost that has to be taken into account. The manager of a service
for event detection from information streams must be aware of the
costs and will try on one side to minimize them, while on the other
side will try to maximize the performance.

This problem of multi-objective optimization can be brought
back to a single variable problem, which can be addressed, then,
within the framework of the power index approach: a balance quan-
tity has to be de�ned as an appropriate function of performance
metric and and cost metric.

A way of achieving this goal could be to transform the costs
in suitable weights associated to individual players: an approach
which uses a tool known as Weighted Power index. An example
of this tool is the Weighted Shapley Value [18]: this power index
assigns to the player a value that ends up being proportional to the
ratio of its (un-weighted) Shapley Value and the a priori known
player cost.

1In other words, in the fraud detection scenario we have Boolean categories to guess,
whereas in the information fusion scenario we have – in the simplest case – a real
variable to estimate (e.g. the intensity of the phenomenon). This impacts the choice
of the performance quanti�ers for a coalition: in the former scenario we can de�ne
the performance in terms of a classi�cation performance metric (precision, recall, F2-
score etc.), whereas in the latter scenario there is a larger spectrum of options. Each
event estimate originates an error, thus one could choose as a performance metric
the average error, or the maximum error or another aggregator, depending on the
application. The semantic of the performance metric and therefore of the marginal
contributions and of the power index are very di�erent.

We follow a di�erent pathway: we consider also non-individual
costs and include the cost structure into the set function to be op-
timized.

4 THE APPROACH
As discussed in Section 2, the problem of selecting k critical sources
out of n sources available in the repertoire N = {1, 2, . . . ,n} can
be framed as a set function maximization problem (an NP-hard
problem), and approached as a power index based maximization.

Normally, as in [10] one would de�ne the set function to be max-
imized as the performance A(S) of the set of streams S ∈ 2N (in
detecting the event of interest) – quanti�ed for instance through
historical data – and would try to approximate A by a �rst degree
function α (equation (5)), disregarding any cost-related considera-
tion. The coe�cients of the �rst degree polynomial α , once ranked,
would indicate the set of elements forming the coalition which is
the maximum of α , to be used as candidate maximum of A.

We argued in Section 3 that – di�erently from the case dealt
with in [10] – the problem at hand has a non-negligible cost struc-
ture: each stream i has a cost C(i), even when considered in isola-
tion (economic cost of the acquisition, processing costs, etc.).

Here we add that also the integration of two streams has a cost
which depends on the relationship between the two streams (con-
sider for instance the task of time alignment: its cost depends on
the patterns of both streams, and is not simply the sum of some
time-stamp-related cost speci�c to each stream). This implies the
presence of an at least pairwise cost structure: each pair of streams
will have an associated cost c(ij) in addition to the cost given by
the sum of the individual costs. So

C(ij) = ci + c j + ci j

To formulate the model without making too many restrictive
hypotheses, one can assume that, to the cost of using the set S ,
contribute relationships of any order up to s . Considering all the
possible sets one can, thus, de�ne a Boolean set function, the cost
function C , formally mirroring the performance function A (equa-
tion (3))

C(S) =
∑

T ⊂2N

cT

∏

p∈T

xp (6)

We observe that, also for this one, one can de�ne a �rst degree
approximation γ (S), with S ∈ 2N , and a power index γi from its
coe�cients (e.g. the Shapley or the Banzhaf Value).

We de�ne the following balance function

B(S) ≡ u0A(S) −C(S) (7)

with S ∈ 2N , where u0 is a constant that converts the performance
value in economic value, so that u0A(S) can be compared to the
costs C(S). Obviously u0A(S) represents a linear utility function
that maps a performance onto an economic value, but more so-
phisticated utility functions u could be devised: we use a linear
function u(A) ≡ u0A for the sake of illustration of the method.

Now B(S) is the new objective function to maximize, and we can
approach the task using the power index approach. Following the
procedure used for A, we approximate B by a �rst degree polyno-
mial β and obtain the power indices βi . By additivity, the power
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indices if this function will be

βi = u0αi − γi (8)

In practice it is reasonable to assume that the cost function C
can be well modeled by a second degree function (accounting for
the cost of streams in isolations and the cost of streams in pairs).
Therefore the overall computation can be simpli�ed.

First one computes the power indices γi . For instance, both for
the Shapley and the Banzhaf value, they will be

γi = c0 + ci +
1
2

∑

j ∈N \i

ci j (9)

All the components of this equation ideally should be computable
a priori or by sampling based on features of the individual streams.

If the assumption holds that one can model the cost as a qua-
dratic function the power index βi to be used for ranking will be
the following

βi = u0αi − (c0 + ci +
1
2

∑

j ∈N \i

ci j ) (10)

This expression allows for an e�ective source selection and sim-
plifes the periodic reassessment of the information sources, allow-
ing for source-by-source oriented decision about the inclusion in
the golden bucket.

5 CONCLUSIONS
In this work we proposed a power index based approach to the
ranking of information streams in social sensing, which is aware of
the interdependence among streams (redundancy and synergies),
of the cost of individual streams and the cost related to the integra-
tion of several streams. The method is based on polynomial time
estimate of the stream sets characteristics.

We plan to extend this work by developing the approach in more
detail and to address a real-world application case example.
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