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Abstract 57 

The landscape of structural variants (SVs) in multiple myeloma remains poorly 58 

understood. Here, we performed comprehensive analysis of SVs in a large 59 

cohort of 752 multiple myeloma patients by low coverage long-insert whole 60 

genome sequencing. We identified 68 SV hotspots involving 17 new candidate 61 

driver genes, including the therapeutic targets BCMA (TNFRSF17), SLAMF and 62 

MCL1. Catastrophic complex rearrangements termed chromothripsis were 63 

present in 24% of patients and independently associated with poor clinical 64 

outcomes. Templated insertions were the second most frequent complex event 65 

(19%), mostly involved in super-enhancer hijacking and activation of oncogenes 66 

such as CCND1 and MYC. Importantly, in 31% of patients two or more seemingly 67 

independent putative driver events were caused by a single structural event, 68 

demonstrating that the complex genomic landscape of multiple myeloma can be 69 

acquired through few key events during tumor evolutionary history. Overall, this 70 

study reveals the critical role of SVs in multiple myeloma pathogenesis. 71 

  72 
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Significance 73 

Previous genomic studies in multiple myeloma have largely focused on single 74 

nucleotide variants, recurrent copy number alterations and translocations. Here, 75 

we demonstrate the crucial role of structural variants and complex events in the 76 

development of multiple myeloma and highlight the importance of whole genome 77 

sequencing to decipher its genomic complexity. 78 

  79 
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Introduction 80 

Whole genome sequencing (WGS) studies have demonstrated the 81 

importance of structural variants (SVs) in the initiation and progression of many 82 

cancers(1-8). Functional implications of SVs include gene dosage effects from 83 

gain or loss of chromosomal material, gene regulatory effects such as super-84 

enhancer hijacking, and gene fusions(9). The basic unit of SVs are pairs of 85 

breakpoints, classified as either deletion, tandem duplication, translocation or 86 

inversion, which can manifest as simple events or form complex patterns where 87 

multiple SVs are acquired together, often involving multiple chromosomes(1-88 

8,10). 89 

In multiple myeloma, previous studies of SVs have had a narrow scope, 90 

usually limited to recurrent translocations involving MYC or the immunoglobulin 91 

loci (i.e. IGH, IGL and IGK)(11-17). The vast majority of established genomic 92 

drivers in multiple myeloma are single nucleotide variants (SNVs) and copy 93 

number alterations (CNAs), identified by whole exome sequencing and array-94 

based approaches(18-22). However, important aspects of tumor biology and 95 

evolution remain poorly explained by known genomic drivers, such as 96 

progression from precursor stages to active multiple myeloma and the 97 

development of drug resistance(12,23-25). 98 

We recently reported the first comprehensive study of SVs in multiple 99 

myeloma by WGS of sequential samples from 30 patients(21). Despite the 100 

limited sample set and the absence of gene expression data, our findings 101 

indicated that SVs are a key missing piece to understand the driver landscape of 102 
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multiple myeloma. Of particular interest, we found a high prevalence of three 103 

main classes of complex SVs: chromothripsis, templated insertions and 104 

chromoplexy(21). In chromothripsis, chromosomal shattering and random 105 

rejoining results in a pattern of tens to hundreds of breakpoints with oscillating 106 

copy number across one or more chromosomes (Figure 1A-B)(26). Templated 107 

insertions are characterized by focal gains bounded by translocations, resulting 108 

in concatenation of amplified segments from two or more chromosomes into a 109 

continuous stretch of DNA, which is inserted back into any of the involved 110 

chromosomes (Figure 1C-D)(4,21). Chromoplexy similarly connects segments 111 

from multiple chromosomes, but the local footprint is characterized by copy 112 

number loss (Figure 1E-F)(27). Importantly, these complex SVs represent large-113 

scale genomic alterations acquired by the cancer cell at a single point in time, 114 

potentially involving multiple drivers and shaping subsequent tumor 115 

evolution(2,27). 116 

 Here, we comprehensively characterized the role of genome-wide SVs in 117 

752 multiple myeloma patients, revealing novel SV hotspots, rare SVs with 118 

strong impact on gene expression, and complex events simultaneously causing 119 

multiple drivers. 120 

 121 

Results 122 

Genome-wide landscape of structural variation in multiple myeloma 123 

To define the landscape of simple and complex SVs in multiple myeloma, 124 

we investigated 752 newly diagnosed patients from the CoMMpass study 125 
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(NCT01454297; IA13) who underwent low coverage long-insert WGS (median 4-126 

8X) and whole exome sequencing (Table S1, Supplementary Methods). RNA 127 

sequencing was also available from 591 patients (78.6%). For each patient 128 

sample, we integrated the genome-wide somatic copy number profile with SV 129 

data and assigned each pair of SV breakpoints as either simple or part of a 130 

complex event according to the three main classes previously identified in 131 

multiple myeloma (Figure 1; Methods)(21). Templated insertions involving more 132 

than two chromosomes were considered complex. Events involving more than 133 

three breakpoint pairs which did not fulfill the criteria for a specific class of 134 

complex event were classified as unspecified “complex”(21). 135 

Our final SV catalog was obtained by integrating the two SV calling 136 

algorithms, DELLY(10) and Manta(28), followed by a series of quality filters. First, 137 

we included all SVs called and passed by both callers. Then SVs called by a 138 

single caller were included in specific circumstances: i) SVs supporting copy 139 

number junctions; ii) reciprocal translocations; iii) translocations involving an 140 

immunoglobulin locus (i.e. IGH, IGK or IGL) (Supplementary methods). Using 141 

the final SV catalog, long-insert low-coverage WGS revealed a sensitivity of 91-142 

92% and specificity of 97% to identify translocations involving IGH and the most 143 

common canonical drivers CCND1 and WHSC1/MMSET. Re-calculating 144 

performance metrics for canonical IGH-translocations using the same SV filtering 145 

criteria genome-wide (i.e. without the relaxed quality requirements for 146 

immunoglobulin translocations), we observed no changes in specificity, and 147 

sensitivity of 91% for IGH-CCND1 (identical as before) and 88 % for IGH-148 
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WHSC1/MMSET (down from 92 %). Overall, these performance metrics were 149 

similar to what was recently described by the PCAWG consortium using 150 

standard-coverage short-read WGS (Supplementary methods)(4,7). 151 

Furthermore, the genome-wide distribution of SV breakpoints in the low coverage 152 

WGS series corresponded with recent pan-cancer and myeloma genomes 153 

studies, showing enrichment in regions of early replication, accessible chromatin, 154 

and active enhancer regions as defined by histone H3K27 acetylation (H3K27ac) 155 

(Figure S1; Methods)(4,7,21). Taken together, this suggests that low-coverage 156 

long-insert WGS provides a representative view of the SV landscape. 157 

We identified a median of 16 SVs per patient (interquartile range, IQR 8-158 

32) (Figure 2A). Chromothripsis, chromoplexy and templated insertions involving 159 

>2 chromosomes were observed in 24%, 11% and 19% of patients, respectively, 160 

confirming previous observations(21); 38% of patients had an unspecified 161 

complex event. One or more complex events were identified in 63% of patients 162 

(median 1; range 0-11). 163 

In patients with newly diagnosed multiple myeloma, different SV classes 164 

showed distinct patterns of co-occurrence, mutual exclusivity and association 165 

with recurrent molecular alterations (Figures 2A-C). Templated insertions 166 

showed a particularly striking pattern of positive correlation with single tandem 167 

duplications (spearman’s rho = 0.55, p < 2.2x10-16) and negative correlation with 168 

most other SV classes (Figure 2B). Templated insertions and single tandem 169 

duplications were both strongly enriched in patients with hyperdiploidy and MYC 170 

alterations (Figure 2C). Chromothripsis accounted for the greatest proportion of 171 
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SVs among all classes (33%), and the burden of chromothripsis SVs in each 172 

patient correlated with the number of single deletions, inversions and unspecified 173 

complex events (Figure 2B). Presence of chromothripsis or a deletion burden in 174 

the 4th quartile showed striking associations with known high-risk molecular 175 

features in multiple myeloma, including primary translocations of IGH with 176 

MMSET, MAF or MAFB; high APOBEC mutational burden, and most of the 177 

recurrent aneuploidies (Figure 2C)(19,29,30). The strongest association was 178 

observed between chromothripsis and bi-allelic inactivation of TP53 (OR 6.6, 179 

95% CI 2.7-17.15, p=4.84x10-6). Chromothripsis was previously reported as a 180 

rare event in 10 out of 764 patients with multiple myeloma (1.3%) using array-181 

based copy number analysis, and half of these patients relapsed within 10 182 

months(31). Despite the 18-fold higher prevalence in our WGS data, the 183 

presence of chromothripsis was associated with poor clinical outcomes and 184 

retained its significance after adjustment for established clinical and molecular 185 

risk factors, in terms of both progression free survival (PFS, adjusted HR = 1.42; 186 

95% CI 1.08-1.87; p= 0.014) and overall survival (OS, adjusted HR = 1.81; 95% 187 

CI 1.23-2.65; p= 0.002) (Figure 2D-F and S2; Methods).  188 

 189 

Structural basis of recurrent translocations and copy number alterations 190 

To define the structural basis of canonical translocations in multiple 191 

myeloma, we identified all translocation-type events (single and complex) with 192 

one or more breakpoints involving the immunoglobulin loci (i.e. IGH, IGK and 193 

IGL) or canonical IGH-partners (e.g. CCND1, MMSET and MYC) (Figure 3A-194 
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B)(18). Templated insertions emerged as the cause of CCND1 and MYC 195 

translocations in 26% and 72% of cases, respectively (Figure 3A). In line with its 196 

mechanism of connecting and amplifying distant genomic segments, oncogenes 197 

and regulatory regions (e.g. super-enhancers), templated insertions of CCND1 198 

and MYC were associated with focal amplification in 81% and 98% of cases, 199 

respectively; and involved more than two chromosomes in 42% and 44% of 200 

cases. Complex SVs involving MYC were first described in 2000(32), including 201 

insertions of the MYC gene into a partner locus or insertion of partner loci near 202 

MYC, consistent with the current definition of templated insertions(4). Although 203 

rare, we also found examples of chromothripsis and chromoplexy underlying 204 

canonical IGH translocations, resulting in overexpression of the partner gene 205 

consistent with a driver event (Figure 3B).  206 

Next we went to investigate the prevalence and landscape of rare non-207 

canonical IGH translocation partners. These events were first described in the 208 

1990s(17), but data from a large and uniformly analyzed series has been lacking. 209 

Considering the 591 patients in our study with WGS and RNAseq, where 210 

aberrant gene expression could be confirmed, thirty-one patients (5.2%) had 211 

translocations involving at least one immunoglobulin locus (IGH = 19, IGL = 12 212 

and IGK = 1) and a non-canonical oncogene partner, most of which were key 213 

regulators of B-cell development (e.g. PAX5 and CD40) (Figure 3B)(33,34). 214 

Non-canonical IGH translocations most commonly occurred in patients without 215 

another primary IGH translocation (15 of 19 patients, 79%), raising the possibility 216 

of non-canonical disease-initiating events. Of these, translocations involving 217 
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MAP3K14 had similar prevalence (1%) as those involving CCND2 (0.8%) and 218 

MAFA (0.5%) and, which are considered among established initiating events, 219 

and showed a similar breakpoint distribution in the IGH class-switch 220 

recombination regions (Figures 3B and S3). Taken together, we show that 221 

different mechanisms of SV converge to aberrantly activate key driver genes in 222 

multiple myeloma, including rare events potentially involved in cancer initiation. 223 

Next, we addressed the structural basis of recurrent CNAs (Table S2). 224 

Aneuploidies involving a whole chromosome arm were most common (56% of 225 

2889 events). Among intrachromosomal CNAs, 83% could be attributed to a 226 

specific SV (Figure 3C). There was considerable variation in the proportion and 227 

class of SVs causing gains and losses between different loci, indicating the 228 

presence of distinct underlying mechanisms being active at these sites (Figure 229 

3C). Highlighting the importance of complex SVs in shaping the multiple 230 

myeloma genome, 47% of all chromothripsis events resulted in the acquisition of 231 

at least one recurrent driver CNA (n = 116); the corresponding numbers for 232 

chromoplexy and templated insertions involving >2 chromosomes were 44% (n = 233 

43) and 21.7% (n = 46), respectively. 234 

 SVs may exert their effect through altered gene dosage (i.e. the number of 235 

copies of a gene), or through indirect mechanisms such as the well-known super-236 

enhancer hijacking involving the immunoglobulin loci (Figure 3B)(14,35). To 237 

quantify the effect of SVs on gene expression independently from copy number, 238 

we fit a multivariate linear regression model including all expressed genes on 239 

autosomes from all patients (Figure 3D; Supplementary Methods)(36). 240 
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Structural events involving immunoglobulin loci were excluded. As expected, 241 

copy number had the strongest average effect, with an increase or decrease in 242 

expression Z-score of 0.31 for each gain or loss of a gene copy (p < 2.2x10-16). 243 

Nonetheless, all SV classes showed significant gene expression effects 244 

independent from copy number; and these effects were in the direction expected 245 

from the consequences of each SV class(36,37). Chromothripsis is associated 246 

with both gain- and loss of function(38), and the presence of high-level gains 247 

causing outlier gene expression may have skewed our model estimates. 248 

However, chromothripsis maintained a positive effect on gene expression when 249 

limiting our analysis to genes with less than 4 copies (estimate = 0.11, p < 250 

2.2x10-16) (Figure S4). Although the specific implications of individual SVs may 251 

be difficult to predict, these data demonstrate that the average effects of SVs on 252 

gene expression are considerable.  253 

 254 

Hotspots of structural variation  255 

Twenty recurrently translocated regions have been previously reported in 256 

multiple myeloma, defined by a translocation prevalence of >2% within 1 Mb bins 257 

across the genome(11). These included the canonical immunoglobulin 258 

translocations, as well as MYC and recurrent partners, such as BMP6/TXNDC5, 259 

FOXO3 and FAM46C(11,14,39). We were motivated to expand the known 260 

catalogue of genomic loci where SVs play a driver role in multiple myeloma and 261 

are therefore positively selected (i.e. SV hotspots), considering all classes of 262 

single and complex SVs. To accomplish this, we applied the Piecewise Constant 263 
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Fitting (PCF) algorithm, comparing the local SV breakpoint density to an 264 

empirical background model, accounting for the propensity of complex SVs to 265 

introduce large numbers of clustered breakpoints (Methods; Supplementary 266 

Methods; Data S1)(3,40). Overall, we identified 68 SV hotspots after excluding 267 

the immunoglobulin loci (i.e., IGH, IGL and IGK) and 5 known fragile sites that 268 

are prone to focal deletions (e.g. FHIT, CCSER1 and PTPRD) (Figures 4A-D, 5; 269 

Table S3). Fifty-three SV hotspots had not been previously reported in multiple 270 

myeloma. Two of the previously reported regions of recurrent translocation were 271 

not recapitulated by our hotspot analysis: 19p13.3 and the known oncogene 272 

MAFB on 20q12. This may be explained by the behavior of the PCF algorithm, 273 

which favors the identification of loci where breakpoints are tightly clustered 274 

compared with neighboring regions as well as the expected background. Indeed, 275 

SVs involving MAFB and 19p13.3, were identified in 1.5% and 8.1% of patients, 276 

but the breakpoints did not form distinct clusters (Figure S5). While MAFB is an 277 

established driver that was missed by our analysis, the implications of SVs 278 

involving 19p13.3 are unclear. 279 

Given that SVs and CNAs reflect the same genomic events, we 280 

hypothesized that functionally important SV hotspots would be associated with a 281 

cluster of CNAs(4). We therefore performed independent discovery of driver 282 

CNAs using GISTIC (genomic identification of significant targets in cancer)(41). 283 

This algorithm identifies peaks of copy number gain or loss containing driver 284 

genes and/or regulatory elements based on the frequency and amplitude of 285 

observed CNAs (Figure 4A, Table S4-5). In addition, we generated cumulative 286 
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copy number profiles for the patients involved by SV at each hotspot. Finally, we 287 

evaluated the impact of SV hotspots on the expression of nearby genes (Table 288 

S6), and the presence of oncogene fusion transcripts. By integrating SV, CNA, 289 

and expression data, we went on to determine the most likely consequence of 290 

each hotspot in terms of gain-of-function, loss-of-function, and potential 291 

involvement of driver genes and regulatory elements. Individual SVs within 292 

hotspots were considered as likely driver events if their functional implications 293 

corresponded to the putative driver role of that hotspot (i.e. gain- or loss-of-294 

function); SVs with incongruous effects were removed as likely passenger events 295 

(Supplementary Methods). 296 

Gain-of-function hotspots (n=49) were defined by clustered SVs 297 

associated with copy number gains as well as translocation-type events with or 298 

without oncogene fusions (Figures 4-5 and S6; Table S3). There was a strong 299 

tendency for templated insertions and tandem duplications to co-occur 300 

(Spearman’s rho = 0.71, p= 1.56x10-8) across hotspots, with a similar pattern 301 

being observed genome-wide (rho = 0.57, p<2.2x10-16), supporting a strong 302 

association between these events. Strikingly, gain-of-function hotspots showed 303 

8.4-fold enrichment of super-enhancers as compared with the remaining 304 

mappable genome (2.5 vs. 0.3 super-enhancers per Mb, Poisson test p < 2.2x10-
305 

16), and 10.5-fold enrichment of transcription factors involved in key regulatory 306 

networks in multiple myeloma (Poisson test p=1.64x10-8)(42). Among gain-of-307 

function hotspots, 16 were associated with well-defined myeloma oncogenes 308 

(e.g. WHSC1/MMSET, CCND1, IRF4 and MAP3K14)(11,18) and 17 involved a 309 

Association for Cancer Research. 
 by guest on September 16, 2020. Copyright 2020 Americanhttps://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://bloodcancerdiscov.aacrjournals.org


 15 

novel putative driver gene. Of particular interest, TNFRSF17 was involved by 310 

SVs in 2.5% of patients (n = 19) and encodes B-Cell Maturation Antigen (BCMA), 311 

a therapeutic target of chimeric antigen receptor T-cells (CAR-T), as well as 312 

monoclonal and bispecific antibodies (Figure 4B)(43,44). Furthermore, we report 313 

two novel SV hotspots on chromosome 1q23 involving putative driver genes with 314 

therapeutic implications: SLAMF7 (involved by SV in 2.8%, n = 21), target of the 315 

monoclonal antibody elotuzumab (Figure 4C)(43,45); and MCL1 (3%, n = 23), an 316 

apoptotic regulator implicated in resistance to the BCL2-inhibitor 317 

venetoclax(46,47) and a promising therapeutic target in its own right(48). 318 

Additional novel putative driver genes were BTG2, CCR2, PRKCD, FBXW7, 319 

IRF2, NRG2/UBE2D2, SOX30, NEDD9, GLCCI1, TBXAS1/HIPK2, POU2AF1, 320 

KLF13, USP3/HERC1, and TNFRSF13B. We also confirmed previous reports 321 

that virtually all SVs involving MYC resulted in its overexpression, including 322 

deletions and inversions acting to reposition MYC next to the super-enhancers of 323 

NSMCE2 roughly 2 Mb upstream(16). 324 

Loss-of-function hotspots (n=19) were defined by SVs causing copy 325 

number loss, most commonly single deletions, but also inversions and complex 326 

SVs (Figures 4-5 and S6; Table S3). We identified loss of 12 known tumor 327 

suppressor genes in multiple myeloma, including CDKN2C, SP3, SP140, RPL5 328 

and CYLD. FAM46C stood out as involved by both SVs causing copy number 329 

loss and translocation-type events which sometimes resulted in gene fusions. 330 

This is consistent with its known role as a tumor suppressor, while also serving 331 

as a target for super-enhancer hijacking(39,49). 332 
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Taken together, we identified 29 SV hotspots involving genes with 333 

established tumor suppressor or oncogene function in multiple myeloma; 17 334 

additional hotspots, all gain-of-function, involved novel putative driver genes 335 

(Table S3; all putative driver hotspots are shown in Figures 4B-D and S6; 336 

individual patient summary in Table S7).(50)  337 

Each patient had a median of two hotspots involved by a putative driver 338 

SV (IQR 1-3); and the number of hotspots involved was strongly associated with 339 

the overall SV burden (Spearman’s Rho = 0.46; p < 2.2x10-16). This association 340 

became even stronger when SV breakpoints associated with a single event were 341 

considered together (Spearman’s Rho = 0.51; p < 2.2x10-16). Re-analyzing 342 

published data from tandem duplication hotspots in breast cancer revealed 343 

similar results (Spearman’s Rho of 0.7 and 0.62 for rearrangement signatures 1 344 

and 3, respectively; p<2.2x10-16; Figure S7A-C)(40). Extending this observation 345 

beyond SVs, there was a strong correlation between SNV burden in multiple 346 

myeloma and the number of SNVs in known driver genes(20,21) (Rho = 0.38, p < 347 

2.2x10-16), which remained significant when restricting the analysis to established 348 

SNV hotspots within driver genes (rho = 0.11, p=0.001). These data indicate that 349 

genomic drivers continue to accumulate and provide selective advantage through 350 

the disease course despite multiple drivers already being present, consistent with 351 

our recent observations from re-constructing the timeline of driver acquisition in 352 

multiple myeloma(21,51,52) and multi-region WGS performed at autopsy(53). 353 

  354 
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Templated insertions and chromothripsis exemplify highly clustered 355 

versus chaotic breakpoint patterns 356 

SVs of different classes showed different propensities to form hotspots. 357 

Templated insertion breakpoints were the most likely to be in a hotspot (logistic 358 

regression OR 4.04; 95% CI 3.65-4.49, p < 2.2x10-16), with chromothripsis 359 

breakpoints being the least likely (OR 0.48; 95% CI 0.43-0.54; p < 2.2x10-16) 360 

(Figure 6A-B). This difference remained when considering structural events 361 

instead of individual breakpoints, with 66% of 544 templated insertions involving 362 

one or more hotspot, versus 43% of 244 chromothripsis events (Fisher’s test OR 363 

2.66; 95% CI 1.91-3.65; p=7.14x10-10), despite the vastly higher complexity of 364 

chromothripsis events as compared with templated insertions (median 17 vs 2 365 

breakpoint pairs in each event, Wilcoxon test p < 2.2x10-16). 366 

The differences between templated insertions and chromothripsis could be 367 

clearly illustrated by the genome-wide distribution of breakpoints and association 368 

with number changes (Figure 6A). Templated insertions were associated with 369 

mainly focal copy number gain in 80.1% of cases (95% CI 78-82%); only rarely 370 

with copy number losses (5.6%; 95% CI 4.6-6.7%). Gains were almost 371 

exclusively single copy (92.3% of 1317 gains), highlighting the stability of these 372 

events. In contrast, an important feature of chromothripsis is its ability to cause 373 

both gain- and loss-of-function as part of the same event(38). Indeed, the 374 

breakpoints of chromothripsis were associated with chromosomal loss in 53.8% 375 

of cases (95% CI 52-55.6%) and gain in 37.6% (95% CI 36-39.4%). Templated 376 

insertions were predominantly associated with gain of a single copy (Fisher’s test 377 
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OR 2.25 vs chromothripsis; p < 2.2x10-16), while chromothripsis dominated for 378 

gains of 2 (OR 1.7, p=7.07x10-5), 3 (OR 13.9, p<2.03x10-14) or more than 3 379 

copies (OR 40.7, p < 2.2x10-16) (Figure 6C). The probability that focal gains 380 

involved a multiple myeloma super-enhancer was highest when associated with 381 

templated insertions (55%, logistic regression OR 2.76, p < 2.2x10-16) and lowest 382 

when associated with chromothripsis (21%, logistic regression OR 0.61, p= 383 

7.43x10-5) (Figure 6D). In contrast to solid tumors, where chromothripsis may 384 

result acquisition of >50 copies(1,4,6,54), we observed no segments with more 385 

than 9 copies in this series (Figure 1B). 386 

Consistent with widely different underlying mechanisms, the genome-wide 387 

distribution of templated insertion breakpoints could be predicted from genomic 388 

features such as active enhancer regions, replication time and open chromatin, 389 

but this was not the case for chromothripsis (Supplementary Methods). To test 390 

whether the clustered nature of templated insertion breakpoints can be explained 391 

solely by the local sequence context (e.g. active enhancers) or constitute real 392 

hotspots subjected to positive selection, we repeated our PCF-based hotspot 393 

analysis for templated insertions alone. Despite the considerably lower power of 394 

this analysis as compared to the combined analysis presented above, 75% of 395 

hotspots containing 6 or more templated insertions were confirmed (21 out of 396 

28), including novel putative drivers such as FBXW7 and TNFRSF17 (BCMA) 397 

(Figure 6A; Table S8).  398 

Since the distribution of chromothripsis breakpoints did not follow a 399 

predictable pattern, we performed separate hotspot analysis searching for 400 
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regions that violated the assumption of a uniform distribution across the genome. 401 

In contrast to templated insertions, where hotspots were strongly clustered on 402 

key driver genes and regulatory regions, hotspots of chromothripsis were much 403 

larger, spanning from a few to tens of megabases (Figure 6A and Table S9). 404 

This is consistent with mechanisms where templated insertions exert gene 405 

regulatory effects disproportionate to the level of copy number gain, while the 406 

effects of chromothripsis manifest as large deletions involving recurrent regions 407 

as well as high-level amplifications and local regulatory effects (Figure 3C-D).  408 

 409 

Multiple driver alterations caused by the same structural event 410 

In 31% of patients (n=235), two or more seemingly independent recurrent 411 

CNAs or putative driver translocations were caused by the same SV (Figure 7A-412 

B). The most common event classes were templated insertions causing chains of 413 

gain-of-function events in 12.7% of patients, most commonly including MYC. 414 

Chromothripsis caused two or more driver alterations in 7.2% of patients, 415 

commonly involving large deletions as well as translocation and/or amplification 416 

of oncogenes. Unbalanced translocations simultaneously causing oncogene 417 

translocations and large deletions involving tumor suppressor genes were 418 

identified in 4.4% of patients. Notably, 12 patients with canonical IGH-MMSET 419 

translocations had large deletions of 14q caused by the same unbalanced 420 

translocation, including TRAF3 (14q32) and often MAX (14q23; n=10), 421 

contributing to the known association between these events(21). Overall, SVs 422 

represents a recurrent mechanism for tumors to acquire multiple drivers 423 
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simultaneously, demonstrating that the full genomic landscape of multiple 424 

myeloma can be acquired through a few key events during tumor evolutionary 425 

history(27).  426 

 427 

Discussion 428 

We describe the first comprehensive analysis of SVs in a large series of 429 

multiple myeloma patients with paired WGS and RNA sequencing. Previous 430 

studies of SVs in multiple myeloma have focused on translocations without 431 

consideration of complex events(11,15,55,56), and our previous WGS study of 432 

30 patients lacked both the expression correlate and the power to perform 433 

comprehensive driver discovery(21). Here, applying a robust statistical 434 

approach(40), we identified 68 SV hotspots, 53 of which have not previously 435 

been reported. Integrated analysis of copy number changes, gene expression 436 

and the distribution of SV breakpoints revealed 17 new potential driver genes, 437 

including the emerging therapeutic targets TNFRSF17 (BCMA)(43,44), 438 

SLAMF7(43,45) and MCL1(48); the latter of which has also been implicated in 439 

resistance to the BCL2-inhibitor venetoclax(46). With all of these targets either 440 

currently or imminently in clinical use, it will be of great clinical importance to 441 

determine the impact of these genomic alterations as predictive biomarkers for 442 

treatment response. 443 

From a pan-cancer perspective, the SV landscape of multiple myeloma is 444 

characterized by a lower SV burden and less genomic complexity than in many 445 

solid tumors(1,4,7). For example, we did not find any classical double minute 446 
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chromosomes with tens to hundreds of amplified copies, nor did we find any of 447 

the recently proposed complex SV classes pyrgo, rigma and tyfonas(1). 448 

Nonetheless, we found that complex SVs play a crucial role in shaping the 449 

genome of multiple myeloma patients, most importantly chromothripsis, 450 

chromoplexy and templated insertions. A common feature of these SV classes is 451 

simultaneously deregulating multiple driver genes as part of a single event. Such 452 

multi-driver events are of particular importance in myeloma progression as they 453 

can provide an explanation for the rapid changes in clinical behavior that are 454 

frequently seen in the clinic(23). In myeloma precursor disease, understanding 455 

these evolutionary patterns will be crucial for early diagnosis of those patients 456 

who are on a trajectory towards progression and may benefit early 457 

intervention(23).  458 

Of immediate translational relevance, chromothripsis emerged as a strong 459 

independent predictor for high-risk disease, detectable in 24% of newly 460 

diagnosed patients by WGS, providing a rationale for the inclusion of 461 

chromothripsis in clinical risk scores. The prevalence of chromothripsis in 462 

multiple myeloma is higher than what reported in previous studies likely for two 463 

reasons: 1) use of WGS resolution able to integrate SV and CNV data; and 2) 464 

applying the most updated criteria to define chromothripsis (4,21,57). 465 

The use of low-coverage long insert WGS is a potential limitation of this 466 

study. We have applied extensive quality control measures to ensure specificity 467 

of our SV calls, but may have overlooked a fraction of real SVs, particularly those 468 

present at the subclonal level. Thus, the results reported in this study will be 469 
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skewed towards events acquired in the early phases of tumor evolutionary 470 

history, driving tumor initiation and progression, going on to be present in the 471 

dominant tumor clone at diagnosis. Future studies using higher coverage WGS 472 

may reveal greater SV burden and additional hotspots, including subclonal 473 

events that may be selected at relapse. 474 

Gene deregulation by SV is a major contributor to the biology of multiple 475 

myeloma constituting a hallmark feature of its genome. For decades the defining 476 

features of multiple myeloma pathogenesis and heterogeneity has been hijacking 477 

of the IGH super-enhancers to oncogenes such as CCND1 and MMSET. Our 478 

findings reveal how simple and complex SVs shape the driver landscape of 479 

multiple myeloma, with events ranging from common CNAs and canonical 480 

translocations to a large number of SV hotspots. These results focus attention on 481 

the importance of SVs in multiple myeloma and on the use of WGS analyses in 482 

order to fully understand its driver landscape and identify novel therapeutic 483 

targets. 484 

 485 

Methods 486 

Patients and somatic variant calling 487 

We analyzed data from 752 patients with newly diagnosed multiple 488 

myeloma enrolled in the CoMMpass study (NCT01454297; IA13). Each sample 489 

underwent low coverage long-insert WGS (median 4-8X) and whole exome 490 

sequencing. The median physical coverage was 39 (5th percentile 28 and 95th 491 

percentile 53). The median insert size was 852bp (5th percentile = 701 and 95th 492 
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percentile = 949). Paired-end reads were aligned to the human reference 493 

genome (HRCh37) using the Burrows Wheeler Aligner, BWA (v0.7.8). SV calling 494 

was performed using DELLY (v0.7.6)(10) and Manta (v.1.5.0)(28) Similarly to 495 

recent PCAWG papers, we developed a filtering process based on different 496 

criteria (see Results and Supplementary Methods)(7).  497 

tCoNuT was used to call CNAs 498 

(https://github.com/tgen/MMRF_CoMMpass/tree/master/tCoNut_COMMPASS). 499 

To externally validate the tCoNuT workflow, we compared our results to copy 500 

number profiles generated using controlFREEC (Supplementary 501 

Methods)(20,58). The final catalogue of high-confidence SVs was obtained by 502 

integrating DELLY and Manta calls with copy number data and applying a series 503 

of quality filters (Supplementary Methods).  504 

 505 

RNA sequencing analysis and fusion calling 506 

RNA sequencing of 591 samples was performed to a target coverage of 507 

100 million reads. Paired-end reads were aligned to the human reference 508 

genome (HRCh37) using STAR v2.3.1z(59). Transcript per million (TPM) gene 509 

expression values were obtained using Salmon v7.2(60). For fusion calling we 510 

employed TopHat2 v2.0.11 with the TopHat-fusion-post module(61). 511 

 512 

Classification of structural variants 513 

Each pair of structural variant breakpoints (i.e. deletion, tandem 514 

duplication, inversion or translocation) was classified as a single event, or as part 515 
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of a complex event (i.e. chromothripsis, chromoplexy or unspecified complex), as 516 

previously described(4,21). 517 

Translocation-type events were classified as single when involving no 518 

more than two breakpoint pairs and two chromosomes, subdivided into reciprocal 519 

translocations, unbalanced translocations, templated insertion or unspecified 520 

translocation as previously described(4,21). Templated insertions could be either 521 

simple or complex, depending on the number of breakpoints and chromosomes 522 

involved, but was always defined by translocations associated with copy number 523 

gain. Chromothripsis was defined by the presence of 10 or more interconnected 524 

SV breakpoint pairs associated with: 1) clustering of breakpoints, 2) randomness 525 

of DNA fragment joins and 3) randomness of DNA fragment order across one or 526 

more chromosomes(4,26,57). The thresholds of 10 breakpoints was imposed as 527 

a stringent criterion to avoid overestimating the prevalence of chromothripsis. 528 

Chromoplexy was defined by interconnected SV breakpoints across >2 529 

chromosomes associated with copy number loss. Patterns of three or more 530 

interconnected breakpoint pairs that did not fall into either of the above 531 

categories were classified as unspecified “complex”(21). 532 

 533 

Mutational signature analysis 534 

SNV calls from whole exome sequencing were subjected to mutational 535 

signature fitting, using the previously described R package mmsig(51,52). High 536 

APOBEC mutational burden was defined by an absolute contribution of APOBEC 537 
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mutations (mutational signatures 2 and 13) in the 4th quartile among patients with 538 

evidence of APOBEC activity(51).  539 

 540 

Structural basis for recurrent CNAs in multiple myeloma 541 

We applied the following workflow to determine the structural basis for 542 

each recurrent CNA in multiple myeloma (Table S2). First, we identified in each 543 

patient every genomic segment involved by recurrent copy number gain or loss. 544 

Gains were defined by total copy number (CN) >2; loss as a minor CN = 0. 545 

Second, whole arm events were defined when >90% of the arm had the same 546 

CN state. Third, for segments that did not involve the whole arm, we searched for 547 

SV breakpoints responsible for the CNA within 50 kb of the CN segment ends. 548 

Finally, and intrachromosomal CNAs without SV support were classified as 549 

unknown.  550 

 551 

Gene expression effect of SV involvement 552 

We used multivariate linear regression to determine the independent 553 

effect of SV involvement on gene expression after accounting for the effect of 554 

gene dosage (i.e. copy number). All expressed genes on autosomes were 555 

included in the analysis, defined as genes with > 0 TPM expression in >25% of 556 

patients and a median expression level of > 1. Gene expression values then 557 

underwent Z-score normalization. Genes involved by SVs were defined 558 

separately for deletion/tandem duplication type SVs and translocation/inversion 559 

types. For deletions and tandem duplications, genes were considered involved if 560 
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overlapping the SV +/- 10 Kb. For translocations and inversions, genes within 1 561 

Mb to either side of each breakpoint were considered involved. All single and 562 

complex SVs with one or more breakpoints within 1 Mb of either immunoglobulin 563 

loci were excluded, to prevent the results from being dominated by the effects of 564 

immunoglobulin enhancers. Linear regression was performed for all patients and 565 

all genes pooled together, including the total copy number of each gene as a 566 

linear feature. 567 

 568 

Copy number changes associated with structural variant breakpoints 569 

To determine the genome-wide footprint of copy number changes 570 

resulting from SVs, we employed an “SV-centric” workflow, as opposed to the 571 

CNA-centric workflow described above. For each SV breakpoint, we searched for 572 

a change in copy number within 50 kb. If more than one CNA was identified, we 573 

selected the shortest segment. Deletion and amplification CNAs were defined as 574 

changes from the baseline of that chromosomal arm. As a baseline, we 575 

considered the average copy number of the 2 Mb closest to the telomere and 576 

centromere, respectively. This is important because deletions are often preceded 577 

by large gains, particularly in patients with hyperdiploidy(21). In those cases, we 578 

are interested in the relative change caused by deletion, not the total CN of that 579 

segment (which may still be > 2). We estimated the proportion of breakpoints 580 

associated with copy number gain or loss across patients, collapsing the data in 581 

2 Mb bins across the genome. Confidence intervals were estimated using 582 

bootstrapping and the quantile method. For the purposes of plotting (Figures 4A 583 
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and 6A), we divided the SV-associated CNAs into bins of 2 Mb. The resulting 584 

cumulative CNA plot shows the number of patients with an SV-associated 585 

deletion or amplification.  586 

 587 

Hotspots of structural variation breakpoints 588 

To identify regions enriched for SV breakpoints, we employed the 589 

statistical framework of piecewise constant fitting (PCF). In principle, the PCF 590 

algorithm identifies regions where SVs are positively selected, based on 591 

enrichment of breakpoints with short inter-breakpoint distance compared to the 592 

expected background and surrounding regions. We used the computational 593 

workflow previously described by Glodzik et al(40). In brief, negative binomial 594 

regression was applied to model local SV breakpoint rates under the null 595 

hypothesis (i.e. absence of selection), taking into account local features such as 596 

gene expression, replication time, non-mapping bases and histone modifications. 597 

The PCF algorithm can define hotspots without the use of binning, based on a 598 

user-defined smoothing parameter and threshold of fold-enrichment compared to 599 

the background. This allows identification of hotspots of widely different size, 600 

depending on the underlying biological processes. Moreover, there was no global 601 

threshold for the inter-breakpoint distance required to define a hotspot; instead, 602 

the genome was searched for local regions with higher than expected breakpoint 603 

density compared with local context and the background model. To avoid calling 604 

hotspots driven by highly clustered breakpoints in a few samples, we also set a 605 

minimum threshold of 8 samples involved (~ 1% of the cohort) to be considered 606 
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hotspot, as previously reported(40). Despite this threshold, we found that 607 

complex SVs with tens to hundreds of breakpoints in a localized cluster 608 

(particularly chromothripsis) came to dominate the results. To account for this, 609 

we ran the PCF algorithm in two different ways: 1) considering all breakpoints of 610 

non-clustered SVs (simple classes and templated insertions); and 2) including all 611 

SV classes, but randomly downsampling the data to include only one breakpoint 612 

per 500 kb per patient. The random downsampling followed by PCF analysis was 613 

repeated 1000 times, requiring >95% reproducibility to define a hotspot. Final 614 

output from both approaches was merged for downstream analysis.  615 

The full SV hotspot analysis workflow is attached as Data S1, drawing on 616 

generic analysis tools that we have made available on github 617 

(https://github.com/evenrus/hotspots/tree/hotornot-mm). Additional details about 618 

nomination of SV hotspots by the PCF algorithm and downstream analysis and 619 

are provided in Supplementary Methods.  620 

 621 

Functional classification of structural variation hotspots 622 

SV hotspots were classified based on local copy number and gene 623 

expression data as gain-of-function or loss-of-function; hotspots without clear 624 

functional implications were removed. 625 

Copy number data was integrated from two complimentary approaches. 626 

First, we applied the GISTIC v2.0 algorithm to identify wide peaks of enrichment 627 

for chromosomal amplification or deletion (FDR < 0.1), using standard 628 

settings(41). Second, we considered the cumulative copy number profiles of 629 
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each hotspot, considering only the patients with SV breakpoints within the region, 630 

looking for more subtle patterns of recurrent CNA that was not picked up in the 631 

genome-wide analysis. 632 

To determine the effects of SV hotspot involvement on gene expression, 633 

we applied multivariate linear regression analysis for each gene within 500 Kb to 634 

either side of a hotspot(36). Genes were considered involved by SV if there was 635 

an SV breakpoint within 100 Kb to either side of the corresponding hotspot. All 636 

SV classes were considered together, and the expression level of each gene was 637 

adjusted for the total copy number of that gene in each patient. Genes 638 

differentially expressed at FDR < 0.1 were considered statistically significant.  639 

 640 

Identification of putative driver genes involved by SV hotspots 641 

Multiple lines of evidence were considered to identify driver genes 642 

involved by SV hotspots. Evidence of a putative driver gene included: 1) involved 643 

by driver SNVs in multiple myeloma(20,21); 2) included in the COSMIC cancer 644 

gene census (https://cancer.sanger.ac.uk/census); 3) designated as putative 645 

driver gene in The Cancer Genome Atlas(62-65); 4) enrichment of SV 646 

breakpoints in or around the gene; 5) nearby peak of SV-related copy number 647 

gain or loss; 6) SV classes and recurrent copy number changes corresponding to 648 

a known role of that gene in cancer (i.e. oncogene or tumor suppressor); and 7) 649 

differential gene expression. Having identified candidate driver genes involved by 650 

SV hotspots, we reviewed the literature for evidence of a role in multiple 651 

myeloma (Table S3). 652 
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 653 

Histone H3K27ac, super-enhancers and multiple myeloma transcription 654 

factor networks 655 

Active enhancer (H3K27ac) and super-enhancer data from primary 656 

multiple myeloma cells, as well as key gene regulatory networks in multiple 657 

myeloma, were obtained from Jin et al (42). Enrichment of super-enhancers and 658 

key multiple myeloma transcription factors in hotspots was assessed using a 659 

Poisson test, comparing the density within 100 kb of hotspots with the remaining 660 

mappable genome. 661 

 662 

Templated insertion hotspot analysis 663 

We developed an empirical background model for templated insertions, 664 

which strongly out-performed a random model to predict the genome-wide 665 

distribution of templated insertion breakpoints. We then performed PCF-based 666 

hotspot analysis for templated insertions alone, searching for regions of 667 

enrichment as compared with the templated insertion background model, as 668 

described above for non-clustered SVs.   669 

 670 

Chromothripsis hotspot analysis 671 

Empirical background models showed very poor ability to predict the 672 

distribution of chromothripsis breakpoints, as may be expected if DNA breaks in 673 

chromothripsis tend to be random. To identify regions enriched for 674 
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chromothripsis, we applied the PCF algorithm with a uniform background, only 675 

adjusting for non-mapping bases.  676 

 677 

Enrichment of SV classes within hotspots 678 

We used logistic regression analysis to determine the relative probability 679 

that breakpoints of different SV classes are located within 100 Kb of a hotspot. 680 

Each breakpoint was considered individually. Single deletions were considered 681 

as the reference class and results shown as OR with 95% CI. 682 

 683 

SV classes associated with copy number gains 684 

To determine the SV classes associated with focal copy number gains, we 685 

selected all copy number segments smaller than 3 Mb with a total copy number 686 

of >2 and a relative change of ≥1 from the baseline of that chromosome arm (as 687 

described above). Each copy number segment was assigned to the associated 688 

SV class, or as “No SV” if no breakpoints could be found within 50 Kb. 689 

 690 

Amplification of multiple myeloma super-enhancers 691 

To determine the relative probability of super-enhancer amplification 692 

associated with different SV classes, we applied multivariate logistic regression 693 

analysis. Focal copy number gains were assigned as associated with a super-694 

enhancer if one was found within 100 Kb of the copy number segment. Copy 695 

number segments were grouped according to the associated SV classes: 696 

templated insertion, tandem duplication, chromothripsis, other SV or no SV. 697 
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Gains associated with “Other SVs” were used as the reference level and copy 698 

number was included as a continuous variable. Results were provided as OR 699 

and 95% CI for each SV category, adjusted for the effect of copy number.  700 

 701 

Multi-driver events 702 

Multi-driver events were defined by the involvement of two or more 703 

independent driver copy number segments and/or SV hotspots caused by the 704 

same simple or complex SV. For example, the association between MMSET and 705 

MAX/TRAF3 deletion, was often an unbalanced translocation causing two 706 

deletion: the first involving MMSET and FGFR3 on chromosome 4p and the 707 

second involving the majority of chromosome 14q (including MAX/TRAF3). Each 708 

copy number segment was only counted once, even if more than one driver was 709 

deleted or amplified. 710 

 711 

Data and software availability 712 

All the raw data used in the study are already publicly available (dbGap: 713 

phs000748.v1.p1 and EGAS00001001178. Analysis was carried out in R version 714 

3.6.1. Unless otherwise specified, we used Wilcoxon rank sum test to test for 715 

differences in continuous variables between two groups; Fisher’s exact test for 716 

2x2 tables of categorical variables; and the Bonferroni-Holm method to adjust p-717 

values for multiple hypothesis testing. The full analytical workflow in R to identify 718 

hotspots of structural variants is provided in Data S1. All other software tools 719 

used are publicly available.   720 
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Figure legends 985 

Figure 1: Complex structural variant classes in multiple myeloma. A) 986 

Chromothripsis involving IGH and 9 recurrent drivers across 10 different 987 

chromosomes (sample MMRF_1890_1_BM). B) Chromothripsis causing high-988 

level focal gains on chromosome 17 (sample MMRF_2330_1_BM). The 989 

horizontal black line indicates total copy number; the dashed orange line minor 990 

copy number. Vertical lines represent SV breakpoints, color-coded by SV class. 991 

Selected overexpressed genes (Z-score >2) are annotated in red, including the 992 

established multiple myeloma driver gene MAP3K14, and RAD51C, an oncogene 993 

commonly amplified in breast cancer(66) (6 copies). C) Templated insertion 994 

involving 7 different chromosomes, causing a canonical IGH-CCND1 995 

translocation and involving at least two additional drivers in the same event (i.e. 996 

KLF2 and TNFRSF17) (sample MMRF_1677_1_BM). D) Simpler templated 997 

insertion cycle (brown lines), involving IGL, MYC, and a hotspot on chromosome 998 

15q24 (sample MMRF_1550_1_BM). Copy number profile shown in blue, with 999 

active enhancers below in brown (H3K27Ac). E) Chromoplexy involving 1000 

chromosomes 11, 13, and 14, simultaneously causing deletion of key tumor 1001 

suppressor genes on each chromosome (sample MMRF_2194_1_BM). F) 1002 

Zooming in on the translocations and associated large deletions which make up 1003 

the chromoplexy event depicted as a CIRCOS plot in C) (sample 1004 

MMRF_2194_1_BM). The circos plots in panels A, C and E each show the SV 1005 

breakpoints of a single complex SV (colored lines; legend above panels), with 1006 
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bars around the plot circumference indicating copy number changes (red = loss; 1007 

blue = gain). 1008 

 1009 

Figure 2: Distribution and clinical impact of structural variants in multiple 1010 

myeloma. A) Stacked bars show the genome-wide burden of each structural 1011 

variant (SV) class (color) in each patient (x-axis), grouped by primary molecular 1012 

subgroup. B) Pairwise associations between the number of SVs of each class 1013 

across patients in the CoMMpass cohort (n=752). Color and size of points are 1014 

determined by the magnitude of positive (blue) and negative (red) spearman 1015 

correlation coefficients, plotted only where q < 0.1. C) Association between SV 1016 

classes and molecular features in the CoMMpass cohort (n = 752). Odds ratio for 1017 

each pair of variables was estimated by Fisher’s exact test. Statistical 1018 

significance is indicated by black dots (FDR < 0.1) and asterisks (Bonferroni-1019 

Holm adjusted p-values < 0.05). For all templated insertions, templated insertions 1020 

involving >2 chromosomes, chromothripsis, chromoplexy and unspecified 1021 

complex events, we compared patients with 0 versus 1 or more events. The 1022 

remaining SVs were considered by their simple class (i.e. DUP, DEL, TRA and 1023 

INV), comparing the 4th quartile SV burden with the lower three quartiles. D-E) 1024 

Kaplan-meier plots for progression free survival (PFS) D) and overall survival 1025 

(OS) E) in patients with and without chromothripsis (shown in blue and red 1026 

respectively). F) Hazard ratio for PFS and OS by SV type, estimated using 1027 

multivariate Cox regression. (Line indicates 95% CI from multivariate cox 1028 

regression models, statistically significant features indicated by asterisks (* 1029 
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p<0.05; ** p < 0.01). The multivariate models included all SV variables (as 1030 

defined above) as well the following clinical and molecular features: age, sex, 1031 

ECOG status, ISS-stage, induction regimen, gain 1q21, del FAM46C, del TRAF3, 1032 

TP53 status, del RB1, high APOBEC mutational burden, hyperdiploidy and 1033 

canonical translocations involving CCND1, MMSET, MAF, MAFA, MAFB and 1034 

MYC (Figure S2). 1035 

 1036 

Figure 3: Structural variants associated with recurrent translocations, copy 1037 

number changes and altered gene expression. A) Relative contribution (y-1038 

axis) of simple and complex SV classes to canonical translocations (TRA) 1039 

involving IGH as well as translocations of MYC with canonical and non-canonical 1040 

partners (x-axis). “Non-IG” includes MYC-translocations that do not involve IGH, 1041 

IGL or IGK. B) Gene expression of canonical and non-canonical partners of 1042 

translocations involving IGH (left), either light chain gene locus (center) or MYC 1043 

(right). Each point represents a sample, colored by the translocation class 1044 

involved or absence of a translocation (gray). Boxplots shows the median and 1045 

interquartile range (IQR) of expression across all patients, with whiskers 1046 

extending to 1.5 * IQR. The templated insertion of IGH and MAF with low 1047 

expression was part of a multi-chromosomal event involving and causing the 1048 

overexpression of CCND1. C) Structural basis of established multiple myeloma 1049 

CNA drivers, showing the relative contribution of whole arm events and CNAs 1050 

associated with a specific SV. Intrachromosomal events without a clear causal 1051 

SV were classified as “unknown” (7% of CNAs overall). D) Impact of copy 1052 

Association for Cancer Research. 
 by guest on September 16, 2020. Copyright 2020 Americanhttps://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://bloodcancerdiscov.aacrjournals.org


 43 

number and SV involvement on normalized gene expression values (Z-scores), 1053 

estimated by multivariate linear regression. Estimates with 95% CI for each 1054 

parameter are shown. Pooled analysis was performed for all expressed genes on 1055 

autosomes across all patients, excluding structural events involving 1056 

immunoglobulin loci.  1057 

 1058 

Figure 4: Genome-wide distribution of structural variation breakpoints and 1059 

hotspots. A) Top: Genome-wide density of SV breakpoints shown separately for 1060 

each class (legend above figure), simple classes above the X-axis and complex 1061 

classes below. Middle: Distribution of SV hotspots (green) and recurrent copy 1062 

number changes (red/blue) identified by the GISTIC algorithm. Bottom: all copy 1063 

number changes caused by SV breakpoints, showing cumulative plots for gains 1064 

(blue) and losses (red). B-D) Zooming in on three SV hotspots, showing the 1065 

breakpoint density of relevant SV classes (colors indicated in legend above A) 1066 

around the hotspot; active enhancers (H3K27Ac) and supporting GISTIC peaks 1067 

(middle); and cumulative copy number (bottom). The SV density plots are 1068 

annotated with the location of key driver genes as vertical gray dashed lines. B) 1069 

Gain-of-function hotspot centered on TNFRSF17 (BCMA), dominated by highly 1070 

clustered templated insertions, associated with focal copy number gain of 1071 

TNFRSF17. C) Gain-of-function hotspot involving four genes in the Signaling 1072 

Lymphocyte Activation Molecule (SLAM) family of immunomodulatory receptors, 1073 

including the gene encoding the monoclonal antibody target SLAMF7. D) 1074 
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Deletion hotspot associated with copy number loss centered on the cyclin 1075 

dependent kinase inhibitors CDKN2A/CDKN2B. 1076 

 1077 

Figure 5: Summary of structural variant hotspots. Summary of all 68 SV 1078 

hotspots, showing (from the top): absolute and relative contribution of SV classes 1079 

within 100 Kb of the hotspot; involvement of active enhancers in multiple 1080 

myeloma, presence of putative driver gene fusions and copy number changes; 1081 

differential expression of putative driver genes by copy number changes and/or 1082 

SV involvement by linear regression; total number of genes in each hotspot 1083 

differentially expressed by SV involvement (FDR < 0.1) after adjustment for copy 1084 

number changes; known and candidate driver genes.  1085 

 1086 

Figure 6: Templated insertions and chromothripsis exemplify highly 1087 

clustered versus scattered breakpoint patterns. A) Distribution of templated 1088 

insertions (above) and chromothripsis (below) across the genome, for each 1089 

displaying SV breakpoint density above the X-axis and SV-associated cumulative 1090 

copy number changes below. Results from templated insertion and 1091 

chromothripsis-specific hotspot analysis drawn as black bars at y = 20. Hotspots 1092 

from the main hotspot analysis which contained 6 or more templated insertions 1093 

are drawn in green. Key putative driver genes involved by hotspots are 1094 

annotated. Numbers are annotated where peaks extend outside of the plotting 1095 

area B) The probability that a given SV breakpoint belonging to each class will 1096 

fall within a hotspot region, expressed as odds ratios with 95% CI from logistic 1097 
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regression analysis where single deletions were used as the reference level. C) 1098 

Showing the proportion of focal gains (<3 Mb) associated with each SV class, 1099 

divided by the number of copies acquired relative to the baseline (x-axis). D) 1100 

Shows the probability that focal gains displayed in C) contain a multiple myeloma 1101 

super-enhancer, expressed as odds ratio with 95% CI from a logistic regression 1102 

model adjusted for copy number. Asterisks in B and D indicate statistical 1103 

significance: ** = p < 10-8; * = p<0.01. 1104 

 1105 

Figure 7: Two or more putative driver alterations caused by a single SV. 1106 

Putative driver alterations recurrently involved by multi-driver events (involved in 1107 

5 or more patients) A) Number of multi-driver events involving each gene colored 1108 

by the SV class responsible. B) Heatmap showing the number of times each pair 1109 

of putative drivers co-occur. Co-occurrence was defined by at least two drivers 1110 

on different chromosomal copy number segments caused by the same event. 1111 

Axis legends are colored according to the gain-of-function (blue) or loss-of-1112 

function (red) status of each driver. 1113 

 1114 
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