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Abstract: 

Granulocyte-macrophage-colony stimulating factor (GM-CSF), can direct the activation, 
proliferation and differentiation of myeloid-derived cells.  It is also responsible for 

maturation and function of professional antigen presenting cells thereby impacting 
adaptive immune responses, while assisting to maintain epithelial barrier function. GM-
CSF in combination with other endogenous cytokines and secondary stimuli, such as 

tumor necrosis factor can modulate pro-inflammatory monocyte priming via chromatin 
remodeling and enhanced transcriptional responses, a concept termed “trained immunity”. 

An increase in the incidence of opportunistic fungal infections was recently reported in 
patients with hematological cancers receiving treatment with the BTK inhibitor, Ibrutinib. 
Tec Kinase BTK is known to influence the expression of GM-CSFR and regulates 

downstream signaling pathways, suggesting a role for GM-CSF in maintenance of defense 
against fungal infections in immune competent hosts. Further examination of the potential 

mechanism(s) of action for naturally occurring GM-CSF and recombinant human GM-CSF 
(rhu-GM-CSF) expressed in yeast (sargramostim) are reviewed.   
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Introduction 

Granulocyte-macrophage colony-stimulating factor (GM-CSF), also known as 

colony stimulating factor number 2 (CSF-2), was the first member of the ß common chain 

cytokine family to be identified.  It was initially detected in mouse lung-conditioned medium 

1 and subsequently described as a hemopoietic cytokine able to differentiate in vitro 

myeloid precursor cells into macrophages and granulocytes from granulocyte-monocyte 

progenitor (GMP) cells2-5. The GM-CSF gene is located on chromosome region 5q31, 

clustered with other genes encoding Interleukins (IL)-IL-5, IL-4, and IL-3 6-9. Collectively, 

IL-3, IL-5, and GM-CSF can synergize a differentiation and function of myeloid cells as 

well as coordinating immune responses. 

 After transcription and transduction, the resulting protein, is glycosylated and 

secreted into the extracellular environment as a homodimer 10. Due to the deep 

conservation of this molecule in the mammalian lineage, GM-CSF cellular sources in the 

body are multiple. Cellular sources of GM-CSF include T and B cells, such as the innate 

response activator B cells that reside in the pleural cavity and protect against pneumonia 

through a GM-CSF-IgM axis 11. Myeloid cells, such as eosinophils, basophils, mast cells, 

neutrophils, monocytes, and macrophages produce GM-CSF as well.  Tissue-resident 

cells, such as microglia, endothelial cells, chondrocytes, osteoclasts, fibroblasts, 

pulmonary epithelial cells and uterine cells can also produce GM-CSF 12. Furthermore, 

some tumors have been described as capable of producing GM-CSF 12.  

GM-CSF binds only one high affinity receptor; GM-CSFR 13. The receptor is a 

heterodimer, composed of an  (GMR) and  chain (GMR) (14-16), with the  chain being 

common to the receptors for IL-3 and IL-5 (IL-3R and IL-5R, respectively) 17,18.  

The gene encoding the  chain subunit, CSF2RA, is located in the pseudoautosomal 

region 1 (PAR-1) of both sexual chromosomes, whilst the gene encoding the  chain is 

located in chromosome region 22q12.3 13. The GM-CSF/GMCSFR receptor-ligand 
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complex is found in nature as a dodecamer, as recently demonstrated by crystallographic 

studies 19-21. As the complex forms, GM-CSF initially binds GMR 22, then, the heterodimer 

recruits GMR, further strengthening the bond with the ligand and leading to receptor 

activation 16.  The heterotrimer, composed by GM-CSF+GMR+GMR, then polymerizes 

with another heterotrimer to form a hexamer (Figure 1), which then binds another 

hexomer to form the dodecamer receptor-ligand active complex 13.  

This dodecameric form allows the cytoplasmic tails of two GMR, coupled with the Janus 

kinase 2 (JAK2), to face and self-trans-phosphorylate each other 19. This event causes the 

activation of two pathways important for proliferation events, JAK2/STAT5 and MAPK, as 

well as activation of PI3K/Akt pathways thereby facilitating cell survival by inhibiting, via 

Mcl-1, the Bax/Bak-related apoptosis induction pathway 13. Furthermore, both MAPK (by 

repressing Bim) and IKK (by repressing Puma) contribute to inhibition of Bax/Bak 

mediated apoptosis 23.  

In contrast to GMR-related signaling pathways, GMR-related signaling remains 

less understood; although signaling pathways such as SLAP, p85, I, GRAP, Lyn and 

Src have been implicated, the details of how these pathways signal in combination with 

GMR  remains incompletely characterized 23.  Other various signaling pathways are also 

modulated by the extracellular portion of GMR that variously interacts with a wide 

spectrum of molecules including integrin 1, CBAP and FcR 23. GM-CSFR is 

predominantly expressed by dendritic cells (DCs), granulocytes and eosinophils 24. The 

regulation of GM-CSF mRNA remains obscure, however Sturrock and colleagues 

described a negative effect of miR133a and miR133b on GM-CSF through interaction with 

the 3’ untranslated region (UTR) of GM-CSF 25.   

Although, GM-CSF in the literature is described to mediate multiple crucial host 

response functions to external stimuli such as inflammation and the antitumor response, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

the present review aims to focus only on the physiological aspects of GM-CSF and its’ role 

during infection through effects on the properties and functional status of immature and 

mature myeloid cells.  

Recombinant GM-CSF: 

Recombinant expressed in yeast GM-CSF (sargramostim) was approved in 1991 

for the treatment of neutropenia associated with stem cell transplant and to treat several 

other causes of neutropenia resulting from leukemia or its treatment. In 2018 the FDA 

approved sargramostim to increase survival in adult and pediatric patients acutely exposed 

to myelosuppressive doses of radiation (Hematopoietic Syndrome of Acute Radiation 

Syndrome, or H-ARS) 26. 

 

GM-CSF and Myelopoiesis 

GM-CSF is not essential for normal hematopoiesis, however it is essential for 

emergency hematopoiesis when there is an increased demand for granulocytes and 

macrophages to fight infection.  A concentration-dependent behavior of GM-CSF induced 

differentiation of granulocyte-monocyte progenitor (GMP) cells is essential for human 

health.  

Critical proteins for granulocytic commitment include CCAAT enhancer-binding 

proteins (C/EBP and C/EBP) whose functions are redundant in hematopoiesis and are 

here referred to collectively as C/EBP, growth-factor independent-1 protein (Gfi-1), GM-

CSF receptor (GM-CSFR), and G-CSF receptor (G-CSFR).  Weston et. al., performed a 

mathematical analysis of cytokine-induced differentiation of GMPs and described how, 

with high concentrations of GM-CSF, C/EBP increases quickly, resulting in a swift rise in 

Gfi-1 and repression of PU.1, thereby inducing granulopoiesis 6. This is in accordance with 

an earlier study by Wang et. al., which showed that C/EBP is an antagonist of PU.1 in 

granulopoiesis 27.  
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They also describe a positive feedback loop of GM-CSFR, C/EBP and PU.1 that 

creates a sensitive, switch like response of monocytic gene expression to GM-CSF 

stimulation where the lower the concentration of GM-CSF, the longer it will take for the 

switch to “kick in” shifting the process to monopoiesis. They propose that this delay 

permits PU.1 to establish dominance over pro-granulocytic transcription factors. Once the 

cells are committed to monocytic fate, GM-CSFR levels are then upregulated to high 

levels, resulting in greater GM-CSF signal strength in monocytes.   

The Weston model agrees with experimental data from Lee and associates whose 

model suggests that the GM-CSF signal strength is stronger in the initial commitment step 

of granulopoiesis and this high signal strength decreases and eventually stabilizes due to 

GM-CSFR down regulation post-granulocytic commitment.  However, in monopoiesis 

which initiates at low concentrations of GM-CSF, by the time GM-CSF signal is strong, the 

cell is conclusively committed to that lineage. Therefore, once established into monocytic 

fate, the capacity to process a strong GM-CSF signal via upregulated GM-CSFR may be 

important for gene regulation within the monocytes 28,29. 

Interestingly it appears that GM-CSF induced granulopoiesis exhibits a larger spike 

in PU.1 and IRF8 concentrations in its early stages than M-CSF and G-CSF induced 

granulopoiesis. These differences may affect downstream transcription factors and prime 

the cells for different subtypes of granulocytes 6. This may provide a more functional 

emergency myeloid cellular response to a myelopoiesis crisis. 

During infection, inflammation, and cancer, a population of Myeloid-derived 

suppressor cells (MDSCs) expands with the ability to suppress T-cell responses 30.  

Parmiani and associates suggested that monocytes can morph into a Monocytic-MDSC as 

a consequence of “too high a dose” of exogenous administration of GM-CSF 31. Weston 

et. al., postulates that high GM-CSF concentrations can induce a monocyte to transition 

into an M-MDSC (Figure 2). They postulate that this behavior is a consequence of high 
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expression of GM-CSFR on committed monocytes that can now translate exogenous 

increases in GM-CSF concentration to induce transformation into MDSCs via 

simultaneous upregulation of PU.1 and C/EBP in these cells. Additionally, their results 

suggest that the stability of this MDSC status is dependent and regulatable via 

extracellular GM-CSF stimulation.  

 

GM-CSF and immune cells 

The immunomodulatory properties of GM-CSF may be exerted directly on cells of 

the immune system (Figure 3) or indirectly to target tissues such as lung epithelial cells, 

uterine cells, fibroblasts and endothelial cells that express GM-CSFR 32. The significance 

of GM-CSF on cells of the immune system is typified by human cytomegalovirus. Once 

ingested by monocytes, the generated dendritic cells (CMV-MoDCs) acquire a 

dysfunctional phenotype disrupting not only GM-CSF signaling in the infected MoDCs but 

also through a paracrine fashion on other DCs 33. In addition to viruses, Cryptococcus 

neoformans downregulates the production of GM-CSF and TNF-α by unstimulated human 

NK cells, as assessed by gene expression and supernatant protein levels 34. Immune 

evasion circumnavigating GM-CSF by Candida albicans (C.albicans) has been 

demonstrated. C.albicans impedes alveolar macrophage reactive oxygen species (ROS) 

production by targeting NADPH oxidase, a major oxidative stress-dependent NF-B 

signaling pathway, a central regulator of GM-CSF release following TLR2/6 stimulation of 

endothelial cells 35. This NADPH oxidase–dependent regulation of GM-CSF plays an 

important dual role; 1. in patrolling immune cells for pathogen killing, and; 2) in endothelial 

cells, where ROS formation controls the release of immunologically relevant growth factors 

to recruit and differentiate immune cells toward the required effector function 36. 

Neutrophils 
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Neutrophils are sophisticated immune cells that can release specific granular 

enzymes, immunomodulatory cytokines and chemokines that interact with various 

components of the immune system. 

Although GM-CSF has been postulated to collaborate as a pro-differentiation factor 

for neutrophils, GM-CSF knock-out mice exhibited no neutropenia 37. Physiologically the 

pro-differentiating signal of GM-CSF on myeloid precursors seems to be negligible, as 

differentiation is believed to be achieved through G-CSF 38. In contrast, during  physiologic 

challenges, GM-CSF becomes relevant by inhibiting neutrophil migration 39, increasing 

their lifespan 40, facilitating degranulation 41, increasing IL-1 production 42, and modifying  

surface reactivity by polarizing the arachidonic metabolism during leukotriene production 

43. The anti-microbial activity of neutrophils is sustained by Natural Killer (NK) cell derived 

GM-CSF 44. GM-CSF has also been shown to synergistically activate neutrophil antibody-

dependent cellular cytotoxicity (ADCC) 45. 

Environmental cues encourage neutrophils to sequester pathogens via phagocytosis or by 

releasing neutrophil extracellular traps (NETs) outside the cell. Candida albicans, induces 

NET formation and both yeast-form and hyphal cells is susceptible to NET-mediated 

killing, potentially circumventing the need for phagocytosis. This form of NET formation 

known as vital NETosis is associated with release of mitochondrial DNA that is dependent 

on myeloperoxidase (MPO) and produced after stimulation with GM-CSF46. 

Interestingly a study of children affected by severe congenital neutropenia (SCN) 

demonstrated that phagocytosis is apparently normal in SCN neutrophils, suggesting that 

the reduced killing ability of these cells does not rely on defects of microbial internalization. 

These children remained at a consistent high risk of infection even under Granulocyte 

Colony Stimulating Factor (G-CSF) treatment. While G-CSF is capable of correcting 

neutropenia, the authors conclude that G-CSF is not sufficient to correct all of the 

functional deficiencies of neutrophils47.  Recently Khandagale et. al., observed that GM-
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CSF restored MPO expression in NETs as well as up-regulated the expression of 

calprotectin in NETs of a patient with SCN and enabled efficient killing of C. albicans yeast 

and hyphae 48.  

Basophils 

GM-CSF synergistically acts with IL-3 to induce basophil differentiation in the bone 

marrow 49.  These differentiated cells, through the expression of MHC-II and other co-

stimulatory molecules, promote a Th-2 mediated response in vivo 50 and in vitro 51.  

Eosinophils 

GM-CSF exhibits a strong influence on eosinophil lifespan and response to 

environmental triggers 24,52. It increases eosinophil mobilization through chemoattractant 

capacities and optimizes phagocytic and de-granulating capabilities 53. 

Mast Cells 

 Mast cells are key players in allergic and anaphylactic reactions; they also 

participate in acquired and innate host immune response. Mast cells can express 

receptors for IL-3, IL-5 and GM-CSF 54 and are thus likely to be activated following 

exposure to rGM-CSF 55.  Common side effects of high dose rGM-CSF, likely due to off-

target effects on IL-3 and IL-5 common beta chain binding include flushing, induction of 

fever with flu-like symptoms, musculoskeletal pain and hypotension as well as nausea and 

capillary leak syndrome 56-58 and thus careful dosing of rGM-CSF is warranted. 

Monocytes and Macrophages 

The role of GM-CSF in DC development appears to be situationally-as well as 

subset-specific. During bone marrow myelopoiesis, in a steady state condition, 

macrophages and dendritic precursors (MDPs) differentiate into Common Dendritic 

precursors (CDPs) and further into pre-committed DCs (pre-DCs) via FMS-like tyrosine 

kinase 3 ligand (FLT3L) 59. At physiologically relevant levels of GM-CSF, stimulation of 

pre-DCs elicits migration into the lymphatic tissue or even peripheral blood where GM-CSF 
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and other specific tissue-related molecules orchestrate their differentiation into committed 

DCs, namely CD 103+/CD 8+/XCR1+/Clec9a+ (Group 1), These Myeloid cDC1 have 

been characterized as a subset of DC that have a high intrinsic capacity to cross-present 

antigens via MHC class I to activate CD8+ T cells and to promote T helper type 1 (Th1) 

and natural killer responses through IL-12. Differentiation may alternatively lead towards 

CD 11b+/CD4+/ESAM+ or neg (Group 2 cDCs) 59.  

During inflammation, activated CD4+ T cells produce large amounts of GM-CSF that act in 

an endocrine manner driving the so-called “emergency myelopoiesis” 60. Macrophage 

dendritic cell precursors (MDPs) differentiate into committed monocyte precursors (cMoPs) 

that further differentiate in the bone marrow into Ly-6Chi monocytes in mice. Following a 

GM-CSF gradient Ly-6Chi monocytes extravasate and further differentiate into 

inflammatory macrophages (F4/80loCD11bhi) which release high levels of IL-1 and IL-6, or, 

in the presence of IL-4, differentiate into monocytic functional DCs (CD64+CD11bhi , 

MoDCs), or short-lived Langerhans cells 60.  

Efficient presentation of soluble antigen by cultured human dendritic cells is 

maintained by GM-CSF plus interleukin 4 and downregulated by tumor necrosis factor-α 

61. 

Macrophages and host defense   

Macrophages play a central role in host defense.  They are capable of engulfing 

(phagocytosing) invading organisms following recognition through pattern recognition 

receptors (PRRs) of pathogen-associated molecular patterns (PAMPs) as well as innate 

host damage-associated molecular patterns (DAMPs) which are upregulated following 

microbial invasion or cellular damage.  

Global gene expression analyses of macrophages differentiated from GM-CSF-

treated monocytes has demonstrated GM-CSF upregulation of 340 genes and 

downregulation of 190 genes in macrophages. Macrophage-specific genes including 
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CD14, CD163, C5R1, and FcgR1A, several cell surface adhesion molecules, and cytokine 

receptors are induced by GM-CSF 62. 

The effects of GM-CSF on macrophage function is extensive and includes; 

enhancing macrophage antigen presentation capacity and antibody mediated 

phagocytosis via complement.54 Macrophage microbicidal capacity, leukocyte chemotaxis 

and adhesion are also enhanced by GM-CSF. GM-CSF also induces the production of 

cytokines IL-6, IL-8, G-CSF, M-CSF, TNF and IL-1 63. 

In response to host challenge, macrophages may induce both pro- and anti-

inflammatory pathways based upon contextual signaling.  Classical or “M1” type 

macrophages, in response to IFN signaling, produce pro-inflammatory cytokines, 

upregulate MHCII antigens and increase inducible nitric oxide synthase (iNOS) production 

and reactive oxygen intermediates. M1 macrophages promote Th1 response and possess 

strong microbicidal and tumoricidal activity.  Conversely, following IL-4/IL-13 stimulation, 

alternative or “M2” macrophages produce arginase, increased IL-10 levels, upregulate 

CD206 and increase polyamines to stimulate cell growth and repair.  M2 macrophages 

promote a Th2 response, tissue remodeling, immune tolerance and tumor progression. 

However, the concept of M1 vs. M2 macrophages has been demonstrated to be a 

vast oversimplification of the role and lineage of macrophages.  For instance, recent 

elegant studies have demonstrated that tissue macrophages have a dual ontogeny and 

can develop from circulating monocytes that enter the tissue, as well as from embryonic 

precursors derived from the yolk sac.  Thus, replenishment of tissue macrophages varies 

based upon the type of challenges encountered as well as anatomical site(s).  

This wide range of response and derivation of macrophages has solidified the 

contention that macrophages represent a highly heterogeneous population with high levels 

of plasticity that rely on contextual signaling to stimulate the correct response. Thus, 
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macrophages can coordinate inflammatory responses, including initiation as well as 

termination of inflammation.   

GM-CSF in combination with other endogenous cytokines has been demonstrated to 

modulate the pro-inflammatory activation of CD14+ monocytes through secondary stimuli 

(e.g., TNF), resulting in a primed monocyte that is likely to recognize secondary 

challenges (i.e., subsequent infection) more efficiently due to induced chromatin 

remodeling and enhanced transcriptional response, a relatively new concept termed 

trained immunity.  The ability of pathogens, such as fungi to induce trained immunity is a 

recently emerging concept that expands the repertoire of host innate response  64.  The 

prime example of this phenomena is shown in fungal infections.  Quintin et al 

demonstrated that exposure of mice to a low dose (non-lethal) of C. albicans, 7 days prior 

to a toxic challenge dose afforded protection of wild type and Rag 1-/- mice deficient in T/B 

cells.  This protection was not shown in animals with a compromised monocyte migratory 

signal system (Ccr2-/-).  The authors demonstrate that C. albicans triggers an initial 

protective response that can augment the inflammatory response through recognition of 

Candidal beta glucans and induction of epigenetic changes in monocytes via dectin-1/Raf-

1 signaling 65.  This result is postulated to play a contributory role in the commensal niche 

occupied by Candida in the human host 66.  

There is a balance between metabolism and macrophage cell function mediated through 

GM-CSF that results in the induction of inflammatory macrophages via changes in cellular 

metabolism. GM-CSF–dependent macrophage functions require mTOR/Akt/ERK 

signaling–mediated de novo synthesis of c-myc. This signaling pathway results in glucose 

transporter (GLUT) upregulation and increased basal glucose uptake. TLR activation–

mediated acute glycolysis is robustly induced in macrophages primed by GM-CSF, and the 

consequent mevalonate pathway activation acts as a bridge between glycolytic capacity 

and inflammatory phenotypes.  Na et. al., demonstrated that c-myc is a major transcription 
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factor in GM-CSF–mediated inflammatory polarization upon physiologic stimulation. This is 

meaningful because, several published studies have reported c-myc as a typical central 

regulator of glycolysis metabolism in cancer cells as well as T cells 67. 

 

GM-CSF and bacterial infection: 

GM-CSF plays a pivotal role during bacterial infections. The prototypical example of 

GM-CSF function in infection can be seen in pneumonia patients. Bacteria, via TLR-4 68, 

and viruses, via HGF/c-MET and TGF-/EGFR 69, can activate alveolar macrophages. 

GM-CSF is produced in low physiological quantities by the respiratory epithelium to recruit, 

in a paracrine manner, alveolar macrophages to clean the surfactant deposits preventing 

Pulmonary Alveolar Proteinosis (PAP) 70.  Pulmonary alveolar proteinosis (PAP) is a 

severe autoimmune disorder that results from autoantibodies-induced to neutralize GM-

CSF- inhibiting alveolar macrophage function in an off-target effect 71.  In addition, 

mutations in or development of antibodies to GM-CSF or GM-CSFR has also been 

associated with nocardia infections 72.  During infection respiratory epithelia begin to 

produce robust amounts of GM-CSF that recruits and activates the resident CD103+ 

monocytes, an indispensable subset for CD8+ T clearance 73. Epithelial GM-CSF 

production is mainly driven by activated alveolar macrophages in a TNF-dependent 

manner 74.  At the same time, in the early infection phase, B1a serosal B cells 

(CD43+CD5+) activate and produce large amounts of GM-CSF that amplify the cellular 

interaction and furthermore, via CD131, stimulate the production of neutralizing IgM in an 

autocrine manner 11. Remarkably, low level epithelial-derived GM-CSF triggered by 

alveolar macrophage interaction may also contribute to the resolution of inflammation and 

tissue repair by recruiting type II alveolar epithelial cells (AEC II) 74. 

 GM-CSF produced by activated T cells (CD4+, CD8+ T cells as well as non-

conventional iNKT cells and γδ T cells) following challenge with Mycobacterium 
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tuberculosis (MTB), the causative agent of tuberculosis (TB), has been demonstrated to 

mediate host protection 75.  In addition, recruitment of leukocytes following MTB infection 

leads to the upregulation and expression of cytokines from infected macrophages. GM-

CSF has been proposed to direct the polarization of macrophages toward the M1 

phenotype through upregulation of proinflammatory cytokines including IL-6, IL-8, IL-1 and 

TNF.  Thus, GM-CSF upregulation following MTB infection leads to a proinflammatory 

response that augments host innate response to MTB.  In a study by Pedral-Sampaio and 

associates, evaluating the safety of sargramostim as adjuvant immunotherapy for the 

treatment of active human pulmonary tuberculosis, a trend toward faster conversion to 

negative culture was observed in the sargramostim group 76. Thus, augmenting GM-CSF 

response following MTB infection may enhance host immunity.  This may be an especially 

important concept given the evolving number of resistant MTB strains that have recently 

emerged.   

Bermudez and colleagues demonstrated that sargramostim induced micro-

bactericidal and -static activity in macrophages in vitro and in vivo; the combination 

of sargramostim and amikacin (50 mg/kg) or azithromycin (250 mg/kg) was associated 

with a significant increase in killing of Mycobacterium avium complex both within cultured 

macrophages and in the beige mouse model. Therefore, a significant reduction in the 

number of viable bacteria was observed in the blood, liver, and spleen of mice treated with 

a combination of sargramostim and azithromycin or amikacin compared with control mice 

and those treated with sargramostim or antimicrobials alone 77. 

 

GM-CSF and viral infection: 

Influenza virus, a leading cause of acute respiratory tract disease, also infects AEC 

II, the main cell type of the alveoli in charge of gas-exchange. AEC II cells produce high 

levels of GM-CSF during viral infections upon encountering HGF and TGF-. Interestingly, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

both stimulations may act in either an autocrine and/or paracrine fashion; in fact, only AEC 

II cells possess c-MET, the HGF receptor, EGFR, and the TGF- receptor. TGF- is 

expressed by AEC II cells and by neutrophils, whilst HGF is expressed only by neutrophils 

69. This differential expression of GM-CSF stimulatory molecules allows AEC II cells to 

exhibit fine modulation through concentration-dependent effects of GM-CSF, resulting in 

activation of innate and adaptive immunity, resulting in improved viral clearance. 

 In the lung, GM-CSF can direct the activation, proliferation and differentiation of 

myeloid-derived cells.  These cells participate in the immune response designed to protect 

the lung from challenges such as those encountered following influenza infection.  In 

addition to the respiratory challenge of the virus itself, a major health threat associated 

with influenza is complications caused by secondary bacterial infections that frequently 

accompany influenza. GM-CSF promotes alveolar macrophage maturation and 

antimicrobial function, an effect that is dependent on the transcription factor PU.1 78.  

Increased levels of GM-CSF in the lung alveolar macrophage lead to increased production 

of reactive oxygen species (ROS) that is protective from viral, as well as secondary 

bacterial infections. GM-CSF–driven DC expansion during pulmonary infections results in 

the generation of DCs with robust immune function that are prone to the induction of Th1 

immune responses against these infections 79,80. Halstead and associates have 

established a mouse therapeutic model of GM-CSF, wherein GM-CSF is “administered” to 

the airways 3 days after establishment of infection and confers protection. Their work 

suggest that high levels of GM-CSF drive the classically activated M1-like 

monocytes/macrophages in the lung during Influenza A viral infection towards an M2-like 

phenotype 81.  Previously Cole and associates established that an elevated M1/M2 

macrophage ratio in the lungs contributes to disease severity 82. Halstead’s group 

demonstrates that in vivo, high airway levels of GM-CSF markedly rescue mice from lethal 

influenza pneumonia. This is of key concern as pulmonary infections such as influenza 
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induce lung injury and disrupt the barrier integrity of lung vasculature and results in 

increased albumin levels in the alveolar space 83.  

GM-CSF has also been demonstrated to protect the lung by restoring barrier 

function and stimulating epithelial cell proliferation 83. GM-CSF exerts a protective effect on 

the alveolar epithelium against oxidative stress-induced mitochondrial injury 84. 

Thus, augmentation with sargramostim through stimulation of innate immune responses 

may enhance protection against viral and potential secondary infections that could 

compromise the alveolar epithelium. Sargramostim may become an important treatment 

strategy for management of pulmonary infections, particularly in the elderly, the very young 

and against drug-resistant strains. 

 

GM-CSF and fungi: 

A major concern in the clinical setting of the intensive care unit and in patients with 

mechanical ventilation arises from a pathologic mycobiome, C. albicans, in which airway 

colonization may facilitate the development of not just Pseudomonas aeruginosa (P. 

aeruginosa) but also Staphylococcus aureus (S.aureus) as well as Escherichia coli (E. 

coli).  

The role of GM-CSF in fungal infection is complex. We hypothesize that GM-CSF 

acts by potentiating calcineurin, Bruton's tyrosine kinase (BTK) and CARD9 antifungal 

pathways via signal convergence. GMR- signals may converge via MAPK and PI3K/AKT 

signals. MAPK signals converge on IKK leading to decreased apoptosis signaling and 

increased lifespan, as observed in neutrophils 85. The IKK complex represents a final 

signal to CARD9 86. Following endosomal detection by Dectin-1 of fungal pattern 

recognition molecules via Src/syc, CARD9 becomes activated via BCL10/MALT1 and 

converges on IKK to transcribe NFk87. The relationship between CARD9 and GM-CSF is 

typified by a case report of a 41-year old male with spontaneous CARD9 deficiency that 
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developed central nervous system candidiasis and was successfully treated with 

sargramostim 88. Subtleties in genetic deficiencies exhibited by different CARD9 deficient 

patients are suspected to influence the outcomes of GM-CSF therapy in these patients. 

Clearly, more intensive work is required to determine the mechanism(s) that influence the 

interactions between GM-CSF and downstream signaling pathways affecting fungal 

infection in CARD9 deficient patients 89,90.   

The anti-apoptotic signals via PI3K/AKT converge on both GM-CSF and BTK. The 

cardinal importance of these signaling factors is demonstrated by the reported increase of 

incidence of fungal infections following treatment with ibrutinib 91. Tyrosine-protein kinase 

Tec and Btk are required for proper expression of GM-CSFRα in macrophages but not in 

dendritic cells, implicating Tec kinases in the lineage-specific regulation of GM-CSFRα 

expression 92.   

BTK also activates PLC that in-turn increases intracellular calcium by opening 

calcium channels on the cell membrane and in the endoplasmic reticulum.  Calcium 

signaling activates calcineurin, and results in NFAT translocation to the nucleus. This 

interrelation may explain the correlated degranulation and phagocytosis recorded in 

granulocytes during inflammation in the presence of GM-CSF 87. In fact, BTK signals also 

activate RHO, WASP and actin, all related to cytoskeletal remodeling. Interestingly, BTK is 

also activated by TLR9; a pattern recognition receptor that detects fungal CpG DNA in the 

acidified endosomes 93. Thus, GM-CSF increases phagocytosis via FcR and potentiates 

the BTK-calcineurin-CARD9 anti-fungal mechanism(s). Furthermore, Syk, a tyrosine 

kinase that activates CARD9, also increases GM-CSF biosynthesis 86.   

Vora and colleagues have demonstrated that voriconazole combined with 

monocytes treated with sargramostim showed enhanced activity against Aspergillus 

fumigatus. 94.  Indeed, murine studies suggest that combination therapy using GM-CSF 

with traditional antifungal therapies can be effective for clearing Aspergillus infections. 
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Using a murine model in which the  chain of the GM-CSF receptor was deleted (GM-

CSFR -/-), these authors demonstrated that A. fumigatus-challenged animals had 

decreased rates of survival compared to wild type controls.  The authors demonstrate that 

depletion of the chain of the GM-CSFR reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase activity, a potential mechanism for the lethality of the fungal 

infection.   

Interestingly, these authors further demonstrated that in the WT mice, neutrophil 

NADPH oxidase activity could be augmented by administration of recombinant GM-CSF, 

suggesting a potential for GM-CSF as an inhibitory treatment for fungal infections 95. 

However, this potential activity for GM-CSF with or without other combined fungal 

treatments needs to be examined in well-controlled human clinical trials designed to 

assess optimal dosing for recombinant GM-CSF as well as for optimal antifungal therapy.  

Thus, more research is necessary to refine the use of combination therapies, involving 

GM-CSF with traditional antifungal therapy, and to assess the potential optimal 

concentrations necessary for effective clearance with minimal toxicity.  

 

Dimorphic Fungi: 

Thermally dimorphic endemic fungi infect humans with intact as well as 

immunocompromised defenses. Examples that these fungi may infect people with intact 

immune defense systems (i.e., immune-competent) include fungi that cause 

histoplasmosis (e.g., Histoplasma capsulatum) and coccidioidomycosis (e.g., Coccidioides 

immitis and Coccidioides posadasii).  In contrast, in immunocompromised individuals (e.g., 

HIV+ individuals or people on high levels of immunosuppressants, such as solid organ 

transplant patients), yeast such as Blastomyces dermatitidis or H. capsulatum pose a high 

risk for infection.  Non-thermal dimorphic fungi (e.g., Malassezia furfur) may also lead to 

human infection, but are generally considered less lethal.  
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In the case of histoplasmosis, H. capsulatum are taken up by alveolar macrophages 

in the lung and are able to replicate within the macrophage phagolysosome allowing for an 

evasive mechanism 96. In an effort to halt intracellular growth, infected macrophages 

upregulate GM-CSF and GM-CSFR which signal through JAK/STAT signaling causing 

limited intracellular zinc through sequestration via metallothioneins (MT) and enhanced 

superoxide production in order to kill fungi within the phagolysosome 97,98.  Taken together, 

GM-CSF-mediated changes in macrophage zinc homeostasis seem to serve a triple 

function in host defense: (1) starving the pathogen of an essential nutrients, (2) 

augmenting ROS production, and (3) shifting the balance of redox tolerance in favor of the 

macrophage 99. In contrast, IL-4 signaling can reverse this effect (Figure 4). 

 

Invasive Fungal Infections: 

Invasive fungal infections (IFIs) can arise either from genetic mutation (e.g., 

CARD9) or immunotherapeutic induced response. The latter have increased proportionally 

with the advent of new immunotherapeutic interventions that suppress the host immune 

system.  The source of IFIs are generally fungal spores that are inhaled (e.g., 

aspergillosis, histoplasmosis) or are absorbed through the skin (e.g., dermatophytosis) or 

through penetration into the mucosa by commensal organisms such as Candida albicans, 

as well as the ingestion of a toxin in contaminated food or drink (gastrointestinal disease). 

Fungal infections can compromise immunocompetent and immunocompromised 

individuals.  Examples of fungal infections of healthy individuals include vaginal infections, 

sinus infections and pneumonia.  In immunocompromised hosts, Aspergillus, Candida and 

Zygomycetes pose major threats. Infections with Zygomycetes causing mucormycosis 

have been reported and managed with sargramostim. Infections with these three 

organisms in such individuals are usually life-threatening.   
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With the potential of a life threatening infection, it has recently been suggested for 

physicians taking care of CARD9-deficient patients with Candida species–related 

meningoencephalitis, it is important to: (1) aggressively institute intensive antifungal 

treatment early to avoid infection-related structural brain abnormalities that require shunt 

placement and (2) to use adjunct GM-CSF with the understanding that different patients 

can exhibit differential responses to GM-CSF treatment, including awareness for the 

potential of promoting eosinophil-mediated CNS immunopathology, particularly in patients 

with high burden CNS fungal infection and/or infection-related structural brain 

abnormalities (hydrocephalus and trapped ventricles) at treatment onset 90. 

 Interestingly, Candida infections may also induce GM-CSF production following 

contact with the host tissue, although there are apparent differences in the capacity of 

different species to induce GM-CSF.  For example, co-culture of oral Candida glabrata 

with primary oral epithelial cells, or oral cell lines, induced increased levels of GM-CSF, as 

compared to co-culture with C. albicans 100.  Follow up experiments by the same authors 

demonstrated that the increase in GM-CSF was mediated through activation of NF- and 

the stimulation was dependent upon adhesion of live Candida to the epithelial cells and 

could be enhanced by endocytosis of the candida 101. The upregulation of GM-CSF may 

partially explain the respective levels of pathogenicity between Candida glabrata and C. 

albicans.   

GM-CSF can alter the course of fungal infections by activating neutrophils as well 

as monocytes which may, in turn, provide local control of invasive fungi. GM-CSF 

production by NK cells is crucial to boost the candidacidal potential of neutrophils 44. In a 

murine model Whitney and associates demonstrated that DCs, through Syk signaling, 

coordinate the entire innate immune control to systemic C. albicans as it provides IL-23p19 

to NK cells that allows for production of GM-CSF, which in turn maintains the microbicidal 

activity of neutrophils, the main candidacidal effectors. Disruption of this cellular relay in 
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CD11cDSyk or IL-23p19 knock out mice causes susceptibility to systemic candidiasis and 

restoration of resistance can be achieved with GM-CSF treatment 102. 

 

Conclusions: 

GM-CSF-related pathways are of pivotal importance for immune response 

mechanisms and host defense.  Numerous cell types can produce, as well as respond to 

GM-CSF.  Given the pleiotropic nature of GM-CSF, more detailed studies are warranted to 

examine the fine detail of the complicated and often redundant interactions mediated by 

this important and complex modulatory cytokine. In the clinical setting factors including the 

duration and severity of infection, potential differences in strain virulence, and host 

immunologic status must be examined in greater detail.  

 In laboratory testing, sporicidal and improved hydrogen peroxide disinfectants were 

highly effective against C. auris, C. glabrata, and C. albicans for surface disinfection 103. 

Because there seems to be increasing ability of fungi to develop resistance to antifungal 

therapies, new approaches to limiting or eliminating these infections by augmenting host 

response are desperately needed.  Questions such as these raise the possibility that 

therapies such as sargramostim augmentation may help to establish immune competence 

and thereby facilitate the management of chronic intracellular infections.  This protective 

role may improve patient’s outcomes by limiting cellular destruction, for example, in the 

lung following invasive viral infections. 

Given the newly developed antifungal therapies on the market, and the renewed interest in 

augmenting the host immune response through cytokine treatment and cellular immune 

therapy, the question becomes-where is immune augmentation likely to have the highest 

impact on fungal threats?  A deeper insight into the utility of Sargramostim propelled by 

GM-CSF biology to stimulate innate immune system, when combined with anti-infective 
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agents may usher novel approaches to managing immunocompromised patients that are 

highly susceptible to these devastating infections.   
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Figure 1 Graphic presentation of The GM-CSF/GMCSFR receptor-ligand complex 

GM-CSF binds to the GMR and the GMRcomplex to form a high affinity hexamer  

complex that then form dodecamer complexes by aggregation of the hexamer subunits. 
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Figure 2.  Hematopoetic lineage adapted from Weston et. al., 2018 6 

Granulocyte-monocyte progenitors (GMPs) give rise to monocytic and granulocytic 
progenitors and their various progeny.  Following differentiation of GMPs to either 
granulocyte or monocyte progenitors (GP or MPs), distinct patterns of protein expression 

result in conversion of precursor populations to monocyte and monocyte-derived 
suppressor cells (M-MDSCs) via PU.1, Egr-1/2, IRF8, M-CSF and GM-CSF or GP via 

upregulation of C/EBP, C/EBP, Gfi-1, G-CSFR and GM-CSF.  Monocytes then 

differentiate further into dendritic cells (DCs) and macrophages whereas GPs account for 

the polymorphonuclear (PMN) MDSCs and neutrophils.  The model presented by Weston 
and colleagues captures the conversion of the precursor cells via GM-CSF interaction with 
other stimulatory growth factors 
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Figure 3.  GM-CSF elicits immune cell responses 

GM-CSF has pleiotropic effects on host immune cells ranging from attracting these cells, 

causing activation and proliferation of these cells as well as differentiation and maturation.  
The indicated outcomes for each GM-CSF-Immune cell interaction is indicated on the right 

side of the diagram.  All of these indicated outcomes are also contextually confined 
depending upon the location of the interactions.  
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Figure 4.  Macrophage fungal killing Adapted from Crawford et. al., 2015 98 
 

Infected macrophages (e.g., Histoplasma capsulatum, H.c.) upregulate GM-CSF which signals 
through JAK/STAT pathways, which is inhibitable by IL-4 signaling.  Metallothioneins sequester 
Zinc (Zn) resulting in increased superoxide burst and accelerated fungal killing in the 

phagolysosome.  Thus, GM-CSF enhances intracellular killing of fungal pathogens.  
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 GM-CSF-related pathways are important for immune response mechanisms  
 Immunomodulatory properties of GM-CSF target tissues that express GM-CSFR 

 GM-CSF plays a pivotal role during bacterial infections 

 The role of GM-CSF in fungal infection is complex. 

 Combination GM-CSF therapy with traditional antifungal therapies can be effective  
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