

Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): are they similar?

Journal:	Transboundary and Emerging Diseases
Manuscript ID	TBED-RW-501-20
Manuscript Type:	Review
Date Submitted by the Author:	06-May-2020
Complete List of Authors:	paltrinieri, saverio; University of Milan, Department of Veterinary Medicine; Veterinary Teaching Hospital, University of Milan Giordano, Alessia; University of Milan, Department of Veterinary Medicine; Veterinary Teaching Hospital, University of Milan Stranieri, Angelica; University of Milan, Department of Veterinary Medicine; Veterinary Teaching Hospital, University of Milan Lauzi, Stefania; University of Milan, Department of Veterinary Medicine; Veterinary Teaching Hospital, University of Milan
Subject Area:	feline infectious peritonitis, feline coronavirus, SARS-CoV-2, COVID-19

1		
2 3	1	Folia ciafactions acaiteritic (FID) and concreating disease 10 (COVID 10), are then similar?
4	1	Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): are they similar?
5		
6 7	2	Running title: Comparison between FIP and COVID-19
8		
9	3	Authors: Saverio Paltrinieri ^{1,2} , Alessia Giordano ^{1,2} , Angelica Stranieri ^{1,2} , Stefania Lauzi ^{1,2}
10		
11 12	4	¹ Department of Veterinary Medicine, University of Milan, Lodi, Italy
12	4	Department of Veterniary Medicine, Oniversity of Milan, Loui, Italy
14		
15	5	² Veterinary Teaching Hospital, University of Milan, Lodi, Italy
16		
17 18	6	Corresponding author
19		
20	7	Angelica Stranieri ^{1,2}
21	/	
22 23		
24	8	¹ Department of Veterinary Medicine, via dell'Università 6, 26900, University of Milan, Lodi, Italy
25		
26	9	² Veterinary Teaching Hospital, via dell'Università 6, 26900, University of Milan, Lodi, Italy
27 28		
29	10	E-mail: angelica.stranieri@unimi.it
30	10	L'mail. <u>angenea.stramen@dmmilit</u>
31 32		
33	11	Phone number: +390250334174
34		
35		
36 37		
38		
39		
40		
41 42		
43		
44		
45 46		
46 47		
48		
49		
50		
51 52		
53		
54		
55 56		
56 57		
58		
59		
60		

12 Summary

SARS-CoV-2 has radically changed our lives causing hundreds of thousands of victims worldwide and influencing our life style and habits. Feline infectious peritonitis (FIP) is a disease of felids caused by the feline coronaviruses (FCoV). FIP has been considered irremediably deadly until the last few years. Being one of the numerous coronaviruses that are well known in veterinary medicine, information on FCoV could be of interest and might give suggestions on pathogenic aspects of SARS-CoV-2 that are still unclear. The authors of this paper hope to reassume the most important aspects of FIP and COVID-19 and to clear the similarities and differences between these important diseases. SARS-CoV-2 and FCoV are taxonomically distant viruses but recombination events with other coronaviruses are reported for both. SARS-CoV-2 and FCoV differ in terms of some pathogenic, clinical and pathological features. However, some of the pathogenic and immunopathogenic events that are well known in cats FIP seem to be present also in people with COVID-19. Moreover, preventive measures currently recommended to prevent SARS-CoV-2 spreading have been shown to allow eradication of FIP in feline households. Finally, one of the most promising therapeutic compounds against FIP, GS-441524, is the active form of Remdesivir, which is being used as one therapeutic option for COVID-19.

27 Keywords: feline coronavirus, feline infectious peritonitis, SARS-CoV-2, COVID-19

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Zhou et al., 2020). COVID-19 is now inducing profound changes to our lifestyle and has severe consequences on healthcare systems and finances worldwide. Therefore, a huge research activity on this virus has been developed in the past few months to increase the knowledge on SARS-CoV-2 biology and pathology and to design new strategies for prevention and treatment of COVID-19. Coronaviral diseases are well known in veterinary medicine, since numerous different species of coronaviruses (CoV) affect wild animals (primarily bats or avian species) as well as domestic species such as bovine, swine, feline and canine (Su et al., 2016). Since the late '90s (Paltrinieri et al., 1998), the research activity of our group has been focused on feline coronaviruses and especially on the diagnosis and pathogenesis of feline infectious peritonitis (FIP), a systemic and lethal disease of cats caused by the feline coronavirus (FCoV) (Pedersen, 2009). Therefore, with this review, we want to share our thoughts on the possible similarities and differences between FCoV infection and the preliminary information on SARS-CoV-2 biology and pathology published so far, as an attempt to provide possible points of discussion for future Lich research on human coronaviruses.

Virology

The SARS-CoV-2 belongs to the betacoronavirus genus and to the species Severe acute respiratory syndrome-related coronavirus (Gorbalenya et al., 2020). It is a completely new virus that is thought has originated from recombination events between CoVs of other species, possibly through one or more intermediate hosts. Bats are the most likely candidate reservoir of the SARS-CoV-2 whereas the strong similarities between some pangolin coronaviruses and SARS-CoV-2 in the receptor binding domain (RBD) show that also this species probably played a role in the spillover to humans (Andersen et al., 2020; Lam et al., 2020; Zhang et al., 2020a). Studies are ongoing to identify the possible intermediate hosts (Deng et al., 2020). Recombination is a common behavior for CoVs, that may generate new variants able to infect species other than their natural reservoir (Holmes & Rambaut, 2004). Sequence analysis and phylogenetic studies allowed to identify the recombination events that led to the appearance of new CoV species in

Page 4 of 28

many animal species, and to identify bat coronaviruses as the ancestors of several CoVs of swine, ruminants, birds or rodents (Wong et al., 2019). All these animal species may be affected by different CoV species. Conversely, only 2 types of FCoV, that belongs to the alphacoronavirus genus, are currently known: serotype I and serotype II FCoV. The ancestor of type I FCoV is unknown but alphacoronavirus are known to have likely originated from bats (MacLachlan & Dubovi, 2016). Type II FCoV originated by a double recombination between the FCoV type I and the canine coronavirus (CCoV) (Herrewegh et al., 1998). This recombination moderately influenced the biology of the virus as type II FCoV, compared to FCoV type I, can easily grow in vitro, and it seems to be associated with a different cellular entry pathway. Indeed, types I and II appear to enter the cytosol through late and early endosomes, respectively (Takano et al., 2019a). While the two serotypes show no differences in their pathogenicity, type I FCoV remains the most prevalent strain detected in field cases of FIP (Jaimes & Whittaker, 2018). The SARS-CoV-2 acquired the ability to interact with cellular receptors that allowed to jump from animals to people. Despite recombination events contributed also to the generation of new variants of FCoVs, the number of viral variants in cats is very limited, unlike in other animal species, where several species or strains of species-specific CoVs have been generated, mostly in recent years (Su et al., 2016; Lin et al., 2017). This may depend on the less frequent interaction of FCoVs of pet cats with CoVs of other animal species or on the social/behavioral peculiarities of wild cats that tend to have few interspecific interactions, although wild cats are more exposed to CoVs infecting rodents or birds due to their hunting activity. If this interpretation is correct, the probability of future spillover of CoVs may be reduced by prevention of interspecific interaction of domestic animals and consequently of interspecific exchange of potentially recombining CoVs. Moreover, due to the strict cohabitation between pet cats and people, especially in urban centers, cat infection with the SARS-CoV-2 should be prevented, also in order to avoid possible recombinations. At the moment, there is evidence that SARS-CoV-2 has infected cats in Wuhan, China, as recently showed by positive serological results in a cohort of 15/102 examined cats using ELISA targeting the receptor binding domain (RBD) of the virus (https://promedmail.org/promed-post/?id=7179945). Moreover, SARS-CoV-2 PCR positive results have been recorded in two cats: one cat from Belgium (positive on stool and vomit) and in one cat from Hong Kong (positive on samples from oral and nasal cavities and rectum). Both cats belong

Transboundary and Emerging Diseases - submitted manuscript

1 2		
2 3 4	81	to COVID-19 positive owners. Only the Belgian cat showed mild, respiratory and gastroenteric clinical signs,
5 6	82	whereas the other cat was asymptomatic
7 8	83	(https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/COV-
9 10	84	19/Belgium_28.03.20.pdf and https://promedmail.org/promed-post/?id=20200402.7173286).
11 12 13	85	More recently, two cats were found positive in the USA, both with mild respiratory symptoms but only one
14 15	86	belonging to a COVID-19 positive owner (<u>https://promedmail.org/promed-post/?id=7256272</u>) and one
16 17	87	rectal swab from a cat in France also tested positive (<u>https://promedmail.org/promed-post/?id=7289409</u>).
18 19	88	Moreover, lions and tigers seem also to be possibly affected, since cases were recorded in a zoo from New
20 21	89	York (https://promedmail.org/promed-post/?id=7266556).
22 23 24	90	Nonetheless, a former report about the possible susceptibility of cats to the closely related SARS-CoV was
24 25 26	91	published in the early 2000s, with presence of antibodies in asymptomatic infected cats (Martina et al.,
27 28	92	2003).
29 30	93	Despite the low frequency of recombination with other CoVs, the FCoV has a high variability in the feline
31 32	94	population. The frequency of mutations, especially in some regions of FCoV RNA, is very high and the high
33 34 35	95	replication rate of FCoV in the intestine of affected cats leads to the generation of "quasispecies" in each
36 37	96	single cat (Battilani et al., 2003). Some of these new variants may bear mutations that, if coupled with a
38 39	97	peculiar immune response of infected cats, are likely to play a key role in the pathogenesis of FIP, as
40 41	98	specified below (Pedersen, 2014a).
42 43	99	Phylogenetical analyses of 103 SARS-CoV-2 genomes indicated two major viral types called L (for Leucine)
44 45 46	100	and S (for Serine) that were defined by two single nucleotide polymorphism (SNPs). The S type has been
47	101	identified as the ancestor type, while the L type seems to have evolved from the S type and is now the most
49 50	102	common SARS-CoV-2 type circulating worldwide (about 70%) (Tang et al., 2020). Another study illustrated
51 52	103	the presence of two viral clades, genotype I and genotype II, with a higher spreading ability of the second
54	104	type (Zhang et al., 2020b). Despite whole genome sequence analysis of SARS-CoV-2 showed that the viruses
56	105	circulating worldwide are almost identical, with a similarity rate of 99.9%, it has been shown that the virus
58	106	has started to mutate in patients. Mutations mainly occurred in six genes, including S, N, M, ORF8, ORF3a,
60	107	and ORF1ab (Li et al., 2020a, Shen et al., 2020a, Wang et al., 2020a). Mutations in the S, N, M, ORF7b and
	_0,	and one los (le cean) lolou, onen er an zozou, wang er an zozou, matations in the 5, 14, 14, on 75 and

ORF3c are also reported in FCoV and, as below described, have been extensively studied for their possible role in the pathogenesis of FIP (Pedersen, 2014a).

Several variations have been reported to be non-synonymous mutations and reported mutations may affect SARS-CoV-2 virulence, infectivity, and transmissibility (Li et al., 2020a). Based on the high frequency 10 111 12 112 mutations, SARS-CoV-2 genomes have been classified into different groups (Wang et al., 2020b). It is important to keep in mind that information on genetic heterogeneity of SARS-CoV-2 strains is considered for now not conclusive, but only preliminary and hypothesis-generating (Mavian et al, 2020). 19 115 However, the hypothesis of the presence of strains with different virulence may justify, along with other 21 116 epidemiological factors, the variability of clinical signs of COVID-19, that span from mild flu-like symptoms to severe and lethal pneumonia. Further investigations on the genetic diversity of SARS-CoV-2 populations are warranted to support this hypothesis (Chen et al., 2020; Guo et al., 2020; Zhang et al., 2020b).

Epidemiology

Both the SARS-CoV-2 and the FCoV are highly contagious and rapidly spread within susceptible populations. This behavior is typical of many animal CoVs (Guy, 2000; Cavanagh, 2007; Song & Park, 2012; Licitra et al., ₃₉ 123 2014). When CoVs are introduced into a new population, the infection may show different epidemiological 41 124 patterns. CoV infection may show an epidemic pattern, as reported with SARS-CoV and currently with ⁴³ 125 SARS-CoV-2. On the other hand, it may become endemic, with a high number of infected asymptomatic individuals and a lower mortality rate, as observed in at least four common human coronaviruses (hCoVs-₄₈ 127 229E, -NL63, -OC43, and -HKU1) and for almost all the coronaviruses of bats (Vijaykrishna et al., 2007; Corman et al., 2018). An endemic pattern is also observed in cats and FIP. The disease was discovered in 50 128 52 129 the 60s in the US (Holzworth, 1963; Wolfe & Griesemer, 1966) and afterwards likely spread from the US all over the world, when single reports on FIP cases diagnosed in different countries appeared in scientific ₅₇ 131 journals starting from the late 60s-early 70s (Lauzi et al., 2020). In the following years, the number of FIP 59 132 cases and of FCoV infected cats has been increasing worldwide as such, currently, the rate of FCoV PCR positive and/or seropositive cats in multi-cat environment often approaches 100%. The infection rate has

2 3 134 been reported to increase proportionally with the number of cats per cattery (Pedersen, 2009; Paltrinieri et 4 5 135 al., 2014). This high rate of infection, in turn, depends on the only partially protective immunity that cats 6 7 136 may mount at the intestinal level. Partial protective immunity allows cats to periodically clear the infection 8 9 but, once the local immunity decreases, cats can be re-infected if living in FCoV-endemic environments. 10 137 11 12 138 Therefore, infection develops according to the SIS (susceptible-infected-susceptible) model and most of the 13 14 139 cats in FCoV-endemic catteries are recurrent shedders of the virus (Foley et al., 1997), thus contributing to 15 16 140 maintain the infection in the environment. Despite this high rate of infection, mortality remains low also 17 18 19 141 due to the peculiar immunopathogenesis of FIP described below (Pedersen, 2014a). Based on the 20 21 142 information on the diffusion of COVID-19 from its origin in the Hubei province (China) to the current 22 23 143 worldwide distribution, the spread of the SARS-CoV-2 is now in the epidemic/pandemic phase. The efforts 24 25 144 of Public Health Authorities are focused on slowing down the infection. It is unlikely that the virus will be 26 27 28 145 eradicated and the infection may enter the endemic phase. In this scenario the risk of additional foci of 29 30 146 epidemic infection (as it occurs in cats when FCoVs enter in catteries with low endemicity) may be present, 31 ³² 147 as well as the risk of future mutations of the virus that may modify its virulence. 33 34 35 148 36 37 38 149 Pathogenesis, pathology and diagnosis 39 40 Although virological and epidemiological aspects of FCoV and SARS-CoV-2 infection have some common 41 150 42 ⁴³ 151 features, the pathogenesis of the disease seems to be different. This difference starts at the level of cell 44 45 152 entry with the SARS-CoV-2 binding the angiotensin-converting enzyme 2 (ACE2) receptor in humans (South 46 47 48 153 et al., 2020). Predicted homology of feline and human ACE2 receptors (Guo et al., 2008) along with the 49 50 154 identification of the same ACE-2 receptor in cats and dogs (Luan et al., 2020) confirms that SARS-CoV-2 51 52 155 infection may occur also in these domestic animals. FCoVs binds receptors different than the ACE-2 53 54 156 receptor in cats. Type II FCoVs employ feline aminopeptidase N (fAPN) as a cellular receptor whereas the 55 56 57 157 receptor used by type I FCoVs is still unknown. However, cell membrane lectins (C-type lectin dendritic cell-58 59 158 specific intercellular adhesion molecule-3-grabbing nonintegrin, fDC-SIGN) seem to play a role in the cell 60 159 entry for both FCoV serotypes (Regan et al., 2010; Van Hamme et al., 2011).

Transboundary and Emerging Diseases - submitted manuscript

2 3 160 Moreover, the cellular tropism of the two viruses seems to be partly different. FCoV is a systemic disease 4 5 161 affecting different organs, whereas SARS-CoV-2 apparently affects mainly the lungs (Wang et al., 2020c). 6 7 162 Nonetheless, neurological and hepatic manifestations have been described in SARS-CoV-2 infected patients 8 9 and, most importantly, there is growing evidence of gastrointestinal tract involvement (Tian et al., 2020). In 10 163 11 12 164 several COVID-19 patients, gastrointestinal symptoms have been reported, often before the beginning of 13 14 165 respiratory symptoms (Gu et al., 2020). Moreover, PCR on stool samples has been recently recommended 15 16 166 and oral-fecal route has been suggested as an additional mode of infection (Cipriano et al., 2020; He et al., 17 18 19 167 2020). Gastrointestinal involvement was also a characteristic of SARS-CoV, that share the same receptor of 20 21 168 SARS-CoV-2 for cellular entry. Indeed, gastrointestinal involvement may be explained by the presence of 22 23 169 ACE-2 receptor which are highly expressed in lung epithelial cells as well as in enterocytes from ileum and 24 25 26¹⁷⁰ colon (Zhang et al., 2020c). More recently, SARS-CoV-2 was demonstrated to also been able to actively 27 28 171 replicate in human enterocytes in vitro (Lamers et al., 2020). 29 30 ₃₁ 172 Curiously, enterocytes are the major target of FCoV, although the virulent FCoV strains infect macrophages 32 33 173 also. Both type I and type II FCoV, in fact, have 2 distinct pathotypes: one with enteric tropism, formerly 34 35 174 known as feline enteric coronavirus (FECV), which may occasionally induce mild gastrointestinal symptoms, 36 ³⁷ 175 and the other, formerly known as feline infectious peritonitis virus (FIPV), which is more able to replicate 38 39 ₄₀ 176 within macrophages, thus disseminating in the host and inducing FIP. FIP is a systemic disease characterized 41 by granulomatous lesions ("dry" or non-effusive FIP) and/or by vasculitis that induce the development of 42 177 43 44 178 cavitary effusions ("wet" or effusive FIP). The two pathotypes were for long time considered as distinct viral 45 46 179 species, but molecular studies demonstrated that they are two variants of the same virus, with different 47 48 180 virulence (Pedersen, 2014a). In turn, the different virulence has been thought to depend on mutations of 49 50 51 181 intestinal strains. However, a single mutation definitely responsible for FIP has not been identified yet, 52 53 182 although several candidate genes have been supposed to be involved in this virulence shift (Tekes & Thiel, 54

⁵⁵ 183 2016). Recent studies have identified mutations in the FCoV spike protein as markers of systemic spread of

FCoV, regardless of virulence (Porter et al., 2014; Barker et al., 2017). Differences in the nucleotide and

59 60 185 amino acid sequence have been reported in the SARS-CoV-2 viral receptor binding domain (RBD) compared

1	
2 3 4	186
5 6	187
7 8	188
9 10 11	189
12 13	190
14 15	191
16 17 18	192
19 20	193
21 22	194
23 24 25	195
26 27	196
28 29	197
30 31 32	198
33 34	199
35 36	200
37 38 39	201
40 41	202
42 43	203
44 45 46	204
47 48	205
49 50 51	206 207
51 52 53	207
54	200

to SARS-CoV. These mutations seem to be associated with an enhanced affinity of the spike protein of SARS-CoV-2 to the ACE-2 receptor, that may explain the higher morbidity of SARS-CoV-2 (Ou et al., 2020; Singh, 2020). The possible role of mutated variants of the SARS-CoV-2 in the pathogenesis of clinical diseases characterized by more severe clinical signs has not yet been fully exploited or elucidated. While the mutation to the virulent pathotype is the first key event, the second key event in the pathogenesis of FIP is the activation of the immune response. Cats that seem to be more resistant to the infection (i.e. cats that harbor the FCoV in their intestine for months or the recurrent shedders mentioned above) have a very efficient cell-mediated (Th1) immune response. Conversely, the activation of the humoral (Th2) immune response may exacerbate the course of the disease. Antibodies have been shown to accelerate, in vitro, the uptake of the virus by macrophages, according to the mechanism known as "antibody dependent enhancement" (ADE), where anti-FIPV antibodies increase the uptake of FIPV through the macrophage Fc receptor (Olsen et al., 1993). However, the role of ADE was controversial until recently. The first studies on naturally infected cats with repeated exposure to FCoV did not suggest that the presence of antibodies increases the risk of FIP and, at the same time, the high antibody titers of cats that cleared the infection suggested a protective role of antibodies, at least in some cases (Addie et al., 1995). Recently, the role of ADE in disease mechanisms has been confirmed. ADE, in fact, has been documented in experimentally infected cats that were immunized against FIPV and developed FIP, while non immunized cats did not (Takano et al., 2019b). Interestingly, ADE stimulated by other CoVs is thought to exist for the SARS-CoV-2 and be responsible for

the more severe cases recorded in a lower percentage of infected patients, usually among the elderly (Schatzmann Peron & Nakaya, 2020). In particular, this phenomenon could be consequence of the exposure not to SARS-CoV, but to other coronaviruses that cause only mild symptoms and are mistaken for common cold viruses, but allow the host to mount an antibody response (Tetro, 2020). The antibody-dependent ⁵⁵ 209 infection of macrophages could represent, in fact, a pivotal step towards disease progression from mild to 56 57 58 210 severe symptoms, and may as well explain the dysregulated immune responses in COVID-19, characterized 59 60 211 by T cell lymphopenia and proinflammatory cascade with macrophage hyperactivation, both important

2 3 212 known phenomena in FIP (Pedersen, 2014a; Tay et al., 2020). Moreover, progression to the critical phase of 4 5 213 the disease often coincides with the beginning of humoral immunity antibody response (Ricke & Malone, 6 7 214 2020). However, even though coronaviruses such as MERS-CoV and FCoV have been demonstrated to 8 9 actively infect monocytes and macrophages, this needs to be more thoroughly investigated for SARS-CoV-2, 10 215 11 12 216 also at the light of the fact that ACE-2 is expressed on alveolar macrophages and SARS-CoV-2 can replicate 13 14 217 in these latter cells (Pedersen, 2014a; Chu et al., 2020; Kai & Kai, 2020; Ricke & Malone, 2020; Schatzmann 15 16 17 218 Peron & Nakaya, 2020). Moreover, the role of CD169⁺ macrophages in the spreading of SARS-CoV-2 has 18 been recently questioned and needs to be further investigate (Park, 2020). Despite interesting results, the 19 219 20 21 220 real role of ADE in vivo is still questioned in cats. 22 23 221 Regardless of the ADE mechanism, the role of antibodies in the pathogenesis of FIP has been previously 24 25 26 222 reported by several studies. Indeed, antibodies are known to be involved in the pathogenesis of wet FIP. 27 ₂₈ 223 Intracavitary effusions observed in wet FIP are the consequences of a vasculitis based on the contribution 29 30 224 of a type III hypersensitivity reaction, on which immunocomplexes formed by the FCoV and by anti-FCoV 31 ³² 225 antibodies precipitate around the vessel's walls and induce the recruitment of macrophages producing 33 34 226 factors. These cytokines damage the tissues and, at the same time, induce the release of neutrophils that 35 36 ₃₇ 227 intensify the inflammatory process and exacerbate the tissue damage (Acar et al., 2016; Berg et al., 2005; 38 39 228 Pedersen, 2009). It is still unclear why only some seropositive cats develop the immune complex disease, 40 ⁴¹ 229 while other seropositive cats living in the same cattery do not. Recent studies have observed that serum 42 43 and tissue patterns of molecules and cells involved in the innate and specific immune response differs in 230 44 45 ₄₆ 231 seropositive clinically healthy cats compared with cats with FIP, suggesting that cats may develop or not FIP 47 48 232 depending on the type of activation of these responses (Pedersen, 2014a). Some studies suggested that 49 50 233 specific sequences of structural proteins of the FCoV may influence the type of immune response mounted 51 52 234 by the cat. Therefore, it may be supposed that mutations of the virus may also play a role in the host-virus 53 54 ₅₅ 235 interactions (Satoh et al., 2010; Rossi et al., 2011; Takano et al., 2014).

The information collected in the few months regarding COVID-19 immune pathogenesis from the first
documented cases seems to exclude a direct role of the host's immune response in the development of
COVID-19 lesions. Firstly, the median incubation time of the disease (four days in a report of 1099 cases) is

3 239 lower than the time required to activate the cells involved in the immune response and the production of 4 5 240 antibodies (Guan et al., 2020). Secondly, the administration of neutralizing antibodies containing plasma 6 7 241 from patients recovered from COVID-19 seems to be a useful additional therapeutic support for critically ill 8 9 10 242 patients, suggesting that antibodies might have a protective effect against the virus rather than 11 12 243 contributing to the development of the disease (Shen et al., 2020b). Thirdly, although mononuclear 13 14 244 infiltrates composed by lymphocytes, monocytes and macrophages may be found within COVID-19 lesions, 15 16 17²⁴⁵ the interstitial pneumonia reported in this disease as well as the presence of syncytial multinucleated cells 18 19 246 and pneumocytes showing cytopathic lesions (Felsenstein et al., 2020; Liu et al., 2020; Xu et al., 2020) 20 21 247 seems to be directly induced by the replication of the virus within the cells. In particular, the virus infects 22 23 248 primarily ACE-2 expressing cells, which are mainly present in the lungs and were demonstrated to be the 24 25 26 249 primary target of the SARS-CoV, with which SARS-CoV-2 share several pathogenic aspects (He et al., 2006; 27 28 250 Sarzi-Puttini et al., 2020). 29 30 251 In contrast, FIP lesions are typically characterized by lymphoplasmocytic infiltrates, admixed with activated 31 ³² 252 macrophages and neutrophils and are centered around vessels that show the fibrinoid necrosis typical of 33 34 253 immune complex vasculitis (Kipar et al., 2005; Pedersen, 2009). Conversely, in one report only 35 36 ₃₇ 254 immunostaining for SARS-CoV-2 in lung lesions showed minimal viral protein expression on vessels (Zhang 38 39 255 et al., 2020d). However, studies on the possible involvement of the immune system in the development of 40 ⁴¹ 256 lesions induced by the SARS-CoV-2 are still scarce. These aspects need to be further exploited through 42 43 257 additional studies, also focusing on the possible distribution of viral antigens on tissues other than the lung, 44 45 ₄₆ 258 or at the light of the recent rising concern regarding atypical COVID-19 manifestations in children 47 48 259 resembling Kawasaki disease (Mahase, 2020). In fact, if SARS-CoV and SARS-CoV-2 share similar behaviors, 49 ⁵⁰ 260 the hyperproduction of inflammatory cytokines from infected cells is probably responsible both for the 51 52 261 more severe cases and for the multiorgan involvement (Li et al., 2020b). 53 54 ₅₅ 262 Despite the pathogenic differences listed above, the severe acute systemic inflammatory reaction 56 57 263 syndrome (SIRS) is common in COVID-19 and in FIP. As above stated, cats may harbor the FCoV without 58 59 264 showing clinical signs for years, but when FIP develops the activation of the innate immune response is 60 265 rapid. The immune response leads to a proinflammatory cytokines overproduction that induces severe

2 3 266 clinical signs such as fever, depression, asthenia, emaciation (Kipar & Meli, 2014) as well laboratory changes 4 5 267 such as anemia, lymphopenia, increased serum concentration of globulin fractions and acute phase 6 7 268 proteins (Pedersen, 2014b, Stranieri et al., 2018). Fever, fatigue, lymphopenia, increased acute phase 8 9 10 269 proteins have been reported also in COVID-19 (do Nascimiento et al., 2020) and are thought to depend on a 11 12 270 "cytokine storm" similar to that reported in FIP cases (Kipar et al., 2006; Dhama et al., 2020; Sarzi-Puttini, 13 14 271 2020). In turn, this cytokine storm may induce a multiorgan failure that is responsible for the high mortality 15 16 272 rate of critically ill patients with COVID-19 and this hypothesis is supported by the promising results of 17 18 immunotherapies with anti-cytokine drugs, especially when using TNF- α blockers (Russell et al., 2020; Sarzi-19 273 20 21 274 Puttini, 2020). This type of treatment has never been investigated in cats with FIP, mostly due to cost 22 23 275 reasons or to the unavailability of drugs registered for the cat. However, the good clinical response of cats 24 25 ____ 26 276 to steroidal anti-inflammatory drugs (Pedersen, 2014b) supports the hypothesis that suppression of the 27 ₂₈ 277 hyperinflammatory response may temporarily improve the clinical condition. This is not completely 29 30 278 curative in FIP, due to its peculiar immunopathogenic mechanisms, but it may provide COVID-19 patients 31 ³² 279 with precious time for activating the anti-viral immune reaction or, hopefully, to enhance the effect of 33 34 280 antiviral drugs. 35 36 37 281 Finally, the peculiar FCoV biology and the immunopathogenesis of FIP also affects the possibility to 38 39 ₄₀ 282 correctly diagnose the disease: ultimately, no molecular or serological tests are able to differentiate 41 virulent and non-virulent strains of FIP (i.e. the former FIPV and FECV). Therefore, PCR or serology may 42 283 43 44 284 confirm the infection but not the disease. FIP may be erroneously diagnosed in PCR-positive or seropositive 45 46 285 cats with non-specific clinical signs such as fever or weight loss due to diseases other than FIP. Conversely, 47 48 286 cats with FIP may become PCR-negative or seronegative when immune complexes develop and precipitate 49 50 in tissues (Pedersen, 1976; Meli et al., 2013). Ultimately, only the detection of the virus in the effusion or 51 287

53 288 within the lesions may confirm the disease, although several clinical or clinico-pathological changes may be ⁵⁵ 289 highly suggestive of FIP (Stranieri et al., 2018; Tasker, 2018). All these obstacles do not seem to occur in 58 290 patients affected by COVID-19 since, although asymptomatic SARS-CoV-2 positive patients may be

59 60

52

54

56 57

1 2		
2 3 4	291	frequently found (Shi et al., 2020), the diagnosis may be based on PCR positive swabs in patients with
5 6	292	clinical signs or with chest diagnostic imaging findings consistent with the disease.
7 8 9	293	
10		
11 12	231	Management and prevention
13 14 15	295	One anti-FIP/anti-FCoV vaccine has been developed and commercialized, but it is available only in few
16 17	250	countries (Fehr et al., 1997). It must be administered to kittens of 16 weeks of age or older, which is several
18 19 20	297	weeks after the maternal protective antibodies decrease, leaving a wide-open time window for FIP
	298	manifesting (Addie, 2019). Moreover, the risk of stimulating an excessive antibodies production that, based
23 24	299	on the aforementioned ADE occurrence, may induce the disease rather than preventing it, is still debated
25 26 27		(Bálint et al., 2014) and the use of anti-FCoV vaccine is not widely diffused so far.
	301	No vaccines have so far been developed to prevent SARS-CoV-2 infection, although several research
30 31		institutions or pharmaceutical companies are currently working for this purpose. Based on what above
32 33 34	303	stated, the genetic diversity of SARS-CoV-2 strains seems to be lower than that of the FCoV and the
	304	humoral immune response seems only partially involved in the pathogenesis of COVID-19. Therefore,
37 38	305	vaccination could be a promising preventive tool for this disease, even if the question of whether a certain
	306	vaccination regimen could induce long-term protection has been addressed for animal and human
41 42 43	307	coronaviruses (Saif, 2020)
44 45	308	In the absence of an effective vaccine, the major preventive measure adopted worldwide to contain and
46 47 48	309	possibly eradicate the SARS-CoV-2 infection is based on quarantine/isolation of poorly symptomatic
	310	infected patients, on confinement measures that limit the circulation of people and on social distancing.
52		Although profoundly affecting our habits, our social life and having a great impact on global economy, so
53 54 55		far the application of these measured strongly reduced both the rate of infection and mortality in China
55 56 57	313	and, hopefully, it will reduce the number of infected people worldwide. Such an approach has been already
	314	recommended in cats. Years ago, prevention strategies based both on the isolation of shedders until
60	315	repeated PCR tests on their feces resulted persistently negative and on the early weaning of kittens born

316 from seropositive or PCR-positive queens have been recommended (Addie & Jarrett, 2001). Although these 317 approaches have been proven to be successful on the management of infection in single catteries, their 318 efficiency has been biased by the lack of common rules imposed to all the cat owners by regulatory bodies 10 319 (e.g. breed associations, veterinary health authorities). Breeders or shelters managers are usually not 11 12 320 willing to apply these strategies. Indeed, the participation to the expected activities of breeding catteries 13 14 321 (e.g. mating, participation to cat shows,) or shelters (reintroduction of quarantined cats in larger groups of 15 16 .0 17 322 non-tested animals) inevitably exposes cats to the risk of reinfection and ultimately to the risk of FIP, 18 making almost useless the efforts aimed to make their cats FCoV-negative. This experience reinforces the 19 323 20 21 324 concept that isolation/quarantine strategies must be applied on a large scale, as Public Authorities are 22 23 325 doing in many Countries for COVID-19 and that the application of strict measures only to single districts or 24 25 26 326 cities could become ineffective with time. 27 28 327 Treatment 29

31 328 Although FIP has been historically considered an invariably lethal disease and no successful treatments 32 33 34 329 have been available for decades, effective treatments were recently developed with promising results. 35 36 330 Historically, cats with FIP received only supportive or anti-inflammatory treatment, that often ameliorated 37 38 331 the quality of life as stated in anecdotal reports, but without clearing from the infection neither stopping 39 ⁴⁰ 332 the immunopathogenesis of the disease (Addie et al., 2009). This is actually what happens also in COVID-19, 41 42 333 where most of the therapeutic efforts to manage sick patients, especially in intensive care units, are based 43 44 45 334 on the management of the acute respiratory distress or on the modulation of the inflammatory reactions, 46 47 335 as above mentioned (Alhazzani et al., 2020).

The stimulation of cell-mediated immunity on FIP cats has been proposed in the past and is still one of the 50 336 51 ⁵² 337 most used therapeutic approach. For this purpose, interferon- α or feline recombinant interferon ω , that 53 54 338 possess also antiviral properties, are used, even though the efficacy of these treatments is controversial 55 56 ₅₇ 339 (Pedersen, 2014b; Hartmann, 2017) as it is for polyprenyl immunostimulant (Pedersen, 2014b). The use of 58 59 340 interferon for COVID-19 has been questioned mainly for its antiviral activity and, to the authors knowledge,

60

48 49

1 2 3

4 5

6 7

8 9

341 trials regarding its use in association with other molecules (i.e. antiviral agent ribavirin) are currently 342 ongoing (Lu et al., 2020).

343 The most relevant changes on the therapeutic approach to FIP cats occurred over the past few years. The 344 peptidomimetic GC-376 and the nucleoside analogue GS-441524, both able to inhibits FCoV replication in different manners, became available and were tested in vitro and in experimental infections (Kim et al., 2016; Murphy et al., 2018), or in cats naturally affected by FIP (Pedersen et al., 2018; Pedersen et al., 2019). More specifically, GC-376 caused disease remission in 35% of the treated cats and it appeared more 348 efficient towards certain clinical presentations of FIP (Pedersen et al., 2018). On the other hand, GS-441524 strongly reduced the viral burden in infected cats and induced the remission of clinical signs after one or more cycles of treatment in the large majority (96.1%) of cats. Despite GS-441524 is not registered for use in cats in many countries, this treatment is now widely diffused among cat owners and breeders that can 352 buy the drug through online distributors. Despite, the use of unlicensed drugs must be abandoned (Letter from Dr. Pedersen, <u>https://sockfip.org/</u>), several anecdotal reports on successfully treated cats are available on on-line blogs. Interestingly, the GS-441524 is the biologically active component of the phosphoramidate prodrug GS-5734 (Remdesivir) that has been tested, with some promising results, also in patients with COVID-19 since its efficacy was previously demonstrated against Ebola and Nipah viruses infections (Cao et al., 2020, Ledford, 2020). Recently, Xraphconn, an orally administered drug containing inotodiol, an antiinflammatory sterol of fungal origin, has been shown to completely and rapidly clear the virus from the intestine of FCoV infected cats likely by reducing viral replication (Addie et al., 2020). Anecdotal reports on 360 therapeutic successes of this drug in cats with FIP are also published on online blogs. Again, future clinical 361 studies are needed to evaluate the effectiveness of Remdesivir treatment on COVID-19 patients, also considering that the bioavailability of the drug in the lung of COVID-19 patients may differ from that of the intestine or other tissues of cats with FIP.

Conclusive remarks

59 365 The FCoV and the SARS-CoV-2 share some common features, such as the rapid spread of the infection 60 366 within the population, the reduction of the infection rate by isolation of infected patients or the shared

2	
³ 367	success of similar anti-inflammatory or antiviral compounds. However, FCoV and SARS-CoV-2 differ also in
4 5 368	terms of biology of the virus, target cells, pathogenesis and clinical features. Nevertheless, years of studies
6 7	on FCoV infected cats demonstrate that increasing the knowledge on virus biology and host-virus
8 369 9	on reov intected cats demonstrate that increasing the knowledge on virus biology and host-virus
10 370 11	interactions may improve the chances to contain and, eventually, combat the infection. Moreover, the
12 371 13	information gained so far on the aspects of FCoV infection shared with SARS-CoV-2 may serve as a basis for
¹⁴ 372 15	a rapid development of prevention or therapeutic strategies for COVID-19 as well as for studies on the
16 17 373	possible interaction between FCoV and SARS-CoV-2, that may occur due to the strict relationship between
18 19 374	people and their pet cats.
20	
21 22 375	
22 575	
24 376	Acknowledgements
25 26	
26 377 27	None
28	
29 378 30	Conflict of interest
³¹ 379 32	The authors declare that there are no conflict of interests.
33 34 380	
34 500 35	
36 381	Data Availability Statement
37	
38 382	Data sharing is not applicable to this article as no new data were created or analyzed in this study.
39 40 383	
41	
42 43 384	
43 ³⁸⁴ 44	
45	
46 385	References
47	
⁴⁸ 386 49	Acar, Delphine D., Dominique AJ Olyslaegers, Annelike Dedeurwaerder, Inge DM Roukaerts, Wendy
50 51 387	Baetens, Sebastiaan Van Bockstael, Gaëtan MA De Gryse, Lowiese MB Desmarets, & Hans J. Nauwynck.
52 53 388	(2016). Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous
54 55 389	infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline
56 57 390 58	infectious peritonitis virus-infected monocytes in vitro. Journal of General Virology, 97, 2633-2642.
59	
60 391	<i>doi</i> :10.1099/jgv.0.000585

2		
4	92	Addie, D.D., Toth, S., Murray, G.D. & Jarrett, O. (1995). Risk of feline infectious peritonitis in cats naturally
6 7	93	infected with feline coronavirus. American Journal of Veterinary Research, 56, 429-434.
9	94	Addie, D.D. & Jarrett, O. (2001). Use of a reverse-transcriptase polymerase chain reaction for monitoring
11	95	the shedding of feline coronavirus by healthy cats. Veterinary Record, 148, 649-653.
12 13 39 14 15	96	<i>doi</i> :10.1136/vr.148.21.649
16 39 17	97	Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Hosie,
18 39 19	98	M.J., Lloret, A., Lutz, H. & Marsilio, F. (2009). Feline infectious peritonitis. ABCD guidelines on prevention
20 39 21 22	99	and management. Journal of Feline Medicine & Surgery, 11, 594-604. <i>doi</i> : 10.1016/j.jfms.2009.05.008.
23 4(24		Addie, D.D. (2019). Feline infectious peritonitis: answers to frequently asked questions concerning FIP and
25 40 26 27		coronavirus. Veterinary Nursing Journal, 34, 201-206. <i>doi</i> :10.1080/17415349.2019.1629366
28 4(29	02	Addie, D.D., Curran, S., Bellini, F., Crowe, B., Sheehan, E., Ukrainchuk, L. & Decaro, N. (2020). Oral Mutian®X
31	03	stopped faecal feline coronavirus shedding by naturally infected cats. Research in Veterinary Science, 130,
32 33 4(34	04	222-229. <i>doi</i> : 10.1016/j.rvsc.2020.02.012.
35 36 40 37	05	Alhazzani, W., Møller, M.H., Arabi, Y.M., Loeb, M., Gong, M.N., Fan, E., Oczkowski, S., Levy, M.M., Derde, L.,
38 4(39	06	Dzierba, A. & Du, B. (2020). Surviving Sepsis Campaign: guidelines on the management of critically ill adults
40 4(41	07	with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine, 1-34. doi:10.1007/s00134-020-06022-
42 40 43 44	08	5
45 4(46	09	Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C. & Garry, R.F. (2020). The proximal origin of SARS-
48 49	10	CoV-2. Nature Medicine, 26, 450–452. <i>doi</i> :10.1038/s41591-020-0820-9
51	11	Bálint, Á., Farsang, A., Szeredi, L., Zádori, Z. & Belák, S. (2014). Recombinant feline coronaviruses as vaccine
52 53 42	12	candidates confer protection in SPF but not in conventional cats. Veterinary Microbiology, 169, 154-162.
54 55 43 56 57 58 59 60	13	<i>doi</i> :10.1016/j.vetmic.2013.10.015

1		
2 3 4	414	Barker, E.N., Stranieri, A., Helps, C.R., Porter, E.L., Davidson, A.D., Day, M.J., Knowles, T., Kipar, A. & Tasker,
5 6	415	S. (2017). Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious
7 8 9	416	peritonitis. Veterinary research, 48, 60-74. doi:10.1186/s13567-017-0467-9
10 11 12	417	Battilani, M., Coradin, T., Scagliarini, A., Ciulli, S., Ostanello, F., Prosperi, S. & Morganti, L. (2003).
	418	Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected
	419	cats. FEMS Immunology & Medical Microbiology, 39, 141-147. <i>doi</i> :10.1016/S0928-8244(03)00237-2
	420	Berg, A.L., Ekman, K., Belak, S. & Berg, M. (2005). Cellular composition and interferon-γ expression of the
21	421	local inflammatory response in feline infectious peritonitis (FIP). Veterinary Microbiology, 111, 15-23.
23 24	422	doi:10.1016/j.vetmic.2005.07.017
26	423	Cao, Y.C., Deng, Q.X. & Dai, S.X. (2020). Remdesivir for severe acute respiratory syndrome coronavirus 2
27 28 29	424	causing COVID-19: An evaluation of the evidence. Travel Medicine and Infectious Disease In press
30 31 32	425	doi:10.1016/j.tmaid.2020.101647
33 34	426	Cavanagh, D. (2007). Coronavirus avian infectious bronchitis virus. Veterinary Research, 38, 281-297.
	427	doi:10.1051/vetres:2006055
	428	Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y. & Yu, T. (2020).
	429	Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan,
42 43 44		China: a descriptive study. The Lancet, 395, 507-513. <i>doi</i> :10.1016/S0140-6736(20)30211-7
45 46	431	Chu, H., Chan, J.F.W., Wang, Y., Yuen, T.T.T., Chai, Y., Hou, Y., Shuai, H., Yang, D., Hu, B., Huang, X. & Zhang,
	432	X. (2020). Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human
49 50 51	433	lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clinical Infectious Diseases,
52 53	434	ciaa410. <i>doi</i> :10.1093/cid/ciaa410
54 55 56	435	Cipriano, M., Ruberti, E. & Giacalone, A. (2020). Gastrointestinal Infection Could Be New Focus for
	436	Coronavirus Diagnosis. Cureus, 12, e7422. <i>doi</i> :10.7759/cureus.7422

1		
2 3 4	437	Corman, V.M., Muth, D., Niemeyer, D. & Drosten, C. (2018). Hosts and sources of endemic human
5 6 7	438	coronaviruses. Advances in Virus Research, 100, 163-188. doi:10.1016/bs.aivir.2018.01.001
8 9	439	Deng J, Jin Y, Liu Y, Sun J, Hao L, Bai J, Huang T, Lin D, Jin Y & Tian K. (2020). Serological survey of SARS-CoV-
10 11 12	440	2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different
13 14	441	species of animals. Transboundary and Emerging Diseases. <i>doi</i> :10.1111/tbed.13577
15 16 17	442	Felsenstein, S., Herbert, J. A., McNamara, P. S., & Hedrich, C. M. (2020). COVID-19: Immunology and
	443	treatment options. Clinical immunology. 215, 108448. Advance online publication.
	444	<i>doi</i> :10.1016/j.clim.2020.108448
	445	Fehr, D., Holznagel, E., Bolla, S., Hauser, B., Herrewegh, A.A., Horzinek, M.C. & Lutz, H. (1997). Placebo-
25 26	446	controlled evaluation of a modified life virus vaccine against feline infectious peritonitis: safety and efficacy
27 28 29	447	under field conditions. Vaccine, 15, 1101-1109. <i>doi</i> :10.1016/S0264-410X(97)00006-6
30 31		Foley, J.E., Poland, A., Carlson, J. & Pedersen, N.C. (1997). Patterns of feline coronavirus infection and fecal
32 33	449	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association,
32 33 34 35 36	449 450	
32 33 34 35 36 37	449 450 451	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association,
32 33 34 35 36 37 38 39 40 41	449 450 451 452	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312.
32 33 34 35 36 37 38 39 40 41 42 43	449 450 451 452 453	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber,
32 33 34 35 36 37 38 39 40 41 42 43 44 45	449 450 451 452 453 454	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A.,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	449 450 451 452 453 454 455	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	449 450 451 452 453 454 455	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	449 450 451 452 453 454 455 456 457	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. <i>doi</i> :10.1038/s41564-020-0695-z
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	449 450 451 452 453 454 455 456 457 458	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. <i>doi</i> :10.1038/s41564-020-0695-z Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S. & Du, B. (2020).
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	449 450 451 452 453 454 455 456 457 458	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. <i>doi</i> :10.1038/s41564-020-0695-z Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S. & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382, 1708-
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	449 450 451 452 453 454 455 456 457 458 459	shedding from cats in multiple-cat environments. Journal of the American Veterinary Medical Association, 210, 1307-1312. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I. & Ziebuhr J. (2020). Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. <i>doi</i> :10.1038/s41564-020-0695-z Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S. & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382, 1708- 1720. <i>doi</i> :10.1056/NEJMoa2002032

1		
4	462	Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D., Jin, H.J., Tan, K.S., Wang, D.Y. & Yan, Y., 2020. The
5 6	463	origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on
7 8 9	464	the status. Military Medical Research, 7, 1-10. <i>doi</i> :10.1186/s40779-020-00240-0
10 11 12	465	Guy, J.S. (2000). Turkey coronavirus is more closely related to avian infectious bronchitis virus than to
13 14	466	mammalian coronaviruses: a review. Avian Pathology, 29, 207-212. <i>doi</i> :10.1080/03079450050045459
15 16 17	467	He, L., Ding, Y., Zhang, Q., Che, X., He, Y., Shen, H., Wang, H., Li, Z., Zhao, L., Geng, J. & Deng, Y. (2006).
18 19	468	Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS
21	469	patients: relation to the acute lung injury and pathogenesis of SARS. The Journal of Pathology: A Journal of
22 23 24	470	the Pathological Society of Great Britain and Ireland, 210, 288-297. <i>doi</i> :10.1002/path.2067
20	471	He, Y., Wang, Z., Li, F. & Shi, Y. (2020). Public health might be endangered by possible prolonged discharge
27 28 29	472	of SARS-CoV-2 in stool. The Journal of Infection, 80, 18-19. doi:10.1016/j.jinf.2020.02.031
30 31 32	473	Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J. & de Groot, R.J. (1998). Feline coronavirus type II
33 34	474	strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and
	475	canine coronavirus. Journal of Virology, 72, 4508-4514.
	476	Holmes, E.C. & Rambaut, A. (2004). Viral evolution and the emergence of SARS coronavirus. Philosophical
40 41	477	Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 1059-1065.
42 43 44	478	doi:10.1098/rstb.2004.1478
	479	Holzworth, J. (1963). Some important disorders of cats. The Cornell Veterinarian, 53, 157-160.
	480	Jaimes, J.A. & Whittaker, G.R. (2018). Feline coronavirus: insights into viral pathogenesis based on the spike
50 51 52	481	protein structure and function. Virology, 517, 108-121. doi:10.1016/j.virol.2017.12.027
	482	Kai, H., & Kai, M. (2020). Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons
50	483	from available evidence and insights into COVID-19. Hypertension research: official journal of the Japanese
57 58 59 60	484	Society of Hypertension, 1–7. Advance online publication. <i>doi</i> :10.1038/s41440-020-0455-8

1 2		
3 48 4	5	Kim, Y., Liu, H., Kankanamalage, A.C.G., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O. & Pedersen,
5 6	6	N.C. (2016). Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum
7 8 48 9	7	coronavirus protease inhibitor. PLoS pathogens, 12, e1005531. <i>doi</i> :10.1371/journal.ppat.1005531
10 11 488 12	8	Kipar, A., May, H., Menger, S., Weber, M., Leukert, W. & Reinacher, M. (2005). Morphologic features and
12 13 489 14	9	development of granulomatous vasculitis in feline infectious peritonitis. Veterinary Pathology, 42, 321-330.
15 49(16 17	0	<i>doi</i> :10.1354/vp.42-3-321
18 49: 19	1	Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomes-Keller, M.A., Schwartz, D., Lutz, H. & Reinacher, M. (2006).
20 492 21	2	Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of
22 23 24		infection. Veterinary Immunology and Immunopathology, 112, 141-155. <i>doi</i> :10.1016/j.vetimm.2006.02.004
25 494 26	4	Kipar, A. & Meli, M.L. (2014). Feline infectious peritonitis: still an enigma? Veterinary Pathology, 51, 505-
27 28 49! 29	5	526. <i>doi</i> :10.1177/0300985814522077
30 31 490	6	Lam, T.T.Y., Shum, M.H.H., Zhu, H.C., Tong, Y.G., Ni, X.B., Liao, Y.S., Wei, W., Cheung, W.Y.M., Li, W.J., Li, L.F.
32 33 49 34	7	& Leung, G.M. (2020). Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern
35 498 36	8	China. Nature. <i>doi</i> :10.1038/s41586-020-2169-0
37 38 499 39	9	Lamers, M.M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T.I., Ravelli, R.B., van
40 500 41	0	Schayck, J.P., Mykytyn, A.Z., Duimel, H.Q. & van Donselaar, E. (2020). SARS-CoV-2 Productively Infects
42 43 44	1	Human Gut Enterocytes. bioRxiv. <i>doi</i> :10.1101/2020.04.25.0603501
45 502 46	2	Lauzi, S., Stranieri, A., Giordano, A., Luzzago, C., Zehender, G., Paltrinieri, S. & Ebranati, E. (2020). Origin and
47 48 503	3	transmission of Feline coronavirus type I in domestic cats from Northern Italy: a phylogeographic approach.
49 50 504 51	4	Veterinary Microbiology, 244, 108667. <i>doi</i> :10.1016/j.vetmic.2020.108667
52 53 50 54	5	Ledford H. (2020). Hopes rise for coronavirus drug remdesivir. Nature. <i>doi</i> :10.1038/d41586-020-01295-8
55 56 500	6	Li, C., Yang, Y. & Ren, L. (2020a). Genetic evolution analysis of 2019 novel coronavirus and coronavirus from
57 58 50 59 60	7	other species. Infection, Genetics and Evolution, 82, 104285. <i>doi</i> :10.1016/j.meegid.2020.104285

2		
-	508	Li, X., Geng, M., Peng, Y., Meng, L. & Lu, S. (2020b). Molecular immune pathogenesis and diagnosis of
5 6 7	509	COVID-19. Journal of Pharmaceutical Analysis. <i>doi</i> :10.1016/j.jpha.2020.03.001
9	510	Licitra, B.N., Duhamel, G.E. & Whittaker, G.R. (2014). Canine enteric coronaviruses: emerging viral
10 11 12	511	pathogens with distinct recombinant spike proteins. Viruses, 6, 3363-3376. <i>doi</i> :10.3390/v6083363
13 14 15	512	Lin, X.D., Wang, W., Hao, Z.Y., Wang, Z.X., Guo, W.P., Guan, X.Q., Wang, M.R., Wang, H.W., Zhou, R.H., Li,
16 17	513	M.H. & Tang, G.P. (2017). Extensive diversity of coronaviruses in bats from China. Virology, 507, 1-10.
	514	doi:10.1016/j.virol.2017.03.019
21 22	515	Liu, K., Chen, Y., Lin, R. & Han, K. (2020). Clinical features of COVID-19 in elderly patients: A comparison
23 24 25	516	with young and middle-aged patients. Journal of Infection, <i>in press. doi</i> :10.1016/j.jinf.2020.03.005
26 27	517	Lu, C.C., Chen, M.Y. & Chang, Y.L. (2020). Potential therapeutic agents against COVID-19: What we know so
28 29 30	518	far. Journal of the Chinese Medical Association, in press. doi:10.1097/JCMA.0000000000000318
32	519	Luan, J., Lu, Y., Jin, X. & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host
54	520	range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research
37	521	Communications, 526, 165-169. <i>doi</i> :10.1016/j.bbrc.2020.03.047
38 39 40	522	MacLachlan, N.J. & Dubovi, E.J. (2011). Coronaviridae. Fenner's Veterinary Virology. (4th ed.). San Diego,
41 42 43	523	CA, Elsevier, 393-413.
43 44 45	524	Mahase, E. (2020). Covid-19: concerns grow over inflammatory syndrome emerging in children. The BMJ.
46 47 48	525	<i>doi</i> :10.1136/bmj.m1710
	526	Martina, B.E., Haagmans, B.L., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., Van Amerongen, G., Peiris,
52	527	J.M., Lim, W. & Osterhaus, A.D. (2003). SARS virus infection of cats and ferrets. Nature, 425, 915.
53 54 55	528	<i>doi</i> :10.1038/425915a
	529	Mavian, C., Marini, S., Manes, C., Capua, I., Prosperi, M. & Salemi, M. (2020). Regaining perspective on
58 59 60	530	SARS-CoV-2 molecular tracing and its implications. medRxiv. <i>doi</i> :10.1101/2020.03.16.20034470

1		
2 3 4	531	Meli, M.L., Burr, P., Decaro, N., Graham, E., Jarrett, O., Lutz, H., McDonald, M. & Addie, D.D. (2013).
5 6	532	Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests. Journal
7 8 9	533	of Feline Medicine and Surgery, 15, 295-299. <i>doi</i> :10.1177/1098612X12467995
10 11 12	534	Murphy, B.G., Perron, M., Murakami, E., Bauer, K., Park, Y., Eckstrand, C., Liepnieks, M. & Pedersen, N.C.
	535	(2018). The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue
	536	culture and experimental cat infection studies. Veterinary Microbiology, 219, 226-233.
17 18 19	537	doi:10.1016/j.vetmic.2018.04.026
20 21	538	Olsen, C.W., Corapi, W.V., Jacobson, R.H., Simkins, R.A., Saif, L.J. & Scott, F.W. (1993). Identification of
22 23	539	antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity.
26	540	Journal of General Virology, 74, 745-749. <i>doi</i> :10.1099/0022-1317-74-4-745
	541	Ou, J., Zhou, Z., Zhang, J., Lan, W., Zhao, S., Wu, J., Seto, D., Zhang, G. & Zhang, Q. (2020). RBD mutations
29 30 31	542	from circulating SARS-CoV-2 strains enhance the structural stability and human ACE2 affinity of the spike
	543	protein. bioRxiv. <i>doi</i> :10.1101/2020.03.15.991844
	544	Paltrinieri, S., Cammarata Parodi, M., Cammarata, G. & Mambretti, M. (1998). Type IV hypersensitivity in
	545	the pathogenesis of FIPV-induced lesions. Journal of Veterinary Medicine Series B. 45, 151-9.
20	546	doi:10.1111/j.1439-0450.1998.tb00778.x
	547	Paltrinieri, S., Rossi, G. & Giordano, A. (2014). Relationship between rate of infection and markers of
	548	inflammation/immunity in Holy Birman cats with feline coronavirus. Research in Veterinary Science, 97,
48	549	263-270. <i>doi</i> :10.1016/j.rvsc.2014.08.009
49 50 51	550	Park, M.D. (2020) Macrophages: a Trojan horse in COVID-19?. Nature Reviews Immunology.
52 53	551	doi:10.1038/s41577-020-0317-2
54 55 56	552	Pedersen, N.C. (1976) Serologic Studies of Naturally Occurring Feline Infectious Peritonitis. American
	553	Journal of Veterinary Research, 37, 1449-1453.

1		
2 3 4	554	Pedersen, N.C. (2009). A review of feline infectious peritonitis virus infection: 1963–2008. Journal of Feline
5 6 7	555	Medicine and Surgery, 11, 225-258. <i>doi</i> :10.1016/j.jfms.2008.09.008
8 9	556	Pedersen, N.C. (2014a). An update on feline infectious peritonitis: virology and immunopathogenesis. The
10 11 12	557	Veterinary Journal, 201, 123-132. <i>doi</i> :10.1016/j.jfms.2008.09.008
13 14	558	Pedersen, N.C. (2014b). An update on feline infectious peritonitis: diagnostics and therapeutics. The
15 16 17	559	Veterinary Journal, 201, 133-141. <i>doi</i> :10.1016/j.tvjl.2014.04.016
	560	Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M.,
20 21 22	561	Meadows, J.M., Chang, K.O. (2018) Efficacy of a 3c-like protease inhibitor in treating various forms of
24	562	acquired feline infectious peritonitis. Journal of Feline Medicine and Surgery, 20, 378-392.
25 26 27	563	doi:10.1177/1098612X17729626
29	564	Pedersen, N.C., Perron, M., Bannasch, M., Montgomery, E., Murakami, E., Liepnieks, M. & Liu, H. (2019).
30 31 32	565	Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline
33 34	566	infectious peritonitis. Journal of Feline Medicine and Surgery, 21, 271-281. doi:10.1177/1098612X19825701
35 36 37	567	Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G. & Helps, C.R. (2014). Amino acid changes in
	568	the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not
40 41 42	569	with feline infectious peritonitis. Veterinary Research, 45, 49. <i>doi</i> :10.1186/1297-9716-45-49
43 44	570	Regan, A.D., Ousterout, D.G. & Whittaker, G.R. (2010). Feline lectin activity is critical for the cellular entry of
45 46 47	571	feline infectious peritonitis virus. Journal of Virology, 84, 7917-7921. <i>doi</i> :10.1128/JVI.00964-10
48 49	572	Ricke, D. & Malone, R. W. (2020). Medical Countermeasures Analysis of 2019-nCoV and Vaccine Risks for
50 51 52	573	Antibody-Dependent Enhancement (ADE) Available at SSRN. <i>doi</i> :10.2139/ssrn.3546070
53 54	574	Rossi, G., Cornaro, C., Battilani, M., Pocacqua, V. & Paltrinieri, S. (2011). Production of IFN-γ in feline whole
55 56 57	575	blood after incubation with potential T-celle epitopes of the Nucleocapsid protein of feline coronavirus.
58 59 60	576	Veterinary Microbiology, 150, 248-56. <i>doi</i> :10.1016/j.vetmic.2011.02.004

2		
3 4	577	Russell, B., Moss, C., George, G., Santaolalla, A., Cope, A., Papa, S. & Van Hemelrijck, M. (2020). Associations
5 6	578	between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current
7 8 9	579	evidence. Ecancermedicalscience, 14, 1022. doi:10.3332/ecancer.2020.1022
10 11	580	Saif, L.J. (2020). Vaccines for COVID-19: perspectives, prospects, and challenges based on candidate SARS,
12 13 14	581	MERS, and animal coronavirus vaccines. Euro Med J. <i>doi</i> :10.33590/emj/200324
15 16 17	582	Sarzi-Puttini, P., Giorgi, V., Sirotti, S., Marotto, D., Ardizzone, S., Rizzardini, G., Antinori, S. & Galli, M. (2020).
	583	COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome?
20 21	584	Clinical and Experimental Rheumatology, 38, 337-342.
22 23 24	585	Satoh, R., Kobayashi, H., Takano, T., Motokawa, K., Kusuhara, H. & Hohdatsu, T. (2010). Characterization of
	586	T helper (Th) 1-and Th2-type immune responses caused by baculovirus-expressed protein derived from the
20	587	S2 domain of feline infectious peritonitis virus, and exploration of the Th1 and Th2 epitopes in a mouse
31	588	model. Microbiology and Immunology, 54, 726-733. <i>doi</i> :10.1111/j.1348-0421.2010.00275.x
	589	Schatzmann Peron, J.P. & Nakaya, H. (2020) Susceptibility of the Elderly to SARS-CoV-2 Infection: ACE-2
34 35 36	590	Overexpression, Shedding and Antibody-dependent Enhancement (ADE). Preprints 2020, 2020030400.
	591	doi:10.20944/preprints202003.0400.v1
	592	
12		Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., Bucci, E., Piacentini, M., Ippolito, G. & Melino, G.
42 43	593	Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., Bucci, E., Piacentini, M., Ippolito, G. & Melino, G. (2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives
43 44	594	
43 44 45 46 47 48	594	(2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives
43 44 45 46 47 48 49 50	594	(2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives on immune responses. Cell Death and Differentiation, 27, 1451–1454. <i>doi</i> :10.1038/s41418-020-0530-3
43 44 45 46 47 48 49 50 51 52 53	594 595 596 597	(2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives on immune responses. Cell Death and Differentiation, 27, 1451–1454. <i>doi</i> :10.1038/s41418-020-0530-3 Shen, Z., Xiao, Y., Kang, L., Ma, W., Shi, L., Zhang, L., Zhou, Z., Yang, J., Zhong, J., Yang, D., Guo, L., Zhang, G.,
43 44 45 46 47 48 49 50 51 52 53 54 55	594 595 596 597 598	(2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives on immune responses. Cell Death and Differentiation, 27, 1451–1454. <i>doi</i> :10.1038/s41418-020-0530-3 Shen, Z., Xiao, Y., Kang, L., Ma, W., Shi, L., Zhang, L., Zhou, Z., Yang, J., Zhong, J., Yang, D., Guo, L., Zhang, G., Li, H., Xu, Y., Chen, M., Gao, Z., Wang, J., Ren, L., & Li, M. (2020a). Genomic diversity of SARS-CoV-2 in
43 44 45 46 47 48 49 50 51 52 53 54 55 56	594 595 596 597 598 599	(2020). COVID-19 infection: the perspectives on immune responses. COVID-19 infection: the perspectives on immune responses. Cell Death and Differentiation, 27, 1451–1454. <i>doi</i> :10.1038/s41418-020-0530-3 Shen, Z., Xiao, Y., Kang, L., Ma, W., Shi, L., Zhang, L., Zhou, Z., Yang, J., Zhong, J., Yang, D., Guo, L., Zhang, G., Li, H., Xu, Y., Chen, M., Gao, Z., Wang, J., Ren, L., & Li, M. (2020a). Genomic diversity of SARS-CoV-2 in coronavirus disease 2019 patients. Clinical Infectious Diseases, <i>in press. doi</i> :10.1093/cid/ciaa203

1	
2 3	604
4	601
5	602
6 7	002
8	602
9	603
10	604
11 12	
13	605
14	005
15 16	606
17	
18	607
19 20	007
20 21	608
22	
23	609
24 25	
	610
27	
28 29	611
30	642
31	612
32 33	
33 34	613
35	611
36 37	614
37 38	615
39	
40	616
41 42	010
43	617
44	
45 46	618
46 47	010
48	619
49	
50 51	620
52	
53	621
54 55	
55 56	622
57	(22)
58 59	623
59 60	

01	Singh, B. (2020). Understanding the Role of Key Point Mutations in Receptor Binding Domain of SARS-CoV-2
)2	Spike Glycoprotein. Preprints. doi:10.20944/preprints202003.0394.v2
)3	Song, D. & Park, B. (2012). Porcine epidemic diarrhoea virus: a comprehensive review of molecular
)4	epidemiology, diagnosis, and vaccines. Virus Genes, 44, 167-175. doi:10.1007/s11262-012-0713-1
)5	South, A.M., Diz, D. & Chappell, M.C. (2020). COVID-19, ACE2 and the Cardiovascular Consequences.
06	American Journal of Physiology, in press. doi:10.1152/ajpheart.00217.2020
)7	Stranieri, A., Giordano, A., Paltrinieri, S., Giudice, C., Cannito, V. and Lauzi, S. (2018). Comparison of the
08	performance of laboratory tests in the diagnosis of feline infectious peritonitis. Journal of Veterinary
)9	Diagnostic Investigation, 30, 459-463. doi:10.1177/1040638718756460
10	Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Liu, W., Bi, Y. & Gao, G.F. (2016). Epidemiology, genetic
11	recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 24, 490-502.
12	<i>doi</i> :10.1016/j.tim.2016.03.003
13	Takano, T., Morioka, H., Gomi, K., Tomizawa, K., Doki, T. & Hohdatsu, T. (2014). Screening and identification
14	of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane
15	protein of feline infectious peritonitis virus. Vaccine, 32, 1834-1840. doi:10.1016/j.vaccine.2014.01.074
16	Takano, T., Wakayama, Y. & Doki, T. (2019a). Endocytic Pathway of Feline Coronavirus for Cell Entry:
17	Differences in Serotype-Dependent Viral Entry Pathway. Pathogens, 8, 300. doi:10.3390/pathogens8040300
18	Takano, T., Yamada, S., Doki, T. & Hohdatsu, T. (2019b). Pathogenesis of oral type I feline infectious
19	peritonitis virus (FIPV) infection: Antibody-dependent enhancement infection of cats with type I FIPV via
20	the oral route. Journal of Veterinary Medical Science, 81, 911-915. <i>doi</i> :10.1292/jvms.18-0702
21	Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z. & Cui, J. (2020). On
22	the origin and continuing evolution of SARS-CoV-2. National Science Review, nwaa036.
23	doi:10.1093/nsr/nwaa036

1 2		
2 3 4	624	Tasker, S. (2018). Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests.
5 6 7	625	Journal of Feline Medicine and Surgery, 20, 228-243. <i>doi</i> :10.1177/1098612X18758592
8 9	626	Tay, M.Z., Poh, C.M., Rénia, L., MacAry, P.A. & Ng, L.F. (2020). The trinity of COVID-19: immunity,
10 11 12	627	inflammation and intervention. Nature Reviews Immunology. <i>doi</i> :10.1038/s41577-020-0311-8
13 14	628	Tekes, G. & Thiel, H.J. (2016). Feline coronaviruses: pathogenesis of feline infectious peritonitis. Advances in
15 16 17	629	Virus Research, 96, 193-218. <i>doi</i> :10.1016/bs.aivir.2016.08.002
18 19 20	630	Tetro, J.A. (2020). Is COVID-19 receiving ADE from other coronaviruses? Microbes and Infection, 22, 72-73.
21 22		doi:10.1016/j.micinf.2020.02.006
23 24 25	632	Tian, Y., Rong, L., Nian, W. & He, Y. (2020). Review article: gastrointestinal features in COVID-19 and the
26 27	633	possibility of faecal transmission. Alimentary Pharmacology and Therapeutics. 51, 843-851.
28 29 30		doi:10.1111/apt.15731.
	635	Vijaykrishna, D., Smith, G.J., Zhang, J.X., Peiris, J.S.M., Chen, H. & Guan, Y. (2007). Evolutionary insights into
33 34 35		the ecology of coronaviruses. Journal of Virology, 81, 4012-4020. <i>doi</i> :10.1128/JVI.02605-06
37	637	Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T. & Zhang, Z. (2020a). The establishment of reference
38 39	638	sequence for SARS-CoV-2 and variation analysis (2020a). Journal of Medical Virology. In press
40 41 42	639	<i>doi</i> :10.1002/jmv.25762.
	640	Wang, M., Li, M., Ren, R., Li, L., Chen, E.Q., Li, W. & Ying, B. (2020b). International expansion of a novel
47		SARS-CoV-2 mutant. Journal of Virology. <i>doi</i> :10.1128/JVI.00567-20
48 49 50	642	Wang, L.S., Wang, Y.R., Ye, D.W. & Liu, Q.Q. (2020c). A review of the 2019 Novel Coronavirus (COVID-19)
51 52	643	based on current evidence. International Journal of Antimicrobial Agents, 105948.
53 54 55		<i>doi</i> :10.1016/j.ijantimicag.2020.105948
	645	Wolfe, L.G. & Griesemer, R.A. (1966). Feline infectious peritonitis. Pathologia Veterinaria, 3, 255-270.
	646	Wong, A.C., Li, X., Lau, S.K. & Woo, P.C. (2019). Global epidemiology of bat coronaviruses. Viruses, 11, 174.
	647	<i>doi</i> :10.3390/v11020174

2 3 648	Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L. & Tai, Y. (2020).
4	
6 049	Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet
7 8 650 9	Respiratory Medicine, 8, 420-422. <i>doi</i> :10.1016/S2213-2600(20)30076-X
10 11 651 12	Zhang, T., Wu, Q. & Zhang, Z. (2020a). Probable pangolin origin of SARS-CoV-2 associated with the COVID-
₁₃ 652 14	19 outbreak. Current Biology, 30, 1346-1351. <i>doi</i> :10.1016/j.cub.2020.03.022
15 16 653 17	Zhang, L., Yang, J.R., Zhang, Z. & Lin, Z. (2020b). Genomic variations of SARS-CoV-2 suggest multiple
17 18 654 19 20	outbreak sources of transmission. medRxiv. <i>doi</i> :10.1101/2020.02.25.20027953
21 655 22	Zhang, H., Kang, Z., Gong, H., Xu, D., Wang, J., Li, Z., Cui, X., Xiao, J., Meng, T., Zhou, W. & Liu, J. (2020c). The
23 656 24	digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell
²⁵ 657 26 27	transcriptomes. BioRxiv. <i>doi</i> :10.1101/2020.01.30.927806
28 658 29	Zhang, H., Zhou, P., Wei, Y., Yue, H., Wang, Y., Hu, M., Zhang, S., Cao, T., Yang, C., Li, M. & Guo, G. (2020d).
³⁰ 659 31 32	Histopathologic Changes and SARS–CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Annals
₃₃ 660 34	of Internal Medicine, in press. doi:10.7326/M20-0533
³⁵ 36 661 37	Zhou M, Zhang X & Qu J. (2020). Coronavirus disease 2019 (COVID-19): a clinical update. Frontiers of
37 38 662 39	Medicine, in press. doi:10.1007/s11684-020-0767-8
40 41 663	
42 43	
44	
45 46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56 57	
58	
59	
60	