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Introduction

The replica method has a long history of setbacks and triumphs in Physics. Known by
mathematicians at least since [HLP34] as an “obvious identity” (wording by P. W. Ander-
son, [And88]) to evaluate the average of a logarithm, the replica trick was introduced in
statistical mechanics to study problems with a quenched disorder, i.e. systems where the
disorder (such as impurities in a lattice) does not thermalize with the other microscopic
degrees of freedom, remaining “frozen” with respect to their motion. The theoretical
progenitor of these kind of systems is the Edwards-Anderson spin glass model [EA75], a
version of the Ising model with random couplings between first-neighbors spins, whose
difficulty lead to the formulation of others mean-field models [SK75].

However, for years after its first application, physicists could not overcome some in-
consistencies [HP79] arising from this approach, casting a shadow of illegitimacy on
its use in the context of disordered systems. It was only with the discovery of the
mechanism of replica symmetry breaking [Par79] that the replica trick was not only
fully redeemed, but also recognized as a valuable tool to investigate this, at the time
new and relatively unexpected, phenomenon; integrated with a series of results needed
to describe correctly this mechanism, nowadays it goes under the name of replica the-
ory [Dot00], or method. Though not a mathematical well defined theory, the replica
method has been proven rigorously to produce the correct results in many models of
interest [Gue03].

Since its introduction, replica theory has been applied successfully in a lot of Physics
and Mathematics subjects: random matrix theory [EJ76], machine learning and neural
networks [Gar87; Gar88], thermodynamics of amorphous solids [MP99], combinatorial
optimization problems [CS02a; Cap+18], high energy physics [MS16], etc.; this list is
not exhaustive and could go on indefinitely. Its wide range of applicability makes the
knowledge of replica methods a relevant point in the cultural background of a theoretical
physicist.

Thesis overview

In this thesis, we apply methods from replica theory to deal with two contemporary
problems in the study of complex systems.

In Part I, we discuss the behavior of the rare fluctuations of the observable of choice
in most models of spin glasses: the free energy. Due to the quenched disorder, this and
other thermodynamic quantities are self-averaging random variables, whose probability

ix



x Thesis overview

distribution can be evaluated within replica theory. In particular, the probability of the
free energy fluctuations above its typical value shows an anomalous scaling with the
number of degrees of freedom, at variance with the ordinary exponential suppression
for fluctuations below. We explain how the introduction of a small magnetic field can
remove this anomalous behavior. This Part is organized as follows.

In Chap. 1, we present a brief introduction of Large Deviation Theory, the mathe-
matical framework studying the probability of rare events. We introduce the concepts of
scaled cumulant generating function and rate function. We discuss briefly the Gärtner-
Ellis theorem, a result we will apply in the following chapters.

In Chap. 2, we explain how to apply Large Deviation Theory to spin glass models,
in order to find the probability distribution describing the rare fluctuations of the free
energy. Using the Random Energy Model as a first example, we give an essential treat-
ment of the replica method and introduce the mechanism of replica symmetry breaking.
We discuss the problem of the “very large” deviations, the anomalous scaling of the
fluctuations above the typical value, with the aid of extreme value statistics.

In Chap. 3, we apply the formalism introduced before to approach the p-spin spher-
ical model. While the behavior at zero external magnetic field is quite similar to the
REM’s one, we observe how the anomalous behavior of the free energy fluctuations dis-
appears as soon as the field is switched on. This is our main original contribution to this
Part, presented in [PDR19].

In Chap. 4, we evaluate analytically the rate function of the 2-spin spherical model
and of the Sherrington-Kirkpatrick model in a magnetic field. In doing so, we explain
how to implement a mechanism of full replica symmetry breaking in the context of a
large deviation analysis. The results give us a better understanding on the fate of the
very large deviations when the field is present.

In Part II, we apply the replica formalism to the problem of linear classification of ob-
jects with a geometrical structure, in the context of machine learning. In particular, using
combinatorial techniques we evaluate the number of dichotomies (binary classifications)
of a set of structured inputs achievable by a linear classifier, as a function of the number
of inputs to classify. We prove that this number shows an additional critical point be-
yond the usual storage capacity for isolated points, at which the number of admissible
dichotomies becomes zero in the thermodynamic limit; the associated phase transition
present a certain degree of replica symmetry breaking. This behavior is due to a trade-off
between the increasing number of points to classify, and the increasing volume excluded
by their geometrical structure. This approach goes in the direction of finding bounds on
the generalization error of certain simple neural network architectures, more stringent
for structured data than the ones known from Statistical Learning Theory. This part,
which is mostly drawn from [Pas+20; RPG20], is organized as follows.

In Chap. 5, we present the problem of classifications in machine learning, introduc-
ing some concepts of Statistical Learning Theory, the mathematical framework where
bounds on the generalization performance of neural network architectures are formu-
lated. We explain how this kind of problems can be analyzed from a statistical physics
perspective, presenting the classical result of storage capacity by E. Gardner.

In Chap. 6, we introduce a model of data structure, originally proposed in [Bor+19;
RLG20]: instead of isolated point, the architecture is required to classify simplexes of
points with fixed geometrical interrelations. We evaluate the storage capacity associated
to this problem.

In Chap. 7, we devise a combinatorial method to find the asymptotic behavior of the
number of admissible dichotomies of simplexes that a linear classifier can realize. This



Introduction xi

number is not monotonic, at variance with the unstructured case, and present a novel
critical point beyond the storage capacity. This point of transition can be evaluated in a
replica approach accounting for some level of replica symmetry breaking.

In Chap. 8, we analyze, in the replica approach, the problem of margin learning from
the data structure point of view, finding the (qualitatively) same critical point we en-
countered in the case of simplexes. This fact leads us to the conclusion that the novel,
data-driven phase transition is a general property associated to the geometrical structure
of the objects to classify.

While the two parts are fairly independent in language and scope, the first presents the
replica framework in a more pedagogical fashion, so the interested reader is encouraged
to start from there. For a more methodical exposition, we introduce and conclude each
part with chapters of motivation and discussion.





Part I

Large and very large deviations in
spin glasses





Motivations

The theory of disordered systems has been mainly developed to describe the typical
behavior of physical observables. However, as it has been argued since the early days
of the subject, one can employ spin glass techniques in a more general setting, to esti-
mate probability distributions [TD81] and fluctuations around the typical values [TFI89;
Cri+90] of quantities of interest. More recently, Rivoire [Riv05], Parisi and Rizzo [PR08;
PR09; PR10b; PR10a] and others [ABM04; NH08; NH09] followed this line of thought,
providing a bridge between spin glasses (and disordered systems more in general, as in
[MPS19]) and the theory of large deviations, that deals with rare events whose probabil-
ity decays exponentially in the system size. This topic, which is the natural framework
to set statistical mechanics in a mathematical perspective, has recently been the subject
of a comprehensive and pedagogical review by Touchette [Tou09], as well as of intensive
efforts in non-equilibrium statistical physics [PH19].

In this Part, we deal with the probability of rare fluctuations of the free energy in
some models of spin glass, our mainly original contribution being a large deviation
study of the p-spin spherical model [PDR19]. In zero external magnetic field, we show
that a calculation at one-step of replica symmetry breaking produces a very peculiar
form of the rate function describing these fluctuations, which is infinite for fluctuations
of the free energy above its typical value. In practice, this means that this kind of events
are more than exponentially suppressed in probability with the number of degrees of
freedom, a situation anomalous in statistical physics, where the scaling of observables
usually follows from simple extensivity arguments. This property, which is commonly
described stating that the free energy has a “very-large” deviation behavior for posi-
tive fluctuations, is present in several other spin glass problems, as discussed for exam-
ple in [PR10b], and, more generally, in other systems showing extreme value statistics
[ABM04]. In some of the early literature [DFM94], this feature is also called “overfrus-
tration”.

The situation changes dramatically when a small external magnetic field is applied:
the rate function is finite everywhere, although highly asymmetric around the typical
value, and so the very-large deviation feature disappears. We explain intuitively the
reason of this change of regime in light of the geometrical interpretation discussed for
the case without magnetic field, and argue that the introduction of a magnetic field could
act as procedure to regularize the anomalous scaling of the large deviation principle for
this kind of systems.
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CHAPTER 1

Notes on Large Deviation Theory

In this chapter we present a basic mathematical introduction on Large Deviation The-
ory, defining the language we will use in the rest of this Part. Our aim is to give a
self-consistent treatment of the problem to the reader with only elementary notions of
probability theory, without bothering him/her with details inessential to the present
discussion. For further insights on the subject, we address the reader with a physical
background to the nice review [Tou09], to the books [Ell06], [Vul+14] and to the corre-
sponding chapter in [MM09]. A standard mathematical textbook for reference is [DZ10].

1.1 Large deviation principles and rate functions

Suppose, as is common in probability theory and in statistical mechanics, to deal with
a sequence of random variables {Xi}ni=1, drawn, to fix ideas, independently from the
same probability distribution, with mean µ and finite variance σ2. Starting from this set,
we can define random variables that depends collectively on the underling Xi, such as
the empirical mean

Sn =
1

n

n∑

i=1

Xi , (1.1)

distributed with a law to be determined from the ones of the Xi. Varying the integer
n, we thus obtain a sequence of probability measures for the variables Sn. Of course,
in the limit n → ∞ the empirical mean Sn converges to the mean µ, meaning that the
probability measure of Sn becomes more and more peaked around µ as n grows: this is
simply the statement of the law of large numbers (LLN),

lim
n→∞

P (|Sn − µ| < ε) = 1 . (1.2)

Moreover, one of the most celebrated results in probability theory, the central limit theo-
rem (CLT), states that the probability distribution of the variable

√
n (Sn − µ) converges

for n→∞ to a normal distribution with zero mean and variance σ2:

lim
n→∞

P
(√
n (Sn − µ) ∈ [x, x+ dx]

)
=

e−
x2

2σ2

√
2πσ2

dx . (1.3)

This result is so important because it establish the normal distribution as the limiting
distribution of a large universality class: not only it can be simply extended to deal
with sums of independent random variables with different variances (as long as they
are finite), but versions of it hold even when the Xi are dependent (weakly correlated).
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6 1.1 Large deviation principles and rate functions

Note that the CLT deals with deviations from the mean δSn = Sn−µ that are “small”,
of order 1/

√
n: how does the tails of the distribution, accounting for the probability of

rare events to occur, behaves asymptotically for large n? Large deviation theory (LDT) is
the mathematical framework to answer this question, in cases where this probability is
exponentially suppressed in the limit of n → ∞. At variance with the CLT, the results
from LDT preserve some peculiarities of the underlying distributions of the Xi, so we
illustrate an elementary case as an example: a Bernoulli process. Suppose to perform a
classic coin-toss experiment; the random variables Xi can take two values, head (1) with
probability p and tail (0) with probability (1 − p); clearly, the mean value of each Xi is
equal to p, while the variance is p(1 − p). After n tosses, what is the probability for Sn,
defined as in (1.1), to take the value k/n? Of course, the ways a fixed number of heads
can occur in the sequence is counted by the corresponding binomial coefficient. Being
each toss independent, the resulting probability is

P (Sn = k/n) =
n!

k!(n− k)!
pk(1− p)n−k . (1.4)

To obtain the asymptotic behavior for large n of this law, we must send n→∞, k →∞,
x = k/n fixed. Using Stirling’s approximation, the following formula easily follows:

P (Sn = x) ∼ exp

{
−n
[
x ln

x

p
+ (1− x) ln

1− x
1− p

]}
, 0 ≤ x ≤ 1. (1.5)

This is a large deviation result: it says that this probability is exponentially suppressed
in n with a rate given by the non-negative function

I(x) =

{
x ln x

p + (1− x) ln 1−x
1−p if 0 ≤ x ≤ 1 ,

+∞ otherwise .
(1.6)

This is a simple example of a central quantity in LDT, the rate function. Moreover, this
result implies the LLN, as the only values of x where the probability remains finite are
the zeros of I(x), in this case x = p. It implies also the CLT, as for x = p+ δx

I(x) =
δx2

2p(1− p) +O(δx3) , (1.7)

reproducing in (1.5) the Gaussian function for deviations δx = O(1/
√
n). In this regard-

ing, LDT is an extension of those classical results in probability theory. The final aim of a
large deviation approach to a certain problem is usually to obtain the rate function of the
corresponding probability distribution. As should be clear from our previous example,
its specific form depends on the details of the asymptotic expansion of the correspond-
ing distribution at finite n, and so it must be analyzed case by case. However, there are
properties of the rate function, some of which we already mentioned, that are completely
general. In the following we give a more precise overview of these properties.

Given a sequence of random variables {An}, we denote with P (An ∈ B) the proba-
bility that An takes value in a set B. We say that An satisfies a Large Deviation Principle
(LDP) with rate IB ≥ 0 if

lim
n→∞

− 1

n
logP (An ∈ B) = IB . (1.8)
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The continuous, probability-density version of the above statement is

p(An = a) ∼ e−nI(a) , (1.9)

where p(An = a) is defined by

P (An ∈ [a, a+ da]) = p(An = a) da , (1.10)

and the symbol ∼ is to be intended in the sense of Eq. (1.8). To define a rate function,
I : A → [0,+∞] must be an extended real-valued function defined on a Hausdorff space
A, such that it is not identically +∞ and the sub-level set

{a ∈ A|I(a) ≤ c} for c ≥ 0 (1.11)

are close in A (lower semi-continuity). If these sets are also compact, then I is called
a good rate function. As we already noted, the LDP implies the law of large numbers:
p(An = a) is exponentially small with n except where I(a) = 0, so the typical values atyp
of An (those values where the distribution concentrates) are identified with the zeros
of the rate function. Moreover, because of the positivity of I(a) (so that atyp is a global
minimum for I), an expansion (when possible) around atyp gives

p
(
An = atyp + δa

)
∼ e−

nf′′(atyp)

2 δa2

(1.12)

which is the CLT, giving a finite large-n probability for fluctuations δa = O(1/
√
n) (the

so-called Gaussian regime).

1.2 The scaled cumulant generating function

In most of the realistic cases in Physics, the direct evaluation of the rate function as-
sociated to a certain process is beyond the reach of simple asymptotic estimates as the
argument we used for the previous example: more sophisticated methods are in need.
For this reason, we introduce another key quantity that will recur often in the future
discussion, which is easier to evaluate in a lot of cases of interest: the scaled cumulant
generating function (SCGF, or logarithmic moment generating function) of An, defined by

Λn(k) =
1

n
log eknAn , Λ(k) = lim

n→∞
Λn(k) , (1.13)

where the overline indicates the average with respect to the density pAn(a) = p(An = a):

eknAn =

∫
eknapAn(a) da . (1.14)

This quantity has some remarkable properties:

(i) It is null at the origin, because of the normalization of the probability measure:

Λ(0) = lim
n→∞

1

n
log 1 = 0 . (1.15)

(ii) The derivative of Λ(k), evaluated at the origin, gives the typical value of An in the
limit of large n:

Λ′(0) = lim
n→∞

AneknAn

eknAn

∣∣∣∣∣
k=0

= lim
n→∞

An . (1.16)
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Because of property (i), the derivative can also be evaluated as

Λ′(0) = lim
k→0

Λ(k)

k
. (1.17)

(iii) The second derivative of Λ(k), evaluated at the origin, gives the (rescaled) variance
of An in the limit of large n:

Λ′′(0) = lim
n→∞

n


A

2
ne
knAn

eknAn
−

(
AneknAn

)2

(
eknAn

)2



k=0

= lim
n→∞

n
[
A2
n −

(
An
)2]

. (1.18)

Of course, this argument is true for all the successive moments of the distribution
and is the reason why Λ is called a generating function.

(iv) The function Λn(k) is convex for any finite n, as can be proven from Hölder in-
equality:

XY ≤
(
X1/p

)p (
Y 1/q

)q
, 0 ≤ p, q ≤ 1, p+ q = 1 , (1.19)

using X = epk1nAn , Y = e(1−p)k2nAn , so that

e[pk1+(1−p)k2]nAn ≤
(
ek1nAn

)p (
ek2nAn

)1−p
(1.20)

and taking the logarithm:

Λn[pk1 + (1− p)k2] ≤ pΛn(k1) + (1− p)Λn(k2) , (1.21)

which is the definition of convexity.

(v) The function Λn(k)/k is monotonic, as can be proven from another Hölder inequal-
ity: take (1.19), but now with X = ekpnAn , Y = 1. Indeed

ekpnAn ≤
(
eknAn

)p
(1.22)

and so the logarithm
Λn(pk) ≤ pΛn(k) . (1.23)

As p is an arbitrary number between 0 and 1, k′ = pk ≤ k, so

Λn(k′) ≤ k′

k
Λn(k) ∀ k′ < k , (1.24)

and the function Λn(k)/k must be non-decreasing.

Note, however, that if f(k) is a generic function defined on an interval, then f(k) is
convex iff the quantity [f(k1) − f(k2)]/(k1 − k2) is monotonic in k1 for every fixed k2,
and vice versa (and so also for k2 = 0, if it is in the domain): the property (v) follows
from (i) and (iv).
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Why we introduced this quantity, and how is it related to the rate function? When-
ever the probability distribution of An is given by (1.9), the limit for large n of the SCGF
can be evaluated with the saddle point method:

Λn(k) =
1

n
log

[∫
eknapAn(a) da

]
∼ 1

n
log

[∫
e−n[I(a)−ka] da

]
(1.25)

and so
Λ(k) = sup

a
[ka− I(a)] . (1.26)

This relation, which says that the SCGF is the Legendre-Fenchel transformation of the rate
function, is always true whenever a LDP holds for An and Λ(k) exists. Note that, thanks
to Eq. (1.26), the property of convexity (iv) can be thought as a consequence of the SCGF
coming from a Legendre-Fenchel transformation. Moreover, because of property (i), the
positivity of the rate function follows:

0 = Λ(0) = sup
a

[−I(a)] = − inf
a

[I(a)] . (1.27)

1.3 Gärtner-Ellis theorem

As we will see in practice, the direct evaluation of the SCGF is often feasible in statistical
mechanics and, in particular, in the replica approach to the study of complex systems.
For this reason, we can exploit its relation with the rate function to formulate criteria
to understand whether a LDP holds case by case. In other words, we need to clarify
under what hypothesis we can invert Eq. (1.26), obtaining I from Λ. Denoting as f∗ the
Legendre transformation of a function f , we know that f∗∗ = f (that is, the Legendre
transformation is an involution) only if the original function f is convex and lower semi-
continuous: this is the statement of the Fenchel-Moreau theorem. We already know that
the rate function is guaranteed, by definition, to comply only with the second request.
However, as the rate function is the unknown quantity in this approach, we would like to
shift the hypothesis on I into hypothesis on Λ: when is it true that the inverse Legendre
transformation of Λ(k),

IΛ(a) = sup
k

[ka− Λ(k)] , (1.28)

is equal to the rate function, IΛ = I?
The answer of this question is provided by the Gärtner-Ellis theorem, an extension to

quite general sequences of probability distributions of the renowned Cramér’s theorem,
which in turn holds only for empirical means of i.i.d variables as in (1.1). Informally,
under the hypothesis that the limit in Eq. (1.13) exists finite and Λ(k) is differentiable for
any k ∈ R, this theorem states that An satisfies a LDP with a rate function given by

I(a) = IΛ(a) = sup
k

[ka− Λ(k)] . (1.29)

The reader with a background in thermodynamics and statistical mechanics can under-
stand this argument recollecting some properties of the Legendre-Fenchel transforma-
tion: if I is a non-convex function, its Legendre transformation Λ has non differentiable
points, so we can conclude that IΛ is equal to the convex hull of I , and not to the rate
function itself.

Of course, the above argument is not rigorous: to begin with, the theorem gives
conditions for a LDP to hold, but to derive Eq. (1.26) we had to impose it a priori; still,
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it is valuable to stress the importance of the request of differentiability on the SCGF. To
formulate the theorem in mathematical terms, we only need the following definition.

Definition 1.1 (Exposed point). x ∈ R is an exposed point of the function Λ : R → R if
there is a t ∈ R such that

ty − Λ(y) > tx− Λ(x) ∀ y 6= x (1.30)

In practice, a point x is exposed if the curve Λ(y) lies strictly above the line of slope t
passing through the point (x,Λ(x)). If Λ in convex, a sufficient condition for x to be
an exposed point is that Λ is twice differentiable at x with Λ′′(x) > 0. Given that, the
Gärtner-Ellis theorem follows:

Theorem 1.1 (Gärtner-Ellis). Consider a sequence of random variables An and assume that
Λn(k) defined in (1.13) exists and has a finite limit Λ(k) = limn→∞ Λn(k) for any k ∈ R.
Define IΛ as the inverse Legendre transform in (1.28) and let E be the set of exposed points of IΛ.
Then

1. For any closed set C ∈ R,

lim sup
n→∞

1

n
logP (An ∈ C) ≤ − inf

a∈C
IΛ(a) (1.31)

2. For any open set O ∈ R,

lim sup
n→∞

1

n
logP (An ∈ O) ≥ − inf

a∈O∩E
IΛ(a) (1.32)

3. If Λ(k) is differentiable for any k ∈ R, then a LDP holds forAn with the good rate function
I = IΛ.

The last statement can be made weaker (requiring Λ to be essentially smooth in R),
but this is beyond our scope: in short, the differentiability of Λ in R ensures that the
bounds (1.31) and (1.32) are strict.

In the next chapters we will try to apply this theorem to study the probability distri-
bution of physical observables in some disordered models of interest, using the princi-
ples of convexity and differentiability of the SCGF we presented so far to evaluate the
corresponding rate functions. We will also discuss cases where the hypothesis of differ-
entiability does not hold.



CHAPTER 2

Spin glasses and large deviations

The large deviation theory we presented in the previous chapter can be thought as the
mathematical framework to formulate statistical mechanics itself, as a probabilistic the-
ory of a large number of degrees of freedom (for more on this point of view, see the
book [Ell06]). For example, in equilibrium statistical mechanics the entropy and the free
energy can be thought, respectively, as the rate function and the SCGF of the mean en-
ergy (energy per state) with respect to the probability distribution of the ensemble of
microstates. Because of this broad scope, it is appropriate, whenever large deviations
results are invoked to deal with a physical system, to start from clarifying to what ran-
dom variable are applied, and to study the fluctuations with respect to what probability
measure. In the following, we will focus on the fluctuations of the free energy of cer-
tain models of mean-field spin glasses at equilibrium, with respect to the probability
distribution of the disorder.

In this chapter, we start sketching briefly what a spin glass is, and how the large
deviation formalism can be quite naturally applied in this context. Then, we illustrate
the main results of this approach with the aid of the Random Energy Model, a toy model
of disordered system simple enough to grant a complete analytical control on various
calculations, but still with a non-trivial behavior we will find also in other models.

2.1 Replicating the partition function

Since its introduction in the 1970s to model some magnetic properties experimentally
observed in diluted magnetic alloys, spin glass theory has gone far beyond the horizon
of solid-state physics, finding applications in neural networks, genetics, evolution, op-
timization problems and more. For a charming report on the history of the field, we
refer to the series of papers [And88]; for classic textbooks on the subject, we address the
reader to [MPV86; Dot95; Nis01].

For our purpose, we can say that spin glasses are systems described by Hamiltonians
HJ [σ], depending on the configurations of n spins {σi}ni=1 coupled with some param-
eters {J} that are random variables, modeling the disorder. The spins can be discrete
variables, as in the Ising and Potts models, or real continuous variables subject to some
global constraints, as in spherical models. They live on the vertices of a graph,1 whose
links, weighted by the couplings J , represent the interactions between them. When-
ever this graph is complete (i.e. each vertex is first neighbor to any other), the model is
called fully-connected, or mean-field. In the simplest models, the couplings are chosen to

1Technically, a hypergraph, to model systems with multiple-body interactions. A convenient way to repre-
sent these systems is via factor graphs, with two kind of vertices (i.e., bipartite), one for the spins and one for
the couplings between them. See, for further details, [MM09].

11



12 2.1 Replicating the partition function

be i.i.d. random variables. For example, in a model with only 2-body interactions, J
can be thought as a matrix, whose entry Jij is the coupling between the spins i and j,
extracted from a normal distribution (Gaussian model)

p(Jij) =
1√

2πJ2
exp

[
− (Jij − J0)

2

2J2

]
, (2.1)

where J0 is the mean and J2 the variance of the distribution, or from a Bernoulli distri-
bution (±J model)

p(Jij) = αδ(Jij − J) + (1− α)δ(Jij + J) , 0 ≤ α ≤ 1. (2.2)

Of course, we could think of more realistic models where the interaction between spins
depends, for example, on the Euclidean distance between them, in such a way that the
couplings become correlated; however, in the following we will not dwell on problems
of this kind.

A main property of the disorder in spin glass systems is to be quenched: from the point
of view of the thermal fluctuations of the elementary degrees of freedom (the spins), it is
frozen in a way similar to what happens to impurities trapped in a material under rapid
cooling, from which the term is borrowed. The reason behind this request is to describe
systems where the disorder evolution is much slower than the time needed by the other
variables to thermalize. The opposite situation, where the disordered parameters can
fluctuate on the same time-scales as the other degrees of freedom, and so can be treated
as dynamical variables, is called annealed disorder. In practice, in a quenched system we
have to fix the couplings J to some values chosen from the corresponding distribution,
and then evaluate all the thermodynamic observables without changing those values.

Quenched disorder is known to introduce frustration in the system: in general, if
we follow a closed loop on the graph, we cannot orientate the spins in such a way to
minimize the energy of every link of the path, due to the fact that both ferromagnetic
and antiferromagnetic links can be met with a certain probability. For this reason, there
is a great number of degenerate states that globally minimize, as well as possible, the
energy, and the energy landscape of the system assumes a very complicated profile,
with lots of valleys and spikes; in some cases, a large basin in the energy landscape,
corresponding to a macroscopic equilibrium state, is broken up at a critical temperature
in a fractal hierarchy of basins within basis, producing a very rough profile [Cha+14]. It
can happens that at certain temperatures the system is trapped in some of these valleys,
because the thermal fluctuations are not strong enough to overcome the energy barriers:
the system can no more explore the full phase space, and so the phenomenon of ergodicity
breaking occur.

Evaluating the thermodynamic quantities, such as the free energy, at a given instance
of the disorder means that they inherit a stochastic nature from the couplings: for differ-
ent instances, they assume different values. An interesting question would be: how can
the probability distribution of the free energy of a given model be obtained from the one
of the couplings? The (density of) free energy at a given instance of the disorder is

fJ = lim
n→∞

fJ,n = − 1

β
lim
n→∞

1

n
logZJ,n , (2.3)

where the partition function is defined as

ZJ,n = Trσ e
−βHJ [σ] , ZJ = lim

n→∞
ZJ,n . (2.4)
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Denoting with an overline the average on the disorder, the typical value is

ftyp = fJ = − 1

β
lim
n→∞

1

n
logZJ,n . (2.5)

The free energy is known to be a self-averaging observable, meaning that the probability
measure of fJ,n concentrates, in the limit of large n, around the typical value. From the
point of view of the discussion in Chap. 1, we can say that in this case a LLN holds:

lim
n→∞

P
(
|fJ,n − ftyp| < ε

)
= 1 , (2.6)

which means that, for example, limn→∞ (fJ,n)2 /(fJ,n)2 = 1. In order to obtain general
results independent from the specific realization of the disorder, it is important in sta-
tistical mechanics to identify the observables having this property. However, while this
is true for the (rescaled) logarithm of ZJ,n, which is indeed the free energy, the partition
function itself in not a self-averaging quantity, meaning in particular that

logZJ 6= logZJ . (2.7)

Note that on the RHS, the average over the disorder is performed at the same level of the
summation over the spin configurations in (2.4): it is an annealed calculation, while the
correct quenched one is on the LHS. As the partition function is, in statistical mechan-
ics, the fundamental quantity to start with, the evaluation of the averaged logarithm in
Eq. (2.7) poses a technical problem: while the annealed approach is usually easy, because
in most of the models the parameters J enter linearly in the Hamiltonian and the aver-
age can be performed, the quenched one is a lot more challenging. A fundamental tool
in this respect is the so-called replica trick:2

logZn = lim
k→0

(Zn)k − 1

k
. (2.8)

The reason for the success of this formula, which is of course an elementary analytical
identity for the logarithmic function, is that there is nothing easier than “replicating” the
partition function:

(Zn)
k

=
(

Trσ e
−βHJ [σ]

)k
=

[
k∏

a=1

Trσa

]
e−β

∑k
a=1 HJ [σa] , (2.9)

so that the spins from different replicas are now labeled by the index a and the average of
this quantity poses no more problems than the simple annealed evaluation. The k inde-
pendent copies of the theory becomes interacting once the average over J is performed,
in a way we will see in a number of examples in the following. We stress here that the
apparently simple trick (2.8) and its application to spin glass models hide a lot of sub-
tleties, actually. For example, to perform the calculations the order of limits implicit in
Eq. (2.8) (first the limit k → 0, and then the thermodynamic limit in Eq. (2.5), i.e. n→∞)
is reversed, a procedure usually justified a posteriori. However, the main issue with the
replica trick, which has been historically a serious obstacle at the early days of spin glass
theory, is that the recipe (2.9) to evaluate a power of the partition function makes sense
only for k integer: there is no real hint on how to perform the continuation to k ∈ R that
we need to obtain the limit k → 0.

2In the following, we will omit the subscript J from the fixed-instance quantities.
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Putting aside for a moment this difficulty, we observe that, once the moments Zk of
the partition function are known, we also have the full SCGF of the free energy: given
the quantity

G(k) = lim
n→∞

− 1

βn
log (Zn)k = lim

n→∞
− log e−kβnfn

βn
, (2.10)

then the SCGF of the free energy is

Λ(k) = lim
n→∞

log eknfn

n
= −βG(−k/β) . (2.11)

In view of this equality, in the following we will use the term SCGF indifferently for G
and Λ, being careful to use the correct one to evaluate the rate function.

From the disordered systems perspective, most of the standard results of spin glass
theory obtained within the replica method concern only the very special limit k → 0
in Eq. (2.8), to obtain the typical values, whereas to evaluate the full form of I(x) that
describes arbitrary rare fluctuations of the free-energy one needs to work out the SCGF
for finite replica index k. This problem is clearly equivalent to the one we mentioned
above: that is, to determine the full analytical continuation of the averaged replicated
partition function from integer to real number of replicas k. It was extensively inves-
tigated in the early stage of the research in disordered systems in order to understand
the manifestation of the (at that time surprising) mechanism of replica symmetry break-
ing [Par79]. Since these results are particularly interesting from the more modern large
deviation viewpoint, we now briefly mention the main ones.

Van Hemmen and Palmer [HP79] were the first ones to observe that the expression
in Eq. (2.10) must be a convex function of the replica index k, a property crucial in order
to interpret this quantity as a SCGF. Shortly later, Rammal [Ram81] added that Λ(k)/k
must be monotonic, which is, as we know, a necessary condition for the convexity of
Λ(k). However, the replica symmetric (RS) ansatz, which provides the most obvious
analytical continuation to real k of the replicated partition function, gives often a trial
SCGF which is not convex, or such that Λ(k)/k is not monotonic. This problem has been
analyzed for the first time in the context of the Sherrington-Kirkpatrick (SK) model. Af-
ter Parisi introduced his remarkable hierarchical scheme for replica symmetry breaking,
Kondor [Kon83] argued that his full RSB solution was very likely to provide a good
analytical continuation of Eq. (2.10), not only around k = 0.

These results may be considered nowadays as the initial stage of a work that at-
tempted to give mathematical soundness to the replica method. Although this vast pro-
gram is mostly unfinished, Parisi and Rizzo in a series of papers [PR08; PR09; PR10b;
PR10a] realized that the original analysis presented by Kondor is fundamental to in-
vestigate the large deviations of the free-energy in the SK model. Large deviations
have been examined only for a few other spin glass models: Gardner and Derrida dis-
cussed the form of the SCGF in the random energy model (REM) in a seminal pa-
per [GD89], and many rigorous results have been established later on [FFM07]; Ogure
and Kabashima [OK04; OK09a; OK09b] considered analyticity with respect to the replica
number in more general REM-like models; Nakajima and Hukushima investigated the p-
body SK model [NH08] and dilute finite-connectivity spin glasses [NH09] to specifically
address the form of the SCGF for models where one-step replica symmetry breaking
(1RSB) is exact; Andreanov, Barbieri and Martin [ABM04] considered the fluctuations of
the ground-state energy of some models of spin glasses. The replica method has been
applied to study the large deviations of observables in more general settings than spin
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glasses, as in [MPS19]. A parallel approach, based on the cavity method, has been pio-
neered by Rivoire [Riv05].

To start going into detail, we review, in the rest of this chapter, some results from
replica theory and large deviations in the REM.

2.2 The Random Energy Model: a simple model of disordered system

The random energy model (REM) was introduced by Derrida [Der80; Der81] as a toy
model of spin glasses.3 Though not a genuine spin model, it can be seen as limit of
a family of fully-connected spin glass: a generalization of the SK model consisting of
systems with n Ising spins with infinite-range random Gaussian p-body interactions, in
the limit p → ∞. For a proof of this property in the replica approach, see also [GM84].
In this respect, most of the techniques used to deal with spin glasses can be applied to
study this model, with the remarkable advantage that, being a pure probabilistic model,
the results from the replica method can be checked via formal mathematical approaches.

To introduce the model, we suppose that the energy levels Ei, with i ∈ {1, · · · , 2n},
of a given instance of our disordered system are i.i.d. Gaussian random variables, with
zero mean and variance n/2. Therefore the partition function of a specific instance is

Z =

2n∑

i=1

e−βEi . (2.12)

An instance of the problem is defined giving the set {E1, E2, . . . , E2n} = {E}, and we
are interested in quantities averaged on the disorder (that is, on the value of each energy
level). We use the overline notation to identify this kind of average operation, that is

O(E) =

∫ 2n∏

i=1

dEi√
πn

e−E
2
i /nO(E). (2.13)

Our aim is the computation of the free energy density f(E) = −1/(nβ) logZ in the limit
n → ∞ in the quenched case, and the large-deviation rate function of f , using a replica
approach. We will mainly follow, from a large-deviations perspective, the exposition
in [MM09]. Eventually, we will compare the results with the ones known from proba-
bilistic methods.

We start writing our k-replicated partition function as

Zk =

2n∑

i1,...,ik=1

e−β
∑k
a=1 Eia =

2n∑

i1,...,ik=1

2n∏

j=1

e−βEj
∑k
a=1 δia,j . (2.14)

Then, we perform the average over the disorder, obtaining, with a simple Gaussian in-
tegration,

Zk =

2n∑

i1,...,ik=1

exp


β

2n

4

k∑

a,b=1

δia,ib


 . (2.15)

Notice that the k-replicated-system configuration is given by (i1, . . . , ik), where i` = j
means that the `-th replica is in the j-th energy state. After the average over the energy

3A kind of random energy model was considered before by Nicola Cabibbo, who did not publish any result.
See [Gue13].
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levels, the only meaningful information remaining is which replicas are in the same state
and which are not. In this sense, the disorder average introduces a correlation between
different replicas, which initially are independent. Therefore, we can define a parameter
which encodes in a natural way this information, the k × k overlap matrix

Qab = δia,ib . (2.16)

Denoting now with N (Q) the number of configurations (i1, . . . , ik) whose overlap ma-
trix is a certainQ (multiplicity), we have

Zk =
∑

Q

N (Q) exp


β

2n

4

k∑

a,b=1

Qab


 , (2.17)

where the sum runs over all the symmetric matrices with off-diagonal elements {0, 1}
and 1 on the diagonal. Defining a sort of entropy density function

s(Q) =
logN (Q)

n
(2.18)

for the multiplicity of the matricesQ, assuming implicitly that this quantity is intensive,
we obtain

Zk =
∑

Q

exp [ng(Q)] , (2.19)

with

g(Q; k, β) =
β2

4

k∑

a,b=1

Qab + s(Q) . (2.20)

Since n is large and the partition function is a sum of exponential terms in n, we can
search the only relevant value(s) of Q as the extrema of g(Q) (maxima or minima, de-
pending on its sign). If the dominant extremum isQ?, we have4

G(k, β) = lim
n→∞

g(Q?; k, β) . (2.21)

Note that, for any given values of k and β, we have to find the corresponding extremum,
soQ? = Q?(k, β) is a function of the number of replicas and of the temperature.

In the search for the extrema of g(Q; k, β), we observe that this function has a very
important property: it is symmetric under permutation of any pair of replicas. In-
deed, given a permutation of k objects π ∈ Sk and denoted Qπab = Qπ(a)π(b), then
g(Qπ; k, β) = g(Q; k, β). This property is called replica symmetry. In principle, the dom-
inant extremum of g(Q; k, β) could break this symmetry: it is the same mechanism at
work in systems exhibiting a spontaneous symmetry breaking, so this phenomenon is
called replica symmetry breaking (RSB). Let us assume that for k ∈ N+ (that is, k positive
integer) the replica symmetry is not broken.5 Under this fundamental hypothesis, we
have

Qab =

{
1 if a = b,

q if a 6= b,
(2.22)

4For the REM, we are using for convenience a different convention from that Eq. (2.10), which can be ob-
tained using GREM = −βG.

5This assumption is not strictly true even for k ∈ N+, as explained in [Gue13]: RSB can occur for an integer
number of replicas, although in this case the broken phase would present the same free energy, internal energy
and entropy of the symmetric one. Very different is the case for k ∈ [0, 1], which we will discuss in the
following, where RSB must be postulate to obtain the correct thermodynamic observables.
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Figure 2.1: Trial SCGF for the REM: β < βc (left), β = βc (center), β > βc (right). The point where
the blue curve changes from linear to parabolic is ktextRS .

with q = 0 or q = 1. With a replica matrix of this form, the function (2.20) becomes

gRS(q; k, β) =
β2

4
k [(k − 1)q + 1] + s(Q) . (2.23)

If q = 0, we have N (Q) = 2n(2n − 1) · · · (2n − k + 1) (because all the replicas must be
different: we can choose the first replica in one of the 2n states, but then the second must
be in one of the remaining 2n − 1, etc...), so, keeping only the leading terms in n,

gRS0
(k, β) = k

(
β2

4
+ log 2

)
. (2.24)

This quantity is the same we would obtain in the annealed approximation Zk → Zk, as
we can see averaging directly Eq. (2.12) and then taking the k-th power: indeed, q = 0
means that the replicas are not correlated and the product factorizes, leaving only a
linear term in k at the exponent. We will sometimes call this solution the paramagnetic
line. Otherwise, if q = 1 we have all the replicas in the same energy level and there are
only N (Q) = 2n matrices (one for each state), so

gRS1
(k, β) =

β2

4
k2 + log 2. (2.25)

The two solutions coincide in k = 1, where the annealed and quenched calculation are
trivially equivalent, and in the point kRS = 4 log(2)/β2, which crosses the point k = 1 at
the temperature

βc = 2
√

log 2 . (2.26)

With this definition,

kRS =
β2
c

β2
. (2.27)

We are now in the position to perform the extremization needed to obtain G from g,
Eq. (2.21). Of course, for k ∈ N+, the correct choice is

G(k, β) = max {gRS0
(k, β) , gRS1

(k, β)} for k ∈ N+, (2.28)

as this is the term dominating the sum (2.19) for large n. Note however that, after our
RS ansatz (2.22), the number of replicas k enter as a parameter in the functions gRS0

, gRS1
,
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k

GRS(k)
k

1 k

GRS(k)
k

1 k

GRS(k)
k

1

Figure 2.2: Trial G(k)/k for the REM: β < βc (left), β = βc (center), β > βc (right). On the right,
the curve GRS(k)/k is monotonically non-increasing for any k < km, increasing for k > km.

so we would like to extend this prescription to find the analytic continuation defining
the full SCGF of the free energy, promoting k to a real variable. Let us analyze first
the high-temperature case, β < βc (see Fig. 2.1, left). For k > kRS, our “extended”
maximization prescription selects gRS1

, the parabolic function, which dominates for large
k as expected; for 1 < k < kRS the linear function, gRS0

, is the leading term; something
very strange happens for k < 1. Indeed, if we stick with our maximization prescription,
we should switch again functions at k = 1, remaining on the parabolic branch for all
k < 1. However, this continuation is clearly inconsistent: the resulting trial SCGF does
not even pass through the origin! We can overcome this obstacle with the following
argument: there is no general reason to change branch in k = 1; however, in this point
the functions gRS0

and gRS1
switch inevitably order; the only way to remain on the same

branch we were on k = 1+, is to change the extremization procedure from a max to a
min for k < 1. This is indeed the continuation prescription to k ∈ R in spin glass theory:

GRS(k, β) =

{
max {gRS0

(k, β) , gRS1
(k, β)} if k ≥ 1,

min {gRS0
(k, β) , gRS1

(k, β)} if k < 1.
(2.29)

We know of no better or formal argument to justify this prescription, which is applied ev-
erywhere in the replica approach of disordered system, in the present model. The more
popular, hand-waving reasoning goes like this: in models where the replicated partition
function has a term like

∑
a,bQab at the exponent, the RS ansatz gives k(k− 1)q from the

off-diagonal elements; the sign of k(k − 1), which is the factor determining which is the
dominant contribution in the sum over different replica matrices, changes in k = 1, forc-
ing to switch the prescription to find the extremum (because the maximum above k = 1
becomes a minimum below). However, our large-deviation point of view, which drives
us to interpret G(k) as a SCGF, should be enough in the present context to understand
why this prescription must be true: once we adopt it, we are able to define a legitimate
cumulant interpolating the RS integer points. Of course, the resulting function is still not
differentiable in kRS, meaning that in this point there is actually a phase transition and
that we cannot hope to use the Gärtner-Ellis theorem to find the rate function, but only
its convex hull.

Let us come back again to Fig. 2.1 (right), to study the low-temperature case of β > βc.
We now see that the point kRS is less than 1, and our GRS(k, β), obtained from Eq. (2.29),
has a serious problem that invalidates its probabilistic interpretation: it is not convex, a
property that, as we know from Sec. 1.2 (property (iv)), a legitimate SCGF must have
by construction! Another way to understand the problem is to look at Fig. 2.2, where



Spin glasses and large deviations 19

we plot GRS(k)/k: this function must be monotonic, because of property (v), but in the
low-temperature phase it loses monotonicity at the point

km =
βc
β
. (2.30)

The reason why this and other inconsistencies appear in this formulation has been ex-
tensively investigated during the 1970s: for a careful critical account of the RS replica ap-
proach and its problems, written before the solution to the puzzle was found, see [HP79].
Nowadays, we know that the problem is in the ansatz (2.22): replica symmetry is broken
at low temperature, as we will see in the following.

2.3 SCGF and rate function of the REM free energy

After the first attempts to go beyond the RS ansatz by Bray and Moore [BM78] and
Blandin [Bla78; BGG80], Parisi, in his celebrated series of papers [Par79], found the ap-
propriate parametrization for the replica matrix Qab providing the correct continuation
to k → 0 for systems exhibiting RSB. In the Parisi’s scheme, replica symmetry is broken
via a hierarchical, step-wise procedure, in the limit of infinite number of step. How-
ever, for our current purposes, we only need to introduce the so-called first step of replica
symmetry breaking (1RSB), which gives already the correct answer for the REM. We will
return to the general scheme in Chap. 4.

In the 1RSB ansatz, the replica matrix has the following form:

Qab =





1 if a = b,

q1 if a 6= b are in a diagonal m×m block,
q0 otherwise.

(2.31)

For example, in the case k = 9, m = 3 we have

Q =

1 q1 q1 q0 q0 q0 q0 q0 q0

q1 1 q1 q0 q0 q0 q0 q0 q0

q1 q1 1 q0 q0 q0 q0 q0 q0

q0 q0 q0 1 q1 q1 q0 q0 q0

q0 q0 q0 q1 1 q1 q0 q0 q0

q0 q0 q0 q1 q1 1 q0 q0 q0

q0 q0 q0 q0 q0 q0 1 q1 q1

q0 q0 q0 q0 q0 q0 q1 1 q1

q0 q0 q0 q0 q0 q0 q1 q1 1







(2.32)

In practice, we have subdivided the k replicas in k/m groups of size m, supposing that
replicas inside the same group have overlap q1, while replicas from different groups
have overlap q0 ≤ q1. In the REM, both q1 and q0 take values in {0, 1}, so the form of
this matrix is different from the RS one (2.22) only when q1 = 1, q0 = 0. How many
choices of the original indices produce a matrix of this form? We can always choose
the first m replicas in the first group (so, in 2n different ways), the second m in the
second group (in the remaining 2n−1 ways) and so on until we run out of groups, so
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N (Q) = 2n(2n − 1) · · · (2n − k/m+ 1). The sum over the matrix elements is easy, so we
obtain from Eq. (2.20)

g1RSB(m; k, β) =
β2

4
k [−q1 +m (q1 − q0) + kq0 + 1] +

k

m
log 2 ,

= k

(
β2

4
m+

log 2

m

)
.

(2.33)

Note that, if we take m = 1 (k trivial blocks with only the diagonal element equal to 1),
we obtain again gRS0

, while for m = k (a single block coinciding with the matrix itself)
we get gRS1

.
The main advantage of Eq. (2.33) is that we can now treat m as a variational param-

eter, possibly finding new solutions for our extremization procedure. In what domain
can we choose this parameter? Of course, as long as k ∈ N+, m must be a positive in-
teger as well, between 1 and k by construction. When k ∈ R, there is no problem to
extend this domain to the real interval [1, k], as long as k ≥ 1. When k < 1, in addition
to the max → min prescription we explained in (2.29), we also have to reverse the order
relation to k ≤ m ≤ 1; we will also take m ≥ 0, for now simply as a continuation pre-
scription, without further justification than keeping finite and positive s(Q) (note that
g1RSB is non-analytic in m = 0). We obtain

G1RSB(k, β) =





max
1≤m≤k

g1RSB(m; k, β) if k ≥ 1,

min
k≤m≤1
m≥0

g1RSB(m; k, β) if k < 1. (2.34)

To find the optimal value m?, we start from the stationarity condition:

∂g1RSB

∂m
= 0 =⇒ m± = ±2

√
log 2

β
= ±βc

β
, (2.35)

where we used (2.26). The point m+ is always a minimum of the function. At high
temperature, β < βc, m+ is greater than 1: depending on the value of k, we have to
select one of the extrema of the domain of m (m? = 1 or m? = k); for k < 1, m ∈ [k, 1]
can never reach m+, the function is always decreasing and the minimum is in m? = 1
(paramagnetic solution); for k > 0, the function is first decreasing and then increasing,
so the maximum is in m? = 1 as long as k < kRS, otherwise it is in m? = k (RS solution).
So far, we obtain the same results as before.

Instead, in the case of low temperature, β > βc, the point m+ is less than 1: for
k > m+, m is always greater than m+, the function is always increasing, so we have
to select m? = k (which is a minimum in m for k ∈ [m+, 1], a maximum for k > 1);
otherwise, for k < m+, this point is in the domain of m, in the region where we have
to select a minimum, so we get m? = m+. We report the low-temperature result, which
is the only different from before, in Fig. 2.3. Note that, due to the fact that m+ = km in
Eq. (2.30), the 1RSB ansatz is equivalent to a simple, Maxwell-like construction starting
from the RS: simply make marginally monotonic the curve GRS(k)/k drawing a straight
line from km (or, drawing the tangent of GRS intercepting the origin). We will say more
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Figure 2.3: G(k) (left) and G(k)/k (right) for the REM in the low-temperature phase β > βc, using
RS and 1RSB ansätze: the 1RSB ansatz depart from the RS one from km.
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Figure 2.4: Phase diagram of the REM SCGF in the plane k−1/β (reported from [GD89], with our
notations).

on this fact, first noted by Rammal in [Ram81], in Chap. 3. Summarizing, we find

G1RSB(k, β) =









k

(
β2

4
+ log 2

)

β2

4
k2 + log 2

if k < β2
c/β

2

if k ≥ β2
c/β

2

if β < βc ,





k
ββc
2

β2

4
k2 + log 2

if k < βc/β

if k ≥ βc/β
if β ≥ βc .

(2.36)

Admittedly, the reader not accustomed with replica theory can find the continuation
prescriptions we explained so far quite arbitrary. However, in many models they have
been proven, with rigorous probabilistic methods, to give the correct result, in some
cases at least in the limit k → 0, for the SCGF looked for. In particular, the results from
the REM were obtained in [GD89] via a direct evaluation of the asymptotic behaviour of
the moments of the partition function, without using replica theory. For reference, we
report this result, coinciding with Eq. (2.36), in Fig. 2.4.

We are now able to perform the Legendre transformation (1.28). From (2.11) (and
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Figure 2.5: Rate function of the REM free energy. Left: high-temperature phase, β < βc; the
straight dashed line is the convex hull of the true rate function (continuous red and blue curve),
obtained as the Legendre transformation of the non-differentiable SCGF. Right: low-temperature
phase, β > βc; the SCGF is differentiable and the Gärtner-Ellis theorem holds.

note 4), we can write

Λ(k, β) =









k2

4
+ log 2

− k
(
β

4
+

log 2

β

)
if k < −4 log 2/β

if k ≥ −4 log 2/β

if β < βc ,





k2

4
+ log 2

− k
√

log 2

if k < −2
√

log 2

if k ≥ −2
√

log 2

if β ≥ βc .

(2.37)

We can perform the Legendre transformation analytically. In the high-temperature
phase, due to the SCGF being non-differentiable in the point k = −4 log 2/β, we obtain
a straight segment in an interval equal to the difference between the left and the right
derivatives in the point. We find

IΛ(f, β) =





f2 − log 2 if f ≤ − 2 log 2
β

− 4 log 2
β f − 4(log 2)2

β2 − log 2 if − 2 log 2
β < f < −β4 −

log 2
β

0 if f = −β4 −
log 2
β

+∞ if f > −β4 −
log 2
β

β < βc

(2.38)
We report this result in Fig. 2.5 (left, red curve). We know that in this case IΛ is only

the convex hull of the true rate function, because the SCGF does not comply with the
differentiability condition of the Gärtner-Ellis theorem. However, for the REM the true
rate function can be obtain in a full probabilistic framework, devised in [FFM07]; it turns
out that we must continue the parabolic branch up to the typical value (see Fig. 2.5, left,
blue curve):

I(f, β) =





f2 − log 2 if f < −β4 −
log 2
β

0 if f = −β4 −
log 2
β

+∞ if f > −β4 −
log 2
β

β < βc (2.39)
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In the low-temperature phase, the conjunction between the RS and 1RSB branches is
differentiable, so the transformation does not present marginally-convex segments. We
can directly evaluate

I(f, β) =





f2 − log 2 if f < −√log 2

0 if f = −√log 2

+∞ if f > −√log 2

β ≥ βc (2.40)

From this curves, the typical values of the free energy easily follow, as zeroes of the rate
function:

ftyp(β) =

{
−β4 −

log 2
β if β < βc ,

−√log 2 if β ≥ βc .
(2.41)

2.4 Very large deviations and extreme value statistics

The rate functions we have written, though good rate functions in the proper mathemat-
ical definition, present a very interesting feature: both in the low- and high-temperature
phases, they are equal to +∞ for fluctuations above the typical value. This fact is un-
avoidable once the SCGF becomes linear, as the Legendre transformation of a straight
line is infinite for all the values different from the slope of the line. This means that the
corresponding fluctuations are more than exponentially suppressed in the limit of large n.

To understand why it is so, we will often resort, in the following, to an analogy
from the mathematical theory of random matrices [Meh04], that we now briefly explain.
Think of an ensemble of n× n matrices whose entries are i.i.d. (independent identically
distributed) random variables chosen from a certain probability distribution; for exam-
ple, real symmetric matrices whose independent elements are normal-distributed vari-
ables form the so-called Gaussian Orthogonal Ensemble (GOE). The term “orthogonal”
is used because the probability distribution of a matrix M in the ensemble is invariant
under orthogonal transformations:

P (M) =
1

ZGOE

∏

i<j

[
dMij e

−nM2
ij

]∏

i

[
dMii e

−n2M2
ii

]

=
1

ZGOE

∏

i<j

[dMij ]
∏

i

[dMii] e
−n2 trM2

= P (OMO−1) ,

(2.42)

with O an orthogonal matrix. Though their entries are uncorrelated, the eigenvalues λi
of these matrices are correlated random variables whose spacings follow a probability
distribution that well approximates some universal properties (such as the “level repul-
sion”) of spectra known, for example, from nuclear experiments, in such a way that the
GOE matrices can be thought as the null model for the true, overly complicated and
unknown nuclear Hamiltonians with the same symmetries in certain physical systems;
this is the reason why this theory was initially studied by Wigner in the 1950ies. For the
purposes of the current discussion, it is enough to know that the eigenvalues of the GOE
matrices for large n are distributed according to the Wigner semi-circle law

p(λ) =





1

nπ

√
2n− λ2 if |λ| <

√
2n ,

0 if |λ| >
√

2n ,
(2.43)
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Figure 2.6: Left: Wigner semi-circle law, describing the eigenvalue distribution for the GOE en-
semble. Right: Tracy-Widom distribution F1(s), describing the probability of small fluctuations
(order n−1/6) of the lowest eigenvalue λmin: the distribution is not centered in 0 due to O(n−1/6)
corrections, and drops down faster on the right.

which we plot in Fig. 2.6 (left).
However, what is the probability for the highest eigenvalue λmin, an extreme value

of the spectrum, to fluctuate? Qualitatively speaking, there is no obstacle for λmin to
fluctuate below its typical value, so this event follows a standard LDP, with exponential
suppression in n. However, in order to fluctuate above its typical value, a finite fraction
of the nearest-lowest eigenvalues must move: λmin cannot pass any other eigenvalue,
because it is always defined as the minimal one. This joint event is heavily suppressed
in probability, in such a way that a number of important consequences follows. To start
with, the small fluctuations

√
2
(
λmin +

√
2n
)
n1/6 does not comply with the CLT, being

distributed according to the Tracy-Widom law we report in Fig. 2.6 (right). Note that not
only the small deviation regime is O(n−1/6), at variance with the usual Gaussian regime
O(n−1/2) for variables in the universality class of the CLT, but also their distribution
is skewed, so that the probability of positive fluctuations drops down to zero faster.
More relevant to the present discussion, the negative and positive large deviations are
suppressed with different exponential speeds: while the negative ones present the usual
scaling (1.9), the positive ones are distributed according to a LDP with an exponential
speed of n2 (see [DM06; DM08]):

P (λmin ≥ t) ∼ exp

[
−n2Φ

(√
2n+ t√
n

)]
, (2.44)

where t ∼ −O(
√
n) ≥ −

√
2n and Φ(y) = 0 for y ≤ 0. In the physical literature, this fea-

ture is usually called a very large deviation behavior [PR10b], or overfrustration [DFM94].
The free energy is an example of observable distributed as an extreme value. The

easiest way to see this is to take the limit β → ∞, when it reduces to the ground-state
energy. Therefore the asymmetric, anomalous form of its fluctuations can be explained
from extreme value statistics. However, it is exceptionally difficult to resolve the anoma-
lous scaling of the very large deviations in the framework of statistical physics, whose
tools mainly works for ordinary extensive (or intensive) observables, with simple large-
n scalings. Results from the REM come again from probability theory: for example, it is
possible to prove (see [ABM04]) that the ground-state energy of the REM comply with
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an asymmetric, anomalous LDP

p(E0 = t) ∼
{
e−n(t2−log 2) if t < −√log 2 ,

e− exp[n(log 2−t2)] if −√log 2 < t < 0 ,
(2.45)

to be compared with Eq. (2.40). It is clear that, supposing a normal scaling on both side,
the super-exponential behavior produces an infinity for fluctuations above the typical
value. We will say more on this problem in the next chapter.





CHAPTER 3

The p-spin spherical model: large deviations in a magnetic
field

In this chapter, we present our main original contribution on the subject, mostly drawn
from [PDR19]. On the basis of what we have said so far, and following the path we traced
for the REM, we apply Large Deviation Theory to evaluate the probability of fluctuations
of the free energy of a celebrated model of spin glass, the p-spin spherical model. We see
that the resulting LDP has a lot of features in common with the REM’s one, anomalous
asymmetric scaling included. Moreover, with a little effort we are able to explore the fate
of the very large deviations whenever a magnetic field is switched on.

3.1 The model

The p-spin glass spherical model consists of a p-body interaction of n continuous spins
with the following Hamiltonian:

Hp = −
∑

1≤i1<i2<···<ip≤n
Ji1···ipσi1σi2 · · ·σip − h

n∑

i=1

σi , (3.1)

where h represents an external magnetic field coupled with the spins, the J-couplings
are independent quenched random variables normally distributed with zero mean and
variance

J2
i1···ip =

J2p!

2np−1
, (3.2)

while the spins are real variables with range in (−∞,∞) subject to a global spherical
constraint such that the measure is

Trσ ≡ 2
√
n

∫ ∞

−∞

n∏

i=1

dσi δ

(
n∑

i=1

σ2
i − n

)
. (3.3)

These scalings guarantee the extensivity of the free energy.
The thermodynamics of this model was studied in the seminal work [CS92] by

Crisanti and Sommers (CS); the special case p = 2, which presents a rather different
phenomenology, was introduced before in [KTJ76]. We dedicate the remaining of this
section to report some of the knowledge on its non-trivial behavior, which motivated
its fruitful applications as a toy model of supercooled liquids and structural glasses; for
further references, see [KPA93; Bar97; CC05; Zam14].

As we will see explicitly in the following, for p ≥ 3 the spherical model typically
exhibits a one-step replica symmetry breaking phase transition for small values of tem-
perature and magnetic field, similar to the one we observed in Chap. 2 for the REM, and

27
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corresponding to the continuous line in the T -h plane we report in Fig. 3.1. At variance
with the REM, however, the parameters representing the elements of the replica matrix

qab =
1

n

n∑

i=1

σi,aσi,b , (3.4)

which in the 1RSB ansatz (2.32) are q0 and q1 ≥ q0, are continuous variables in [0, 1]. At
zero external magnetic field, the critical temperature is given by

Tc(p;h = 0) = 1/βc(p;h = 0) = y

√
p

2y
(1− y)p/2−1 , (3.5)

with y solution of the equation

2

p
= −2y(1− y + log y)

(1− y)2
. (3.6)

At the transition Tc = Tc(h), the combination q1 − q0 jumps from zero (in the param-
agnetic phase) to a finite value discontinuously up to a certain critical value hc of the
external field; for h > hc, the transition becomes continuous in q1−q0, until it eventually
disappears for higher values of the field.

What if we tried to solve the problem using the RS ansatz? In this model, where
the parameters of the replica matrix are real variables, the extremization procedure we
explained in Chap. 2 to select their optimal values becomes a saddle-point analysis: the
integral ∫

q

[∏

a<b

dqab

]
e−ng[q] ∼ e−ng[q?] (3.7)

for large n is dominated by the stationary point q?,

∂g

∂qab

∣∣∣∣
q=q?

= 0 , (3.8)

corresponding to a minimum of the function g; this is simply the continuous version of
Eq. (2.19). In order to test the legitimacy of an ansatz q̃ on the form of q, it is mandatory
to verify its stability in the space of all the possible replica matrices, meaning that one
has to be sure not only that the chosen restriction corresponds to a stationary point for
generic variations of the parameters qab, but also that this point is a true minimum, for
example verifying the Hessian ∂2g/∂qab∂qcd to be positive-definite. If this operator hap-
pens to have a negative eigenvalue in q̃?, the corresponding ansatz q̃ must be discarded
as unstable. We call this kind of pathological behavior a de Almeida-Thouless (dAT) insta-
bility [AT78], from the names of the authors who first observes this phenomenon in the
SK model. For p ≥ 3, the RS ansatz becomes unstable at a certain temperature TdAT(h),
which in Fig. 3.1 is represented by a dashed line for h < hc, and coincides with the
line Tc(h) for h > hc. The interesting point to note is that there is a region between
the lines TdAT(h) and Tc(h) where both the ansätze, the RS and the 1RSB, are stable in
the de Almeida-Thouless sense, but still the 1RSB is the global minimum (the RS being
only a local one). However, in our large deviation approach we will see that, in order
to obtain the typical value in the RS ansatz, taking the limit (2.8), even in this range of
temperatures we would have to follow a non-convex SCGF: the dAT stability is only a
necessary condition that the continuation procedure we use to extrapolate the typical
and non-typical behavior of the model has to comply with.
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Figure 3.1: Phase diagram for the typical behavior of the spherical (p = 3)-spin, from [CS92]. At
the blue line (continuous and dotted) the RS solution for the saddle point becomes unstable, in the
dAT sense (at h = 0, the only RS solution which is stable for all the values of temperature is the
paramagnetic one, with q = 0). The continuous blue line, for h > hc, corresponds to a 1RSB phase
transition with q1− q0 starting from 0 and varying smoothly. The red line, for h < hc, corresponds
to a 1RSB phase transition with q1 − q0 jumping from 0 to a finite value discontinuously at the
transition. The green dotted line bounds a region where other solutions of the RS saddle point
equations appear discontinuously, one of which corresponds to a global minimum restricted space
of RS matrices, but is unstable, because it is a saddle in the full space of replica matrices (the
Hessian for generic variations of the parameters develops a negative eigenvalue). For p = 3,
Tc(3;h = 0) ≈ 0.59.

3.1.1 Complexity

So far, we only reported results from the typical equilibrium (“static”) behavior of the p-
spin spherical model. However, most of its success as a toy model for structural glasses
and other complex systems is due to the very non-trivial phenomena that happens al-
ready above the critical temperature Tc, where one naively would expect to observe a
simple paramagnet. These phenomena can be investigated with different approaches,
such as

• the analysis of the TAP equations [TAP77; CC05], a system in the local magnetiza-
tions whose solutions correspond to the metastable states of the system;

• the study of the Langevin dynamics of the model, which can be highly non-trivial
when many metastable states are present, exhibiting a regime where the system
does not relax to its equilibrium state described by thermodynamic, remaining in-
stead trapped in one of the many metastable states due to ergodicity breaking of
the phase space.

We will not give the details of these approaches: the interested reader can find them in
reviews like [CC05]. Here, we just describe Fig. 3.2, reporting the free energy of various
states of the system as a function of temperature. Starting from the high-temperature
phase and cooling the system, we find at least three significant values of T above the
1RSB static transition Tc:

• For T > TTAP, the only solution of the saddle point and TAP equations is the para-
magnetic one, with q = 0.
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Figure 3.2: Free energies as functions of the temperature for the metastable states of the (p = 10)-
spin spherical model for zero external magnetic field, from a TAP and a dynamical analyses. fpara

is the paramagnetic (q = 0) free energy, which is the equilibrium value above the static phase
transition Tc (continuous line), and a non-optimal stable solution of the RS saddle point equation
below (dashed line). Below TTAP, well above the static critical temperature Tc, and so in the naively
expected paramagnetic phase, non-trivial solutions of the TAP equations emerge: these solutions
represent metastable states with free energy higher than the paramagnetic one, for all the values
between the lines fmin and the threshold fth. These states are labeled by their ground-state energy
e = f(0) ∈ [emin, eth] and their free energy can be followed increasing T , tracing a line between
fmin(T ) and fth(T ) up to the green line flast(T ), where they disappear. The yellow line f∗ between
Tc and Td is the free energy of the states whose exponential number makes their total free energy
equal to the paramagnetic one. Note that this graph, at variance with the one in [Zam14], is
quantitatively precise.

• For Td < T < TTAP, solutions of the TAP equation with q 6= 0 appear. However,
the dominant state in the thermodynamic limit is still the paramagnetic one, which
has lower free energy.

• For Tc < T < Td, there is a value of the free energy (f∗ in Fig. 3.2) corresponding
to a number of metastable states so large that, even though each one of them has
free energy higher than the paramagnetic one, their presence generates an addi-
tional entropic contribution balancing this difference. This entropic contribution Σ
(that is, the logarithm of the number of these metastable states) is called complex-
ity. In this phase there is no thermodynamic phase transition yet, but due to the
degeneracy between the paramagnetic free energy and the total free energy of the
metastable states (f − TΣ), the dynamics does not converge to equilibrium and
ergodicity is broken.

• For T < Tc, we are in the 1RSB phase we described above and the complexity
vanishes.

The same rich phenomenology, with the insurgence a large number of metastable states
producing extreme consequences on the dynamical properties, is known to occur in
many other complex systems, making the p-spin spherical model a valuable tool of in-
vestigation even in more realistic settings.

In the following, we will only study the large deviations of the equilibrium free en-
ergy; however, the fluctuations associated to the complexity states and their relevance
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for the dynamics have been recently investigated in [BKL19; FR20].

3.2 Replicated partition function

Our aim is to analyze the large deviations of the free energy of this model. Following CS
for reference, we start writing the partition function

ZJ,n = Trσ exp [−βHp] . (3.9)

Introducing k replicas and performing the Gaussian integration over the disorder, it is
easy to obtain

(Zn)k = Trσ exp

[
n

(βJ)2

4

p!

np

∑

a,b

∑

1≤i1<i2<···<ip≤n
σi1,aσi1,b · · ·σip,aσip,b

+ βh

n∑

i=1

k∑

a=1

σi,a

]
. (3.10)

The restricted sum over i1 < i2 < · · · < ip can be written as

p!
∑

1≤i1<i2<···<ip≤n
=

n∑

i1 6=i2 6=···6=ip=1

=

n∑

i1,i2,··· ,ip=1

+ · · · , (3.11)

where the · · · are for terms suppressed for large n with respect to the first. Indeed,
the factorial accounts for the order, and to reconstruct the sum with indices all different
we have to subtract the cases when some indices are repeated; for example, the first
correction is for only 2 indices repeated:

n∑

i1 6=i2 6=···6=ip=1

=

n∑

i1,i2,··· ,ip=1

− p(p− 1)

2

n∑

i1=i2 6=i3,··· ,ip=1

+ · · · , (3.12)

and the second term, which is of order np−1, is suppressed with respect to the first one, of
order np. We can insert the positive-definite replica matrix q, with elements qab defined
in Eq. (3.4), using the delta-function identities

∏

a<b

δ

(
nqab −

n∑

i=1

σi,aσi,b

)
=

∫ +i∞

−i∞

[∏

a<b

dλab
2πi

]
e−

1
2

∑
a 6=b λab(nqab−

∑n
i=1 σi,aσi,b) , (3.13)

∏

a

δ

(
n−

n∑

i=1

σ2
i,a

)
=

∫ +i∞

−i∞

[∏

a

dλaa
4πi

]
e−

1
2

∑
a λaa(nqaa−

∑n
i=1 σ

2
i,a) , (3.14)

with qaa = 1, obtaining

(Zn)k =

∫

q>0

[∏

a<b

dqab

]∫ +i∞

−i∞

[∏

a<b

ndλab
2πi

]∫ +i∞

−i∞

[∏

a

√
n dλaa
2πi

]
e−ng[q,λ] , (3.15)

with

g[q,λ] = − (βJ)2

4

∑

a,b

qpab +
1

2

∑

a,b

λabqab − log

∫ +∞

−∞

[∏

a

dσa

]
e

1
2

∑
a,b λabσaσb+βh

∑
a σa .

(3.16)
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Note that λab and λaa are the Lagrange multipliers enforcing, respectively, the defini-
tion of the replica matrix (3.4) and the spherical constraint (3.3). The remaining spin
integration is Gaussian, so

g[q,λ] = − (βJ)2

4

k∑

a,b=1

qpab +
1

2

k∑

a,b=1

λabqab

+
1

2
log det (−λ) +

(βh)2

2

k∑

a,b=1

(
λ−1

)
ab
− k

2
log(2π) . (3.17)

In the following, we will depart from [CS92], from which the calculation so far are taken,
by keeping finite the number of replicas k, in order to obtain the full SCGF of the free
energy, instead of only its typical value.

3.3 From replicas to the scaled cumulant generating function

We start our analysis with the case of null magnetic field h = 0, when the calculations
simplify a lot. In this case, the λ integration is easily obtained for large n, when the
saddle-point simply gives −λ−1

ab = qab. Accordingly, the partition function is:

Zkn =

∫

q>0

∏

a<b

√
n

2π
dqab e

−ng(q) , (3.18)

where

g(q) = − (βJ)2

4

k∑

a,b=1

qpab −
1

2
log detq− ks(∞) . (3.19)

and s(∞) = [1 + log(2π)]/2 is the entropy density in the infinite temperature limit. To
evaluate the integrals on qab we use the saddle-point method together with the 1RSB
ansatz, which is formulated in terms of the three parameters (q1, q0,m):

qab = (1− q1)δab + (q1 − q0)εab + q0 (3.20)

with εab defined as

εab =

{
1 if a, ba are in a diagonal m×m block,
0 otherwise.

(3.21)

The eigenvalues of q, with the respective degeneracies, are

η0 = 1− q1 deg. = k(m− 1)/m

η1 = 1− (1−m)q1 −mq0 deg. = k/m− 1

η2 = 1− (1−m)q1 − (m− k)q0 deg. = 1

(3.22)

Using this and inserting the ansatz (3.20) in (3.19) we find

g(k; q0, q1,m) =− (βJ)2

4
k [1 + (m− 1)qp1 + (k −m)qp0 ]− k(m− 1)

2m
log (η0)

− k

2m
log (η1)− 1

2
log

(
1 +

kq0

η1

)
− ks(∞) .

(3.23)
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Figure 3.3: The function G(k)/k for the (p = 3)-spin in zero external magnetic field, for different
values of β. (a) At high temperature (β = 1.5) the 1RSB anstatz coincides with the RS one (blue
curve); the solution joins the paramagnetic line (in black) in a point kc > 1, where the function
is not differentiable. (b) At β = βc ≈ 1.706, the junction is in kc = 1 and becomes smooth. For
β = 2 (c) and β = 3 (d), the 1RSB solution (red curve) departs from the RS one and becomes a
straight line for all the k < kc, which is the point where the RS function loses its monotonicity. The
critical value kc approaches zero for β →∞. (c)-(d) note that kdAT, the point where the RS solution
becomes unstable in the de Almeida-Thouless sense, does not coincides with kc, and kdAT < kc.
Figure from [PDR19].

This functional is evaluated numerically at the saddle-point (q?1 , q
?
0 ,m

?) for the 1RSB
parameters for each value of k. The three parameters take values in the domains q1 ∈
[0, 1], q0 ∈ [0, q1], m ∈ [1, k] (if k > 1) or m ∈ [k, 1] (otherwise), and for k < 1 the saddle
point is obtained with a maximization of the functional instead of a minimization, as
usual in replica theory. Using Eq. (2.11), we obtain a SCGF Λ(k) which becomes linear
above a certain value k = kc, depending on temperature. To ease the visualization of
this feature, in Fig. 3.3 we plot the function G(k)/k = g(k; q?1 , q

?
0 ,m

?)/(kβ) which, when
Λ(k) is linear, intersects the vertical axis in ftyp. The figure does not change qualitatively
for p ≥ 3.

The p = 2 case at low temperature is different: the 1RSB ansatz reduces to the RS one
(that is, q̄1 = q̄0) as long as k ≥ 0, therefore the typical values of all the thermodynamic
quantities are obtained under the RS ansatz [KTJ76]. On the opposite, for k < 0 we need
to introduce again the 1RSB ansatz which, as in the p ≥ 3 case, gives the linear behavior
of the SCGF. In other words, kc = 0 for the 2-spin spherical model for all β > βc.
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3.3.1 Rammal’s construction

Before turning to the evaluation of the rate function, we discuss an interesting geometri-
cal interpretation of the SCGF shape, which we mentioned briefly in the previous chap-
ter. To this aim, let us consider the RS ansatz (that is, Eq. (3.23) with q1 = q0 = q and
m = 1). As we can see in Fig. 3.3, the RS solution (blue curve) is non-monotonic for
β > βc. On the other hand, we know that G(k)/k has to be a monotonic quantity,
therefore the RS solution can be ruled out. We can check that the 1RSB solution gives
a perfectly fine monotonic G(k)/k (red curve in Fig. 3.3), as one could expect due to the
fact that this ansatz gives the correct typical free energy for this model. Interestingly,
however, exactly the same monotonic curve can be obtained by using a much simpler
geometric construction: just consider the RS solution, which is the right one for large k
(remember, indeed, that the RS ansatz gives the correct solution for all the integer points
k ≥ 1), and when G(k)/k starts to be non-monotonic continue with a straight horizontal
line (in the G(k)/k vs k plot).

This construction actually dates back to Rammal [Ram81] and can be found in
[Kon83] (similar considerations in [OK04; NH08; NH09]). We dedicate the rest of this
section to discuss it. We reproduce here the reasoning not only as an historical curiosity:
first of all, we see it as an enlightening approach to the problem of the continuation of the
replicated partition function to real number of replicas, particularly suitable for a finite
k analysis. Moreover, we note that this interpretation, whenever it works, gives a flavor
of “uniqueness” (though not in a strict mathematical sense) to the resulting solution,
being based only on the properties of convexity and extremality that the function Λ(k)
must have. In this respect, a generalization of this result would be of great interest in
order to better understand the necessity of Parisi hierarchical RSB procedure, which
has been dubbed as “magic” even in relatively recent works, like [Dot11]; however, a
true geometrical interpretation of the full machinery of RSB, beyond the simple case
considered here, still lacks. Finally, in the context of this paper we are able to show a
case where the construction gives the correct answer (the p-spin spherical model at zero
external magnetic field) and a case where it fails (when the field is switched on).

We start claiming that G(k)/k obtained by using the 1RSB ansatz or the Rammal
construction are the same because of the following facts:

i) for k > kc the 1RSB and RS ansätze coincide (q?1 = q?0 = q 6= 0) and kc is exactly the
point where G(k)/k is not monotonic anymore if one uses the RS ansatz;

ii) from the saddle point equations obtained by extremizing Eq. (3.23) when k < kc,
one obtains q?0 = 0;

iii) the remaining saddle point equations fix q1 and m, and one can see that these
equations are identical to those needed to perform the Rammal construction, which
fix the point kc and the parameter of the RS ansatz q.

In the following, we will prove this claim.
We already know, from Chap. 1, some important properties of the SCGF, derived in

full generality using its definition only. In particular, we know that Λ(k) must be a con-
vex function of k (and so G(k) a concave function, because of Eq. (2.11)) and that G(k)/k
must be monotonic (properties (iv) and (v)). Given that, the explicit evaluation of G is
performed for each system within replica theory: an ansatz is imposed on the form of
the replica overlap matrix, the number of replicas k is then continued from integer to
real values, the corresponding G(k) is evaluated with the saddle-point method for large
n and finally a check is performed a posteriori to verify its validity. In the SK model,



The p-spin spherical model: large deviations in a magnetic field 35

the system originally considered by Rammal, at low temperatures the replica symmetric
ansatz, which still gives the correct values of the positive integer momenta of the parti-
tion function, fails to produce a sensible solution for the SCGF at k < 1, in at least three
way:

• it becomes unstable under variations around the saddle point (de Almeida-
Thouless instability [AT78]) below k = kdAT;

• it produces a G(k) that is non-concave (and so a non-convex Λ(k)) around k =
kconv, meaning that G′′(k) changes sign at kconv;

• it produces a G(k)/k that loses monotonicity a k = km.

In the SK model kdAT is the largest (kdAT > km > kconv), and so it is the first problem
one encounters in extrapolating the RS solution from integer values of k. However, from
the point of view of convexity and monotonicity alone, Rammal proposed to build a
marginally monotoneG(k)/k in a minimal way, starting from the RS and simply keeping
it constant below km at the value G(km)/km. While the resulting function is not the
correct one for the SK model, which needs a full RSB analysis to be solved, surprisingly
enough for the spherical p-spin in zero magnetic field (and also for the REM, as we
know) this approach reproduces the solution obtained with a 1RSB ansatz with q0 = 0
(see Fig. 3.3). Notice that in the present model the RS solution suffers from the same
inconsistencies as in the SK model, but now km is the largest of the three problematic
points.

To convince the reader that the two approaches are actually equivalent we prove, as
final part of this section, that without an external magnetic field the 1RSB solution of the
spherical p-spin and the Rammal construction coincide. In order to obtain this result, we
have to prove that:

• the 1RSB solution for G(k)/k becomes a constant below k = kc, which is defined
as the point where the RS and 1RSB ansätze branch out, as we did above;

• this constant is the same as the one in the Rammal construction, that is G(km)/km;

• the points kc and km are the same.

As kc is the point where the RS solution is not optimal anymore, for k < kc we have
q?0 = 0, as discussed in [CS92]. Let us now consider Eq. (3.23) with q0 = 0: differentiating
with respect to q1 and m and setting the results equal to 0 we get the equations for q?1
and m?, which read1





µ q?1
p−2 − 1

(1− q?1)[1− (1−m?)q?1 ]
= 0

µ

2
m?2q?1

p − 1

2
log

(
1 +

m? q?1
1− q?1

)
+
m?

2

q?1
1− (1−m?)q?1

= 0

(3.24)

where µ = p(βJ)2/2. These equations can be solved numerically (as we did to obtain
the plots in the main text), but to show our point here we do not really need the explicit
solution. Indeed it is enough to notice that m? and q?1 do not depend on k and therefore
g(k; 0, q?1 ,m

?)/k is a constant. Then, we need to check that it is the same constant as the

1In general, it is not true that the solution of the saddle point equations for a functional g(q0, q1,m) with
respect to all its arguments is equal to the solution of the saddle point equations for g(q?0 , q1,m) with respect
to q1, m. In this case it is true, as the reader can directly check.
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one obtained by Rammal. Again starting from Eq. (3.23), by putting q1 = q0 = q we
obtain the RS solution, which is

g0(k; q) =− (βJ)2

4
[k + k(k − 1)qp]− k − 1

2
log(1− q)

− 1

2
log [1− (1− k)q]− ks(∞).

(3.25)

In this case, extremizing with respect to q, we have an equation which gives the RS
solution on the saddle point, q?. To find km, we then require ∂

∂kg0/k = 0. The two
resulting equations are:





µ q?p−2 − 1

(1− q?) [1− (1− km)q?]
= 0

µ

2
k2
mq

?p − 1

2
log

(
1 +

km q
?

1− q?
)

+
km
2

q?

1− (1− km)q?
= 0

(3.26)

that are exactly Eqs. (3.24) with km instead ofm? and q? instead of q?1 . Therefore km = m?

and q? = q?1 and one can check that

g(k; 0, q?, km)

k
=
g0(km, q)

km
. (3.27)

It only remains to prove that kc and km, which in general can be different points, are
actually the same. As the 1RSB ansatz gives the correct solution for the present model,
the corresponding SCGF must be convex and thus, in particular, continuous. The only
way to obtain a continuous function which is equal to the RS one above kc and to the
Rammal’s constant below, is to take kc = km, and so the two functions coincide every-
where.

3.4 Rate function and very large deviations

Starting from the SCGF evaluated in the last section, we perform a numerical Legendre
transformation to obtain the rate function according to Eq. (1.28). The result is shown in
Fig. 3.4 for different values of β. The rate function displays the following behavior:

• for f = ftyp, it is null as expected;

• for f < ftyp, I(f) is finite, indicating that a regular large deviation principle holds
for fluctuations below the typical value. When β > βc the SCGF is smooth, so we
obtain the rate function via the Gärtner-Ellis theorem. On the other hand, when
β < βc the SCGF is not differentiable in a point (see Fig. 3.3), so we are only able to
obtain the convex hull of the rate function (see Fig. 3.4);

• for f > ftyp, I(f) = +∞. This is due to the linear behavior of the SCGF below
kc discussed in the previous section and it is a signature (as for the REM) of an
anomalous scaling with n of the rare fluctuations above the typical value.

An ambitious goal would be the identification of the correct behavior with n of these
very large deviations. Indeed, a more general way of stating a large deviation principle
is

P (fn ∈ [x, x+ dx]) ∼
{
e−anI−(x) dx if x ≤ ftyp ,

e−bnI+(x) dx if x > ftyp ,
(3.28)
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Figure 3.4: Rate function of the free energy for the (p = 3)-spin in zero external magnetic field,
for different values of β. The fluctuations above the typical value correspond to the linear part
of the SCGF, so that the Legendre transformation gives an infinite rate function. The fluctuations
below the typical value are described by the branch in red. For β = 1.5 < βc (a), as the SCGF is
not differentiable, we obtain only the convex-hull of the true rate function; in the interval [f∗, ftyp],
where our result gives a straight segment (the part of the curve overlapping the dotted line), the
true, unknown rate function is represented by the curve in blue. For β = 2 > βc (b) the SCGF is
smooth and the Gärtner-Ellis theorem applies. Figure from [PDR19].

where an, bn → ∞ when n → ∞. In other words, the fluctuations resulting in values
of x lower than ftyp are given by the rate function I−(x), while those resulting in values
larger than ftyp have rate function I+(x), but with different scalings an, bn. In our case,
we have an ∼ n, then the rate function defined in Eq. (1.9), which assumes a fixed scaling
n for both sides, can be written as

I(x) ∼
{
I−(x) if x ≤ ftyp ,
bn
n I+(x) if x > ftyp ,

(3.29)

with bn/n → ∞. For this reason, fluctuations above the typical value are referred to as
“very large deviations”. The physical explanation of the substantial difference in scal-
ing of the deviations of thermodynamic quantities below and above their typical values
resides in the different number of elementary degrees of freedom involved to obtain
the corresponding fluctuation: while in the first case it is sufficient that only one of the
elementary variables assumes an anomalous value below its typical, the others being
fixed, in the second case all the variables have to fluctuate, a joint event with probability
heavily suppressed with respect to the first one.

This argument shows the importance of the resolution of the anomalous scaling be-
havior leading to the very large deviations we explained above. In general, however,
although the Gärtner-Ellis theorem can be extended to find rate functions for large devi-
ation principles with arbitrary speed an, bn, we lack techniques to compute the asymp-
totic scaling of an and bn for large n, because of additional inputs needed to calculate
the corresponding SCGF with a saddle-point approximation (for some other systems
this problem has been solved with ad-hoc methods [ABM04; DM08], while in [PR10b] a
method is proposed in the context of the SK model).

In the next section we present the main result of our work, which could be useful to
study this anomalous kind of fluctuations also in other problems: through an extension
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of the replica calculation to the case with an external magnetic field, we are able to nu-
merically check that the very large deviation effect disappears. More in detail, we obtain
that with a magnetic field, no matter how small, not only an ∼ n as before, but also
bn ∼ n.

3.5 Large deviations of the p-spin model in a magnetic field

In this section we generalize the previous discussion to the case of non-zero magnetic
field. The computation of the SCGF at h 6= 0 goes beyond the approach of the work by
Crisanti and Sommers, who only considered the typical case. In contrast to the problem
with h = 0, where the finite-k calculation consists of a quite straightforward generaliza-
tion of the standard one, here a more substantial effort is needed to extend the k = 0
result.

The starting point is Eq. (3.17). In the presence of a magnetic field, the saddle-point
integration in the λ-variables is not straightforward as to obtain (3.23). Derivation with
respect to λab leads to the following saddle-point equations:

qab +
(
λ−1

)
ab
− (βh)2

k∑

c,d=1

(
λ−1

)
ca

(
λ−1

)
bd

= 0 , (3.30)

where we have used the identity:

∂
(
λ−1

)
cd

∂λab
= −

(
λ−1

)
ca

(
λ−1

)
bd
. (3.31)

Equations (3.30) are solved via successive contractions of the replica indices: a double
summation over a, b leads to an equation for the scalar

∑
a,b

(
λ−1

)
ab

with solutions:

k∑

a,b=1

(
λ−1

)
ab

=
1±

√
1 + 4(βh)2qs
2(βh)2

≡ l± , qs =

k∑

a,b=1

qab . (3.32)

Similarly, a single contraction gives:

k∑

a=1

(
λ−1

)
ab

= −
∑
a qab

1− (βh)2l±
, (3.33)

and finally
(
λ−1

)
ab

= −qab +
(βh)2

∑
c qca

∑
d qdb

[1− (βh)2l±]
2 . (3.34)

Given the 1RSB ansatz (3.20), qab has k elements 1 on the diagonal,m(m−1)k/m elements
q1 in the internal blocks, the remaining k2 − k − k(m− 1) elements q0, so

qs = k + k(m− 1)q1 + k(k −m)q0 = kη2 (3.35)

Every row (column) contains the same elements, so

qr ≡
k∑

b=1

qab = 1 + (m− 1)q1 + (k −m)q0 = η2 ∀ a . (3.36)
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To find which of the parameters l± in Eq. (3.34) is the right one, we can perform the limit
k → 0:

qs → 0 , qr → 1 + (m− 1)q1 −mq0 , l±(qs)→ l±(0) =

{
1/(βh)2 ,

0 ,
(3.37)

so that λ has a finite limit only with l−, for which the saddle-point equations become
(
λ−1

)
ab

= −qab + q̂− , (3.38)

where

q̂− =
4(βh)2η2

2[
1 +

√
1 + 4(βh)2kη2

]2 (3.39)

−→
k→0

(βh)2 [1 + (m− 1)q1 −mq0]
2

= (βh)2η2
1 . (3.40)

The structure is the same as the one of qab, with a constant added to each entry. Thus,
the entries of λ−1 can be written as

(
λ−1

)
ab

= (q1 − 1)δab + (q0 − q1)εab − q0 + q̂− . (3.41)

It is also easy to see, inverting a matrix with a 1RSB structure, that

λab = − 1

η0
δab +

q1 − q0

η0η1
εab +

q0 − q̂−
η1 (η2 − kq̂−)

(3.42)

and that λ has eigenvalues

κ0 = −1/η0 deg. = n(m− 1)/m ,

κ1 = −1/η1 deg. = n/m− 1 ,

κ2 = −1/ (η2 − kq̂−) deg. = 1 .

(3.43)

The next step is to evaluate the trace appearing in (3.17):

Tr (λ× q) = −k
(

1 +
q̂−

η2 − nq̂−

)
. (3.44)

Using all these ingredients, we can write the functional g(q) in the 1RSB ansatz for finite
k:

g(k; q0, q1,m) =− (βJ)2

4
k [1 + (m− 1)qp1 + (k −m)qp0 ]− kq̂−

2(η2 − kq̂−)

− k(m− 1)

2m
log (η0)− k

2m
log (η1)− 1

2
log

(
1 +

k(q0 − q̂−)

η1

)

− (βh)2

2
k (η2 − kq̂−)− ks(+∞) .

(3.45)

As in the previous section, we numerically obtain and plot, in Fig. 3.5, G(k)/k =
g(k; q?1 , q

?
0 ,m

?)/(kβ), where again q?1 , q
?
0 ,m

? are the solutions of the saddle point equa-
tions, obtained by extremization of Eq. (3.45). The most striking feature of these plots
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Figure 3.5: The function G(k)/k for the (p = 3)-spin in a magnetic field h = 0.2, for different
values of β: (a) β = 1.5 < βc(h), (b) β = βc(h = 0) > βc(h). The application of a magnetic field
washes out the linear behavior at small k observed in zero magnetic field. Figure from [PDR19].

is the difference from those represented in Fig. 3.3: the linear behavior is replaced by
curves (again given by the 1RSB ansatz) with non-null derivative. Let us analyze more
closely what is going on and why the external magnetic field is modifying the behavior
of the system. As discussed in Sec. 3.3.1, one can apply the Rammal’s construction to
correct the non-monotonic behavior of the RS version of G(k)/k (plotted as a blue curve
in Fig. 3.5). Exactly as in the h = 0 case, the resulting function will be monotonic and
linear, which is the smooth continuation of G(k)/k from km, the point where it loses its
monotonicity. However, as one can see from Fig. 3.5), the result will not be the 1RSB
solution. This difference from the h = 0 case can be seen as a consequence of the saddle
point equations: now the equation for q0 is non-trivial and so either q?1 , q?0 ,m? depends
on k also in the 1RSB phase, giving rise to the non-constant behavior of G(k)/k also for
k < kc. It is worth mentioning another point: when h = 0, the critical point kc where
the 1RSB solution departs from the RS one, coincides with km, the point where G(k)/k
obtained by the RS ansatz loses its monotonicity. Differently, with h 6= 0, we have that
kc > km for β > βc, so that the 1RSB branch departs from the RS one above km. Finally,
we numerically checked that the shape of G(k)/k below kc depends on p.

This change in the SCGF has an important effect, in turn, on the rate function: per-
forming the numerical Legendre transformation of the SCGF we now obtain a contin-
uous curve, meaning that very rare fluctuations are washed out, see Fig. 3.6. In other
words, now the two quantities an and bn introduced in Eq. (3.28) are such that an ∼ n
and bn ∼ n. This effect is present also for very small magnetic field, even though the rate
function is more and more asymmetrical around f = ftyp as we decrease h.

Let us summarize and comment briefly our results. In this chapter, we analyzed
the behavior of the large (and very large) deviations of the free energy for the spherical
p-spin model, exploiting the Gärtner-Ellis theorem to obtain the rate function. With-
out external magnetic field, we are able to compute the rate function in the spin-glass
phase, while in the paramagnetic phase we obtain its convex hull, due to the non-
differentiability of the SCGF. As a result, we have a standard large deviation principle
for fluctuations below the typical value of the free energy, depressed exponentially in the
size of the system. On the other hand, fluctuations above the typical value have a dif-
ferent behavior, being suppressed more than exponentially, and the corresponding rate
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Figure 3.6: Rate function of the free energy for the (p = 3)-spin at β = 3, for different values of the
external magnetic field. The infinite branch of the rate functions in Fig. 3.4 is replaced by a curve
gradually less steep as the magnetic field is increased. Figure from [PDR19].

function is infinite. When a magnetic field is applied, this anomalous very large devia-
tion disappears and the rate function is finite everywhere. Since this remains true even if
the field is very small, an open question is whether this effect can be exploited to obtain
insights on the very large fluctuations, by sending the magnetic field to zero carefully
choosing its dependence on the system size. We will try to explore this possibility in the
next chapter, studying analytically two models whose large deviation behavior has been
already discussed in literature with similar or complementary approaches: the p = 2
case of the spherical model we analyzed so far, and the Sherrington-Kirkpatrick model.

To suggest the physical reason why the introduction of a magnetic field provides a
regularization of the super-exponential large deviation principle for the free energy fluc-
tuations, we can exploit the connection with extreme value statistics we explained in
Sec. 2.4. As we wrote, the strong suppression in probability of the above-typical fluctu-
ations can be ultimately traced back microscopically (i.e. with respect to the elementary
degrees of freedom of the problems, the spins and their couplings) to the rarity of the
joint events associated: in the random matrix theory analogy, a finite fraction of the low-
est eigenvalues must fluctuate collectively above their typical values to “make room”
for λmin to move; in a similar way, at (inverse) temperature β a certain number of non-
equilibrium spin configurations with free energy close to its equilibrium value (which
is the “optimal” one, that is the lowest) must present non-typical patterns of the cou-
plings making its value to fluctuate in the same way. An external magnetic field, on the
other hand, produces a collective shift in energy that could possibly make a lot easier for
these events to occur, to the extent that the corresponding anomalous scaling in n at zero
magnetic field becomes a regular scaling when the field is applied. We will clarify and
quantify this expectation in the next chapter, in cases where analytical evaluations can
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be performed.
In addition, we provided a geometrical interpretation to support our numerical find-

ings. Indeed we showed, as noticed previously in the literature for different models, that
for h = 0 the Rammal construction is equivalent to the 1RSB ansatz. However, we also
showed that this is due to the simple structure of the 1RSB ansatz without external mag-
netic field, where one can immediately fix one of the 1RSB parameters. When a magnetic
field is applied, all the parameters have non-trivial values (which we obtained numeri-
cally by solving the saddle point equations) and the Rammal construction, which gives
in turn the infinite-rate-function behavior, fails. Another interesting question is whether
it is possible to generalize the geometrical construction by Rammal to correct in the right
way the RS solution not only for h = 0, but also when h 6= 0.



CHAPTER 4

Remarks on the case of 2-spin models

In this chapter we explore, at a very preliminary level, the possibility to use a small mag-
netic field, which ultimately can be seen as a weak interaction between different replicas,
as a regularizer to access informations on the anomalous very large deviation behavior
of some models. While recovering the true exponential speed in n of the LDP associ-
ated to these kind of fluctuations seems to be a hopeless task in this approach, because it
would require to know how to scale h→ 0 as n approaches infinity (something we can-
not do without knowing already the speed and fine-tuning the result), it is legitimate to
ask if at least the functional form of the rate function in a magnetic field does correspond
with the one obtained for the anomalous branch with other approaches. Otherwise, we
should conclude that the fluctuations induced by h are of a different kind with respect to
the anomalous ones, which in turn are screened, and washed out, by the magnetic field
on top.

To this aim, we will focus on models where we have some level of analytical control
on the results, namely the (p = 2)-spin spherical model and the Sherrington-Kirkpatrick
model. We will start analyzing the saddle-point equations of these models, in presence
of a small magnetic field. Then, in Sec. 4.3 we will report briefly some state-of-the-art
results known in literature, mostly from reference [PR10b], to check the validity of our
approach.

4.1 The 2-spin spherical model

4.1.1 Saddle-point equations

To study the 2-spin spherical model, we can simply specialize to p = 2 the formulas we
obtained in Chap. 3. In particular, the functional to minimize/maximize with respect to
the replica parameters is, from Eq. (3.45),

g(k; q0, q1,m) =− (βJ)2

4
k
[
1 + (m− 1)q2

1 + (k −m)q2
0

]
− kq̂−

2(η2 − kq̂−)

− k(m− 1)

2m
log (η0)− k

2m
log (η1)− 1

2
log

(
1 +

k(q0 − q̂−)

η1

)

− (βh)2

2
k (η2 − kq̂−)− ks(+∞) .

(4.1)

For small values of the magnetic field h, a limit we take in the spirit of considering the
magnetic field as a regularizer (and to perform the calculations), the functional becomes
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g(k; q0, q1,m) =− (βJ)2

4
k
[
1 + (m− 1)q2

1 + (k −m)q2
0

]
− k(m− 1)

2m
log (1− q1)

− k

2m
log [1− q1 +m(q1 − q0)]− 1

2
log

(
1 +

kq0

1− q1 +m(q1 − q0)

)

− ks(+∞)− (βh)2

2
k [1 + (m− 1)q1 + (k −m)q0] +O(h4)

(4.2)
which, in the RS ansatz, reduces to

gRS(k; q) =− (βJ)2

4
k
[
1 + (k − 1)q2

]
− k

2
log(1− q)− 1

2
log

(
1 +

kq

1− q

)

− ks(+∞)− (βh)2

2
k [1 + (k − 1)q] +O(h4) .

(4.3)

Requiring stationarity with respect to the parameters, we obtain the saddle-point equa-
tions, whose solutions are candidates for the optimal q?1 , q?0 ,m? (in the 1RSB case) and q?
(in the RS case):1





β2q0 + (βh)2 − q0

[1− q1 +m(q1 − q0)] [1− q1 +m(q1 − q0) + kq0]
= 0 ,

β2q1 + (βh)2 − q0

[1− q1 +m(q1 − q0)] [1− q1 +m(q1 − q0) + kq0]

− q1 − q0

(1− q1) [1− q1 +m(q1 − q0)]
= 0 ,

1

2
β2
(
q2
0 − q2

1

)
− (q1 − q0)(βh)2 +

q0(q1 − q0)

[1− q1 +m(q1 − q0)] [1− q1 +m(q1 − q0) + kq0]

− (q1 − q0)

m [1− q1 +m(q1 − q0)]
+

1

m2
log

[
1− q1 +m(q1 − q0)

1− q1

]
= 0 .

(4.4)

β2q − q

(1− q) [(k − 1)q + 1]
+ (βh)2 = 0 . (4.5)

These equations are correct to O(h4), because in the functional only even powers of h
appear. Let us first review what happens for h = 0, as the behavior is a bit different than
the previously analyzed for p > 2.

Null magnetic field In this case the RS saddle-point equation is

β2q − q

(1− q) [1 + (k − 1)q]
= 0 , (4.6)

with solutions

qPM = 0 , q±(k) =
β(k − 2)±

√
β2k2 − 4k + 4

2β (k − 1)
. (4.7)

1In the following, we take J = 1.
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The solutions q± exist for any k if β > 1, otherwise they are defined, and included in the
interval q ∈ [0, 1], only for

k > k+ =
2 + 2

√
1− β2

β2
if β < 1 . (4.8)

This means that at high temperature, β < βc = 1, in the integer point k = 2 only the
trivial solution qPM exists: extrapolating to k → 0, we can conclude that the system is in
the paramagnetic phase. For higher values of k, there is another point kRS > k+ where
the RS solution evaluated at q+ crosses the paramagnetic line and becomes the optimal
curve, with a non-differentiable junction, as discussed in the previous chapter.

In the low-temperature phase, β > βc, the solution included in the domain q ∈ [0, 1]
is q+ for any k, which is indeed the right extremum for the min/max procedure of the
replica method. The resulting GRS(k) obtained continuing trivially the functional to real
k has no problem as long as k > 0, meaning that also the typical properties of the systems
are replica-symmetric. However, the function GRS(k)/k loses monotonicity in km = 0:
to find the solution for negative k, we need to use the 1RSB ansatz or, equivalently, the
Rammal’s construction. We find

k > 0 q? = q+(k) =
β(k − 2) +

√
β2k2 − 4k + 4

2β (k − 1)
,

k < 0 m? = km = 0 , q?0 = 0 , q?1 = q+(km) =
β − 1

β
.

(4.9)

We summarize this result in Fig. 4.1.

Small magnetic field Let us focus on the low-temperature phase β > βc. The RS equa-
tion (4.5) is the third-grade equation

β2 (k − 1) q3 + β2
[
h2(k − 1)− k + 2

]
q2−

{
β2
[
h2(k − 2) + 1

]
− 1
}
q− β2h2 = 0 , (4.10)

admitting the solution

q?(k) =
β(k − 2) +

√
β2k2 − 4k + 4

2β(k − 1)
− β(k − 2)−

√
β2k2 − 4k + 4

2 (β2 − 1)
√
β2k2 − 4k + 4

h2 +O(h4) , (4.11)

which is in the right domain q ∈ [0, 1] as long as h is small. This result can be obtained
supposing the solution to be analytic in h,

q = q? + q(1)h+ q(2)h2 + · · · (4.12)

and solving the resulting equation order by order. However, the complete solution can
be obtained as well with the standard methods to deal with a third-grade equation.

In the 1RSB case, we can use the expansion

q0 = hq
(1)
0 + h2q

(2)
0 + h3q

(3)
0 + · · · ,

q1 = q?1 + hq
(1)
1 + h2q

(2)
1 + h3q

(3)
1 + · · · ,

m = hm(1) + h2m(2) + h3m(3) + · · ·
(4.13)
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Figure 4.1: Solutions of the RS saddle point equations (top) and SCGF (bottom) for β < βc (left)
and β > βc (right) as functions of the number of replicas k in zero external magnetic field. For
β < βc, the three solutions q± (upper and middle curve) and qPM (the line q = 0) exist for k > k+;
q− always corresponds to a maximum of the SCGF, q+ is a minimum for k > kRS, qPM becomes the
minimum for k < kRS; the continuous blue line is the right solution of the saddle point equations.
For β > βc, q+ is always the right solution of the RS saddle point, but the RS trial G(k)/k loses
monotonicity in k = 0; the true SCGF for k < 0 is obtained via a 1RSB construction (red line).
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in Eq. (4.4) to get2





q?0 =

√
− 1

βk
h− 1

2
h2 +

1

8

√
−βk h3 +O(h4) ,

q?1 =
β − 1

β
+O(h4) ,

m? = O(h4) .

(4.14)

Note that q?0 diverges as k−1/2 for k → 0−. However, for this solution to be sensible, it
must be q?0 < q?1 : as the two parameters become the same when k is equal to

k1RSB = − βh2

β − 1
+O(h4) , (4.15)

we can take the 1RSB anstaz in this form only of k < k1RSB. Moreover, from the RS
Eq. (4.11) we see that

q?(k1RSB) =
β − 1

β
+O(h4) = q?1 , (4.16)

so the two ansätze coincides in this point. We can conclude that k1RSB < 0 is indeed the
point where the 1RSB solution branches from the RS for this model. Note that it is no
more true that k1RSB = km = m?, as in the Rammal’s construction (the three values are
all different, actually).

The solution for q?0 , as written in (4.14), has a problem also for k → −∞, as it does
not remain finite. This is due to the expansion in powers of h, which appears in non-
trivial combinations with k in the original expression (3.45). However, supposing that
q?1 and m? do not change with h (the system (4.4) can be cast in a form where two of
the equations do not depend on the magnetic field, as already noted in [CS92]), the full
solution for q?0 can be obtained:

q?0 = −βh
2k + h

√
β2h2k2 − 4βk

2βk
−→
k→−∞

0 , (4.17)

given the caveat in note 2.

4.1.2 SCGF and rate function in the low-temperature phase

Evaluating expression (4.2) at the solutions of the saddle-point equations, we find, for
β > βc,

G(k) =




−k
[
1− log β

2β + log 2π
2β − 1

4β + h2

2

]
− 1

3 |k|3/2
√
βh3 if k ≤ k1RSB ,

gRS(k; q?(k))/β if k > k1RSB .
(4.18)

As expected the magnetic field, moving q0 away from 0, changes the linear behavior of
the SCGF in the 1RSB branch; however, the correction O(h2) is not enough to see this

2To obtain the coefficient of the q0’s O(h3) term, some of the saddle-point equations must be evaluated up
to O(h4). Here we are forgetting all the successive powers in h of the original theory, supposing the system
in (4.4) to be exact. A more careful evaluation, which keeps also the O(h4) terms in the equations, gives
a numerical coefficient of 5/8 instead of 1/8 for the q0’s O(h3) term, and complicates a bit the successive
discussion.
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Figure 4.2: Left: SCGF for the 2-spin spherical model in a small magnetic field (h = 0.1) at low
temperature (β = 2) from Eq. (4.18), with the two branches represented in different colors; the two
lines do not meet precisely in k1RSB < 0 due to higher order corrections in h. Right: rate function
for the same values of temperature and magnetic field; the branch I−(f) (blue line) is obtained via
a numerical Legendre transformation of the left branch of Eq. (4.19), the branch I+(f) (red line) is
evaluate analytically from Eq. (4.22).

effect, and we have to go up to O(h3). From Eq. (2.11) we get

Λ(k) =




−gRS(−k/β; q?(−k/β)) if k ≤ (βh)2

β−1 ,

−k
[
1− log β

2β + log 2π
2β − 1

4β + h2

2

]
+ 1

3k
3/2h3 if k > (βh)2

β−1 .
(4.19)

To find I+, the rate function for the deviations above the typical value, we have to eval-
uate the Legendre transformation3

I+(f) = sup
k>

(βh)2

β−1

[
kf − ka(h)− k3/2b(h)

]
, (4.20)

where

a(h) = −
[
1− log β

2β
+

log 2π

2β
− 1

4β
+
h2

2

]
≈ ftyp(h) , b(h) =

1

3
h3 . (4.21)

With a simple analytical calculation, we find

I+(f) =
4

3

[
f − ftyp(h)

]3

h6
. (4.22)

Note that this quantity diverges for h → 0, as expected. We report the main results of
this section in Fig. 4.2.

4.2 The Sherrington-Kirkpatrick model

Originally proposed in [SK75] as the fully-connected version of the Edwards-Anderson
model [EA75], the Sherrington-Kirkpatrick (SK) model, although quite optimistically

3Supposing k1RSB ≈ 0.
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called “solvable” by its creators, presented some serious problems to the theoretical
physics community of the time, as nicely summarized in [HP79]. In the attempt to
overcome these difficulties, two parallel, complementary and very fruitful lines of re-
search opened up: first, in [TAP77] Thouless, Anderson and Palmer wrote a system
of self-consistent equations for the local magnetizations whose solutions (which are in
an extensive number) represent the possible metastable states of the systems, as seen
in [BM80]; then, in the groundbreaking series of works [Par79], Parisi proposed his
mechanism of replica symmetry breaking which leads to the solution of the model using
the replica method. Nowadays, we know indeed that the inconsistencies encountered
by the early investigators were due to a replica approach based on the assumption of
unbroken replica symmetry: in our present discussion, this is the first (and only) model
we deal with that requires to go beyond the 1RSB ansatz we explained in Chap 2. More-
over, some of the ideas we reported to explain our “finite-k” approach, such as the prop-
erty of convexity and the Rammal’s construction, were first applied to the SK model, as
in [Ram81; Kon83].

The model is defined by the Hamiltonian

H = −
n∑

i<j=1

JijSiSj − h
n∑

i=1

Si , (4.23)

where the couplings Jij = Jji are i.i.d random variables such that

p(Jij) =
1

J

√
n

2π
exp

[
− n

2J2
J2
ij

]
, (4.24)

and the spins are binary (Ising) variables, Si ∈ {−1,+1}. This is the only difference with
respect to the 2-spin spherical model, where the spins are continuous variables under
the global constraint (3.3). The averaged replicated partition function for k replicas is

Zk = exp

[
nk(βJ)2

4

]
[TrS ]

k
exp


 (βJ)2

2n

k∑

a<b=1

(
n∑

i=1

Sai S
b
i

)2

− βh
k∑

a=1

n∑

i=1

Si


 , (4.25)

where
TrS =

∑

S1=±1

· · ·
∑

Sn=±1

. (4.26)

As the theory is quadratic in the overlaps, we can use a Hubbard-Stratonovich (HS)
transformation, via the simple Gaussian identity

e
(βJ)2

2n (
∑n
i=1 S

a
i S

b
i )

2

=

√
n(βJ)2

2π

∫ +∞

−∞
dQab e

−n(βJ)2

2 Q2
ab+(βJ)2Qab

∑n
i=1 S

a
i S

b
i , (4.27)

leading to (neglecting sub-exponential factors)4

Zk =

∫ ∏

a<b

dQab exp [−ng(Q)] , (4.28)

4Note that this procedure is equivalent to the one we used to get Eq. (3.16) for p = 2, once the auxiliary
variables q are integrated out, leaving only the ones we called λ.
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with

g(Q) =
(βJ)2

2

k∑

a<b=1

Q2
ab −

k(βJ)2

4
− log


 ∑

S1,··· ,Sk=±1

eβh
∑
a S

a+(βJ)2∑
a<b S

aSbQab


 .

(4.29)
The SCGF of the model, as usual, is given by

βG(k) = g (Q?) , (4.30)

where Q? is the solution of the saddle-point equations

∂g

∂Qab
= 0, 1 ≤ a, b ≤ k , (4.31)

which corresponds to a maximum for g, to be evaluated at each value of k, β, h.
To proceed, we need to guess the form of the overlap matrix Q. The simplest one,

originally proposed in [SK75], is the RS ansatz:

Qab = q(1− δab) =

{
0 if a = b ,

q if a 6= b .
(4.32)

In this way, the remaining sums over the spin variables can be factorized via another HS
transformation,

eq(βJ)2∑
a<b S

aSb = e−
kq(βJ)2

2 +
q(βJ)2

2

∑
a,b S

aSb = e−
kq(βJ)2

2

∫
Dx eβJ

√
qx
∑
a S

a

, (4.33)

where

Dx =
dx√
2π

exp

(
−x

2

2

)
, (4.34)

so that the spin can be summed, obtaining

gRS(q; k) =
(βJ)2

4
k
[
(k − 1)q2 + 2q − 1

]
− log

∫
Dx {2 cosh [β (h+ J

√
q x)]}k . (4.35)

The saddle-point system becomes the single equation for q

q =

∫
Dx coshk [β(h+

√
qx)] tanh2 [β(h+

√
qx)]

∫
Dx coshk [β(h+

√
qx)]

= 1−

∫
Dx coshk−2 [β(h+

√
qx)]

∫
Dx coshk [β(h+

√
qx)]

.

(4.36)
The equation is in an implicit form and can be solved with different methods, analytical
and numerical. For example, in the limit β → ∞, where all the replicas are in the same
state and so

q(k) = 1− (corrections suppressed in β) for β →∞ , (4.37)

one can neglect the dependence on q in the RHS. However, in the following we will
adopt a different strategy, studying the model near the critical temperature.
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4.2.1 The truncated model

As noted in [BM79; Par79], near β = βc the entries of the matrix Qαβ for α 6= β are small,
at least for k < 1, where the solution must be near the paramagnetic line. Therefore,
we can expand the term still depending on the spin configurations in (4.29), inside the
logarithm:

eβh
∑
a S

a+(βJ)2∑
a<b S

aSbQab = 1 + (βJ)2
∑

a<b

SaSbQab +
(βJ)4

2

∑

a<b,
c<d

SaSbScSdQabQcd

+ β3J2h
∑

a,
b<c

SaSbScQbc +
(βJ)6

6

∑

a<b

∑

c<d

∑

e<f

SaSbScSdSeSfQabQcdQef

+
β4J2h2

2

∑

a,b,
c<d

SaSbScSdQcd + · · · , (4.38)

where we have neglected all the terms not containing Q. Now, we can perform in a
simple way the summation over the spin variables: whenever a replica index appears
an odd number of times in a term, the sum is zero, because of the alternating signs,
otherwise it produces a factor of 2. For example, the cubic term

β4J2h2

2

∑

a,b,
c<d

SaSbScSdQcd −→∑
S=±1

β4J2h2
∑

a<b

Qab . (4.39)

At the end, we can re-exponentiate the result, obtaining the truncated model with func-
tional (see also [DG06] for reference)

g(Q) ≈ β2

2

∑

a<b

Q2
ab −

β4

4
trQ2 − β6

6
trQ3

− β8


 1

12

∑

a,b

Q4
ab +

1

8
trQ4 − 1

4

∑

a,b,c

Q2
abQ

2
ac


− β4h2

2

∑

a,b

Qab .

(4.40)

Here and in the following, we take J2 = 1. Rescaling Q→ Q/β2,

g(Q) = −1

4

(
1− 1

β2

)
trQ2 − 1

6
trQ3 − 1

12

∑

a,b

Q4
ab

− 1

8
trQ4 +

1

4

∑

a,b,c

Q2
abQ

2
ac −

β2h2

2

∑

a,b

Qab . (4.41)

Near βc = 1, we can write (1− 1/β2) ≈ 2(β − 1) ≈ 2τ = 2(1− 1/β), so

g(Q) = −1

2

[
τ trQ2 +

1

3
trQ3 +

1

6

∑

a,b

Q4
ab+

1

4
trQ4− 1

2

∑

a,b,c

Q2
abQ

2
ac+h2

∑

a,b

Qab

]
. (4.42)
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
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q0 q0 q0 q0 0 q1 q1 q1 q0 q0 q0 q0
q0 q0 q0 q0 q1 0 q1 q1 q0 q0 q0 q0
q0 q0 q0 q0 q1 q1 0 q1 q0 q0 q0 q0
q0 q0 q0 q0 q1 q1 q1 0 q0 q0 q0 q0
q0 q0 q0 q0 q0 q0 q0 q0 0 q1 q1 q1
q0 q0 q0 q0 q0 q0 q0 q0 q1 0 q1 q1
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 0 q1
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 q1 0







→

0 q2 q1 q1 q0 q0 q0 q0 q0 q0 q0 q0
q2 0 q1 q1 q0 q0 q0 q0 q0 q0 q0 q0
q1 q1 0 q2 q0 q0 q0 q0 q0 q0 q0 q0
q1 q1 q2 0 q0 q0 q0 q0 q0 q0 q0 q0
q0 q0 q0 q0 0 q2 q1 q1 q0 q0 q0 q0
q0 q0 q0 q0 q2 0 q1 q1 q0 q0 q0 q0
q0 q0 q0 q0 q1 q1 0 q2 q0 q0 q0 q0
q0 q0 q0 q0 q1 q1 q2 0 q0 q0 q0 q0
q0 q0 q0 q0 q0 q0 q0 q0 0 q2 q1 q1
q0 q0 q0 q0 q0 q0 q0 q0 q2 0 q1 q1
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 0 q2
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 q2 0







→ · · ·

Figure 4.3: Parisi’s hierarchical RSB scheme: at first step, replica symmetry is broken in diagonal
blocks of dimension m1, then each block is broken with other blocks of dimension m2, and so on.

Usually, only the first of the quartic terms is retained, because is the one responsible of
the RSB phenomenology:

g(Q) = −1

2

[
τ trQ2 +

1

3
trQ3 +

1

6

∑

a,b

Q4
ab + h2

∑

a,b

Qab

]
. (4.43)

This is the starting point of our finite-k analysis, which generalizes the reasoning
in [Kon83] by keeping the magnetic field, following closely and reproducing exten-
sively, for reference, the calculations performed in [DFM94].

4.2.2 Full replica symmetry breaking

To solve the model, we need to explain the full procedure of replica symmetry breaking
introduced by Parisi in [Par79], whose 1RSB ansatz (2.32) is the first step. The idea is to
break iteratively each diagonal block of the 1RSB replica matrix in the same way as the
first step, as we see in Fig. 4.3. Therefore, denoting with N the number of step in this
scheme, we know that a NRSB matrix Q is parametrized by

k ≥ m1 ≥ m2 ≥ · · · ≥ mN ≥ 1 , 0 ≤ q0 ≤ q1 ≤ · · · ≤ qN ≤ 1 . (4.44)

For example, in Fig. 4.3 (right) we have a 2RSB matrix with k = 12, m1 = 4, m2 = 2.
How can we write the various term in Eq. (4.43) for a NRSB matrix? For example,

∑

a,b

Q2
ab = k

[
(k −m1)q2

0 + (m1 −m2)q2
1 + · · ·+ (mN − 1)q2

N

]
= k

N∑

j=0

(mj −mj+1)q2
j ,

(4.45)
where we set m0 = k, mN+1 = 1. In general, for functions of a single element,

∑

a,b

f(Qab) = k

N∑

j=0

(mj −mj+1)f(qj) . (4.46)

Products of NRSB matrices with the same structure also produce NRSB matrices (they
form an algebra): if A, B are matrices with diagonal elements, respectively, ã, b̃ and
off-diagonal elements ai, bi, i = 0, · · · , N , then C = AB has on the diagonal

c̃ = ãb̃+ (k −m1)a0b0 + (m1 −m2)a1b1 + · · ·+ (mN − 1)aNbN ,

= ãb̃+

N∑

j=0

(mj −mj+1)ajbj ,
(4.47)
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and off-diagonal elements

cj = ãbj + aj b̃+ aj

N∑

i=j+1

(mi −mi+1)bi + bj

N∑

i=j+1

(mi −mi+1)ai

+

j∑

i=0

(mi −mi+1)aibi −mj+1ajbj ,

(4.48)

as one can check recursively, starting from RS, 1RSB, 2RSB matrices.5
We are now in the position to perform two important steps of the Parisi’s scheme.

The first is the continuation of this anstaz to k ∈ R, as we already discussed in the 1RSB
approach: the mi parameters are no more integer numbers. As we know, for k < 1 we
have to reverse their order relation (4.44):

k ≤ m1 ≤ m2 ≤ · · · ≤ mN ≤ 1 if k < 1 . (4.49)

In the following we will focus on this region, as we expect that for k > 1 replica sym-
metry is unbroken (neglecting the subtlety we alluded in note 5 of Chap. 2). The second
crucial step is to send N , the degree of replica symmetry breaking, to infinity. The pa-
rameters qi, which for N finite can be represented by a stepwise function

q(x) = qj if k ≤ mj ≤ x ≤ mj+1 ≤ 1 , (4.50)

become a continuous function, and the sums appearing in the formulas above become
integrals: for example,

N∑

j=0

(mj −mj+1)f(qj) = −
∫ 1

k

dx q(x)f [q(x)] , (4.51)

where the minus sign is due to the fact that in this range (mj − mj+1) = −dx is neg-
ative. In the limit N → ∞, a NRSB matrix Q is parametrized by its diagonal element
q̃ and by the off-diagonal function q(x); following the standard notation (see for refer-
ence [Dot95]), we write Q → (q̃, q(x)). The formulas for the algebra, from Eq. (4.47)
and (4.48), given A→ (ã, a(x)), B→ (b̃, b(x)), C = AB→ (c̃, c(x)), are

c̃ = ãb̃−
∫ 1

k

dx a(x)b(x) ,

c(x) = ãb(x) + b̃a(x)− b(x)

∫ 1

x

dy a(y)− a(x)

∫ 1

x

dy b(y)−
∫ x

k

dy a(y)b(y)− xa(x)b(x) ,

(4.52)
while the Hadamard product A ·B (such that (A ·B)ab = AabBab) in the limit is repre-
sented by (ãb̃, a(x)b(x)). Moreover,

trA −→ kã ,

k∑

a,b=1

(Aab)
l −→ kãl − k

∫ 1

k

dxal(x) .
(4.53)

5For example, the component c1 of a 2RSB matrix is in a block diagonal m1 × m1 block, so the matrix
product has simply k−m1 terms equal to a0b0 and the others equal to the ones of a 1RSB matrix (of dimension
m1) product.
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To evaluate the terms in (4.43), we need

Q2 −→
(
q̃2 −

∫ 1

k

dx q2(x) , −xq2(x) + 2q̃q(x)− 2q(x)

∫ 1

x

dy q(y)−
∫ x

k

dy q2(y)

)
,

Q3 −→
(
q̃3 +

∫ 1

k

dx

{
3q2(x)

[∫ 1

x

dy q(y)− q̃
]

+ xq3(x)

}
, · · ·

)
.

(4.54)
Taking q̃ = 0, we find

trQ2 −→ −k
∫ 1

k

dx q2(x) , trQ3 −→ k

∫ 1

k

dx

[
xq3(x) + 3q2(x)

∫ 1

x

dy q(y)

]
,

∑

a,b

Qab −→ −k
∫ 1

k

dx q(x) ,
∑

a,b

Q4
ab −→ −k

∫ 1

k

dx q4(x) .

(4.55)
Eventually, (4.43) becomes

g[q] =
k

2

∫ 1

k

dx

{
τq2(x)− 1

3

[
xq3(x) + 3q2(x)

∫ 1

x

dy q(y)

]
+

1

6
q4(x) + h2q(x)

}
. (4.56)

We see that g[q] is now a functional of the function q(x). The procedure we used to write
it is called full-RSB (fRSB) anstaz.

4.2.3 Saddle-point equations

To find the saddle-point, we report here for reference and explain in full detail the eval-
uation in [DFM94]. Varying the functional (4.56) with respect to q(x):

2

k

δg[q]

δq(x)
= 2τq(x)− xq2(x)− 2q(x)

∫ 1

x

dy q(y)−
∫ x

k

dy q2(y) +
2

3
q3(x) + h2 = 0 , (4.57)

where, of course, x ∈ [k, 1]. To solve this equation, we can derive it with respect to x:

q′(x)

[
τ − xq(x)−

∫ 1

x

dy q(y) + q2(x)

]
= 0 . (4.58)

A solution is
q′(x) = 0 . (4.59)

Deriving again the quantity in the square brackets with respect to x, we get

q′(x) [−x+ 2q(x)] = 0 , (4.60)

with solutions
q′(x) = 0 , q(x) =

x

2
. (4.61)

Joining the possible branches, we see that the general solution is

q(x) =





q0 if k ≤ x < x0 ,

x/2 if x0 ≤ x < x1 ,

q1 if x1 ≤ x ≤ 1 .

(4.62)
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We have to use the other equations to find the values of the constants q0, q1, x0, x1.
Inserting this expression in Eq. (4.58), we find, for different ranges of x,





τ − q1 + q2
1 = 0 if x1 ≤ x ≤ 1 ,

x2
1

4
− q1x1 + (q1 − τ) = 0 if x0 ≤ x < x1 ,

x2
0

4
− q0x0 + q2

0 = 0 if k ≤ x < x0 ,

(4.63)

with solution

q?1,± =
1±
√

1− 4τ

2
, x?1 = 2q1 , x?0 = 2q0 . (4.64)

As we expect that at τ = 0 (the critical temperature) q1 start from 0 (the paramagnetic
solution), we have to choose

q?1 =
1−
√

1− 4τ

2
. (4.65)

To determine q0 we have to use the full saddle-point equation (4.57). With k ≤ x < x0,
we can use

∫ 1

x

dy q(y) = q0(x0 − x) +

∫ x1

x0

dy
y

2
+ q1(1− x1) = q2

0 − q2
1 + q1 − q0x (4.66)

to write the cubic algebraic equation for q0

−4

3
q3
0 + kq2

0 + h2 = 0 . (4.67)

The simplest cases are when h = 0 or k = 0:

h = 0 q?0 = 0 , q?0 =
3

4
k ,

k = 0 q?0 =
3

√
3h2

4
.

(4.68)

In all the other cases, we have to solve the cubic equation. In general, the equation

ax3 + bx2 + cx+ d = 0 , (4.69)

with determinant

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 , (4.70)

has 3 real roots if ∆ > 0, only 1 when ∆ < 0. In our case

a = −4

3
, b = k , c = 0 , d = h2 =⇒ ∆ = −4(βh)2

[
12h2 + k3

]
, (4.71)

so
∆ > 0 ⇐⇒ k < − 3

√
12h2 . (4.72)

When ∆ > 0, we can write the three real solutions using Viète’s formula. First we write
the depressed cubic equation

t3 + ut+ v = 0 . (4.73)
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If the coefficients are chosen to be

u =
3ac− b2

3a2
= −3k2

16
, v =

2b3 − 9abc+ 27a2d

27a3
= −3h2

4
− k3

32
, (4.74)

then its solutions are related to the ones of the original cubic by:

xn = tn −
b

3a
= tn +

k

4
. (4.75)

Moreover, the solutions can be expressed using trigonometric functions via

tn = 2

√
−u

3
cos

[
1

3
arccos

(
3v

2u

√
− 3

u

)
− 2πn

3

]
, n = 0, 1, 2 . (4.76)

When ∆ < 0, we can perform the same procedure, only with hyperbolic functions in-
stead of trigonometric ones. As, in this regime,

u < 0 , 4u3 + 27v2 =
81

64
h2
[
12h2 + k3

]
> 0 , (4.77)

we obtain the representation

t0 = −2
|v|
v

√
−u

3
cosh

[
1

3
arcosh

(
−3|v|

2u

√
− 3

u

)]
. (4.78)

As v is given by (4.74), we find

v < 0 ⇐⇒ k > − 3
√

24h2 . (4.79)

However, as we are studying the regime where ∆ < 0, v is always negative. Eventually,
the general solution for q0 is

q?0(k;h) =





k

4
+
k

2
cosh

(
1

3
arcosh

{−1

2k3

[
−48h2 − 2k3

]})
if 0 < k < kRSB

k

4
− k

2
cosh

(
1

3
arcosh

{
1

2k3

[
−48h2 − 2k3

]})
if − 3
√

12h2 < k < 0

k

4
− k

2
cos

(
1

3
arccos

{
1

2k3

[
−48h2 − 2k3

]})
if k < − 3

√
12h2

(4.80)

where kRSB is the point where q0 = q1 and the fRSB ansatz reduces to the RS one. For a
compact reference on the solutions of a cubic equation see, for example, [McK84].

Now that we have the solution (4.62), we can insert it in the functional (4.56). We
give some steps of the evaluation for k < x0, as a reference:
∫ 1

k

dx q2(x)

∫ 1

x

dy q(y) = q2
0

∫ x0

k

dx

[
(x0 − x)q0 +

x2
1

4
− x2

0

4
+ (1− x1)q1

]

+

∫ x1

x0

dx
x2

4

[
x2

1

4
− x2

4
+ (1− x1)q1

]
+ q2

1

∫ 1

x1

dx [(1− x)q1]

=
1

2
k2q3

0 − kq4
0 + kq2

1q
2
0 − kq1q

2
0 +

2q5
0

5
− 4

3
q2
1q

3
0 +

4

3
q1q

3
0

+
14q5

1

15
+
q3
1

2
− 4q4

1

3
,

(4.81)
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where we used the expression for x0, x1, and
∫ 1

k

dx

{
τq2(x)− 1

3
xq3(x) +

1

6
q4(x) + h2q(x)

}

= (x0 − k)

[
τq2

0 +
1

6
q4
0 + h2q0

]
− q3

0

6

(
x2

0 − k2
)

+

∫ x1

x0

dx

[
τ
x2

4
− x4

32
+ (βh)2 x

2

]

+ (1− x1)

[
τq2

1 +
1

6
q4
1 + h2q1

]
− q3

1

6

(
1− x2

1

)

= − h2kq0 + h2q2
0 − h2q2

1 + h2q1 +
1

6
k2q3

0 − kq2
0τ −

kq4
0

6

+
4q3

0τ

3
+ q2

1τ −
4q3

1τ

3
− 1

15
2q5

0 +
2q5

1

15
+
q4
1

6
− q3

1

6
.

(4.82)
Subtracting these contributions and substituting the expression (4.65) for q1, we find

G(k;h) =
k

2

[
− 4

15

√
1− 4ττ2 +

τ2

2
− 1

60

√
1− 4τ +

2

15
τ
√

1− 4τ − τ

6
+

1

60

]

+
k

2

[
h2
(
−kq?0 + q?0

2 + τ
)
− 1

3
k2q?0

3 +
5

6
kq?0

4 −
15
q?0

5

]
.

(4.83)

This is the form of the functional at the saddle-point using the fRSB ansatz, i.e. for low
temperature in the domain k < kRSB.

4.2.4 SCGF and rate function in the low temperature phase

The first property of the functional (4.83) to note is that for q?0 = 0, which is the correct
solution for h = 0 and k < 0, it is linear in k, as its spherical counterpart (4.18). This
produces the same divergent behavior of the rate function for fluctuations of the free en-
ergy above its typical value, as we have already discussed at length in the other models
analyzed.

However, for small values of the magnetic field we can expand the solution (4.80) in
powers of h, obtaining

q?0(k;h) =





3k

4
+

4

3k2
h2 − 128

27k5
h4 +O(h6) if 0 < k < kRSB ,

|k|−1/2 h− 2

3k2
h2 +

10

9
|k|−7/2h3 +

64

27k5
h4 +O(h5) if k < 0 .

(4.84)
The nonsensical behavior in k = 0 is due to the fact that we are expanding in powers of
h at k fixed: for |k| � h the correct expansion is the one with the order of limits reversed,
which gives

q?0(k;h) =
3

√
3h2

4
+
k

4
+

k2

8
3
√

6h2
− k3

24 (6h2)
2/3

+O(k4) (4.85)

(see Eq. (4.68) for a comparison). The important thing to notice is the behavior |k|−1/2 of
the first term in the expansion in h for k < 0: inserted in Eq. (4.83), this gives

G(k, β) = −1

3
h3 |k|3/2 + kftyp(h) . (4.86)
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We can conclude that the k < 0 branch of the SCGF of the (truncated) SK model is
qualitatively identical to the one of the 2-spin spherical model, Eq. (4.18). Accordingly,
also the rate function has the same behavior (4.22).

4.3 Comparison with known results on very large deviations

In both the models we have analyzed in this chapter, we have verified how the magnetic
field removes the infinity associated to the very large deviations in the free energy’s
rate function. Is it possible to access the still unknown super-exponentially suppressed
regime by scaling opportunely h→ 0 as n→∞? We think that a necessary condition to
answer this question positively is: the functional form of the rate function in a magnetic
field must match the one associated to the super-exponential speed. For example, if

p
(
f > ftyp;h 6= 0

)
∼ exp

[
−n4(f − ftyp)3

3h6

]
,

p
(
f > ftyp;h = 0

)
∼ exp

[
−n2L(f)

]
,

(4.87)

we can hope to obtain L(f) by scaling h (in this case as h ∼ n−1/6) only if

L(f)
?
= O

[
(f − ftyp)3

]
. (4.88)

Otherwise, we should conclude that the two rate functions are associated with different
kind of fluctuations and that the resulting LDP is a non-trivial combination of the two
laws we reported above. To verify which is the correct answer, in this section we compare
our finite-h formulas with some results on the very large deviations of these models
known in literature.

In reference [PR10b], Parisi and Rizzo (PR) proposed a method to resolve the infinity
in the rate function due to the very large deviations for h = 0. The approach is first
tested on the 2-spin spherical model, for which pure mathematical results from Random
Matrix Theory [DM08] are known, and then applied to the SK model. The presentation
is quite technical, so we only report here a qualitative discussion to give the reader a first
idea on the procedure. The central point in the PR approach is to scale the number of
replicas k = αnwith the number of degrees of freedom, with α < 0, and then to evaluate
the anomalous fluctuations from the correction to the saddle-points fixing the valuesQab
of the replica matrix for large n. The procedure works as follows:

1. Search for a SCGF that scales as n2:

Φ(α) = − 1

n2
logZαn (4.89)

Now the number of replicas k = αn is taken extensive.

2. Introduce an overlap matrix Q̃ab, with a, b = 1, 2, · · · , αn. For example, for the SK
model, the averaged replicated partition function is, as usual (see Eq. (4.28)),

Zαn = e
αn2β2

4

∫ αn∏

a<b=1

dQ̃ab exp

[
−nβ

2

2

αn∑

a<b=1

Q̃2
ab

+ n log

( ∑

S1,··· ,Sαn=±1

eβ
2∑

a<b S
aSbQ̃ab

)]
. (4.90)
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3. As the number of integrals is extensive, a saddle-point analysis is not feasible im-
mediately. To perform the saddle-point integrals, subdivide the large matrix Q̃ab
into blocks of arbitrary dimension d. The number of blocks is, of course, (αn/d)2.
The elements of a block in position (i, j) are Qijab , with i, j = 1, · · · , αn/d identify-
ing the block, and a, b = 1, 2, · · · , d the elements inside.

4. Perform first the saddle-point method for the off-diagonal blocks. The correspond-
ing equations admit a solution for Qijab = 0, i 6= j. However, expand to third order
(second order is not enough to get a non-linear SCGF) around this saddle-point,
leaving the integrals in the fluctuations to be evaluated.

5. Take all the diagonal blocks, which are αn/d, equal to a certain matrix, Qiiab = Qab.
The partition function is now:

Zαn =

∫ d∏

a<b=1

dQab exp

[
−αn

2β2

2d

d∑

a<b=1

Q2
ab +

αn2β2

4

+
αn2

d
log

( ∑

S1,··· ,Sd=±1

eβ
2∑

a<b S
aSbQab

)
− n2S[Q, α]

]
, (4.91)

where only the integrals in the diagonal block are written explicitly, while all the
ones in the off-diagonal fluctuations are hidden in S. Calling

αβF [Q] =
αβ2

2d

d∑

a<b=1

Q2
ab −

αβ2

4
− α

d
log

( ∑

S1,··· ,Sd=±1

eβ
2∑

a<b S
aSbQab

)
, (4.92)

the result can be written compactly as

Zαn =

∫ d∏

a<b=1

dQab exp
[
−n2 (αβF [Q] + S[Q, α])

]
. (4.93)

6. Perform the saddle-point method for the elements in the diagonal blocks, treating
S[Q, α] as a small perturbation (as long as α is small): this means that the saddle-
point equations are

∂F [Q]

∂Qab

∣∣∣∣
Q=Q?

= 0 , (4.94)

to be studied with the usual replica approach (in the limit d→ 0, the block dimen-
sion), and to first order S can be evaluated at Q?, obtaining

Zαn = exp
[
−n2 (αβF [Q?] + S[Q?, α])

]
. (4.95)

7. Perform the integrals in the remaining off-diagonals fluctuation in S[Q?]. As the
terms up to third order have been retained, these integrals can be performed in
perturbation theory for a cubic model, expanding in loop diagrams. Eventually,
this series can be resummed.
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With this method, PR find, for small α,

Φspherical(α) = αA+ |αβ|3/2B + o(α3/2) ,

ΦSK(α) = αA′ + |αβ|12/7B′ + o(α12/7) ,
(4.96)

respectively, for the 2-spin spherical model and for the SK model (we use capital letters
for constants in α). Accordingly, the anomalous LDP for these models is, via Gärtner-
Ellis and Legendre,

pspherical(∆f) ∼ e−n2C∆f3

,

pSK(∆f) ∼ e−n2C′∆f12/5

.
(4.97)

The result for the spherical model is confirmed by Random Matrix Theory: for β → ∞,
the 2-spin model becomes a pure matrix model for the Gaussian matrix Jij , and the free
energy fluctuations become the deviations of its lowest eigenvalue (see [DM08] and our
Sec. 2.4). For the SK model, the exponent 12/5 of the rate function is a bit controversial in
literature: its value can be related to the scaling exponent of the small deviations (which
in these cases are not Gaussian and are in universality classes different from the one pro-
vided by the CLT), whose value has been debated in the past. For reference, see [MG10],
which studies the distribution of the ground-state energy of some spin glass models (to
which the free energy reduces for β →∞): the other possibility is a SCGF of order α8/5,
producing a rate functionO(∆f8/3). Here we will not address this problem; we just note
that, while for the spherical model the exponent of the rate function associated to the
very large deviations matches with the one we obtained for the ordinary rate function in
a magnetic field, Eq. (4.22), this is not true for the SK model, in neither of the approaches
we referred on. We postpone further comments to the conclusive chapter.



Discussion

In this Part we analyzed the behavior of the large (and very large) deviations of the
free energy for some models of spin glass, mainly the p-spin spherical model, exploiting
the Gärtner-Ellis theorem to obtain the rate function. Without external magnetic field,
we were able to compute the rate function in the low-temperature phase, while in the
paramagnetic phase we obtained its convex hull, due to the non-differentiability of the
SCGF. As a result, we have a standard large deviation principle for fluctuations below
the typical value of the free energy, that is they are depressed exponentially in the size
of the system. On the other hand, fluctuations above the typical value have a different
behavior, being suppressed more than exponentially, and the corresponding rate func-
tion is infinite. When a magnetic field is applied, this anomalous very large deviation
disappears and the rate function is finite everywhere.

Since this remains true even if the field is very small, we questioned whether this
effect can be exploited to obtain insights on the very large fluctuations, by sending the
magnetic field to zero carefully choosing its dependence on the system size. Indeed, we
know that the anomalous behavior is due to fluctuations associated to very rare joint
events, in the context of extreme value statistics. A constant external magnetic field
provides the type of collective correlations between the spins that makes easier for those
events to occur. For example, it can shift globally the energy spectrum of a theory, in
such a way that the probability of lowest eigenvalue to fluctuate around its typical value
becomes of the same order on both sides. We tested this idea in the context of the 2-spin
spherical model and the (truncated) SK model, where analytical results are quite easy to
derive. While the ordinary, magnetic-field induced, fluctuations match in probability the
anomalous ones in the spherical model, for a certain choice of the limit h→ 0, this is not
true in the case of the SK model. We cannot say if this effect is due to the truncation we
implemented, or due to a different nature of the magnetic fluctuations compared to the
anomalous ones. Because of the preliminary nature of this last analysis, we cannot draw
definitive conclusions on this subject, leaving open this point to future investigation. To
start with, models with a better analytical control than the SK model, but still presenting
most of its non-trivial features, can be studied in detail with the methods we extensively
explained in this thesis. As an example, we mention the s+p spherical model by Crisanti
and Leuzzi [CL07] as a promising candidate to explore this possibility.

In addition, we provided a geometrical interpretation of the 1RSB ansatz. Indeed we
showed, as noticed previously in the literature for different models, that for h = 0 the
Rammal construction is an equivalent way to continue the RS ansatz for a real number
of replicas. However, we also showed that this is due to the simple structure of the 1RSB
ansatz without external magnetic field, where one can immediately fix one of the 1RSB
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parameters. When a magnetic field is applied, all the parameters have non-trivial values
(which we obtained numerically by solving the saddle point equations in the p-spin
model, and analytically in the cases of REM and 2-spin) and the Rammal construction,
which gives in turn the infinite-rate-function behavior, fails. Another interesting open
question is whether it is possible to generalize the geometrical construction by Rammal
to correct in the right way the RS solution not only for h = 0, but also when h 6= 0.
Moreover, as we have seen in the SK model, the fRSB approach also produce a linear
SCGF below a certain critical value of the number of replicas; however, this is not the
point where the RS ansatz becomes non-monotonic, and is reached via the non-trivial
fRSB branch.



Part II

Machine learning of
geometrically structured data





Motivations

The success of deep learning has transformed data science profoundly in the last decade,
within and outside physics [LBH15; GBC16; He+16]. In spite of the accomplishments in
practical applications, we are currently facing a lack of fundamental theoretical under-
standing in the field [Mal16; Bal+16]. Outstanding open questions concern the surprising
effectiveness of stochastic gradient descent, which is capable of finding good minima in
complex energy landscapes, and the identification of informative metrics to predict the
performances of deep (many small layers) and shallow (few large layers) neural net-
works [Rag+17; MMN18; CS18]. Particularly troublesome is the apparent incompatibil-
ity, within the accepted mathematical theories, between the expressive power and the
generalization abilities of neural networks: ultimately, the reason why deep architec-
tures with millions of parameters generalize well is mostly unknown [Zha+17; MM19;
Cha+19; Ney+17; LS18].

The idea of investigating machine learning within the tools provided by the statisti-
cal physics of disordered system is more than thirty years old, starting with the seminal
papers by Amit, Gutfreund and Sompolinsky [AGS85a; AGS85b] on the Hopfield model,
and with Gardner’s replica analysis of the Perceptron architecture [Gar87; GD88]. Many
of the results produced in this field have been obtained under the restrictive and unre-
alistic hypothesis that the inputs of the training set were independent identically dis-
tributed random variables with no correlation with their labels. Only quite recently,
physicists working in this field are starting to probe the impact of more realistic gen-
erative models of synthetic data on the available theoretical frameworks. Sompolin-
sky and collaborators investigated the problem of the linear classification of perceptual
manifolds [CLS18; CLS16] and provided a first quantitative measurement of the abil-
ity to support the classification of object manifolds in deep neural networks [Coh+20].
Mézard suggested that hierarchical architectures with hidden layers naturally emerge in
the context of Hopfield models, assuming that the training patterns are structured as su-
perpositions of a given set of random features [Méz17], a common property of empirical
data [Maz+18a; Maz+18b]. Zdeborová and collaborators provided exact results for the
generalization error within the replica approach for two different scenarios of synthetic
data: random features and the hidden manifold model [Gol+20; Ger+20]. One of the mo-
tivations behind these choices is the observation that many machine learning datasets, or
their representations within deep networks, lie on the surface of low dimensional man-
ifolds, as also verified often in practice by measuring their so-called intrinsic dimension
[Coh+20; EGR19; Ans+19; Fac+17; Erb+20]. More in general, a generative model with
a factorized joint probability distribution of the inputs and their corresponding labels
is expected to be unrealistic, with respect to the benchmark datasets commonly used in

65



66

machine learning (e.g., MNIST, CIFAR-10, or Imagenet). Intuitively, one expects there to
be a notion of similarity among inputs that constrains similar inputs to have the same
label. This regularity is expected to be related to the problem of generalization, i.e., the
ability of a classifier to correctly classify inputs beyond the data set used for training.

The results obtained in the statistical physics framework address the typical case
performance. In contrast, statistical learning theory (SLT) [Vap13], a successful mathe-
matical framework in the theory of machine learning, follows the tradition of computer
science of establishing worst-case bounds. This difference in scope made it difficult, for
physicists and computer scientists alike, to work towards inter-disciplinary results, and
few examples of cross-fertilization are found in the literature. Statistical learning the-
ory is the branch of mathematics and computer science that studies inference, or the
problem of generating models starting from data [BBL04]. It provides formal definitions
for words like “generalization or “overfitting”, and it is ultimately designed to evaluate
the performance of learning algorithms. As such, it represents the ideal framework to
study the problem of generalization in deep learning. Unfortunately, in spite of its ele-
gance, the insight it provides into the impressive generalization abilities of present deep
learning models is poor. The main product of the theory in this setting is a set of upper
bounds on the generalization error (which roughly counts the average number of errors
made on the test set). These upper bounds in many cases turn out to be too loose to be
useful [Zha+17; MM19; Bot15; CT92].

The main drawback of this class of bounds is generally recognized to be their being
distribution independent, meaning that they hold for any probability distribution over
inputs and labels of the data set, and for all models of the chosen hypothesis class. Sub-
stantial effort is being put, within statistical learning theory, to overcome these shortcom-
ings and formulate rigorous data-dependent results [Bot15; Ant+03; KLL01; Sha+98].
The Vapnik-Chervonenkis (VC) entropy is a way to establish distribution dependent,
and hopefully tighter, bounds to the generalization error [BBL04]. Informally, the VC
entropy measures the number of different ways a given class of functions can classify
the inputs of the training set. Unfortunately it is usually very difficult to compute ex-
plicitly. Linear classifiers and kernel architectures represent a notable exception. Their
VC entropy has been evaluated analytically in a remarkable paper by Cover long ago
[Cov65], under very mild hypotheses on the probability distribution of the inputs. The
explicit calculation shows, however, that knowing the VC entropy does not improve sig-
nificantly the standard bound obtained using the growth function [Vap99]. In fact, both
quantities scale logarithmically with the size of the training set, and depend linearly on
the VC dimension, a well known measure of model complexity.

Our goal here is to show how the concept of data structure, as it is emerging in the
physics literature, can be addressed within statistical learning theory, thereby providing
a bridge between the two viewpoints. This bridge immediately allows a quantification of
the generalization capabilities of simple hypothesis classes, which shows how severely
loose the classic rigorous bounds in SLT are. Concretely, we investigate the finite-size
and asymptotic behavior of the VC entropy of linear classifiers by using both combina-
torial and replica techniques. While replica theory is well established in the statistical
mechanics of neural networks, combinatorial tools, though certainly not foreign to sta-
tistical mechanics [McC10; Car+18; CS02b], have been developed only very recently for
what concerns the role of data structure in machine learning [RLG20; CLS18]. We con-
centrate on two simple models of data structure, or “object manifolds”: (i) k-dimensional
simplexes with prescribed geometric relations and (ii) spherical manifolds, which are
equivalent to classify unstructured data points with margin (and are related to support
vector machines [CV95]). These models are not new, and have already received atten-
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tion for their being general enough to provide insight, but simple enough to allow full
analytical treatment.

Therefore, the main objective of this Part is to investigate the effect that data struc-
ture has on the model complexity of simple architectures in machine learning. Previ-
ous research in the physics literature addressed this question via the traditional concept
of storage capacity αc, which measures the maximum load α (number of data points
over number of parameters) that a model can learn with probability 1 in the thermo-
dynamic limit. By viewing supervised learning as a constraint satisfaction problem,
capacity corresponds to the transition between a satisfiable (SAT) and an unsatisfiable
(UNSAT) phase, above which perfect training accuracy is achievable with probability 0.
Here we show that the compact description of learning provided by the capacity hides
important detail about the model, related to its expressive power on structured data.
We show that the VC entropy is non-monotonic as a function of the load, and vanishes
asymptotically, at variance with the data-agnostic setting. This also contrasts with the
classic bounds in statistical learning theory, which are mostly obtained by upper bound-
ing the VC entropy with quantities that grow polynomially in the size of the training
set [BBL04; Vap99]. The hallmark of this non-monotonic behavior is an additional phase
transition above the storage capacity. The new critical point signals the entrance into the
UNSAT phase of another satisfiability problem, related to data structure.

The exposition is mostly drawn from [RPG20; Pas+20].





CHAPTER 5

Linear classification of points

In this chapter we present the problem of pattern recognition, one of the main applica-
tions of machine learning. Since this topic is not usually part of a physicist’s background,
we start spending a few words to set the problem in the more general framework of su-
pervised learning. We then give a brief mathematical introduction on Statistical Learning
Theory, which is a very general theoretical framework to study the problem of function
estimation (inference) from a given set of data, defining properly the concepts intro-
duced before. Then, we will focus on the problem of linear classification, reviewing
some important result from combinatorics (the Cover’s theorem) and from statistical
mechanics (the Gardner volume). In this last approach, we will see a first example on
how replica theory has been applied successfully in the past to find relevant properties
of learning architectures.

5.1 Supervised learning and simple perceptron

Supervised learning is a branch of machine learning whose aim is to infer, from a given
dataset consisting of input objects (usually represented as points in a suitable space, such
as Rn for vectors, or the corresponding pixel and color space for images), each of them
coming with a label identifying the feature to learn (for example, the color of a point,
blue or red, or the species of an animal in a picture), the function associating to each
object its label. Once this function is known, at the end of the so-called learning process,
any new object of the same kind of the ones in the initial dataset (the training set) can be
in principle identified with the correct label. The term “supervised” is used in analogy
with learning systems where an instructor teaches an apprentice what to do by means
of his example, and it is usually opposed to the concept of “unsupervised learning”,
where the trainee has to learn independently, exploiting similarities and differences of
the objects in the training set, presented to him without any previous classification.

Usually, also a test set of object-label pairs is used to check whether the machine can
perform correctly the required task, comparing its output with the labels in the test set.
During the training process, not only one has to be sure to reduce the training error, that
is the number of mistakenly classified objects in the training set, but also to maintain
low the test (or generalization) error, in order to be able to classify objects not present in
the training set. Indeed, in general a machine classifying “too well” the training set can
perform poorly on the test set, because it is fine-tuned to identify the objects in the train-
ing set only. A behavior of this kind is called overfitting: indeed, fitting is different than
predicting, and a well-trained machine is not required to perfectly fit known points, but
to predict with a good rate of success the outcome of new submissions. For this reason, a
good estimation of the generalization error is a central issue in machine learning, as we
will see in the next section.

69



70 5.1 Supervised learning and simple perceptron
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Figure 5.1: A simple perceptron, a linear classifier taking a vector X = (ξ1, · · · , ξn) ∈ Rn as input
and returning the sign of the scalar product W · ξ as output, with W vector of weights.

To start fixing ideas, suppose to deal with a training set of p points Xµ in Rn, µ =
1, · · · , p, with binary labels σµ (red/blue, ±1, cat/dog, ...), and to hope that the dataset
can be classified linearly, that is assuming that each label can be associated to the corre-
sponding point via the function

σµ = sign


 1√

n

n∑

j=1

Tjξ
µ
j


 , (5.1)

where ξµj are the components of Xµ and T is an unknown opportunely normalized vec-
tor, which should be the target of the learning process.

We can face the problem of binary linear classification with a simple artificial neu-
ral network (ANN) architecture: the perceptron, represented in Fig. 5.1. Given a n-
dimensional input Xµ = (ξµ1 , · · · , ξµn) with label σµ in the training set, the perceptron
gives on output

σ̃µ = sign


 1√

n

n∑

j=1

Wjξ
µ
j


 . (5.2)

The weights are normalized according to

n∑

j=1

W 2
j = n , (5.3)

a convenient choice for a large-n analysis. Of course, as long as the weights are chosen
randomly, there is no reason for σ̃µ to coincide to the true label σµ for any µ. The percep-
tron algorithm provides the recipe to update the weights Wj = Wj(t) in order to find a
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solution W ?
j such that

σµ = sign


 1√

n

n∑

j=1

W ?
j ξ

µ
j


 , µ = 1, · · · , p . (5.4)

This procedure, which can be found in standard textbooks like [Nis01], is proven to con-
verge provided that the original dataset Zp were linearly separable. In the special case in
which the labels in the training set are not simply given, but generated via Eq. (5.1), we
are in the so-called teacher-student scenario, with the perceptron with weights T as the
teacher, the one with weights W as the student [EB01]. In the following, we will focus
instead on random generated dataset, with a very specific correlation between the points
and their labels to implement data structure.

In general, for values of n (dimension of the input space) and p (number of points
in the training set) in a certain range, the learning protocol on a typical instance of the
training set cannot find any solution W ? of the linear classification problem. Indeed, the
problem can be cast in the form of a Constraint Satisfaction Problem (CSP): find a vector
W ? ∈ Rn such that all the p constraints (5.4) are respected. As observed in other CSPs,
varying the ratio α = p/n, which takes the role of the temperature as the driving pa-
rameter, a transition from a phase where a solution is easy to a phase where a solution
is hard or impossible to find can occur. This transition is very similar to the one from
the paramagnetic to the spin glass phase for models we analyzed in Part I, and can be
studied with the same tools, as we will see in this and in the next chapters. In the case of
the glass transition, the complex form of the energy landscape induces ergodicity break-
ing and makes in general difficult to find the equilibrium state of the system, which is
the one of minimal free energy; here, the space of solutions W ? is progressively broken
into an exponential number of smaller clusters, up to the point that no possible solu-
tion remains [Krz+07]. The phase where a solution can still be found is called satisfiable
(SAT), the one where there is no solution unsatisfiable (UNSAT). We will use again these
concepts in Chap. 7.

In the next section we give a formalization of the inference problem introduced here
using the language of Statistical Learning Theory.

5.2 Basic results in Statistical Learning Theory

Statistical Learning Theory (SLT) is the branch of mathematics and computer science that
studies inference, or the problem of generating models starting from data. In this section
we recall the basic facts of SLT, mostly following reference [BBL04]. The exposition is
taken from [Pas+20].

We restrict to binary classification problems, in which the goal is to find a function g
mapping the input space X to the output space Y = {+1,−1}. Each pair Zµ = (Xµ, Y µ)
(with µ = 1, . . . , p) in the training set Zp = (Z1, . . . , Zp) is drawn by the unknown
joint probability distribution PX ,Y(X,Y ). A map g between the set of inputs Xp =
(X1, · · · , Xp) and {+1,−1} is called a dichotomy of Xp. The criterion to choose g is
the minimization of the risk

R(g) = 〈1g(X)6=Y 〉P , (5.5)

which is the probability of error. Ideally, we should look for infg R(g) over all the possible
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g’s. Since P is unknown, the best we can do is to consider the empirical risk

Rp(g) =
1

p

p∑

µ=1

1g(Xµ) 6=Y µ , (5.6)

and limit the search within a specific hypothesis class G (a “model”) to prevent over-
fitting. A dichotomy g is called realizable if g ∈ G. The output of a learning algorithm
is a function gp that depends on the data Zp. The goodness of the choice of gp can be
measured by its generalization error εgen(gp), where

εgen(g) = R(g)−Rp(g). (5.7)

Notice that εgen(g) ≤ 1. In practice,Rp is evaluated on the training set andR is estimated
on a test set [Meh+19]. One of the primary goals of SLT is to establish rigorous bounds
on the generalization error.

A complementary description of risk minimization within a class G is given through
the definition of the loss class L:

L =
{
`g : (X,Y ) 7→ 1g(X)6=Y , g ∈ G

}
. (5.8)

To each g ∈ G, we associate a function `g such that `g((x, y)) = 1 if g(x) 6= y, and is
zero otherwise. In this way, while elements of G take values in {+1,−1}, those of L have
range {0, 1}. `gp can be used to count the number of errors made on the training set by
the function gp. Given a loss class L, we can consider its projection on the sample Zp, by
defining

LZp =
{

(`(Z1), `(Z2), . . . , `(Zp)) : ` ∈ L
}
. (5.9)

This is the set of all possible ways that the functions in G can classify, correctly or in-
correctly, each sample in Zp. For example, if a function g ∈ G classifies correctly all the
elements of the training set but the first one, it corresponds to the string (1, 0, 0, · · · , 0)
in LZp , as any other functions in G with the same output. Importantly, LZp can be inter-
preted as the set of all different classifications of the points in Xp that can be realized by
the model, i.e., the set of all labels (Y 1, . . . , Y p) such that there exists (at least) a g ∈ G
such that Y µ = g(Xµ) for all µ. This representation reveals a useful bijection between
LZp and the set of realizable dichotomies.

A key quantity in SLT is the Vapnik-Chervonenkis (VC) entropyHL(Zp), which mea-
sures the size of LZp :

HL(Zp) = log
∣∣LZp

∣∣ . (5.10)

By virtue of the bijection discussed above, valid when Y = {+1,−1}, HL(Zp) can be
defined equivalently as

HL(Zp) = logNG(Xp), (5.11)

where NG(Xp) is the number of dichotomies of the set Xp realizable by G. The VC en-
tropy controls a rigorous upper bound to the generalization error:

Theorem 5.1. For any 0 < δ ≤ δmax = min(1, 2eHL(2p), with probability at least 1− δ,

∀g ∈ G, εgen(g) ≤ 2

√
2
HL(2p) + log 2

δ

p
, (5.12)

where the annealed VC entropyHL(p) is defined as:

HL(p) = log 〈NL(Zp)〉 (5.13)

and 〈·〉 is the average over the joint probability distribution PX ,Y of the training set.
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Unfortunately, direct computation of the VC entropy is unfeasible in most cases. For
this reason, a main goal of SLT is to construct more tractable upper bounds to the VC
entropy. The classic example is based on the Vapnik-Chervonenkis dimension, which is
a scalar metric of the expressivity of a given hypothesis class G. More formally, the VC
dimension dVC of a class G is the largest integer such that there exists at least one set of
dVC inputs XdVC

such that
NG(XdVC) = 2dVC (5.14)

(i.e., the class G realizes all possible dichotomies of the inputs). With this definition, it
can be proved that

HL(p) ≤ dVC log

(
ep

dVC

)
. (5.15)

Hence, a corollary of Theorem 5.1 is the well-known upper bound first obtained by Vap-
nik: if the class G has finite VC dimension dVC, then, with probability at least 1 − δ,

∀g ∈ G, εgen(g) ≤ 2

√√√√
2
dVC log

(
2ep
dVC

)
+ log 2

δ

p
. (5.16)

A crucial property of this elegant result is its being distribution independent, meaning
that the bound is uniform in the function g, and does not depend on the particular prob-
lem at hand. Owing to its universality, the bound is often too loose for most practical
applications [Bot15]. Let us consider for instance a deep neural network with a number
of weights w = 106–109. In this case the VC dimension is of order dVC ∼ w logw [Son98].
When the typical size of the dataset is p = 104–106, as is often the case in practice, is is
evident that bounds such as the one in Eq. (5.16) do not offer any insight on the gen-
eralization performance of deep neural networks. Indeed, one of the main pursuits of
contemporary SLT is to provide better results on the generalization error, going beyond
distribution independent bounds. Several strategies have been proposed, advocating
the importance of considering data-dependent hypothesis classes [Sha+98] and data-
dependent measures of complexity (such as the Rademacher complexity [BM03], which
was recently connected to the statistical mechanics of disordered systems [Abb+19]), also
in relation to the original concept of VC entropy itself [Ang+14].

5.3 Vapnik-Chervonenkis entropy of linear classifiers

As mentioned above, in most cases it is not possible to compute the VC entropy directly.
However, linear classifiers (such as the perceptron we introduced above) and kernel
machines are a notable exception: their VC entropy was computed half century ago by
Cover [Cov65]. Kernel architectures provide a special realization of one-hidden layer
neural networks and are at the core of the idea of support vector machines. In these
machines, one defines a priori a feature map φ : Rn → Rd, that maps n-dimensional
inputs to a d-dimensional feature space. One of the simplest realizations of such maps
is a quadratic polynomial kernel, such that each input X is mapped on a d(d + 1)/2-
dimensional feature space via a kernel φ(2) with components φ(2)

ij = XiXj , ∀i ≤ j. The
map from feature space to the space of labels is realized by a linear separator:

Y = sign(W · φ(X)), (5.17)

where the weight vector, W ∈ Rd, is the set of learnable parameters.



74 5.3 Vapnik-Chervonenkis entropy of linear classifiers

Cover’s theorem is a function counting theorem: it computes the number of di-
chotomies Nφ(Xp) of this function class, the logarithm of which is the VC entropy. It
is simpler to state Cover’s theorem for linear separators, i.e., for d = n and φ = 1; the
realizable dichotomies in this case are called linearly realizable. We comment below on
the extension to general φ. The key idea behind the theorem is twofold:

(i) under a weak condition on the inputs Xp, the number of dichotomies N1(Xp) is a
function solely of the dimension n and the number of points p;

(ii) it is possible to write a solvable recurrence relation, in n and p, for this function.

Following Cover’s original paper, we denote the (data-independent) number of di-
chotomies N1(Xp) by Cn,p, and the corresponding VC entropy byHn,p = logCn,p.

Theorem 5.2 (Cover, 1965). Let Xp be a set of p points in Rn. If the points are in general
position, i.e., if the points in X ′ are linearly independent for all subsets X ′ ⊆ Xp such that
|X ′| ≤ n, then N1(Xp) = Cn,p, where

Cn,p = 2

n−1∑

j=0

(
p− 1

j

)
. (5.18)

The proof of Theorem 5.2 is based on a simple recurrence relation for Cn,p:

Cn,p+1 = Cn,p + Cn−1,p, (5.19)

with boundary conditions
Cn≥1,1 = 2, C0,p = 0. (5.20)

Equation (5.19) states that adding the (p + 1)th point X to Xp increases the number of
dichotomies by Cn−1,p, which is the number of dichotomies of Xp that are realizable
by a vector W such that W · X = 0. Cover actually proved a more general statement.
Informally, if one maps all elements of Xp by the non-linear kernel function φ from Rn
to Rd with d larger than n, then, under mild assumptions on φ, Eq. (5.18) holds with d in
place of n.

Notice that Eq. (5.18) implies that the VC entropy grows asymptotically as Hn,p ∼
(n− 1) log p for large number of inputs p (see Sec. 7.1.2 for a derivation). This is the same
behavior as that obtained by bounding the VC entropy as in Eq. (5.15).

Two remarks can be made, concerning the generality of Cover’s theorem. First, the
general position is a rather weak condition. For instance, we mention three examples of
distributions of the points ξµ ∈ Xp under which the general position holds with proba-
bility 1:

(i) ξµ ∈ Xp are i.i.d. variables with the uniform measure on the sphere Sn−1;

(ii) ξµ ∈ Xp are i.i.d. variables with marginal probability distribution P (ξ), and the
support of P is Rn;

(iii) the coordinates of each ξµ ∈ Xp are i.i.d. variables, with discrete probability distri-
bution p(x) = (1 +m)/2δx,1 + (1−m)/2δx,−1, for any m ∈ [−1, 1].

Clearly, there are trivial ways to violate general position: for instance, if the probability
distribution of (i) or (ii) above is conditioned to assigning the same value to a fixed subset
of size k < n of the coordinates of all inputs. Then Cover’s theorem still applies in the
subspace, with n− k in place of n.
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Second, the condition that φ must satisfy for the theorem to apply to the kernel ma-
chine specified by φ is essentially that the vectors φ(ξµ) must be in general position in the
feature space Rd. This again is a very mild condition. Starting with a set of inputs Xp in
general position in the original n-dimensional space, most interesting mappings satisfy
the condition. This includes polynomial kernels, but also more complex functions, such
as those of the form φi(ξ) = g

(∑
jW

(1)
ij ξj

)
, where g is an activation function (e.g., ReLU

or tanh) and W (1) is any rectangular random matrix, whose entries are the weights as-
sociated to the hidden layer of the network. The latter case is relevant for the theory of
extreme learning machines [HZS06].

5.4 Gardner volume and storage capacity

What is the relation between the Vapnik-Chervonenkis theory and the statistical me-
chanics setting we introduced at the end of Sec. 5.1? To understand it, we need to go
back to analyze the solution of the linear classification problem (5.4). Clearly, a solution
W ? complying with this equation is such that the quantity

∆µ =
σµ√
n

n∑

j=1

W ?
j ξ

µ
j > 0 , µ = 1, · · · , p . (5.21)

How many of these solutions of the classification problem exist? The answer is given by
the Gardner volume [Gar87; Gar88; GD88]:

VG =

∫ 


n∏

j=1

dWj


 δ




n∑

j=1

W 2
j − n




p∏

µ=1

θ


 σµ√

n

n∑

j=1

Wjξ
µ
j − κ


 . (5.22)

The parameter κ > 0, that we introduced for future convenience (see Chap. 8), is called
margin: from a geometrical perspective, it is the distance between the hyperplane real-
izing the dichotomy and the nearest points. The meaning of the volume VG should be
clear: the Heaviside theta function counts the number of configurations of the weights
Wj producing, under the normalization constraint, an output concordant with the label
σµ, for any µ (net of the margin). We can think that, if the size of the training set p, that
is the number of points to classify, is small with respect of the dimension of the space
n, on average it is always possible to find one or more solutions (an infinite number, in
fact) of the classification problem, because typically the points are sparse in a space much
larger than their number and many hyperplanes can separate them coherently with their
labels. On the other side, when p becomes of the same order of n the volume of solu-
tions shrinks until log V changes sign, so that log V → −∞, meaning that the problem
becomes unsolvable; we are interested in searching the critical value of the load α = p/n
where this divergence occurs, in the limit of both n and p large.

Of course, this argument works on the typical instance of a random-generated dataset,
meaning that we have to evaluate log V , where the average is with respect to the proba-
bility distribution of random points and labels, generated independently. In the follow-
ing, we will take

dP (ξµj ) =
1

2

[
δ(ξµj − 1) + δ(ξµj + 1)

]
dξµj =⇒

∫ p∏

µ=1

n∏

j=1

dP (ξµj ) =
1

2pn

∑

{ξµj =±1}
(5.23)
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and random labels with equal probability.
To evaluate the averaged logarithm of this volume, Gardner exploited the replica

method; we retrace here her derivation for reference. Using integral identities for the
theta and delta functions:

θ


 σµ√

n

n∑

j=1

Wjξ
µ
j − κ


 =

∫ ∞

κ

dλµ

2π

∫ +∞

−∞
dxµ e

ixµ
(
λµ− σµ√

n

∑
jWjξ

µ
j

)
,

δ




n∑

j=1

W 2
j − n


 =

∫ +∞

−∞

dE

2π
eiE(

∑
jW

2
j −n),

(5.24)

we can write the replicated volume as:

V tG =

∫ 


t∏

a=1

n∏

j=1

dWj,a



∫ ∞

κ

[
t∏

a=1

p∏

µ=1

dλµa
2π

]∫ +∞

−∞

[
t∏

a=1

p∏

µ=1

dxµa

]∫ +∞

−∞

[
t∏

a=1

dEa
2π

]

× e−in
∑
a Ea+i

∑
a Ea

∑
jW

2
j,a+i

∑
a,µ x

µ
a

(
λµa− σµ√

n

∑
jWj,aξ

µ
j

)
(5.25)

The ensemble average over the binary inputs gives

1

2pn

∑

{ξµj =±1}
e
−i∑µ

∑
j ξ
µ
j

∑
a x

µ
a
σµ√
n
Wj,a =

p∏

µ=1

n∏

j=1

cos

(
σµ√
n

n∑

a=1

xµaWj,a

)

≈
p∏

µ=1

e
∑
j log(1− 1

2

∑
a,b x

µ
ax
µ
bWj,aWj,b/n)

≈
p∏

µ=1

e−
1
2

∑
a x

µ
a

2−∑n
a<b x

µ
ax
µ
b

1
n

∑
jWj,aWj,b ,

(5.26)

where we used the fact that n is large, so that

1

2pn

∑

{ξµj =±1}

∫ ∞

κ

[∏

a,µ

dλµa
2π

]∫ +∞

−∞

[∏

a,µ

dxµa

]
e
i
∑
a,µ x

µ
a

(
λµa− σµ√

n

∑
jWj,aξ

µ
j

)

≈
{∫ ∞

κ

[
t∏

a=1

dλa
2π

]∫ +∞

−∞

[
t∏

a=1

dxa

]
ei
∑
a xaλa− 1

2

∑
a x

2
a−
∑
a<b xaxb

1
n

∑
jWj,aWj,b

}p
.

(5.27)

Note that the labels σµ disappear in the calculation, so the average over their distribution
is trivial. Introducing the replica matrix in the usual way:

Qab =
1

n

n∑

j=1

Wj,aWj,b , (5.28)
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we find

V tG =

∫ 


t∏

a=1

n∏

j=1

dWj,a



∫ +∞

−∞

[
t∏

a=1

dEa
2π

]∫ +∞

−∞

[∏

a<b

dFab dQab
2π

]

× e−in
∑
a Ea−in

∑
a<b FabQab+i
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∑
jW

2
j,a+i

∑
a<b Fab

∑
jWj,aWj,b

×
{∫ ∞

κ

[
t∏

a=1

dλa
2π

]∫ +∞

−∞

[
t∏

a=1

dxa

]
ei
∑
a xaλa− 1

2

∑
a,b xaxbQab

}p
,

(5.29)

were the auxiliary variables Fab are Lagrange multipliers enforcing the definition (5.28).
Now we can perform the Gaussian integration over the weights:

∫ 


t∏

a=1

n∏

j=1

dWj,a


 ei

∑
a Ea

∑
jW

2
j,a+i

∑
a<b Fab

∑
jWj,aWj,b = e−

n
2 log det(−iG)+nt

2 log(2π) ,

(5.30)
whereG is the symmetric matrix

Gab = 2Eaδab − (1− δab)Fab . (5.31)

The integral over the elements ofG is performed via the saddle-point method. Ignoring
all the factors suppressed in n,

∫ +∞

−∞

[
t∏

a=1

dGaa
4π

]∫ +∞

−∞

[∏

a<b

dGab
2π

]
e−

n
2

∑
a,b iGabQab−n2 log det(−iG) ∼ ent2 +n

2 log det(Q)

(5.32)
where we used the saddle-point equations

∂

∂Gab


∑

c,d

iGcdQcd + log det (−iG)


 = iQab +

(
G−1

)
ba

= 0 . (5.33)

Eventually, the replicated volume is:

V tG =

∫ +∞

−∞

[∏

a<b

dQab

]
e
nt
2 [1+log(2π)]+n

2 log det(Q)

×
{∫ ∞

κ

[
t∏

a=1

dλa
2π

]∫ +∞

−∞

[
t∏

a=1

dxa

]
ei
∑
a xaλa− 1

2

∑
a,b xaxbQab

}p
. (5.34)

Gardner also proved that the correct ansatz for the form of the replica matrix is the RS
one:

Qab = (1− q)δab + q , 0 ≤ q ≤ 1 . (5.35)

The measure part gives

log det(Q) = log
[
(1− q)n−1

(1− q + nq)
]

= n log(1− q) +
nq

1− q , (5.36)
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while the term inside the curly brackets can be solved via a HS transformation. After
some manipulations (see [Nis01]),

∫ ∞

κ

[
t∏

a=1

dλa
2π

]∫ +∞

−∞

[
t∏

a=1

dxa

]
ei
∑
a xaλa− 1

2

∑
a,b xaxbQab ∝

∫
Dy

{
erfc

[
κ+ y

√
q√

2(1− q)

]}t
,

(5.37)
where y is the auxiliary HS variable to be integrated in the Gaussian measure Dy, and
erfc is the complementary error function. Exponentiating this result and taking the limit
t→ 0 of the replica trick, as we are interested in the typical properties of this observable,
we find

p log

∫
Dy

{
erfc

[
κ+ y

√
q√

2(1− q)

]}t
≈ pt

∫
Dy log

{
erfc

[
κ+ y

√
q√

2(1− q)

]}
. (5.38)

We can proceed with the following argument, recalling that we are searching for the
point αc where the volume of solutions of the classification problem shrink to zero, in the
setting of replica theory: as we are approaching this point, the different replicas become
more and more correlated, because they can be chosen from a smaller and smaller set: at
the transition, it must be q → 1. In this way, we can exploit the asymptotic expansion of
the complementary error function to sum this term with the measure part we evaluated
before, and we can simply search for the point α = p/n where the most divergent part
in (1− q)−1 changes sign. The Gardner’s result is

αc(κ) =

[∫ +∞

−κ
Dy (κ+ y)

2

]−1

. (5.39)

This critical value of the ratio p/n, for both p and n large, is called storage capacity. For
κ = 0, we find

αc(0) = 2 . (5.40)

We will say more on the problem of margin learning in Chap. 8, where we will explain
its connection with the emergence of the satisfiability phase transition driven by data
structure we will explain in Chap. 7.

5.4.1 Connection with Cover’s result

It is straightforward to see how the storage capacity αc can be obtained from Cn,p in
Eq. (5.18), which is a quantity defined at finite n and p. The number of dichotomies is a
combinatorial quantity, and is expected to scale exponentially in n, at least for small α.
Thus, an intensive quantity can be defined by normalizing Cn,p with the total number
of dichotomies of p points. The fraction of dichotomies cn,p ≡ Cn,p/2

p is bounded,
0 ≤ cn,p ≤ 1, and has a non-trivial thermodynamic limit c∞(α). The thermodynamic
limit is defined by taking both n, p→∞, with fixed α = p/n. It is not hard to see directly
from Eq. (5.18) that

c∞(α) = θ (αc − α) , (5.41)

with αc = 2. The expression in Eq. (5.41) takes the value 1 for α < αc, the value 0 for
α > αc, and the value 1/2 for α = αc (θ is the Heaviside step function). Qualitatively,
cn,αn as a function of α is a decreasing sigmoid, which is steeper for larger values of n
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(see Fig. 7.1a). This allows the definition of a notion of capacity at finite dimension n, as
the value α̃c(n) such that cn,α̃c(n)n = 1/2, or

Cn,α̃c(n)n = 2p−1. (5.42)

Another notable value of p can be read off of cn,p: it is the Vapnik-Chervonenkis dimen-
sion dVC, equal to the maximum p such that cn,p = 1. For a linear separator, dVC = n.
Notice that one cannot use the asymptotic form Eq. (5.41) to this aim, since the thermo-
dynamic limit pushes cn,αn to 1 for all values of α up to αc.





CHAPTER 6

A geometrical model of data structure

The discussion in the previous chapter suggests that, in order to go beyond the predic-
tion of Cover’s theorem, one needs a way of introducing statistical dependence between
the inputs Xp and their labels Yp = (Y 1, . . . , Y p). This reflects a simple observation that
can be made on empirical datasets of images: similar inputs tend to be classified simi-
larly. For instance, one expects that there exists an (unknown) set of transformations on
an input image X , possibly including some translations, dilations, and rotations, that
leave the classification of X invariant. Such intuition agrees with the concepts, put
forward in neuroscience and gaining momentum in physics, of invariant recognition
(the similar neural representation of the same object in different conditions) and object
manifolds (sets of input stimuli giving rise to the same neural representation) [Coh+20;
CLS18; CLS16; Ans+16; SL00].

Integrating data structure within the framework of statistical mechanics is relatively
straightforward and usually follows two steps: (i) define a generative model for the data,
given in terms of a non-factorized joint probability distribution P (Xp, Yp); (ii) compute
averages over the measure P (the “disorder”); this is what was done for instance in
[Bor+19; CLS18; CLS18; Ger+20]. How to best address data dependence in the SLT for-
malism, instead, is a debated issue. Here we follow a simple strategy inspired by recent
literature in statistical physics: we change the input space X . Each input Xµ is now an
object manifold, i.e., a (possibly countably or uncountably infinite) set of points that, by
definition, are be classified coherently.

In this chapter we focus on a simple realizations of data structure, introduced
in [Bor+19; RLG20], and motivated by the availability of analytical results.

6.1 Simplex learning

In the framework we present here, inputs are “multiplets” of k points with fixed geo-
metric interrelations. The input set is Xp = {Xµ}µ=1,...,p, where each Xµ = {ξµa}a=1,...,k

is a set of k points defined in one of the following spaces:

(i) on the unit (n− 1)-sphere, ξµa ∈ Sn−1:

ξµa · ξµa = 1 for all a = 1, · · · , k ;µ = 1, · · · , p , (6.1)

where the dot indicates the usual scalar product in Rn;

(ii) on the vertices of a n-dimensional hypercube of edge 2:

ξµa,j ∈ {±1} for all a = 1, · · · , k ; µ = 1, · · · , p ; j = 1, · · · , n , (6.2)

a convention we will adopt in the replica calculations to mirror closely the original
Gardner’s approach we explained in section 5.4.
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admissible dichotomy

1

-1

1

-1

non-admissible dichotomy

Figure 6.1: Input data are structured as groups of points sharing the same label (pink = +1,
blue = −1). Each sphere denotes, in a stylized way, a group of points. Singly colored spheres
contribute to admissible dichotomies; conversely, a dichotomy containing a doubly colored sphere
is not admissible. Figure from [RPG20].

In both cases, the k(k − 1)/2 overlaps within each multiplet are fixed:

ξµa · ξµb = ρab for all µ = 1, · · · , p . (6.3)

Note that −1 ≤ ρab ≤ 1. We assume the uniform probability measure on each point
ξµa , conditioned on the constraint on the overlaps. The usual unconstrained ensemble of
points is recovered for k = 1, or at any k if ρab = 1 for all a, b. The name “simplex” is
justified by the fact that, since linear classification is a projective problem, if Y = g(X)
for each X in a set of points Xµ, then Y = g(X) for all X in the convex hull of Xµ. The
input space XS ({ρab}) depends on k and ρab, and is the set of all multiplets with the
given constraints.

Similar dataset have been recently proposed in literature. In [CLS18], a model of seg-
ments with fixed Euclidean length R and random Gaussian centers and orientations is
introduced, resembling our k = 2 case once the endpoints of each segment are normal-
ized to the unit sphere and their overlaps is averaged over their probability distribution.
In [FHU19], the correlations between the points are fixed component-wise, instead that
using their scalar product.

However, the ensemble introduced in this section is promising mainly because, very
recently, the combinatorial approach introduced by Cover was extended to formulate
a mean field theory of simplex learning [RLG20]. The definition we have given above
specifies the ensemble of the setsXp; it remains to define the hypothesis class GM({ρab}).
This is straightforward: one starts from the class G of linear separators in Rn and restricts
it to the class Ĝ({ρab}) of those functions h ∈ G that assign the same label to all points
in each multiplet Xµ (i.e., those that are constant on each multiplet). Then the restricted
hypothesis class is defined as

GM({ρab}) =
{
g : ∃h ∈ Ĝ({ρab}) s.t. ∀Xµ ∈ Xp, g(Xµ) = h(ξ ∈ Xµ)

}
. (6.4)

The functions in Ĝ({ρab}) are called admissible (see Fig. 6.1). The mean-field combinato-
rial theory allows the computation of the average 〈N1(Xp)〉Xp , i.e., the average number
of admissible dichotomies of simplexes that can be realized linearly. We will still de-
note this number with Cn,p, although it depends on the parameters k and {ρab} of the
ensemble.
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The quantities Cn,p satisfy a recurrence relation

Cn,p+1 =

k∑

l=0

θkl Cn−l,p, (6.5)

where the constant coefficients θkl are fixed in turn by the recurrence relation

θkl = ψkθ
k−1
l + (1− ψk) θk−1

l−1 , (6.6)

with boundary conditions

θ1
0 = θ1

1 = 1 , θk−1 = θkk+1 = 0 . (6.7)

The boundary conditions for Eq. (6.5) are difficult to express precisely for generic k.
Here we will assume the boundary conditions in Eq. (5.20) for all k. This approximation
is expected to have a negligible effect for the asymptotic analysis presented in the next
chapter; we checked the validity of this approximation numerically for the first non-
trivial cases k = 2 and k = 3. Each coefficient θkl in Eq. (6.5) depends on k − 1 numbers
{ψm}m=2,...,k, with 0 ≤ ψm ≤ 1, having the following geometric-probabilistic interpreta-
tion. Letw ∈ Sn−1 be a random vector with the flat measure on the unit sphere. Consider
any multiplet Xµ, and a subset X ′ ⊆ Xµ of m ≤ k points. Then ψm is the symmetrized
probability that the scalar product w · ξ has the same sign for all ξ ∈ X ′, conditioned on
it having the same sign for all ξ ∈ X ′ \ {ξ?}:

ψm = 2 〈P [(w · ξ?) > 0 | (w · ξ) > 0 ∀ξ ∈ X ′ \ {ξ?}]〉sym ,

where the symmetrization 〈·〉sym is performed by averaging over all subsets X ′ and over
all choices of ξ? ∈ X ′. These quantities can be expressed in terms of the overlaps ρab,
e.g.,

ψ2(ρ) =
2

π
arctan

√
1 + ρ

1− ρ . (6.8)

The explicit solution of the recurrence (6.5) was given in [RLG20], to which we ad-
dress the reader for more details on ψm and Cn,p for generic k; in the next chapter, we
will see how the methods of analytic combinatorics can be used to obtain the asymptotic
behavior of Cn,p starting from the recurrence relations (6.5) and (6.6). Here, we only
report the solution for doublets (k = 2):

Cn,p = 2

n−2∑

i=0

Ki,p + 2ψ2(ρ)Kn−1,p k = 2 , (6.9)

with

Ki,p =

p−1∑

m=0

(
p− 1

m, i− 2m

)
ψ2(ρ)p−1−i+m [1− ψ2(ρ)]

m
k = 2 , (6.10)

and the multinomial coefficient is defined as
(

n

m1,m2

)
=

n!

m1!m2!(n−m1 −m2)!
. (6.11)
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Moreover, the notion of storage capacity αc can be defined also for structured data, sim-
ilarly to Cover’s unstructured case we discussed in section 5.4.1, Eq. (5.42); the combina-
torial theory yields

αc(k) =

(
k − 1

2
−

k∑

l=2

ψl

)−1

. (6.12)

In the rest of this chapter, we will explain how to obtain this quantity in the replica
framework.

6.2 Storage capacity for multiplets

In this section we retrace, in a similar fashion of our future replica calculations in Chap. 7,
the evaluation of αc for the linear classification of simplexes, performed in [Bor+19]. We
unify the notation and give full details on the steps of the derivation.

6.2.1 Replicated Gardner volume for multiplets

From the above discussion, it should be clear how to generalize the Gardner vol-
ume (5.22) to count the number of ways a linear classifier can assign correctly the labels
on the multiplets in the training set. As each point in a multiplet must have the same
label, this volume is

VG(Xp) =

∫ 


n∏

j=1

dWj


 δ




n∑
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j − n


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k∏

a=1

θ


 σµ√

n
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j=1

Wjξ
µ
a,j


 , (6.13)

where θ(·) is the Heaviside theta, ξµa,j denotes the j-th component of the a-th element of
the µ-th multiplet and the weights lie on the surface of a n-dimensional sphere of radius√
n. Note indeed that data structure is implemented in Eq. (6.13) by asking that each

point of the µth simplex be labeled by σµ. The inputs, constituting the set Xp, are chosen
randomly according to the distribution

dP (Xp) = ν−1

p∏

µ=1

k∏

a=1
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b=1

δ


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]
dξµa,j ,

(6.14)
where −1 ≤ ρab ≤ 1 are the overlaps, ν is a normalization factor and the inputs lie on
the vertices of a n-dimensional hypercube.

In the following, to make the calculations practicable, we focus on the case k = 2
(data in pairs, or “doublets”). We adopt the special notation Xµ =

{
ξµ, ξ̄µ

}
, reserving

the early latin indices for the replicas. The volume becomes

VG =

∫ 
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µ
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
 .

(6.15)
Using the standard integral representations for the delta and theta functions (5.24), we
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can write

VG =

∫ 


n∏

j=1

dWj



∫ +∞

0

[
p∏

µ=1

dλµ dλ̄µ

(2π)2

]∫ +∞

−∞

[
p∏

µ=1

dxµ dx̄µ

]∫ +∞

−∞

dE

2π

× e
iE(

∑
jW

2
j −n)+i

∑
µ x

µ
(
λµ− σµ√

n

∑
jWjξ

µ
j

)
+i
∑
µ x̄

µ
(
λ̄µ− σµ√

n

∑
jWj ξ̄

µ
j

)
,

(6.16)

where the auxiliary variable E enforces the spherical constraint, while the integral rep-
resentation of the theta function is obtained via the auxiliary variables λ, x. Note that
we can always redefine ξµ → σµξµ, ξ̄µ → σµξ̄µ (the rest of the integral an the probability
measure (6.14) are invariant) to get rid of the labels. Replicating t times this volume, we
find

V tG =

∫ 


t∏

a=1

n∏

j=1

dWj,a



∫ +∞

−∞

[
t∏

a=1

dEa
2π

]∫ +∞

−∞

[∏

a<b

dFab dQab
2π

]

× ei
∑
a Ea(

∑
jW

2
j,a−n)+i

∑
a<b Fab(

∑
jWj,aWj,b−nQab)

∫ +∞

0

[
t∏

a=1

p∏

µ=1

dλµa dλ̄µa
(2π)2

]

×
∫ +∞

−∞

[
t∏

a=1

p∏

µ=1

dxµa dx̄µa

]
e
i
∑
a,µ x

µ
a

(
λµa− 1√

n

∑
jWj,aξ

µ
j

)
+i
∑
a,µ x̄

µ
a

(
λ̄µa− 1√

n

∑
jWj,aξ̄

µ
j

)
,

(6.17)
where 1 ≤ a, b ≤ t are replica indices (not to be confused with the indices running
inside the multiplets, a notation we abandoned at the beginning of this section, when
we specialized our calculation to doublets), Qab is the replica matrix (with Qaa = 1) and
Fab are the Lagrange multipliers enforcing the constraint

Qab =
1

n

n∑

j=1

Wj,aWj,b . (6.18)

Eq. (6.17) is the starting point for the quenched computation of the storage capacity for
doublets.

6.2.2 Averaging over the input distribution

To perform the average over the input ensemble, we observe from Eq. (6.14), specialized
to k = 2, that at fixed overlap ρ, given c, d ∈ N the numbers of concordant and discordant
signs of the components of the pair for each µ, then c− d = ρn, c+ d = n, so

c = (1 + ρ)n/2 , d = (1− ρ)n/2 . (6.19)

For each µ, we can freely choose in 2n different ways the components of ξµ, but then for
ξ̄µ we must take c components with the same sign of their counterparts and d with the
opposite. We can do that in

(
n
c

)
different ways, so the normalization factor is

ν = 2pn
(

n
(1+ρ)n

2

)p
. (6.20)

However, the order of the components of the vectors ξ, ξ̄ is completely irrelevant, be-
cause they appear only in scalar products, among themselves (in the overlap constraint)
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and with the same vectorW , whose components again we are free to relabel. This means
that we can choose as a representative of the vector ξ̄, for example, the one with the con-
cordant components at the beginning. We can write the ensemble measure as

dPρ(Ξ) =

p∏

µ=1




c∏

j=1

dP (ξµj )δ(ξµj − ξ̄µj ) dξ̄µj






n∏

j=c+1

dP (ξµj )δ(ξµj + ξ̄µj ) dξ̄µj


 , (6.21)

where
dP (ξµj ) =

1

2

[
δ(ξµj − 1) + δ(ξµj + 1)

]
dξµj . (6.22)

Note that with the choice of a representative we are explicitly breaking the invariance of
the original expression under permutation (relabeling) of the indices j, a symmetry we
will reintroduce by hand in the following calculation.

We can now perform the averages of the volume (6.17). Isolating the only part de-
pending on the inputs in the integrand, we find
∫

dPρ(Ξ) e
−i∑a,µ x

µ
a

∑
j

ξ
µ
j
Wj,a√
n
−i∑a,µ x̄

µ
a

∑
j

ξ̄
µ
j
Wj,a√
n

=

p∏

µ=1

c∏

j=1

cos

[
1√
n

∑

a

(xµa + x̄µa)Wj,a

]
n∏

j=c+1

cos

[
1√
n

∑

a

(xµa − x̄µa)Wj,a

]

≈
p∏

µ=1

e
− 1

2

∑
a,b

[
xµax

µ
b

∑n
j=1

Wj,aWj,b
n +x̄µa x̄

µ
b

∑n
j=1

Wj,aWj,b
n +2xµa x̄

µ
b (
∑c
j=1−

∑n
j=c+1)

Wj,aWj,b
n

]
,

(6.23)
where, in the final step, a large n expansion is performed. The last term at the exponent,
consisting in a sum over j that does not extend over all the n components, cannot be
readily solved inserting the replica matrix, but we can write it as

( c∑

j=1

−
n∑

j=c+1

)
Wj,aWj,b

n
=

(
2

c∑

j=1

−
n∑

j=1

)
Wj,aWj,b

n
. (6.24)

Now, only the first sum is not invariant under permutations of the components. How-
ever, since the starting point was symmetric, we can also multiply this expression by
similar ones obtained with other choices of the vector ξ̄µ, and then take the correspond-
ing root of the result, obtaining an equivalent formula. The trick to restore a complete
sum over the n components, is to multiply by all the c-permutations of n, and then take
the n!/(n− c)!-th root of the result. The only non-trivial term at the exponent during this
procedure is indeed the partial sum, which reads:

(n− c)!
c!

c∑

j=1

∑

π1 6=π2 6=···6=πc
∀i, 1≤πi≤n

Wπj ,aWπj ,b

n
=
c

n

n∑

i=1

Wi,aWi,b

n
. (6.25)

Now we can insert the replica matrix (6.18) in all terms. Using (2c/n− 1) = ρ, and
factorizing the p integrals over the auxiliary variables x and λ, we obtain, for the x and
λ integrals,

{∫ +∞

0

[
t∏

a=1

d2λa
(2π)2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]
e−

1
2

∑
a,bQabx

T
aRxb+i

∑
a x

T
a λa

}p
, (6.26)
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where we already inserted the replica matrix using (6.18) and we introduced the notation

x =

(
x
x̄

)
, λ =

(
λ
λ̄

)
, R =

(
1 ρ
ρ 1

)
(6.27)

The remaining integrals can be performed in the same way as to write Eq. (5.34) in Gard-
ner’s unconstrained calculation, so the resulting averaged replicated volume to be eval-
uated is

V tG =

∫ +∞

−∞

[∏

a<b

dQab

]
e
nt
2 +n

2 log det(Q)

×
{∫ +∞

0

[
t∏

a=1

d2λa
(2π)2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]
e−

1
2

∑
a,bQabx

T
aRxb+i

∑
a x

T
a λa

}p
.

(6.28)

We cannot proceed further, in taking the limit t → 0 as prescribed by the replica
approach, without making an ansatz on the form of the replica matrix Qab. Following
Gardner, we impose the RS ansatz, in which the replica matrix has the form

Qab = (1− q)δab + q , 0 ≤ q ≤ 1 , (6.29)

so that
log det(Q) −→

t→0
t log(1− q) +

tq

1− q . (6.30)

The quadratic form at the exponent of Eq. (6.28) reads

∑

a,b

Qabx
T
aRxb = (1− q)

∑

a

xTaRxa + q

(∑

a

xa

)T
R
(∑

b

xb

)
. (6.31)

The last term can be linearized with a HS transformation:

e−
q
2 [
∑
a xa]

TR[
∑
b xb] =

∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y+i
√
q
∑
a x

T
a y . (6.32)

so that replica indices factorize, to get, after an integration over x,

{∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y

×
[

2π

(1− q)
√

1− ρ2

∫ +∞

0

d2λ

(2π)2
e−

1
2(1−q) (λ+

√
qy)TR−1(λ+

√
qy)

]t}p
. (6.33)

Defining LG(y) the quantity in square brackets, the limit t→ 0 gives

p log

{∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y [LG(y)]
t

}

→ pt

∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y log [LG(y)] . (6.34)
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We can now search for the critical value of the load α = p/n in the limit q → 1, in the
spirit of Gardner’s argument we used to write Eq. (5.39). In this limit, we can evaluate
the integral in d2λ via a saddle-point analysis: we can write it as

∫ +∞

0

d2λ e−
1

2(1−q) f(λ) ,

where

f(λ) =
1

1− ρ2

[
(λ+ y)2 + (λ̄+ ȳ)2 − 2ρ(λ+ y)(λ̄+ ȳ)

]
(6.35)

and 1/(1 − q) is the large parameter of the asymptotic expansion. The stationary point
of the function f is

λ+ y = 0 , λ̄+ ȳ = 0 .

If this point is in the domain of integration, it is clearly the minimum of f(λ), otherwise
we must choose the lowest limit of integration (λ = 0 or λ̄ = 0). In practice:

• if both y < 0, ȳ < 0, then λ? = −y, λ̄? = −ȳ and

f(λ?) = 0 .

• If y > 0, then λ? = 0. To find λ̄? we have to minimize the function

f(0, λ̄) =
1

1− ρ2

[
y2 + (λ̄+ ȳ)2 − 2ρy(λ̄+ ȳ)

]

with respect to λ̄, obtaining
λ̄+ ȳ − ρy = 0 .

This equation admits a solution in the domain λ̄ > 0 only if ȳ < ρy, in which case
λ̄? = ρy − ȳ and

f(λ?) = y2 .

Otherwise we must take λ̄? = 0 and

f(λ?) = f(0, 0) =
1

1− ρ2

[
y2 + ȳ2 − 2ρyȳ

]
.

• If ȳ > 0, then λ̄? = 0. To find λ? we have to minimize the functional

f(λ, 0) =
1

1− ρ2

[
(λ+ y)2 + ȳ2 − 2ρȳ(λ+ y)

]

with respect to λ, obtaining
λ+ y − ρȳ = 0

This equation admits a solution in the domain λ > 0 only if y < ρȳ, in which case
λ? = ρȳ − y and

f(λ?) = ȳ2 .

Otherwise we must take λ? = 0 and again f(λ?) = f(0, 0).
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ȳ = ρy

Figure 6.2: Value of the saddle-point of the function f in Eq. (6.35), for ρ > 0 (left) and for ρ < 0
(right).

These results are summarized in Fig 6.2. Eventually, we find

2π

(1− q)
√

1− ρ2

∫ +∞

0

d2λ

(2π)2
e−

1
2(1−q) (λ+

√
qy)TR−1(λ+

√
qy)

∼ θ(−y)θ(−ȳ) + θ(y)θ(ρy − ȳ)
e−

y2

2(1−q)

y

√
1− q
8π

+ θ(ρȳ − y)θ(ȳ)
e−

ȳ2

2(1−q)

ȳ

√
1− q
8π

+ θ(y − ρȳ)θ(ȳ − ρy)
1

2π

(1− q)(1− ρ2)3/2

(ȳ − ρy)(y − ρȳ)
e−

1
2(1−q)y

TR−1y .

(6.36)

When we take the logarithm of this quantity, ignoring all the terms regular in (1− q), we
find

− 1

2(1− q)
[
θ(y)θ(ρy − ȳ)y2 + θ(ρȳ − y)θ(ȳ)ȳ2 + θ(y − ρȳ)θ(ȳ − ρy)yTR−1y

]
(6.37)

Integrating in y, ȳ:

− 1

2π(1− q)
√

1− ρ2

{∫ +∞

0

dy y2

∫ ρy

−∞
dȳ e

− 1
2(1−ρ2)

(y, ȳ)
(

1 −ρ
−ρ 1

)( y
ȳ

)

+
1

2

∫

D
d2y yTR−1y e−

1
2y

TR−1y

}
(6.38)

where D is the domain defined by the theta functions in the last term of Eq. (6.37) (in
blue in Fig. 6.2). The first integral gives

∫ +∞

0

dy y2

∫ ρy

−∞
dȳ e

− 1
2(1−ρ2)

(y, ȳ)
(

1 −ρ
−ρ 1

)( y
ȳ

)
=
π

2

√
1− ρ2 . (6.39)

To perform the second integral, we can change variables

z = R−1y , (6.40)
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so that

1

2

∫

D
d2y yTR−1y e−

1
2y

TR−1y =
(1− ρ2)

2

∫ +∞

0

d2z zTRz e− 1
2z

TRz

= −(1− ρ2)
d

dβ

∫ +∞

0

d2z e−
β
2 z

TRz
∣∣∣∣
β=1

=
√

1− ρ2
[π

2
− arcsin ρ

]
(6.41)

where, in the last step, we used the known formula for the quadrant probability of a
bivariate Gaussian distribution (see, for example, [Gup63]):

∫ +∞

0

d2z e−
β
2 z

TRz =
2π
√

1− ρ2

β(1− ρ2)

[
1

4
− 1

2π
arcsin ρ

]
. (6.42)

Finally, the integral (6.38) becomes

− 1

4(1− q)

[
2− 2

π
arcsin(ρ)

]
= − 1

4(1− q)

[
1 +

4

π
arctan

(√
1− ρ
1 + ρ

)]
(6.43)

The measure part has the same pole in (1 − q) as Gardner’s: when we sum the two
contributions and impose that the resulting quantity must be null, we find

1− p

n

[
1

2
+

2

π
arctan

(√
1− ρ
1 + ρ

)]
= 0 , (6.44)

so that the critical value of the load is

αc(ρ) =

[
1

2
+

2

π
arctan

(√
1− ρ
1 + ρ

)]−1

=

[
3

2
− 2

π
arctan

(√
1 + ρ

1− ρ

)]−1

. (6.45)

We point out here an interesting limit of Eq. (6.45), to convince the reader of the
correctness of the result: when ρ → −1, the points in a doublet are on opposite vertices
of the unitary hypercube. The only way to classify all the doublets coherently with a
plane, is to find a vector W which is perpendicular to all of them. This means that the
problem reduces to a linear classification problem in dimension n − p (because of the p
constraints). As we know from Eq. (5.40) that the critical value of the capacity is 2, we
find the equation

p

n− p = 2 . (6.46)

However, in term of the capacity of the original problem we know that pc = αcn, so we
find

αc =
2

3
= lim
ρ→−1

[
3

2
− 2

π
arctan

(√
1 + ρ

1− ρ

)]−1

. (6.47)

For a similar reasoning, see [CLS18].
Please note finally that Eq. (6.45) is in agreement with Eq. (6.12) for k = 2: since,

to perform the replica calculations, we used a RS ansatz (6.29), while the combinatorial
approach returns directly a quenched result, we can conclude that, as in the case of the
classical Gardner’s calculation for isolated points we explained in Sec. 5.4, replica sym-
metry breaking does not occur in the phase space whose partition function is represented
by the volume (6.13), that is the space of the solutions of the linear classification problem
we deal with in this section (see, for more details, [Bor+19]).



CHAPTER 7

Beyond the storage capacity: a data driven satisfiability
transition

In this chapter, we set out to investigate the behavior of the VC entropy of linear classi-
fiers for the data structures defined in Chap. 6, simplexes of k points in Rn, in order to
quantify how loose the logarithmic upper bounds from SLT are. We do so by means of
two complementary approaches:

(i) we devise a combinatorial framework extending the original Cover’s computation
of Sec. 5.3, evaluating the asymptotic behavior of the number of dichotomies Cn,p
for generic k and overlaps between the points. This method allows us to access
directly the VC entropy for the learning problem defined in section 6.1. Moreover,
we find a novel transition beyond the Gardner’s storage capacity: indeed, not only
the fraction of dichotomies cn,p = Cn,p/2

p is bounded and complies with Eq. (5.41),
but, in the case of structured data, Cn,p itself is non-monotonic in the load, decreas-
ing to zero in the thermodynamic limit after a point α∗ > αc;

(ii) we identify the appropriate synaptic volume to evaluate the point α∗within replica
theory.

The transition identified by the load’s novel critical value α∗ is the point where, in the
thermodynamic limit, no more solution of the linear classification problem of random
multiplets, regardless to the specific values of the multiplets’ labels, can be found: after the
transition, even adjusting at will the labels, there is no hyperplane subdividing the multi-
plets coherently, i.e. without breaking any of them. Indeed, we clarify that this transition,
which is not present in the case of linear separation (without margin) of isolated point,
is due to the competition between an entropic contribution (as the number of multiplets
increases, so does the number of ways to classify them) and an energetic contribution
(which suppresses the dichotomies not respecting the structure of the multiplets: from
a geometrical point of view, this term accounts for the excluded volume due to data
structure). In the replica approach, we find that the synaptic volume associated to this
transition, which is different from the generalized Gardner’s one (6.13), exhibits some
level of replica symmetry breaking that we are able to analyze heuristically in Sec. 7.2,
exploiting the comparison with the combinatoric results. The exposition is mostly taken
from [Pas+20].

7.1 Combinatorial approach

7.1.1 Asymptotic analysis via analytic combinatorics

In the case of unstructured data, we know that the growth of Cn,p as a function of p
is exponential up to the capacity pc = 2n and sub-exponential afterwards. Due to this
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change of behavior, the fraction of linearly realizable dichotomies, cn,p = Cn,p/2
p, has

a discontinuous transition from 1 to 0 in the thermodynamic limit (see Fig. 7.1a). What
is the asymptotic growth rate of Cn,p? This question can be answered by inspecting
the explicit solution Eq. (5.18). However, we construct a different method here, based
on the techniques of analytic combinatorics. Our method has the crucial advantage of
being applicable to cases where (i) the solution Cn,p is not known explicitly, and (ii) the
recurrence equation is given implicitly, as a relation between its coefficients.

Let gn(z) be the ordinary generating function of Cn,p with respect to the variable p:

gn(z) =

∞∑

p=1

Cn,pz
p. (7.1)

Formally, the coefficient Cn,p can be obtained by derivation as

Cn,p =
1

p!

dp

dzp
gn(z)

∣∣∣∣
z=0

. (7.2)

When it is unfeasible to compute the pth derivative explicitly, one can extract information
on the asymptotic behavior of Cn,p for large p by means of analytic techniques (see for
instance [FS09]).

Whenever the generating function Eq. (7.1) is a rational function analytic in z = 0, it
admits a partial fraction expansion

gn(z) = Qn(z) +
∑

s

rs∑

r=1

as,r
(z − zs)r

, (7.3)

where Qn is a polynomial, s ranges over the poles of gn, and rs is the multiplicity of the
pole s. Then, the asymptotic form of the coefficients of gn(z) can be read off the series
expansion of (z − zs)−r:

(z − zs)−r =
(−1)r

zrs

∞∑

p=0

(
p+ r − 1

r − 1

)
z−ps zp. (7.4)

By substituting (7.4) in Eq. (7.3) one obtains rs different contributions for each pole s.
The overall leading term corresponds to the dominant singularity z0 of gn(z), i.e., the
one with smallest modulus |z0|. This is due to the term z−ps in (7.4) that suppresses the
sub-dominant poles exponentially. Among the contributions due to z0, the leading one
is that with r = rs, because the binomial coefficient in (7.4) is a polynomial of degree
r − 1 in p. Putting it all together, if the dominant singularity is a pole of order r, then

Cn,p ∼ Rz−p−r0

(
p+ r − 1

r − 1

)
, (7.5)

where the constant R can be obtained by factoring out the singularity:

R = lim
z→z0

(z0 − z)rgn(z). (7.6)

Equation (7.5) shows that if |z0| < 1 (respectively, > 1), Cn,p increases (respectively,
decreases) exponentially with p at fixed n; if |z0| = 1 then the asymptotic behavior is
polynomial (of order r − 1).
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In simple cases, when it is possible to obtain gn(z) in closed form, this method can
be applied straightforwardly. However, this set up allows to probe the asymptotics of
Cn,p even in more complicated scenarios, where gn(z) cannot be solved for explicitly,
or when even the recurrence relation for gn(z) is not specified completely. Section 7.1.5
shows how to tackle this more general problem. Before that, we consider the simpler
cases k = 1 and k = 2.

7.1.2 Asymptotics for unstructured data

As a “warm-up exercise”, we use the combinatorial method described above to explore
the asymptotics of Cn,p in the well-understood unstructured case of section 5.3.

By multiplying both sides of Eq. (5.19) by zp and summing over p one obtains

1

z
gn(z)− 2 = gn(z) + gn−1(z), (7.7)

where the constant term 2 comes from the initial condition (5.20). It is useful to rewrite
the equation as

gn(z) =
z

1− z [gn−1(z) + 2] . (7.8)

The boundary condition is g0(z) = 0, due to every C0,p being zero. The relation (7.8)
is a linear (non homogeneous) first-order recurrence with constant coefficients, whose
solution is

gn(z) =
2z

2z − 1

[(
z

1− z

)n
− 1

]
. (7.9)

Equation (7.9) shows that gn(z) has a single pole at z0 = 1, of order n, with finite part
R = 2. Therefore, the corresponding asymptotic form has no exponential factor, and is
purely polynomial:

Cn,p ∼ 2

(
p+ n− 1

n− 1

)
=

2

(n− 1)!
pn−1 +O

(
pn−2

)
. (7.10)

Note that the right-hand side of Eq. (7.9) has a removable discontinuity in z1 = 1/2,
where the apparent pole in the first term gets canceled by a zero in the numerator
(the term in square brackets). The corresponding exponential asymptotic growth, 2p,
is present in Cn,p only transiently, for p < n.

7.1.3 Non-monotonicity of the VC entropy for structured data

The behavior of Cn,p, and therefore of the VC entropy, changes dramatically when data
structure is present, already in the simplest case where the training data are structured
as pairs of points, i.e., k = 2. Figure 7.1 shows the fraction of dichotomies, Cn,p/2p, and
the number of dichotomies, Cn,p, as functions of α for increasing values of the dimension
n, for k = 1 and k = 2 with ρ = 0.3. The fraction of dichotomies is qualitatively similar
in the two scenarios, the only apparent difference being the expected decrease in the
storage capacity. A remarkable divergence appears instead in the asymptotic behavior
of Cn,p. The absolute number of dichotomies is non-monotonic for simplex learning
already in the simplest non-degenerate case k = 2 with ρ < 1. What is also evident in
Fig. 7.1b is the fact that the storage capacity αc(k) does not pinpoint any qualitatively
special point for the unnormalized Cn,p, and therefore for the VC entropy.
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of dichotomies (b) has different limit behaviors. As a consequence, the VC entropy (c) diverges to
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Since the two-point case k = 2 is the simplest case where the non-monotonicity of
the VC entropy arises, we work it out in detail, before showing the general k-point case
below. The geometry of the problem is fixed by the single quantity ψ2. The recurrence
equation reads

Cn,p+1 = ψ2Cn,p + Cn−1,p + (1− ψ2)Cn−2,p, (7.11)

with boundary conditions C0,p = 0, Cn,1 = 2{1 − [1 − ψ2(d)]δn,1}. In order to simplify
the computations, we will use the same boundary conditions as for k = 1, i.e., C0,p = 0
and Cn≥1,1 = 2. This approximation has negligible effects in the large-n limit [RLG20].

Equation (7.11) fixes the recurrence relation satisfied by the generating function gn(z):

gn(z) =
z

1− ψ2z
[gn−1(z) + (1− ψ2)gn−2(z) + 2] , (7.12)

with boundary condition gn≤0(z) = 0. The solution, which can be found by means of
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the characteristic polynomial method, reads

gn(z) =

[
z −

√
∆(z)

2(1− ψ2z)

]n
z

2z − 1

(
1 + z

2ψ2 − 3√
∆(z)

)

+

[
z +

√
∆(z)

2(1− ψ2z)

]n
z

2z − 1

(
1− z 2ψ2 − 3√

∆(z)

)
− 2z

2z − 1
,

where ∆(z) = z[4(1 − ψ2) + z(1 − 2ψ2)2]. The explicit solution has a pole of order n in
z0 = 1/ψ2, with finite part

R = 2ψ−2n
2 . (7.13)

Similarly to the unstructured case, the singularity in z = 1/2 is removable, which signals
that the initial exponential increase of the number of dichotomies must be superseded
eventually by the asymptotic behavior due to z0. Altogether, the large-p form of Cn,p is

Cn,p ∼ 2

(
p+ n− 1

n− 1

)
ψp−n2 . (7.14)

The crucial difference between the results for k = 1, Eq. (7.10), and k = 2, Eq. (7.14),
lies in the fact that while the first is asymptotically increasing, the second is exponentially
decreasing whenever ψ2 < 1, i.e., when the two partner points are distinct. Observe that
Cn,p always increases for small p; this is a consequence of the fact that the VC dimension
of a linear classifier in n dimensions is dVC = n, therefore all dichotomies of kp points
can be realized when p ≤ n/k, meaning that Cn,p≤n/k = 2p. The decreasing asymptotic
form then proves that the VC entropy Hn,p is non-monotonic in p (and therefore in α)
for fixed n. Intuitively, the non-monotonicity is due to the competition of two opposing
effects. On one hand, the addition of a new pair of points {ξ, ξ̄} to a set of p existing pairs
entails a combinatorial increase in the total number of linearly-realizable dichotomies.
On the other hand, some of the Cn,p admissible dichotomies can become invalid if they
are realizable only by hyperplanes intersecting the segment connecting ξ and ξ̄.

7.1.4 Emergence of a data-driven satisfiability transition

A non-trivial consequence of the non-monotonic VC entropy can be observed in Fig. 7.1c.
Consider the VC entropy Hn,αn as a function of α. The curves Hn,αn at different values
of n intersect each other roughly around the same point α∗. More precisely, ifHn,αn and
Hn−1,α(n−1) intersect at α∗(n), then α∗ = limn→∞ α∗(n). This empirical observation can
be clarified analytically.

As a function of the load α = p/n, Eq. (7.14) becomes

Cn,αn ∼ C(α;n) ≡ 2
Γ (αn+ n)

Γ(n)Γ (αn+ 1)
ψ

(α−1)n
2 (7.15)

(Γ is the Euler gamma function), orHn,αn ∼ H(α;n) with

H(α;n) ≡ log

[
2

Γ (αn+ n)

Γ(n)Γ (αn+ 1)

]
+ (α− 1)n logψ2. (7.16)

In the non-degenerate case (whenever ψ2 < 1) the second term in (7.16) is negative for
α > 1, while the first term is always positive. This competition gives rise to a transition
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at α = α∗ > 1, where the asymptotic limit of the VC entropy changes:

lim
n→∞

H(α;n) =

{
−∞ α < α∗
∞ α > α∗.

(7.17)

The transition point is pinpointed by the condition

lim
n→∞

d

dn
H(α∗;n) = 0. (7.18)

WithH(α;n) given by Eq. (7.16), the condition reads

lim
n→∞

[(α∗ − 1) logψ2 + (α∗ + 1)Ψ(α∗n+ n)−Ψ(n)− α∗Ψ(α∗n+ 1)] = 0, (7.19)

where Ψ(z) ≡ ∂z log Γ(z) is the poly-gamma function, whose asymptotic behavior is
Ψ(z) = log(z) +O(1/z). Sending n to infinity then gives the transcendental equation

(α∗ + 1) log(α∗ + 1)− α∗ logα∗ + (α∗ − 1) logψ2 = 0, (7.20)

which has two solutions: α∗ is the larger. As a function of ψ2, the transition point α∗ has
limits

lim
ψ2→0

α∗ = 1 , lim
ψ2→1

α∗ =∞. (7.21)

As expected, when ψ2 goes to 1, the problem reduces to that of classifying unstructured
data, and the transition runs to infinity.

The phase transition at α∗ can be rationalized as the SAT-UNSAT transition of a ran-
dom constraint satisfaction problem (CSP). First, we recall that the storage capacity αc

itself corresponds to the transition between the satisfiable and the unsatisfiable phase
of an appropriate satisfiability problem, as we briefly mentioned in Chap. 5. The CSP
relevant to αc can be stated as follows:

Constraint satisfaction problem 1. Given a set of kn input-label pairs {ξµa , σµ} (with a =
1, . . . , k and µ = 1, . . . , p), find a vector w such that sign(w · ξµa ) = σµ for all µ and a.

The input data of this problem satisfies the admissibility constraints by construction.
A corresponding random constraint satisfaction problem (rCSP) is an ensemble of CSPs,
specified by a probability measure on the input data. The rCSP is in the SAT (respec-
tively UNSAT) phase when the satisfiability problem admits a solution with probability
one (respectively zero) in the thermodynamic limit. The storage capacity (6.12) marks
the transition between the SAT and the UNSAT phases of the rCSP corresponding to
problem 1 with the probability measure of simplex learning described in Chap. 6

A different problem can be constructed by moving the admissibility property from
the definition of the input data to the conditions defining the solution:

Constraint satisfaction problem 2. Given a set of kn input points {ξµa}, (with a = 1, . . . , k
and µ = 1, . . . , p), find a set of labels {σµ} and a vector w such that sign(w · ξµa ) = σµ for all µ
and a.

Notice that this problem is trivially satisfiable for unstructured data, i.e., it is satisfied
by almost all vectors w when the constraint of admissibility is irrelevant (i.e., when k =
1). A solution to problem 2 is given by specifying an admissible dichotomy {σµ} and
a vector w. In this framework, the VC entropy counts the (logarithm of the) number
of distinct dichotomies {σµ} that can appear in such a solution. This means that the
corresponding rCSP is in the UNSAT phase when H(α;n) → −∞ and in the SAT phase
otherwise.
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7.1.5 Transition point for generic k

Now we address the more general case where the number of partners in a multiplet is k.
The generating function gn(z) satisfies the recurrence equation

gn(z) =
z

1− zθk0

[
2 +

k∑

l=1

θkl gn−l(z)

]
, (7.22)

as can be obtained from Eq. (6.5). Solving for gn(z) from Eqs. (7.22) and (6.6) would be
hopeless. However, the asymptotic analysis discussed above only needs three pieces of
information about gn(z), namely (i) the location z0 of the dominant singularity, (ii) its
order r, and (iii) its finite part R. These can be extracted from the recurrence relations
without solving them.

The right-hand side of Eq. (7.22) has a singularity in z = 1/θk0 . The boundary condi-
tion is gn≤0(z) = 0, therefore the first non-zero function is g1(z) = 2σ(z), where

σ(z) =
z

1− zθk0
(7.23)

encapsulates the singularity. Since the number of terms in the sum in Eq. (7.22) is finite,
no other singularity can appear at finite n. Therefore

z0 =
1

θk0
. (7.24)

Now consider one iteration of Eq. (7.22): the singularity with largest order in the right-
hand side comes from gn−1(z), and the singular term gets multiplied by θk1σ(z). Indeed,
it is easy to see by induction that the leading term ĝn(z) in the Laurent expansion of gn(z)
around z0 is

ĝn(z) = 2
(
θk1
)n−1

σ(z)n. (7.25)

Therefore, the order of the singularity is r = n. The constantR [Eq. (7.6)] can be obtained
by multiplying Eq. (7.25) by (1/θk0 − z)n and evaluating it at z = 1/θk0 :

R = 2
(
θk1
)n−1 (

θk0
)−2n

. (7.26)

Finally, the asymptotic behavior of Cn,p is

Cn,p ∼ 2

(
p+ n− 1

n+ 1

)(
θk1
)n−1 (

θk0
)p−n

, (7.27)

from which one readily obtains the asymptotic form C(α;n) for the number of di-
chotomies,

C(α;n) = 2
Γ(αn+ n)

Γ(n)Γ(αn+ 1)

(
θk1
)n−1 (

θk0
)(α−1)n

, (7.28)

and the corresponding one for the VC entropy,

H(α;n) = log

[
2

Γ(αn+ n)

Γ(n)Γ(αn+ 1)

]
+ (n− 1) log θk1 + (α− 1)n log θk0 . (7.29)

As above, the existence of a critical value α∗ can be established by finding the zeros
of the derivative ofH(α;n) with respect to n, in the large-n limit. One finds

(α∗ + 1) log(α∗ + 1)− α logα∗ + (α∗ − 1) log θk0 + log θk1 = 0. (7.30)
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The two coefficients θk0 and θk1 can be obtained from Eq. (6.6) as functions of the ψ’s.
By solving the recurrence equation, specialized to l = 0, one has

θk0 =

k∏

m=2

ψm. (7.31)

Then, by substituting expression (7.31) into Eq. (6.6) with l = 1, one obtains the recur-
rence relation

θk1 = ψkθ
k−1
1 + (1− ψk)

k−1∏

m=2

ψm, (7.32)

with boundary condition θ1
1 = 1. The solution is

θk1 =

(
2− k +

k∑

m=2

1

ψm

)
k∏

m=2

ψm. (7.33)

Specializing to k = 3, for instance, yields

θ3
0 = ψ3ψ2

θ3
1 = ψ3 + ψ2 − ψ3ψ2.

(7.34)

Because of the way θk0 and θk1 are constructed via the geometric quantities ψm ∈ [0, 1],
they are not independent. The range of θk0 is [0, 1], as can be seen from Eq. (7.31). The
sup and inf of θk1 at fixed θk0 can be obtained by considering the two extremal cases

(i) {ψm}m =
{

1, . . . , 1, θk0 , 1, . . . , 1
}
,

(ii) {ψm}m = {
(
θk0
)1/(k−1)

, . . . ,
(
θk0
)1/(k−1)}.

(7.35)

The fact that the evaluation on the two extremal cases gives the appropriate bounds
is not obvious: it can be proved by induction using Lagrange’s theorem for constrained
optimization (taking care to consider the boundary of the domain as well); see Appendix
1 of [Pas+20]. From (i) and (ii) respectively one gets

(i) sup θk1 = 1,

(ii) inf θk1 = (k − 1)
(
θk0
)1− 1

k−1 + (2− k)θk0 .
(7.36)

The inf is monotonically decreasing with k; therefore, by letting k → ∞ one obtains a
global lower bound independent of k:

θk1 > θ∞1 = θk0
[
1− log θk0

]
. (7.37)

The upper bound (i) is already k-independent.
Figure 7.2 summarizes the results concerning the value of α∗ for generic k. It also

shows a comparison with numerical results obtained for k = 3, (with {ρab} given by the
equilateral geometry). The theoretical bounds in the figure (dashed lines) are obtained
by substituting the k-independent bounds above into Eq. (7.30).

We point out that there are two sources of approximation in the computations above,
namely (i) the modified boundary conditions, and (ii) the perturbative nature of the
asymptotic analysis. Concerning (i), we remark that the numerical results were obtained
by using the correct boundary conditions. However, using the modified conditions does
not change the numerical results appreciably. The small discrepancies apparent in the
Fig. 7.2 are therefore due almost entirely to (ii).
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Figure 7.2: (a) Numerical estimates of α∗ at varying θk0 for two different geometries: k = 2 (where
θ20 is just ψ2) and k = 3. In the latter case we fix {ρab} by requiring that the three points in the
simplex form an equilateral triangle of varying sizes. (b) Theoretical results (red curves) for α∗
as a function of θk0 for increasing values of θk1 , within its allowed range given by Eqs. (7.36) and
(7.37). Dashed lines in both panels are the k-independent upper and lower bounds for α∗. Figure
from [Pas+20].

7.1.6 Finite-size scaling at the critical point

In the vicinity of the transition point α∗, the quantity C(α;n) satisfies finite-size scaling,
as happens for other random satisfiability problems [KS94; LRZ01]. In this section we
compute the scaling form and its critical exponents.

Let us define a scaling variable y as n times the reduced load (α−α∗)/α∗ around α∗:

y = n
α− α∗
α∗

. (7.38)

By inserting α = α∗y/n + α∗ in Eq. (7.28), and using the asymptotic expansion of the Γ
function,

Γ(x) = ex log x−x
[√

2πx−1/2 +O
(
x−3/2

)]
, (7.39)

one obtains in the large-n limit

C(α;n) = enA+B

[ √
2/π√

α∗(1 + α∗)
n−1/2 +O

(
n−3/2

)]
,

with

A = (α∗ + 1) log(α∗ + 1)− α∗ logα∗ + (α∗ − 1) log θk0 + log θk1 ,

B = − log θk1 + α∗y log(α∗ + 1)− α∗y logα∗ + α∗y log θk0 .

The linear term nA in the exponential vanishes by Eq. (7.30). Hence,

C(α;n) = n−1/2 1

θk1

√
2/π√

α∗(1 + α∗)

(
α∗ + 1

α∗
θk0

)α∗y [
1 +O

(
n−3/2

)]
, (7.40)
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which shows that in the thermodynamic limit C(α;n) obeys the scaling form

C(α;n) = n−1/2F

(
α− α∗
α∗

n

)
(7.41)

with the exponential scaling function

F (y) =
1

θk1

√
2/π√

α∗(1 + α∗)

(
α∗ + 1

α∗
θk0

)α∗y
. (7.42)

Equation (7.41) shows that, within the approximation of our asymptotic analysis, the
number of dichotomies satisfies the finite-size scaling form

Cn,αn ∼ n−β/νF
(
α− α∗
α∗

n1/ν

)
(7.43)

(where F is regular), with critical exponents

β = 1/2, ν = 1. (7.44)

Let h(α) be the VC entropy density in the thermodynamic limit:

h(α) = lim
n→∞

1

n
H(α;n). (7.45)

The condition h(α) = 0, satisfied by α∗, can be written from Eq. (7.42) as

(α− α∗) log

(
α∗ + 1

α∗
θk0

)
= 0. (7.46)

Curiously, Eq. (7.46) is satisfied identically in α if α∗ = θk0/(1 − θk0 ). By plugging this
value of α∗ into Eq. (7.30), one obtains the simple condition θk1 = θk0 (1 − θk0 ). For data
structure with θk0 and θk1 satisfying this relation, one therefore expects that C(α;n) is
constant in α in the large-n limit; equivalently, the VC entropy will be approximately
independent of the load,Hn,p ∼ Hn.

7.2 Replica approach

The discussion in the foregoing sections shows that (i) the VC entropy has non-
monotonic behavior for simplex learning, (ii) the hallmark of the non-monotonicity is
the existence of a phase transition, and (iii) the transition can be framed as the SAT-
UNSAT transition of a constraint satisfaction problem, which is different from the one
that defines the storage capacity. Since it is often challenging to deal with the combina-
torics of complex data structures, our goal in this section is to identify an appropriate
synaptic volume that provides access to the transition. Once this observable is identified,
we will be able to pinpoint the existence of the phase transition without direct access to
the VC entropy, in the same spirit of the original work by Gardner [Gar87] we reported
in sections 5.4 and 6.2, by using disordered systems techniques.

We define the synaptic volume by leveraging on the definition of the CSP correspond-
ing to the transition. As already noted, in looking for a solution to the constraint satis-
faction problem 2 (defined in Sec. 7.1.4), we have the freedom to adjust both the synaptic
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weightsW and the outputs σ. This means that the outputs are promoted to be dynamical
variables and should be treated at the same level of the synaptic weights. This suggests
that the relevant synaptic volume for identifying the corresponding phase transition is
the following:

V (Xp) =
∑

{σµ=±1}

∫ 


n∏

j=1

dWj


 δ




n∑

j=1

W 2
j − n




p∏

µ=1

k∏

a=1

θ


 σµ√

n

n∑

j=1

Wjξ
µ
a,j


 , (7.47)

where θ(·) is the Heaviside theta, ξµa,j denotes the j-th component of the a-th element
of the µ-th multiplet and the weights lie on the surface of a n-dimensional sphere of
radius

√
n The inputs, constituting the set Xp, are chosen randomly according to the

distribution (6.14).
This synaptic volume differs from the ordinary Gardner volume (6.15) by the integra-

tion over the labels σ, considered dynamical variables on the same foot of the weightsW .
Intuitively, an exponential growth of V (X) with n at fixed load α means that, in the ther-
modynamic limit, at least one classification compatible with the input-label constraints
can be expressed by the model; on the contrary, when V (X) decreases exponentially in
n then no such classification exists for n → ∞. Thus, the logarithm of V (X) is a suit-
able observable to assess the non-monotonic behavior of the VC entropy for a given data
structure.

We will apply replica theory to compute the averaged (over the inputs positions)
logarithm of the synaptic volume defined in Eq. (7.47), in order to identify the transition.
The goal will be the evaluation of the critical value of α where this volume changes
regime, as a function of the overlaps. In the following, we will restrict to the case k = 2,
i.e. to data organized in doublets, so that the geometry of the simplex is fully specified
by a single parameter ρ; as we did in Sec. 6.2, to lighten the notation, we will omit
the index a = 1, 2, simply denoting the doublets as (ξ, ξ̄). Using the standard integral
representations for the delta and theta functions, Eq. (5.24), we can write the volume of
interest as

V =
∑

{σµ=±1}

∫ 


n∏

j=1

dWj



∫ +∞

0

[
p∏

µ=1

dλµ dλ̄µ

(2π)2

]∫ +∞

−∞

[
p∏

µ=1

dxµ dx̄µ

]∫ +∞

−∞

dE

2π

× e
iE(

∑
jW

2
j −n)+i

∑
µ x

µ
(
λµ− σµ√

n

∑
jWjξ

µ
j

)
+i
∑
µ x̄

µ
(
λ̄µ− σµ√

n

∑
jWj ξ̄

µ
j

)
,

(7.48)

where the auxiliary variable E enforces the spherical constraint, while the standard in-
tegral representation of the theta function is obtained via the auxiliary variables λ, x.

We dedicate the following sections to the calculation of the averaged logarithm of this
volume in the annealed, replica symmetric (RS) and one-step replica symmetry break-
ing (1RSB) approximations. We start from the easiest one, the annealed approximation,
because we have no a priori knowledge on the kind of transition, as the volume V in
Eq. (7.48) is different from the Gardner volume (6.16), due to the summation over the
labels. However, we find a posteriori that we need at least the 1RSB evaluation to ob-
serve quantitative accordance with the combinatorial result, suggesting that the transi-
tion present some level of replica symmetry breaking. The main results of this section, to
which we address the reader not interested in the details, are Eq. (7.53), (7.67) and (7.79).
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7.2.1 Annealed computation

The annealed calculation is based on the substitution log V → log V , so we simply need
to average the volume (7.48) with respect to the input distribution (indicated by the
overline); the strategy is the same as the one devised in section 6.2.2. After a large-
n expansion and the average over the inputs, the integrals in x and λ can be solved
explicitly:

[ ∑

{σ=±1}

∫ +∞

0

d2λ

(2π)2

∫ +∞

−∞
d2x e−

1
2x

TRx+ixTλ

]p
=

[
2

∫ +∞

0

d2λ

(2π)2

2π√
1− ρ2

e−
1
2λ

TR−1λ

]p

=

[
1

2
+

1

π
arcsin ρ

]p
,

(7.49)
where we introduced the notation (6.27) and we used the known formula for the quad-
rant probability of a bivariate normal distribution, see [Gup63]. The remaining integrals
can be performed: the one over the weights is Gaussian

∫ 


n∏

j=1

dWj


 eiE

∑
jW

2
j = en[ 1

2 log π− 1
2 log(−iE)] , (7.50)

while the one over E can be performed via a saddle-point method for large n:

∫ +∞

−∞

dE

2π
e−inE−

n
2 log(−iE) ∼ 1

2
√
πn

en[ 1
2 + log 2

2 ] . (7.51)

Assembling everything, and ignoring inessential factors, we find

V = exp

{
n

[
p

n
log

(
1

2
+

1

π
arcsin ρ

)
+

1 + log 2π

2

]}
. (7.52)

Defining the critical value of α = p/n as the one where the exponent changes sign, we
find

αA∗ (ρ) = − 1 + log 2π

2 log
(

1
2 + 1

π arcsin ρ
) . (7.53)

A comparison of the annealed approximation and of the result obtained with com-
binatorics in Eq. (7.20) is shown in Fig. 7.3. Although the annealed approximation fails
in reproducing quantitatively the behavior of α∗(ρ), it bounds the combinatorial result
from below, and qualitatively recovers the expected divergence for ψ2 → 1.
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Figure 7.3: Critical value of the loadα as a function of the overlap ρ for k = 2 (data in pairs). Circles
represent the combinatorial result solution of Eq. (7.20), which is in agreement with numerical
simulations [performed, as a crude check, in this way: fix a plane; launch randomly a set of p
doublets and check if the plane realizes an admissible dichotomy; if not, go on launching sets of p
doublets up to a certain large number; if no (at least one) launch has been separated correctly by
the plane, we say that we are in the UNSAT (SAT) phase; change p to explore the region]. All the
different approximation schemes used for the replica computations display the same qualitative
shape. However the annealed and RS ansatz fail in reproducing quantitatively the combinatorial
result. Using a 1RSB ansatz we obtain a one-parameter expression for α∗ [Eq. (7.79)] that fits the
combinatorial result tightly. Figure from [Pas+20].

7.2.2 Quenched computation

The quenched calculation of log V is performed via the replica trick. First, we replicate t
times the volume (7.48), obtaining

V t =
∑

{σµa=±1}

∫ 


t∏

a=1

n∏

j=1

dWj,a



∫ +∞

−∞

[
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a=1

dEa
2π

]∫ +∞

−∞

[∏

a<b

dFab dQab
2π

]

× ei
∑
a Ea(

∑
jW

2
j,a−n)+i

∑
a<b Fab(

∑
jWj,aWj,b−nQab)

∫ +∞

0

[
t∏

a=1

p∏

µ=1

dλµa dλ̄µa
(2π)2

]

×
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[
t∏
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dxµa dx̄µa

]
e
i
∑
a,µ x

µ
a

(
λµa−

σ
µ
a√
n

∑
jWj,aξ

µ
j

)
+i
∑
a,µ x̄

µ
a

(
λ̄µa−

σ
µ
a√
n

∑
jWj,aξ̄

µ
j

)
,

(7.54)
where 1 ≤ a, b ≤ t are replica indices, Qab is the replica matrix (with Qaa = 1) and Fab
are the Lagrange multipliers enforcing the constraint

Qab =
1

n

n∑

j=1

Wj,aWj,b . (7.55)



104 7.2 Replica approach

Now we can perform the average over the input ensemble. With the same steps we used
to get equation (7.49) (see section 6.2.2), we obtain, for the x and λ integrals,
{ ∑

{σa=±1}

∫ +∞

0

[
t∏

a=1

d2λa
(2π)2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]
e−

1
2

∑
a,bQabx

T
aRxb+i

∑
a σax

T
a λa

}p
, (7.56)

where we already inserted the replica matrix using (7.55) and we isolated the outputs
σ in the source term via the transformation x → σx. As in Gardner’s calculation, the
remaining integral over the weights is Gaussian:

∫ 
∏

a,j

dWj,a


 ei

∑
a Ea

∑
jW

2
j,a+i

∑
a<b Fab

∑
jWj,aWj,b = e−

n
2 log det(−iG)+nt

2 log(2π) , (7.57)

where G is the symmetric matrix defined in Eq. (5.31); the integral over the elements of
G is performed via a saddle-point. Finally, the resulting averaged replicated volume to
be evaluated is

V t =

∫ +∞

−∞

[∏

a<b

dQab

]
e
nt
2 +n

2 log det(Q)

×
{ ∑

{σa=±1}

∫ +∞

0

[
t∏

a=1

d2λa
(2π)2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]
e−

1
2

∑
a,bQabx

T
aRxb+i

∑
a σax

T
a λa

}p
.

(7.58)
We cannot proceed further, in taking the limit t → 0 as prescribed by the replica ap-
proach, without making an ansatz on the form of the replica matrix Qab.

RS ansatz

In the RS ansatz, the replica matrix has the form

Qab = (1− q)δab + q , 0 ≤ q ≤ 1 , (7.59)

so that
log det(Q) →

t→0
t log(1− q) +

tq

1− q . (7.60)

The quadratic form at the exponent of Eq. (7.58) reads

∑

a,b

Qabx
T
aRxb = (1− q)

∑

a

xTaRxa + q

(∑

a

xa

)T
R
(∑

b

xb

)
. (7.61)

The last term can be linearized with a Hubbard-Stratonovich transformation:

e−
q
2 [
∑
a xa]

TR[
∑
b xb] =

∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y+i
√
q
∑
a x

T
a y . (7.62)

so that replica indices factorize, to get, after an integration over x,
{∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y

×
[

2π

(1− q)
√

1− ρ2

∑

{σ=±1}

∫ +∞

0

d2λ

(2π)2
e−

1
2(1−q) (λ+σ

√
qy)TR−1(λ+σ

√
qy)

]t}p
. (7.63)
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Defining LRS(y) the quantity in square brackets, the limit t→ 0 gives

p log

{∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y [LRS(y)]
t

}

→ pt

∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y log [LRS(y)] . (7.64)

Since we are looking for the critical value of α of the SAT-UNSAT transition of our
CSP, we can just apply the standard argument by Gardner [Gar87]: starting with a load
below the critical value and increasing the number of patterns, the set of solutions in
the space of weights shrinks down to a single configuration at the transition (in the ther-
modynamic limit). This means that, approaching the critical point, the replicas of the
vector W must be more and more correlated and therefore q → 1 at the transition. In
this limit, the factor (1− q)−1 is large and the integrals in LRS(y) can be evaluated with a
saddle point: we need to find the stationary points of the exponent in the integrands as
a function of λ. According to the position of the vector y on the plane, the saddle is in
one of the three following spots: (i) inside the region of integration over λ; (ii) at one of
its boundaries; (iii) at the origin (see section 6.2 for details). We obtain:

∫ +∞

0

d2λ

2π(1− q)
√

1− ρ2
e−

1
2(1−q) (λ+σ

√
qy)TR−1(λ+σ

√
qy)

∼ θ(−σy)θ(−σȳ) + θ(σy)θ[σ(ρy − ȳ)]
e−

y2
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y

√
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8π

+ θ[σ(ρȳ − y)]θ(σȳ)
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ȳ2

2(1−q)

ȳ

√
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8π

+ θ[σ(y − ρȳ)]θ[σ(ȳ − ρy)]
1

2π

(1− q)(1− ρ2)3/2

(ȳ − ρy)(y − ρȳ)
e−

1
2(1−q)y

TR−1y ,

(7.65)
with the theta functions selecting in turn one of the above cases.

So far, the computation is a minor variation with respect to the one we reported in
Sec. 6.2 to evaluate the storage capacity for doublets. Note however that in the defini-
tion of LRS(y) in Eq. (7.63) we still have to perform the sum over the labels, which in the
other case was performed quenched and not replicated. In the summation over σ = ±1,
in each domain of y survives only the dominant addend in (1 − q): this is the finite
term in the first and third quadrant, and the terms proportional to exp{−y2/[2(1 − q)]}
or exp{−ȳ2/[2(1 − q)]} in the second and forth quadrant (the quadrants bisectors dis-
criminating the larger). In the end, using the obvious symmetry between y and ȳ as
integration variables and ignoring suppressed factors in (1− q), we get

∫ +∞

−∞

d2y

2π
√

1− ρ2
e−

1
2y

TR−1y log [LRS(y)]

=

∫ +∞
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√
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∫ −y
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dȳ e

− 1
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( y
ȳ
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1
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(
2

π

√
1− ρ2 − 4

π
arctan

√
1− ρ√
1 + ρ

)
.

(7.66)
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Selecting only the most divergent terms in (1− q) from (7.60) and (7.66), we have all the
ingredients to evaluate the replica limit of (V t − 1)/t for t → 0. The result is zero when
the load α assumes the critical value

αRS
∗ (ρ) =

π

2 arctan
√

(1− ρ)/(1 + ρ)−
√

1− ρ2
. (7.67)

The result is reported in Fig. 7.3: the RS curve presents the expected limits (7.21),
but again we do not observe quantitative agreement with the combinatorial curve. We
are therefore led to conjecture that we need at least one step of replica symmetry break-
ing. We work out the derivation of α∗ within the 1RSB ansatz in the next section. We
stress here that, in order to prove that the RS ansatz is not the right one, we should
have performed a stability check similar to the one we explained in Chap. 3 for the de
Almeida-Thouless instability. We leave this calculation for future works, contenting us
in this thesis with the heuristic comparison with the combinatorial result.

1RSB ansatz

In the 1RSB ansatz the replica matrix has the form

Qab = (1− q1)δab + (q1 − q0)εab + q0 , (7.68)

where εab = 1 if a, b belongs to a diagonal block m×m, 0 otherwise, so that

log det(Q)→ t

{
m− 1

m
log(1− q1) +

1

m
log[1− q1 +m(q1 − q0)] +

q0

1− q1 +m(q1 − q0)

}
.

(7.69)
From (7.58), we get
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R
(∑
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)
,

(7.70)
whereB is a block index. We now need 2(t/m+1) auxiliary HS variables to linearize the
sums over replica indices: to get, after the usual factorizations and the integration over
x,
{∫

d2y e−
1
2y

TR−1y

2π
√

1− ρ2

[∫
d2z e−

1
2z

TR−1z
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)m] t
m
}p
. (7.71)

Defining L1RSB(y) the argument of the square brackets, we know that the logarithm of
the above quantity for t→ 0 gives

pt

m

∫
d2y e−

1
2y

TR−1y

2π
√

1− ρ2
log [L1RSB(y)] . (7.72)
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To simplify L1RSB(y) and to get an expression similar to the one we studied before, we
can shift the z variables to

z → z −
√
q0√

q1 − q0
y , (7.73)

obtaining
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− 1
2
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0
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√
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√
q1−q0z+λ]

2(1−q1)

2π(1− q1)
√

1− ρ2

)m
. (7.74)

In order to find the critical load, we investigate the behavior of the 1RSB parameters
close to the transition: it turns out that q1 has to be sent to one (in analogy with the RS
case) and m to zero [BMZ19] as

q1 → 1 , m→ (1− q1)w , (7.75)

with w a finite parameter. In this limit we can evaluate the integral over λwith a saddle
point. We get

θ(z)θ(z̄) + θ(−z)θ(−z̄) + 4θ(z)θ(−z̄ − z)e−
w(1−q0)z2

2 . (7.76)

Analytical computations are rather cumbersome after this point. However, the result
simplifies a lot if we take q0 = 0. Then the integral over y decouples and simply gives 1,
while the one over z breaks into the regions

∫ +∞

0

d2z

π
√

1− ρ2
e−

1
2z

TRz =
1

2
+

1

π
arcsin(ρ) (7.77)

and

∫ +∞
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π
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. (7.78)

In the end, we find

α1RSB
∗ (ρ; q0 = 0, w) =

− log[1 + w]

2 log

[
1
2 + 1

π arcsin(ρ) +
2 arctan

(√
(1+w) 1−ρ

1+ρ

)
π
√

1+w

] . (7.79)

We stress that this last result is not the optimal 1RSB solution: in principle we should
consider the full expression of α1RSB

∗ (ρ; q0, w) and optimize upon the remaining parame-
ters q0 and w. However, this is beyond the scope of this section: here, we simply verify
that the functional form α1RSB

∗ (ρ; q0 = 0, w) allows to fit nicely the combinatorial result,
by a adjusting the parameter w (see Fig. 7.3). This simple observation strongly supports
our conjecture that this SAT-UNSAT transition exhibits at least one step of RSB, but it
does not rule out a full-RSB scenario.





CHAPTER 8

Margin learning from data structure point of view

In this chapter, we reprise the problem of margin learning we briefly mentioned in
Sec. 5.4, exploiting our new understanding of the phase transition driven by data struc-
ture we found in the problem of simplex learning, in the previous chapter. Indeed, learn-
ing with margin can be interpreted geometrically as the linear separation of spheres, as
we explain below. In this context, we find the same additional satisfiability transition,
concluding that this feature is a general property in the classification problems of ex-
tended objects. The exposition is again drawn from [Pas+20].

8.1 Margin learning

Given a kernel machine with feature map φ : Rn → Rd and inputsX ∈ X = Rn, learning
with margin κ is defined by the class G(κ) of all functions

gκ(X) =

{
+1 W · φ(X) > κ

−1 W · φ(X) < −κ. (8.1)

Cases falling within the margin (−κ, κ) can be defined with a third value, for instance
0, or left undefined. Hence, the corresponding loss class projected on a sample (Xp, Yp),
Eqs. (5.8) and (5.9), contains all the dichotomies of Xp that can be realized by an element
of GM(κ).

An alternative representation of margin learning can be given via the definition of
appropriate object manifolds. In fact, linear separation of points with margin κ is equiva-
lent to zero-margin linear separation of spherical object manifolds with radius κ [CLS18]:
see Fig. 8.1. Thus, Y µ = gκ(Xµ) for all µ if and only if Y µ = g0(Qµ) for all µ and all Qµ

such that |Qµ − φ(Xµ)|2 < κ2. The input space XM(κ) is the set of the preimages, via φ,
of all spheres of radius κ in Rd. Note that, while margin learning has a natural descrip-
tion in terms of the original space X = Rn, through the hypothesis class GM(κ), simplex
learning does not have such a straightforward representation, and is defined directly by
means of the object space X S ({ρab}).

The VC entropy for margin learning, Hκ, can be bounded from above by means of
the VC dimension dVC(κ):

Hκ ≤ dVC(κ) log p, p > dVC(κ). (8.2)

In turn, an upper bound of the VC dimension exists for points lying on the d-dimensional
sphere of radius R [Vap99]:

dVC(κ) ≤ min

[
R2

κ2
, d

]
. (8.3)
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W

κ

κ

W

Figure 8.1: Classifying isolated points with margin κ is equivalent to classifying overlapping
spheres with radius κ

The standard bound is therefore again logarithmic in the sample size p.

8.2 Satisfiability transition in margin learning

Replica theory turns out to be essential to explore the role of data structure whenever
alternative, ad hoc methods (such as the combinatorial one) are not available. Here we
apply it to identify the SAT-UNSAT transition occurring in margin learning. The synap-
tic volume relevant to this case is

Vκ =
∑

{σµ=±1}

∫ 


n∏

j=1

dWj


 δ




n∑

j=1

W 2
j − n




p∏

µ=1

θ


 σµ√

n

n∑

j=1

Wjξ
µ
j − κ


 , (8.4)

where κ is the margin. Note again that here, as in the case of Eq. (7.47), the outputs σµ
are dynamical variables, at variance with the usual Gardner’s volume. We skip the de-
tails on the annealed and quenched calculations, which are in spirit very similar to those
of the previous sections. Nonetheless, it is worth to point out that the tricky multivari-
ate integrals in the auxiliary variable, are now replaced by Gaussian integrals, with the
margin κ appearing as an integration limit. The annealed approximation leads to

αA
∗ (κ) = − 1 + log(2π)

2 log[2 erfc(κ)]
. (8.5)

In the quenched calculation, the RS ansatz is again implemented by requiring q → 1; one
obtains the critical threshold

αRS
∗ (κ) =

1

2

[∫ κ

0

Dy (κ− y)2

]−1

, (8.6)

where Dy is the Gaussian measure. Note the difference with Gardner’s result (5.39) for
the storage capacity. The one-step RSB ansatz again depends on the parameters q0 and
w, which should be investigated numerically. However, in the special case q0 = 0 we
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find the simpler expression

α1RSB
∗ (κ; q0 = 0, w) =

− log[1 + w]

2 log

{
2

[
erfc(κ) +

∫ κ

0

Dz e−w
(z−κ)2

2

]} . (8.7)

These results essentially share the same features of those for the simplexes computed
above: in particular, at variance with the usual storage capacity (5.39), α∗ computed in
all the different approximation schemes diverges in the limit κ→ 0+, when the problem
reduces to a standard classification of points (or equivalently, in the object manifold de-
scription, when the radius of the spheres shrinks to zero). Even in absence of a closed
expression for the VC entropy of margin classification, the existence of the phase transi-
tion at a finite load is a clear indication of its non-monotonicity.

Some of these facts were already pointed out in the seminal paper [Opp99].





Discussion

Understanding how data specificities impact the performance of machine learning mod-
els and algorithms can be considered one of the major challenges for contemporary sta-
tistical physics. Here we have shown how to deal with data structure, as it is being
established in Physics, within the framework of the statistical theory of learning. The
presence of input-output correlations in a dataset suggests constraints to be applied to
the hypothesis class under consideration. As a result, the corresponding VC entropy,
deeply connected to the generalization capabilities of the model, is considerably lower
than in the unstructured case.

For simple models of data structure we have observed two striking phenomena that
take place above the VC dimension. First, the VC entropy becomes non-monotonic. This
is a strong indication that the rigorous bounds in SLT may be substantially improved by
taking data structure into account. Second, a novel transition appears beyond the well-
known storage capacity, at the onset of unsatisfiability for a data-related constraint sat-
isfaction problem. When available, a combinatorial theory à la Cover allows one to com-
pute the VC entropy of a finite-size system, and to reveal explicitly its non-monotonic
behavior. However, this is not always feasible, such as for spherical object manifolds
and margin learning. In these cases, we showed how the phase transition can be probed
with the standard tools of statistical physics, thus allowing an indirect quantification of
the data-dependent behavior.

The new satisfiability transition is due to a competition between the combinatorial
expansion, with sample size, of the space of possible functions and the reduction due
to the constraints given by the geometrical structure. We believe, as this observation
suggests, that the emergence of the data-driven transition, as well as the non-monotonic
VC entropy it entails, is not specific to the two models of data that we have studied here,
but is more generally present whenever the constraints imposed on the hypothesis class
by data structure are strong enough. On a more quantitative level, notice that the upper
and lower bounds obtained for α∗ in Sec. 7.1.5 are very close to one another. The bounds
are independent of the particular choice of simplexes, i.e., they do not depend on k or on
{ρab}. This is a clue pointing to the robustness of the phenomenology for disparate data
structures. We remark that the combinatoric analysis was done at leading order in α;
thus, it remains to assess how much the bounds are affected by perturbative corrections.

An ambitious and pressing goal concerns the generalization of our results to other
architectures, notably deep neural networks, in the same spirit of what was achieved in
SLT regarding the VC dimension.
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