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NOVELTY AND IMPACT: We developed a radiomics signature to predict behavior of individual 

metastasis to targeted treatment. The algorithm is very effective in predicting responding lesions, 
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proving to be able to identify patients with outlier lesions, i.e. that do not respond in a general 

condition were most lesions respond. The model also allows identification of non-responder lesions 

in patients with heterogeneous response, potentially paving the way to a more aggressive diagnostic 

and therapeutic approach in selected patients.   
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Abstract 

The aim of this study was to develop and validate a machine learning algorithm to predict response 

of individual HER2-amplified colorectal cancer liver metastases (lmCRC) undergoing dual HER2-

targeted therapy. Twenty-four radiomics features were extracted following 3D manual segmentation 

of 141 lmCRC on pre-treatment portal CT scans of a cohort including 38 HER2-amplified patients; 

feature selection was then performed using genetic algorithms. lmCRC were classified as non-

responders (R-), if their largest diameter increased more than 10% at a CT scan performed following 

3 months of treatment, responders (R+) otherwise. Sensitivity, specificity, negative (NPV) and 

positive (PPV) predictive values in correctly classifying individual lesion and overall patient response 

were assessed on a training dataset and then validated on a second dataset using a Gaussian naïve 

bayesian classifier. Per-lesion sensitivity, specificity, NPV and PPV were 89%, 85%, 93%, 78% and 

90%, 42%, 73%, 71% respectively in the testing and validation datasets. Per-patient sensitivity and 

specificity were 92% and 86%. Heterogeneous response was observed in 9 of 38 patients (24%). Five 

of the 9 patients were carriers of non-responder lesions correctly classified as such by our radiomics 

signature, including 4 of 7 harboring only one non-responder lesion. The developed method has been 

proven effective in predicting behavior of individual metastases to targeted treatment in a cohort of 

HER2 amplified patients. The model accurately detects responder lesions and identifies non-

responder lesions in patients with heterogeneous response, potentially paving the way to multimodal 

treatment in selected patients. Further validation will be needed to confirm our findings. 

1. Introduction 

Colorectal cancer (CRC) consists in a group of heterogeneous diseases exhibiting substantial 

genetic differences evolving in time(1). Mapping of the genetic landscape allows the identification of 

mutations that are amenable to targeted treatments. Our group has reported the results of the treatment 

with trastuzumab plus lapatinib of patients with metastatic colorectal cancer with HER2 amplification 

or overexpression(2). This phase II trial showed clinical benefit from treatment in 70% of patients(3). 

Unfortunately, as we and others have shown, patients may exhibit a heterogeneous response, some 

metastases shrinking while others are progressing(4–6). Kessel et al. (5) have also shown that 

heterogeneous response, caused by the onset of new resistant tumor clones in some lesions, is a 

predictor of poor overall survival(7,8) . Differentiating which colorectal cancer liver metastases 

(lmCRC) responds and which lingers and eventually will progress in the same patient could pave the 
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way to truly personalized treatment. In patients where a heterogeneous response is expected, a 

multimodality strategy with an interventional approach on lesions that are predicted non-responders 

may be biologically justified and clinically resolutive. Irregularly insensitive liver lesions in an 

otherwise responding patient could be biopsied to detect new molecular clones or be eventually 

amenable to image guided ablation, with the aim of ensuring a longer period of disease control. 

Response to treatment is commonly evaluated using RECIST, which measure changes in the 

longest axial tumor diameters after chemotherapy(9). However, medical images can provide 

additional information about tumor phenotype(10). This is made possible by converting digital 

medical images into mineable high-dimensional data, through a process called radiomics(11). 

Radiomics is the study of these quantitative features and their correlation with tumor phenotypes(10), 

and it has been shown to be useful in predicting response to medical therapy in different tumor 

models(12–17).  In CRC correlation has been found between entropy and skewness, computed on 

CT scans, and tumor grade, KRAS mutational status and risk of recurrence in post-treatment future 

liver remnant(18,19). However, prediction of the behavior of single lmCRC under treatment has not 

been explored and only one published study describes a machine learning method to predict treatment 

response of individual liver metastases from esophagogastric cancer, achieving an AUC of 0.87(20). 

However, in this small series, analyses were not performed on an independent dataset.  

The main objective of this study was to develop and validate retrospectively a machine learning 

algorithm to predict response of individual lmCRC in patients with HER2 amplification undergoing 

dual target therapy.  

2. Material and methods 

2.1. Study design and patients 

The study population was composed of patients enrolled in the HERACLES Trial 

(NCT03225937). All included patients had histologically confirmed RAS wild-type and HER2 

positive adenocarcinoma of the colon or rectum with metastatic disease no longer responding to 

standard chemotherapy nor anti-EGFR targeted therapy. Patients enrolled in the trial, were treated 

with anti-HER2 therapy either received lapatinib + trastuzumab or pertuzumab + trastuzumab-

emantansine.  

Inclusion criteria, other than those listed in the HERACLES study(2), were the availability of a: 

1) baseline portal-phase contrast-enhanced CT scan with at least one liver metastasis of at least 10 

mm; 2) second contrast-enhanced CT performed after 3 months of antiHER2 therapy. Patients 
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included in the study were randomly assigned to one of two groups: the first for model construction 

(training set) and the second for validation of the model (validation set). The proportion of patients 

in each of the following subgroups, i.e., all R+ lmCRC, all R- lmCRC, and mixed response, was 

similar in both the training and the validation dataset. 

2.2. CT scans 

Exams were acquired using different CT scanners (Philips, Siemens, Hitachi, Toshiba, General 

Electrics) and protocols. Across the database, median slice thickness was 3 mm (range 0.625-3 mm), 

median slice increment 3 mm (range 0.625-3 mm), median pixel size 0.789x0.789 mm (range 

0.611x0.611 – 0.977x0.977 mm), median kVp 120 (range 80-120) and matrix size was 512x512. An 

experienced radiologist (>20 years in reporting CT examinations) measured the largest diameter of 

each liver metastases at baseline and time point 1 (TP1), after 3 months of antiHER2 treatment. 

Lesions were classified as: responders (R+) if the largest diameter decreased more than 10% from 

baseline to TP1, or if they remained stable (± 10%); non-responders (R-) if the largest diameter 

increased more than 10% from baseline to TP1. The cut-off of 10% was chosen considering for intra-

observer variability. Previous work has demonstrated that an increases/decreases higher than 10% 

can be considered as true, rather than measurement variation, with a 95% confidence(21). Reference 

standard was represented by the above reported dichotomic variable. 

2.3. Features extraction 

All liver metastases with a diameter 10 mm or more were manually contoured using Mipav 

software (https://mipav.cit.nih.gov). A resident radiologist used painting tools to segment the area of 

the tumor on each slice on portal phase pre-treatment CT and saved the 3D segmentation as a binary 

mask (1 lesion, 0 background). All segmentation masks were then reviewed and if necessary modified 

by an experienced radiologist (>20 years of experience in reporting CT scans).  

The following 24 radiomics features were extracted from all voxels belonging to the 3D mask of 

the baseline portal phase CT: (a) volume of the tumor mask, (b) 4 first-order parameters, i.e., mean 

intensity, standard deviation, skewness and kurtosis; (c) 19 second-order texture parameters, 15 

derived from the Grey-Level Co-Occurrence matrix (GLCM) (22) and 4 derived from the Grey-Level 

Run Length Matrix (GLRLM) (23). To extract the texture parameters, we used distance=1 voxel in 

order to evaluate the closest neighboring voxels, number of bins=64, intensities histogram of each 

ROI rescaled between the 1st and the 99th percentile of the ROI (14). The range of grey levels was 
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symmetrically enlarged to obtain an integer number of grey levels per bin. The GLCM and GLRLM 

matrices were generated for each of the 13 unique directions of a 3D image, and then averaged to 

make the method rotationally invariant to the distribution of texture. Texture features were computed 

using using an in-house framework based on C++ and IT libraries that was compliant to the Image 

Biomarker Standardization Initiative (IBSI) (24).  

2.4. Feature selection and radiomics model development 

To perform feature selection we used genetic algorithms (GAs), i.e. heuristic algorithms 

belonging to the computational intelligence field (25,26) . Each GA solution was coded as a binary 

24 bits vector, one bit representing a feature: a “0” in a given position identified a feature not selected 

whereas a “1” labeled a feature included in the final subset. Each solution of the GA was evaluated 

by a fitness function that measured the ability of the corresponding feature subset to obtain a Gaussian 

naïve Bayesian classifier able to classify metastases of the training set. Since the extracted features 

presented very different ranges, the min-max scaling was applied to the training set to normalize each 

feature in the range [0, 1]. Then, only the features selected by the current solution (corresponding to 

bits equal to “1”) were kept and used to build the classifier. The leave-one-out cross-validation 

(LOOCV) was applied to evaluate the generalization capability of the classifier and to avoid 

overfitting. In each iteration of the LOOCV all metastases of the same patient were excluded from 

the training set: a Gaussian naïve Bayesian classifier was constructed using the remaining metastases 

and the left-out metastases were used as test set. This procedure was repeated for all patients in the 

training set and the probability to be a R+ lesion was calculated for all lesions. To assign a class (R+ 

or R-) to the lesions, we applied the cut-off that optimized sensitivity and specificity, i.e., the Youden 

Index. Finally, we computed the fitness value of the current solution as: 

               𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆+𝑆𝑆𝑆𝑆
2

+ 0.3 ∗ (1 − 𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑆𝑆𝑆𝑆)   (1) 

where sensitivity (SE), specificity (SP) and negative predictive value (NPV) represent the SE, 

SP and NPV of the Gaussian naïve Bayesian classifier constructed using the current feature subset. 

Lower fitness values corresponded to better feature subsets. We decided to implement eq. (1) in order 

to use the average between SE and SP instead of the total accuracy to avoid bias due to the different 

number of R+ and R- metastases in the training set. A penalty term was added (the last part of eq. 1) 

to subsets producing inaccurate recognition of R- lmCRC. 
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Our algorithm started with an initial population of 500 randomly generated solutions. A roulette 

wheel selection (27) was then applied to select the 90% of solutions to be used as parents of the next 

generation: the probability of each solution to be selected was inversely proportional to its fitness 

value. Starting from the parent solutions, a set of newborns’ solutions was generated applying a 4-

point crossover operator with probability equal to 0.9, and the mutation operator in which bits of the 

solutions were complemented with a probability equal to 0.3. Finally, parents’ and newborns’ 

solutions were pooled together, and 500 solutions were randomly extracted and used to restart the 

algorithms. During the GA evolution, the best current solution, i.e. the one with the lowest fitness 

value in the actual population, was stored. This loop was iterated until either 500 iterations were 

reached, or no change of the best current solution occurred for 100 consecutive iterations.  

To consider the random component of GA, the entire algorithm was repeated 10 times starting 

from the same initial population of random solutions. Thus, 10 feature subsets resulted from our 

algorithm: the best subset of features was identified as that with the lowest fitness value and the lowest 

number of selected features.  

Once the best subset of features was selected, a Gaussian naïve Bayesian classifier was created 

on the training set and subsequently validated on the validation dataset. Since this classifier returns, 

for each metastasis, a score representing the probability to be a R+ lesion, we chose as best cut-off 

the one optimizing sensitivity and specificity, i.e., the Youden Index. The cut-off was chosen on the 

training set and applied to the validation dataset.  

2.5. Statistical analysis 

The primary endpoint of the study was to assess if radiomics features could predict response to 

treatment on a per-lesion basis. In this analysis sensitivity (SE), specificity (SP), NPV and positive 

predictive value (PPV) were computed on both the training and the validation sets. Sensitivity was 

defined as the ratio between the number of correctly classified R+ metastases over the total number 

of R+ metastases, specificity as the ratio between the number of correctly classified R- metastases 

over the total number of R- metastases, PPV as the ratio between the number of correctly classified 

R+ lmCRC over the total number of lmCRC classified as R+, while NPV as the ratio between the 

number of correctly classified R- lmCRC over the total number of lmCRC classified as R-. 

Differences in diameters between false positive, false negative and correctly classified metastases 

were evaluated using the Wilcoxon test. A p-value <0.05 was considered statistically significant.  
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In order to assess if radiomics features could predict overall response to treatment, we performed 

a per-patient analysis in which a patient was defined either R+ or R- if the majority of his metastasis 

were classified as R+ or R-, respectively. Patients having an even number of R+ and R- lmCRC, either 

in the reference standard or after the classification, were discarded in this analysis. Due to the low 

number of patients, per patient SE, SP, PPV and NPV were computed combining all patients from 

the training and validation dataset. 

3. Results 

List of extracted features and results of the feature selection process are shown in supplementary 

Table and Figure 1. The best feature subset, i.e. the one having the lowest fitness and the lowest 

number of selected features, was number 7. In total 12 features were selected: 2 first-order statistics, 

9 from the GLCM matrix and 1 from the GLRLM matrix. 

3.1. Results of per-lesion analysis 

The study flow-chart is presented in Figure 2. A total of 141 lmCRC were evaluated in 38 patients 

(32 males, 6 females; median age 59±12 years) including: 89 with a diameter < than 30mm, 27 

between 30 and 50 mm, and 25 > than 50 mm. One-hundred-eight lmCRC from 28 patients were 

included in the training dataset, 33 lmCRC from 10 patients in the validation dataset. In the training 

set 75 of 108 lesions (69%) were classified as R+, the remaining 33 (31%) as R-; in the validation 

dataset 21 of 33 liver metastases (64%) were classified as R+, the remaining 12 (36%) as R-. Mean 

lesion diameter on baseline CT scans was 33 mm (SD: ± 22mm) and no differences in diameter were 

observed between training and validation datasets. R+ lmCRC were larger than R- lmCRC (mean 

diameter of R+ lesions 37±24 mm versus 27±17 mm of R- lesions; p=0.004). 

The final Bayesian classifier retained 12 of the 24 examined radiomics features. Figure 1 shows 

the absolute value of weights of each parameter in the linear combination of the Bayesian Classifier 

normalized by the sum of the total weights.  

Per-lesion performance in predicting response to treatment of our algorithm is shown in Table 

1. After applying feature selection to the training set, we obtained a sensitivity and specificity of 89% 

and 85%, respectively. When the same model and cut-off (0.465) were applied to the validation set, 

the sensitivity and specificity in detecting R+ lesions were 90% and 42% respectively. Classification 

error was independent on lesion diameters (p>0.16).  
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Figure 3 A shows a case of a patient with mixed response to therapy. Figure 4 shows waterfall 

plots of all the liver metastases in the training and validation sets. Four of 7 metastases in the 

validation dataset having a high radiomics score despite being R-, belonged to the same patient 

(Figure 3B).  

3.2. Per-patient results 

Table 2 shows findings of per-patient analysis. Among the 38 examined patients, 8 had all R- 

lmCRC (21%), 21 had all R+ lmCRC (55%), and 9 showed heterogeneous response (24%).  All 

lmCRC were correctly classified by the radiomics algorithm in 24 patients while in 2 patients (n.10 

and n.48, table 2) all lmCRC were misclassified. In the remaining 12 patients lesions were partially 

misclassified including: 7 were the majority of lmCRC were classified correctly, 4 where an equal 

number of lmCRC were correctly and incorrectly classified and one patient where the majority of 

lmCRC were misclassified (n. 33 Table 2). 

Five patients had an equal number of R+ and R- lmCRC and were therefore excluded from per-

patient analysis. Considering the remaining 33 patients, of whom 7 R- and 26 R+, overall per-patient 

sensitivity was 92% (24/26;95%CI:75-99%), specificity 86% (6/7; 95%CI:42-100%), PPV  96% 

(24/25; 95%CI:80-99%), and an NPV 75% (6/8; 95%CI:43-92.5%). According to our findings, 2 of 

the 33 patients (6%) misclassified as R- would not have undergone a beneficial treatment. The first 

patient (n. 33 Table 2) had 3 R+ lmCRC that were classified by the radiomics algorithm as 1 R+ and 

2 R-; the second patient (n. 2, Table 2) had one stable lmCRC that was classified as R-.  

4. Discussion 

In this study heterogeneous radiological response to a targeted therapy was observed in 9 of 38 

(24%) patients, more than twice the rate reported in the literature for response to chemotherapy (5,6), 

and definitely in contrast to the homogeneous pattern of response recently reported in mismatch repair 

deficiency CRC patients treated with immunotherapy (28). Lesion specific response has been 

previously documented in patients treated for lmCRC with targeted agents(7,29,30). Russo et al.(7) 

suggest that molecular heterogeneity may trigger unique patterns of response in different metastatic 

deposits. In the HERACLES-A trial (4), we have observed distinct patterns of radiologic and genomic 

evolution and have considered that lesion specific patterns of response might not be accurately 

evaluated by the RECIST criteria. Nevertheless, a recent pooled database analysis on a large data set 

of patients with solid tumors confirmed RECIST good performance in assessing response also to 
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targeted agents. Data warehouse analyses, however, are tremendously influenced by the choice of 

target lesions (31), lacks granularity in general (32) and in the specific focused for CRC 

predominantly on antiangiogenic treatment which is used in genetically unselected patients.  

Moreover, at the present no imaging criteria are available to predict response before the start of 

the therapy and radiologists cannot gain sufficient visual information on the baseline examination to 

subjectively predict which lesions will respond to the therapy. In this study, we presented an 

innovative radiomics tool to predict response to treatment on a per-lesion basis in patients with HER2 

amplified tumors treated with antiHER2 agents.  

We assessed the radiomics score of individual metastases obtaining a per-lesion sensitivity and 

specificity in the validation set respectively of 90% and 42% at the best cut-off value. The algorithm 

was very effective in predicting responding lesions (R+). Indeed, only 10% of these (2/21), were 

misclassified as non-responding. Conversely, the radiomics model was not accurate in predicting 

which lesions would not have benefited from treatment (R-). Indeed, of the 12 lesions classified by 

the algorithm as non-responders, 7 were responding lesions. However, if the scope of radiomics is to 

identify patients with outlier lesions, i.e. that do not respond in a general condition where most lesions 

respond, then results of this study should be well received. Indeed, in the group of patients with 

heterogeneous response 5 of 9 were carriers of non-responding lesions that were correctly classified 

as such by our radiomics algorithm, including 4 of 7 with only one non-responding lesion. In this 

group of patients correctly identified by our method, biopsy could have revealed a different genetic 

makeup prompting the use of a different target molecule or, in absence of extrahepatic lesions, 

suggested the local ablation of outlier metastases.  

The two most important radiomics features in our model are difference variance and 

homogeneity, weighing cumulatively over 50% in the Bayesian classifier. The former measures the 

dispersion (with respect to the mean) of the gray level difference distribution of the image while the 

latter measures the smoothness of the gray level distribution of the image, and both are somehow 

related to the heterogeneity of the region of interest. This finding could be translated in clinical 

practice. Indeed, if our observation is confirmed the identification of a more heterogeneous pattern 

within a lmCRC could be predictive of R+ (Figure 3A).  

The predictive value of radiomics models has been previously explored(20,33). In particular 

Klaassen et al. have shown that a CT radiomics approach using Random Forest models was able to 

discriminate response of individual liver metastasis in esophagogastric cancer patients, being tumor 

heterogeneity the most predictive marker (20). In addition, Ahn et al.(33) identified radiomics 
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markers of increased heterogeneity as predictors of poor patient prognosis and opposite to this study 

they postulated that greater homogeneity was associated with a favorable clinical response. We 

therefore hypothesize lmCRC have different textures characteristics at diagnosis and after several 

lines of treatment and each condition could therefore benefit from a different radiomics signature. 

Ahn et al.(33) considered the largest lesion as representative of overall tumor behavior; they therefore 

did not explore behavior of individual liver metastasis. 

There are limitations to this study. First, it is known that radiomics features are affected by CT 

equipment and protocols. However, Buch et al.(34) have demonstrated that some texture features are 

independent of CT parameters. In this retrospective multicenter study, we were able to overcome 

equipment and protocol variability by developing a feature selection algorithm that includes a cross-

validation procedure, in which one patient was iteratively excluded from the training set and all his 

lmCRC used for testing. Therefore, only stable features among the different protocols were included 

in the final solution. Second, in this study specificity of the validation dataset was lower than that 

observed in the training dataset. This could depend on the size of the training and validation datasets 

and on the low number of R- lesions available overall, i.e. 33% of the total. Furthermore, we observed 

that in the validation dataset 4 of the 7 R+ lesions that were classified as R- had a very unique target 

pattern which could have affected results (Figure 3B).  Of note, this study was performed on a group 

of 141 HER2-amplified lmCRC from a unique cohort of patients representing only 2% of all CRCs 

and the sample size might have been insufficient to answer our clinical questions. However, it must 

be noted that when applying machine learning it is not possible to know “a priori” the sample size 

that will be necessary to achieve adequate performance levels. Sample size may depend on several 

factors, including lesions characteristics and the addressed clinical question. While it is very hard to 

predict the minimum number of cases, it is usually recommended empirically that at least 100 cases 

are available (35). In order to assess the robustness of our radiomics model, we are planning to 

validate it on an external dataset of HER2 amplified patients. Finally, we are aware that this heavily 

pretreated cohort of patients might affect the predictive value of the radiomics model we developed. 

Further studies on first line patients should be performed, considering different molecular signatures 

of lmCRC as well, including non HER2 amplified patients. 

5. Conclusions 

In this study we have developed a radiomics signature to predict behavior of individual 

metastasis to targeted treatment in a cohort of HER2 amplified CRC patients with a high rate of 
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heterogeneous response. The model shows promising results in predicting responder lesions on the 

baseline CT and in the identification of non-responder lesions in patients with heterogeneous 

response, potentially paving the way to a more aggressive diagnostic and therapeutic approach in 

selected patients. Further validation will be needed to confirm our findings. 
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Table 1: Per-lesions results of the training and validation dataset, before and after applying feature 
selection. 

TRAINING VALIDATION
Sensitivity 
(95%CI)

Specificity 
(95%CI)

PPV 
(95%CI)

NPV 
(95%CI)

Sensitivity 
(95%CI)

Specificity 
(95%CI)

PPV 
(95%CI)

NPV 
(95%CI)

All 
features

91% 
(82-96%) 
[68/75]

91% 
(76-98%) 
[30/33]

96% 
(88-99%) 
[68/71]

81% 
(68-90%) 
[30/37]

76% 
(53-92%) 
[16/21]

42% 
(15-72%) 

[5/12]

70% 
(57-80%) 
[16/23]

50% 
(27-73%) 

[5/10]

Features 
selection

89% 
(80-95%) 
[67/75]

85% 
(68-95%) 
[28/33]

93% 
(70-99%) 
[67/72]

78% 
(64-87%) 
[28/36]

90% 
(70-99%) 
[19/21]

42% 
(15-72%) 

[5/12]

73% 
(62-82%) 
[19/26]

71% 
(36-92%) 

[5/7]

Numbers in brackets represent absolute values
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Table 2: Total number of responder and non-responder metastases for each patients and results of the Bayesian 
classifier.

 Patient 
#

Total 
#mts 

#R+ 
mts

#R- 
mts Mixed response #correctly 

classified R+
#correctly 
classified R-

1 2 2 0  2/2 -

2 1 1 0 0/1 -

5 2 0 2 - 2/2

6 5 5 0 3/5 -

10 1 0 1 - 1/1

17 2 1 1 Yes 1/1 1/1

19 6 6 0 5/6 -

20 2 2 0 2/2 -

22 1 1 0 1/1 -

25 3 3 0 3/3 -

26 5 4 1 Yes 3/4 1/1

28 7 6 1 Yes 6/6 1/1

29 1 1 0 1/1 -

31 5 4 1 Yes 4/4 0/1

32 9 6 3 Yes 6/6 2/3

37 8 0 8 - 8/8

38 7 7 0 7/7 -

41 4 4 0 4/4 -

45 4 3 1 Yes 3/3 0/1

46 1 1 0 1/1 -

48 2 0 2 - 0/2

49 3 3 0 3/3 -

50 1 0 1 - 1/1

52 2 1 1 Yes 0/1 1/1

54 5 5 0 5/5 -

55 1 1 0 1/1 -

62 8 8 0 6/8 -

TR
AI

N
IN

G

66 10 0 10 - 10/10

4 1 1 0  1/1 -

12 2 1 1 Yes 1/1 0/1

18 6 6 0 6/6 -

23 4 4 0 4/4 -

27 4 2 2 Yes 2/2 0/2

30 1 0 1 - 1/1

33 3 3 0 1/3 -

36 1 1 0 1/1 -

57 3 3 0 3/3 -

VA
LI

DA
TI

O
N

63 8 0 8  - 4/8
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Figure 1: Absolute value of weights obtained by each selected parameter in the final Bayesian Classifier 
normalized by the sum of the weights. 
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Figure 2: flowchart of the study 
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Figure 3: A) Example of a patient with 9 liver metastases and a heterogeneous response. Only liver lesion1 
was misclassified by the radiomics model. The table lists the patient’s liver metastases, size at baseline and 

at time point 1 and percentage size variations (increase in size is represented in red, decrease in green). 
The last 2 columns show respectively the response of each lesion based on size variations and the 

classification as predicted by the classifiers. TP1=time point 1; mm=millimeters. B) Example of a patient 
with 8 liver metastases including 4 (lesion 1,2,7,8) that were misclassified by the radiomics model, with an 
uncharacteristic target-like appearance. The table lists the patient’s liver metastases, size at baseline and at 
time point 1 and percentage size variations (increase in size is represented in red, decrease in green). The 
last 2 columns show respectively the response of each lesion based on size variations and the classification 

as predicted by the classifiers. TP1=time point 1; mm=millimeters. 
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Caption : Figure 4: Waterfall plot of all lesions. The green marks indicate the responder lesions, while the 
red marks represent the non-responder lesions. The y-axis represents the radiomic score produced by the 
naïve Bayesian Classifier normalized with the cut-off computed on the training set using the Youden Index. 
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