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Seasonal effects on miRNA 
and transcriptomic profile 
of oocytes and follicular cells 
in buffalo (Bubalus bubalis)
Emanuele Capra1,5, Barbara Lazzari1,5, Marco Russo2, Michal Andrzej Kosior2, 
Giovanni Della Valle2, Valentina Longobardi2, Alessandra Stella1, Anna Lange Consiglio3,4* & 
Bianca Gasparrini2

Season clearly influences oocyte competence in buffalo (Bubalus bubalis); however, changes in the 
oocyte molecular status in relation to season are poorly understood. This study characterizes the 
microRNA (miRNA) and transcriptomic profiles of oocytes (OOs) and corresponding follicular cells 
(FCs) from buffalo ovaries collected in the breeding (BS) and non-breeding (NBS) seasons. In the BS, 
cleavage and blastocyst rates are significantly higher compared to NBS. Thirteen miRNAs and two 
mRNAs showed differential expression (DE) in FCs between BS and NBS. DE-miRNAs target gene 
analysis uncovered pathways associated with transforming growth factor β (TGFβ) and circadian clock 
photoperiod. Oocytes cluster in function of season for their miRNA content, showing 13 DE-miRNAs 
between BS and NBS. Between the two seasons, 22 differentially expressed genes were also observed. 
Gene Ontology (GO) analysis of miRNA target genes and differentially expressed genes (DEGs) in 
OOs highlights pathways related to triglyceride and sterol biosynthesis and storage. Co-expression 
analysis of miRNAs and mRNAs revealed a positive correlation between miR-296-3p and genes related 
to metabolism and hormone regulation. In conclusion, season significantly affects female fertility in 
buffalo and impacts on oocyte transcriptomic of genes related to folliculogenesis and acquisition of 
oocyte competence.

Water buffalo (Bubalus bubalis) is an important livestock resource for both developing and developed countries. 
The major factor affecting buffalo farming profitability is reproductive seasonality, resulting in cycles of calv-
ing and milk production. Buffalo is a short-day breeder, with increased fertility in response to decreasing day 
length1,2. This photoperiod-dependent seasonality pattern is more pronounced as distance from the equator, 
together with variations in the light/dark ratio, increases. In Italy, in order to satisfy market demand, out of breed-
ing mating strategy (OBMS), consisting in interrupting sexual promiscuity or the use of artificial insemination 
(AI) during the breeding season (BS), is commonly utilized2. The OBMS improves the distribution of calving 
throughout the year, but it reduces fertility3. Longer post-partum anoestrus periods as well as higher incidence 
of embryonic mortality are observed in months with increasing daylight length and particularly in mid-winter, 
which coincides with the transition to seasonal anoestrus at Italian latitudes1,4. The embryonic mortality is due to 
inadequate luteal growth and function, resulting in reduced progesterone secretion5. This has a negative impact 
on embryo growth, associated with alterations in transcriptomic and proteomic profiles of the embryos and 
chorioamnios/caruncles6,7, which ultimately impair embryo attachment to the uterine endometrium.
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An additional factor determining reproductive failure in the non-breeding season (NBS) is the oocyte devel-
opmental competence. Indian authors reported decreased efficiency of ovum pick-up (OPU) during the NBS, 
mainly due to the reduced follicular population8. A seasonal effect on the number of follicles and oocytes, as 
well as on oocyte competence, has also been reported in Egyptian buffaloes9. In Italian Mediterranean buffaloes, 
season clearly influences oocyte competence, as indicated by improved blastocyst yields recorded during months 
with decreasing daylight10,11. In Murrah buffalo heifers, the decreased oocyte quality recorded during long day 
months was associated to reduced concentration of oestradiol both in plasma and follicular fluid, as well as of 
intrafollicular IGF-112. Despite the evidence of a seasonal influence in buffalo, the molecular mechanisms affect-
ing oocyte competence in the NBS are poorly understood.

A fine-tuned spatio-temporal expression of multiple genes is known to be essential for follicular development 
and oocyte maturation, and requires a strict interaction between mRNAs and regulatory miRNAs13. In addition, 
in many tissues a time-controlled gene expression is mediated by miRNAs, which regulate core clock genes coor-
dinating daily rhythms in physiology and behaviour14. A relationship between the variation of mRNAs abundance 
for specific genes related to folliculogenesis in ovaries and changes in photoperiods was previously reported in 
other non-ruminant species such as the Siberian hamster15. Changes in transcriptome and miRNA expression 
in relation to season were further investigated in sheep, another short-day breeder, where oocyte competence 
was observed to decline during the NBS, as indicated by impaired in vitro embryo development16. Furthermore, 
transcriptome variations potentially associated with off-season reproduction were reported in sheep ovaries17. 
Again, differences in miRNA profiling in ovaries of Tan sheep and Small Tail Han (STH) sheep were related to 
ovine anoestrus and BS18. Seasonal differences in the expression of miRNAs involved in hormone regulation, 
follicular growth and angiogenesis were also observed in Kazakh sheep ovaries during oestrus19. Recently, an 
integrated analysis of mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis 
aries) depicted a miRNA-mRNA regulatory network associated with reproductive traits in Ovis species20.

MicroRNAs play a significant role during follicle development in bovine21,22. In buffalo, heat stress was 
observed to alter the blood miRNA and mRNA content23. The role of miRNAs is also demonstrated in the regu-
lation of lactating physiology in the buffalo mammary gland24, and miRNA expression changes were observed 
in buffalo corpus luteum during pregnancy25.

Therefore, in this study we investigated, for the first time, if reproductive failure in the NBS is associated to 
changes in gene expression affecting oocyte developmental competence in buffalo. To evaluate seasonal effects 
on oocyte competence, the miRNA and transcriptomic profiles of oocytes and corresponding follicular cells were 
characterized from abattoir-derived ovaries collected in the BS and NBS.

Results
Cleavage and blastocyst rates.  With regard to oocyte competence, cleavage rate was higher in the BS 
compared to the NBS (69.4%; vs. 60.7; P < 0.05). In addition, an improvement in blastocyst yields was recorded 
in the BS, both in relation to total COCs (26.5 vs. 16.3%; P < 0.01) and cleaved oocytes (38.7 vs. 27.4%; P < 0.05).

miRNAs.  Twenty samples, i.e. 10 pools of OOs (sample OO1-OO5 from NBS and OO6-OO10 from BS) 
and 10 pools of FCs (sample FC1-FC5 from NBS and FC6-FC10 from BS), were characterized for their miRNA 
content.

About 10 million reads were sequenced for both OOs and FCs (see Supplementary File S1 for statistics). 
About 1% and 20% of them were assigned to miRNAs in OOs and FCs, respectively.

In total, 769 miRNAs were identified in at least three samples in all conditions (468 Bos taurus bta-miRNAs, 
279 novels, and 22 novels homologous to related species). Among them, 467 were detected in at least three OO 
samples and 635 in at least three FC samples. Principal Component Analysis (PCA) clearly separates OOs and 
FCs according to their miRNA content, with 44% of the variance explained by component 1 (Supplementary 
file S2).

Few of the most expressed miRNAs showed a similar relative abundance in OOs and FCs (bta-miR-10b, bta-
miR-148a and bta-miR-26a); on the contrary, expression rate of most miRNAs differed in the two cellular types 
(bta-miR-21-5p was highly expressed in FCs, whereas bta-miR-423-3p in OOs), (Supplementary file 3). In fact, 
there was a statistically significant difference in the expression of a high proportion of the miRNAs (n = 413) 
(False Discovery Rate FDR < 0.05) between OOs and FCs (Supplementary file 4). When the two seasons were 
considered, the PCA produced a good distinction between oocytes collected in BS and NBS, whereas FCs from 
BS and NBS could not be clearly distinguished (Fig. 1).

The number of differentially expressed miRNAs (DE-miRNAs, FDR < 0.05) between the two seasons was 
13 for both OOs and FCs (Supplementary file 5 and Table 1). A view of the normalized expression of the most 
representative DE-miRNAs is shown in Fig. 2. Target prediction using human miRNAs homologous to buffalo 
DE-miRNAs led to the identification of 6,712 and 4,847 genes potentially regulated in OOs and FCs, respectively 
(P < 0.05). GO analysis using a subset of more significant target genes (n = 136 with P < 0.0005 for OOs, n = 139 
with P < 0.001 for FCs) identified pathways related to triglyceride and cholesterol metabolism and transport, and 
mesoderm and epithelial cell morphogenesis differentiation for OOs, and related to photoperiodism, circadian 
clock regulation, and transforming growth factor beta signalling for FCs (Table2).

RNASeq.  RNA-seq analysis was performed on the same samples used for miRNA profiling to evaluate the 
gene expression variation between the two cellular types and seasons. Approximately 23.5 ± 4.4 and 54.5 ± 10.5 
millions of reads were obtained for OOs and FCs samples with a mapping rate of 93.5% and 92.4%, respectively 
(Supplementary file 6). A total of 22,013 unique genes present in at least three samples from both cellular types 
were identified (19,240 counted in at least three OOs and 21,277 counted in at least three FCs samples). PCA 
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considering the relative expression of these genes showed a clear separation between the two cellular types (Sup-
plementary file 7). There seems to be no seasonal effect in the overall transcript abundance for both OOs and 
FCs (Fig. 3).

The relative expression of mRNAs in the two cellular types was very different, with 14,680 (66.7%) DEGs 
between OOs and FCs. When DEGs were calculated between the two seasons, 22 mRNAs were found to differ 
between NBS and BS for OOs, whereas only two DEGs were present in FCs (Supplementary file 8 and Table 3).

Figure 1.   Principal component analysis considering (a) the 467 miRNAs expressed at least in triplicate in the 
oocytes (OOs), (b) the 635 miRNAs expressed at least in triplicate in the Follicular cells (FCs). Samples 1–5 
from non-breeding season (NBS), samples 6–10 from breeding season (BS).

Table 1.   Differentially expressed miRNAs DE-miRNAs (false discovery rate (FDR) < 0.05) between the two 
seasons (NBS = non breeding season, BS = breeding season) for oocytes (OOs) and follicular cells (FCs).

OOs (NBS vs BS) FCs (NBS vs BS)

miRNAs logFC FDR miRNAs logFC FDR

bta-miR-143 − 2.07 5.42E−05 Novel:NC_037567.1_45577 2.65 1.69E−05

Novel:NC_037550.1_18643 1.58 7.24E−04 Novel:NC_037553.1_23674 2.09 3.78E−05

bta-miR-199a-3p − 2.10 7.24E−04 Novel:chi-miR-184 − 4.24 1.54E−04

bta-miR-1468 − 1.83 3.69E−03 bta-miR-2904 − 2.90 2.50E−04

bta-miR-25 − 0.91 1.44E−02 Novel:NC_037550.1_18643 − 2.37 4.25E−04

bta-miR-1388-5p − 4.55 3.55E−02 bta-miR-2411-3p − 2.01 1.54E−03

bta-miR-296-3p − 1.41 3.91E−02 bta-miR-2440 − 1.86 2.98E−03

Novel:NC_037557.1_30140 − 1.36 3.91E−02 bta-miR-2332 − 1.47 4.48E−03

Novel:NC_037569.1_47305 − 1.36 3.91E−02 bta-miR-141 − 3.73 4.48E−03

Novel:NC_037564.1_42998 − 1.36 3.91E−02 bta-miR-2478 1.68 4.97E−03

bta-miR-331-5p − 4.19 4.12E−02 bta-miR-34b − 4.11 8.16E−03

bta-miR-199a-5p − 2.09 4.47E−02 bta-miR-34c − 4.02 8.16E−03

bta-miR-222 − 1.35 4.95E−02 bta-miR-486 0.96 3.65E−02
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Although a limited number of DEGs was found to differ in OOs between the two seasons, GO analysis 
revealed that some of them were related to lipid storage and localization and regulation of interleukin-8 (IL8) 
production (Table 4).

miRNAs and mRNA interaction.  In order to evaluate whether miRNAs could potentially regulate the 
expression of specific genes, the list of genes differentially expressed in oocytes between the two seasons was 
intersected with the list of DE-miRNA target genes observed in the same experimental condition. Six genes 
(CCL1, FOLR2, IGF2, HSPA1A, IL1B, CTSK) were found to be potentially regulated by specific DE-miRNAs. 
Interestingly, among the 8 DE-miRNAs (miR-143, miR-1468, miR-199a-3p, miR-199a-5p, miR-222, miR-25, 
miR-296-3p, miR-331-5p) targeting 6,712 genes, miR-296-3p targets 4 out of the 6 shared DEGs. In addition, all 
the miRNAs show a positive correlation with gene expression (Fig. 4).

Discussion
The present study aims to investigate the causes of the decreased oocyte competence during the NBS in buf-
falo. Many biological processes are required for developmental competence, with the exchange of information 
between oocyte and follicular environment promoting oocyte maturation26. Therefore, the focus of this study was 
to evaluate differences in the miRNA and transcriptomic profiles of OOs and corresponding FCs from buffalo 

Figure 2.   Box Plot of the most significant (top six sorted by FDR value) differentially expressed miRNAs 
(DE-miRNAs) in (a) oocyte and (b) follicular cells from animals between breeding season (BS) and non 
breeding season (NBS).
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Table 2.   GO terms identified for the target genes of differentially expressed miRNAs between the two seasons 
for oocytes (OOs) and Follicular Cells (FCs). Indicated are gene ontology IDs (GO-ID), gene ontology terms 
(GO-term), associated genes found and corrected P values as determined by ClueGO (https​://apps.cytos​cape.
org/apps/clueg​o). *Term P value corrected with Bonferroni step down.

GOID Associated genes found GO term P value*

OOs

0010866 [DGAT2, FITM2, NR1H3] Regulation of triglyceride biosynthetic process 0.004

0060742 [NOTCH1, SFTPA1, SFTPA2] Epithelial cell differentiation involved in prostate gland 
development 0.005

0015918 [ABCG4, APOB, NR1H3, OSBPL6, PNLIP] Sterol transport 0.009

0030850 [NOTCH1, SFTPA1, SFTPA2, WNT5A] Prostate gland development 0.012

0048332 [AXIN1, GNPDA1, WNT5A] Mesoderm morphogenesis 0.014

0019915 [APOB, DGAT2, FITM2, NR1H3] Lipid storage 0.026

0001707 [AXIN1, GNPDA1, WNT5A] Mesoderm formation 0.027

0006536 [ATAT1, GGT1, GLUD2] Glutamate metabolic process 0.028

0006641 [APOB, DGAT2, FITM2, INSIG1, NR1H3] Triglyceride metabolic process 0.028

0042116 [IL13, NR1H3, WNT5A] Macrophage activation 0.028

0090207 [DGAT2, FITM2, NR1H3] Regulation of triglyceride metabolic process 0.029

0008206 [ACAA1, CYP27A1, OSBPL6] Bile acid metabolic process 0.030

0002637 [EXOSC3, GNPDA1, IL13] Regulation of immunoglobulin production 0.033

0070527 [FERMT3, MYH9, PRKCQ] Platelet aggregation 0.033

0002067 [IL13, NOTCH1, WNT5A] Glandular epithelial cell differentiation 0.033

0019217 [DGAT2, INSIG1, NR1H3, PDHB] Regulation of fatty acid metabolic process 0.034

0097006 [APOB, DGAT2, PLAGL2] Regulation of plasma lipoprotein particle levels 0.035

0055090 [DGAT2, FITM2, NR1H3] Acylglycerol homeostasis 0.035

0070328 [DGAT2, FITM2, NR1H3] Triglyceride homeostasis 0.035

0030301 [ABCG4, APOB, NR1H3, PNLIP] Cholesterol transport 0.037

0050830 [DROSHA, HIST1H2BK, PGLYRP1, PGLYRP3] Defence response to Gram-positive bacterium 0.037

0033344 [ABCG4, APOB, NR1H3] Cholesterol efflux 0.038

0002702 [EXOSC3, GNPDA1, IL13, WNT5A] Positive regulation of production of molecular mediator 
of immune response 0.038

0030514 [CHRDL1, NOTCH1, WNT5A] Negative regulation of BMP signaling pathway 0.038

0010883 [APOB, FITM2, NR1H3] Regulation of lipid storage 0.039

0019432 [DGAT2, FITM2, NR1H3] Triglyceride biosynthetic process 0.039

0043030 [IL13, NR1H3, WNT5A] Regulation of macrophage activation 0.039

0045599 [AXIN1, INSIG1, WNT5A] Negative regulation of fat cell differentiation 0.040

0002639 [EXOSC3, GNPDA1, IL13] Positive regulation of immunoglobulin production 0.040

0046460 [DGAT2, FITM2, NR1H3] Neutral lipid biosynthetic process 0.040

0046463 [DGAT2, FITM2, NR1H3] Acylglycerol biosynthetic process 0.040

FCs

0043153 [BHLHE40, PPP1CB, PPP1CC] Entrainment of circadian clock by photoperiod 0.004

1903844 [ING3, ONECUT2, SKI, STRAP, XBP1] Regulation of cellular response to transforming growth 
factor beta stimulus 0.008

0017015 [ING3, ONECUT2, SKI, STRAP, XBP1] Regulation of transforming growth factor beta receptor 
signaling pathway 0.008

0009648 [BHLHE40, PPP1CB, PPP1CC] Photoperiodism 0.008

0009649 [BHLHE40, PPP1CB, PPP1CC] Entrainment of circadian clock 0.008

1903845 [ONECUT2, SKI, STRAP, XBP1] Negative regulation of cellular response to transforming 
growth factor beta stimulus 0.012

0030512 [ONECUT2, SKI, STRAP, XBP1] Negative regulation of transforming growth factor beta 
receptor signaling pathway 0.012

0010923 [FKBP1B, PPP1R1B, TMEM225] Negative regulation of phosphatase activity 0.014

0032755 [IL1RL2, TLR6, XBP1] Positive regulation of interleukin-6 production 0.025

0045582 [IL1RL2, ITPKB, XBP1] Positive regulation of T cell differentiation 0.025

0035304 [FKBP1B, PPP1R1B, SMPD1] Regulation of protein dephosphorylation 0.035

0071230 [CASTOR1, PDGFC, XBP1] Cellular response to amino acid stimulus 0.035

1903036 [FKBP1B, SCARF1, XBP1] Positive regulation of response to wounding 0.040

0010257 [NDUFAF6, NDUFC1, NDUFS7] NADH dehydrogenase complex assembly 0.042

0032981 [NDUFAF6, NDUFC1, NDUFS7] Mitochondrial respiratory chain complex I assembly 0.042

0097031 [NDUFAF6, NDUFC1, NDUFS7] Mitochondrial respiratory chain complex I biogenesis 0.042

0032922 [BHLHE40, PPP1CB, PPP1CC] Circadian regulation of gene expression 0.047

https://apps.cytoscape.org/apps/cluego
https://apps.cytoscape.org/apps/cluego
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ovaries collected in the BS and NBS. To our knowledge, this is the first study reporting together the miRNA and 
mRNA profiling from pools of low numbers of oocytes and corresponding FCs collected from abattoir-derived 
ovaries in livestock, as well as the first time that the seasonal effects on miRNA and mRNA profiling of oocytes 
and FCs are investigated in buffalo. Unfortunately, the amount of RNA obtained from such a limited number of 
oocytes was not sufficient to perform further experiments to validate our results.

In accordance with previous findings10,11, in the present study we observed a reduced oocyte developmental 
competence in the NBS, as indicated by decreased cleavage and blastocyst rates after in vitro fertilization (IVF), 
and this was associated to changes in miRNA and transcriptomic profiles both in OOs and FCs. Being miRNAs 
only one of the small RNA components, as expected those identified in buffalo represent only a fraction of 
the total small non-coding RNA present in both OOs and FCs27,28. The overall miRNA expression pattern was 
different between OOs obtained in the two seasons. However, FCs from the two seasons cluster together. Con-
sidering that different phenotypes of FCs can be observed within the follicle, it is likely that miRNA expression 
in FCs is mainly driven by cell position and function, thus masking seasonal effects29. Recently, Zhang et al.30 
reviewed miRNA profile studies related to ovarian development and function in mammals. Although many 
studies reported miRNA ovary profiling, only a few investigated miRNA variations in granulosa cells and only 
one in OOs30.

Interestingly, many of the differentially expressed miRNAs in the two seasons for both OOs and FCs are 
involved in follicular maturation and development regulation. In our study seasonal changes modified the 
expression of miR-143, miR-25, miR-222 and miR-199a in buffalo OOs. In the mouse ovary, miR-143 is highly 
expressed and related to oestradiol production and steroidogenesis gene expression31. MiR-143 and miR-25 were 
also shown to promote progesterone release in human ovarian granulosa cells32. Furthermore, cyclic variations 
in the expression of miR-222 and miR-199a were reported in cattle during follicle maturation, with expression 
increasing until the mid-luteal phase, and decreasing in the late follicular phase in the bovine dominant follicle13. 
Some of the differentially expressed miRNAs identified between the NBS and BS in buffalo FCs (miR-184, miR-
2411 and miR-34c) were also reported to exhibit expression modulation during the cycle in cattle. In particular, 
temporal miRNA expression dynamics were observed for miR-184 in FCs between days 3 and 7 of the bovine 
oestrous cycle and for miR-2411 and miR-34c between subordinate and dominant follicles during the early luteal 

Figure 3.   Principal component analysis considering (a) the 19,240 mRNAs expressed at least in triplicate in the 
oocytes (OOs), (b) the 21,277 mRNAs expressed at least in triplicate in the Follicular cells (FCs). Samples 1–5 
from non-breeding season (NBS), samples 6–10 from breeding season (BS).
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phase33. MiR-34c was shown to exert anti-proliferative and pro-apoptotic effects in porcine granulosa cells by 
targeting Forkhead box O3a (FoxO3a)34.

In addition, the expression of some of the DE-miRNAs detected in our study differs in several ovarian 
disorders. It was reported that mir-141 and miR-199a are respectively up and down regulated in human ovar-
ian cancer35, miR-184 is a potential predictor of recurrence in human ovarian granulosa cell tumours36, and 
miR-486-5p is downregulated in cumulus cells collected from women affected by polycystic ovary syndrome37.

Interestingly, GO analysis of the predicted target genes for DE-microRNAs uncovered pathways associated 
with OOs and FCs physiology. Oocytes collected from the BS and NBS showed DE-miRNAs able to regulate 
genes for triglyceride and sterol biosynthesis essential for lipid metabolism, which provides a potent source 
of energy during oocyte maturation38. In FCs, the DE-miRNA target genes were related to pathways involved 
in transformation of growth factor β (TGFβ) and circadian clock photoperiod. TGFβ promotes granulosa cell 
proliferation regulating the expression of luteinizing hormone receptor (LH-R)39–41. Altered photoperiod can 
affect mRNA expression in ovaries15, in fact, transcriptome changes occurred between BS and NBS samples.

Considering DEGs between seasons, it is interesting to note that although only two DEGs were found in 
FCs, many of the DEGs in the OOs are known to be related to oocyte competence. In the NBS, decreased 
oocyte competence in buffalo was associated to change in the expression of secreted phosphoprotein 1 (SPP1), 
RUNX family transcription factor 2 (RUNX2) and Cathepsin K (CTSK) in OOs. Both SPP1 and RUNX2 expres-
sion was observed to change in oocyte and-granulosa cell complexes at various stages of follicle develop-
ment in pigs42. In addition, variations in the expression of SPP1 were recorded in cumulus cells derived from 

Table 3.   Differentially expressed gene DEGs (false discovery rate (FDR) < 0.05) calculated between the two 
seasons (non breeding season NBS, breeding season) for oocytes (OOs) and follicular cells (FCs).

OOs (NBS vs BS) FCs (NBS vs BS)

GENE ID Human and cattle ortholog logFC FDR GENE ID Human and cattle ortholog logFC FDR

APOE APOE − 4.7 8.6E−07 LOC102409538 RNF213 − 4.7 5.6E−04

LOC102397479 LOC102397479 − 5.2 1.3E−05 COL26A1 COL26A1 2.1 2.3E−02

PLXNA4 PLXNA4 − 2.3 2.6E−05

IGF2 IGF2 − 4.7 5.2E−04

FOLR2 FOLR2 − 7.5 8.0E−04

CD14 CD14 − 8.7 8.7E−04

SPP1 SPP1 − 3.2 2.5E−03

LOC102409999 CD163 − 4.7 2.8E−03

CTSS CTSS − 5.3 2.8E−03

LOC102413141 GTF2IRD2 − 0.7 3.9E−03

LOC102392787 IL1B − 5.0 6.1E−03

LOC112581169 LOC112581169 − 0.9 7.6E−03

CCL1 CCL1 − 1.2 9.7E−03

CTSK CTSK − 3.8 9.7E−03

LOC102415727 regakine 1 − 5.3 1.1E−02

MSR1 MSR1 − 3.7 1.2E−02

RUNX2 RUNX2 − 1.3 1.9E−02

LOC102404545 LOC102404545 2.3 2.1E−02

LOC102400151 CYP11A1 − 2.6 2.3E−02

LOC102409533 HSPA1A − 0.8 3.6E−02

NMB NMB − 1.9 4.7E−02

LOC112582161 LOC112582161 0.9 4.8E−02

Table 4.   GO terms identified for the differentially expressed gene (DEGs) between the two seasons for oocytes 
(OOs). Indicated are gene ontology IDs (GO-ID), gene ontology terms (GO-term), associated genes found 
and corrected P values as determined by ClueGO (https​://apps.cytos​cape.org/apps/clueg​o). * Term P value 
corrected with Bonferroni step down.

GOID Associated genes found GO term P value*

GO:19915 [APOE, IL1B, MSR1] Lipid storage 7.17E−05

GO:32370 [APOE, IL1B, SPP1] Positive regulation of lipid transport 8.94E−05

GO:32677 [CD14, HSPA1A, IL1B] Regulation of interleukin-8 production 4.09E−05

GO:32757 [CD14, HSPA1A, IL1B] Positive regulation of interleukin-8 production 6.29E−05

GO:1905954 [APOE, IL1B, MSR1, SPP1] Positive regulation of lipid localization 5.76E−06

https://apps.cytoscape.org/apps/cluego
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cumulus-oocyte-complexes (COCs) collected from cows undergoing FSH priming, as a model of high oocyte 
competence43, and RUNX2 expression was associated with controlled ovarian stimulation outcome in assisted 
reproductive technology treatment in women44. Furthermore, CTSK in cumulus cells was suggested as a predic-
tive marker for oocyte competence in bovine COC45.

In buffalo OOs during the NBS, a decreased expression of heat shock protein family A (Hsp70) member 
1A (HSPA1A), known to be related to oocyte survival and apoptosis, was also observed. The HSPA1A plays a 
critical role through its protective action against apoptosis and its expression is reduced in poor, as compared 
to competent, ovine COCs46.

Another transcript down-regulated in the NBS OOs is interleukin-1 beta (IL-1β). Although IL-1β deficiency 
in mice prolongs ovarian lifespan47), IL-1β stimulates the growth and sustains maturation in mare48 and bovine 
oocytes49. In addition, IL-1β was postulated to be involved in different ovulation-associated events such as pros-
taglandin production and steroidogenesis50. Modulation of expression levels was observed in this study also for 
other genes related to gonadotropic hormone synthesis and metabolism, showing a reduced expression in buffalo 
OOs during NBS. Apolipoprotein E (APOE) is expressed in cultured ovarian granulosa cells, and is present in 
human follicular fluid where its relative levels are correlated with serum estrogen concentration51. In rats, APOE 
exerts a role in directing cholesterol during steroidogenesis and regulating follicular estrogenic production52. 
Insulin like growth factor 2 (IGF2) was observed to be expressed in bovine oocytes53. The expression of IGF2 is 
modulated by growth hormone (GH) in in vitro matured Rhesus macaque oocytes54. Furthermore, it is known 
that IGF2, in combination with follicle stimulating hormone (FSH), acts directly on oocyte competence in caprine 
follicles55. Finally, the folate receptor beta (FOLR2), also down-regulated in OOs during the NBS, is a key gene 
linked to methionine/folate cycles in bovine oocyte56, also involved in folate transport in mice oocytes during 
follicular development57.

In our study, a positive correlation between DEGs and DE-miRNA target genes was observed. MiRNAs usu-
ally mediate repression of their target mRNAs by inhibiting their translation, therefore reducing the abundance 
of their products58. However, several studies reported a positive miRNA-mRNA regulation with a feed-forward 
mechanism probably mediated by transcription factors59. Notably, among all DE-miRNAs, miR-296-3p is the 
most correlated with transcripts changing in OOs between BS and NBS. MicroR-296-3p was previously reported 
to be expressed in ovaries in mice60 and to repress cell plasticity in different tumour lines61, promoting apoptosis 
in liver62 and in mammalian pancreatic α cells63. Recently, altered expression of bta-miR-296-3p was detected in 
muscle, kidney, and liver, in bovine foetuses with large offspring syndrome (LOS)64. In addition, miR-296 was 
also observed to be epigenetically regulated as a part of the imprinted Gnas/GNAS clusters65.

Conclusion
In conclusion, the reduced oocyte developmental competence recorded during the NBS in buffalo is associated 
with changes in miRNA and mRNA content in OOs and corresponding FCs. The GO analysis showed over-
representation of key genes related to lipid and sterol biosynthesis and hormone regulation, crucial for folliculo-
genesis and acquisition of oocyte competence. These observations might help to explain the seasonal difference 
in the potential of buffalo oocytes, thus providing the basis for the development of strategies to improve oocyte 
competence in the NBS. Nevertheless, further efforts are still needed to validate expression modulation of miR-
NAs and key genes identified in our study and deeply investigate their role in seasonal reproduction in buffalo.

Figure 4.   Venn diagram (https​://bioin​fogp.cnb.csic.es/tools​/venny​/ version 2.1) representing the intersection 
(n = 6) between differentially expressed genes (DEGs, n = 22) and target genes of the differentially expressed 
miRNAs (DE-miRNAs, n = 6,712) in oocytes collected in the NBS and BS. Shared genes with their relative target 
miRNAs are reported. ↑indicates overexpression in breeding season (both for genes and miRNAs).

https://bioinfogp.cnb.csic.es/tools/venny/
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Materials and methods
Collection of oocytes and granulosa cells.  The study was carried out in Southern Italy (latitude 40.5°–
41.5° N and longitude 13.5–15.5) in October, i.e. autumn (BS) and January, i.e. mid-winter (NBS). Buffalo ova-
ries were collected at a local slaughterhouse (Real Beef s.r.l., Flumeri (AV), Italy under national food hygiene 
regulations, and transported to the laboratory in physiological saline supplemented with 150 mg/L kanamycin at 
30–35 °C within 4 h after slaughter. In order to reduce variability, the ovaries were collected from a homogene-
ous population of buffaloes, i.e. 134 cyclic multiparous Italian Mediterranean Buffalo cows with a mean weight 
and age of 552.6. ± 12.1 kg and 5.3 ± 0.4 years, over a total of 10 replicates (5/season). Cyclic ovarian activity was 
assessed by two clinical examinations carried out 12 days apart before slaughter, to detect the presence of a fol-
licle greater than 1 cm and/or corpus luteum on the ovary.

For each day of collection (n = 10), 2–8 mm follicles were aspirated under controlled pressure to collect both 
OOs and FCs for molecular analyses, while a group of cumulus oocyte complexes (COCs) were in vitro matured, 
fertilized and cultured up to the blastocyst stage (n = 238 and 234, respectively in the BS and NBS).

Follicular fluid was aspirated using an 18 G needle under vacuum (40–50 mm Hg) in Falcon tubes and poured 
into a petri dish for COC recovery. The COCs were evaluated according to morphology and classified according 
to Di Francesco et al.10. Grade A and B COCs, considered suitable for in vitro embryo production (IVEP), were 
quickly selected from the dish and washed thoroughly in medium H199.

For each replicate, COCs were denuded of their cumulus cells by gentle pipetting and denuded oocytes were 
washed in phosphate buffer solution (PBS) + 0.1% polyvinyl alcohol (PVA), pooled (20/pool), snap frozen in 
liquid nitrogen and stored at − 80 °C until RNA isolation.

The follicular fluid was centrifuged at 300×g for 10 min at 4 °C to separate the follicular fluid and the FCs. 
After centrifugation, the supernatant was centrifuged again at 2000g for 10 min and the pellet containing FCs 
was snap frozen in liquid nitrogen and stored at − 80 °C until RNA isolation.

In vitro embryo production.  Unless otherwise stated, reagents were purchased from Sigma Chemical 
Company (Milano, Italy). The methods for in vitro maturation (IVM) described below have been reproduced 
in part from Gasparrini et al.66. For each replicate, Grade A and B COCs recovered by follicular aspiration were 
rinsed in HEPES-buffered TCM199 supplemented with 10% fetal calf serum (FCS) and in vitro matured, fer-
tilized and cultured to the blastocyst stage. Briefly, COCs were allocated to 50 µL drops (10 per drop) of IVM 
medium, i.e. in TCM199 buffered with 25 mM sodium bicarbonate and supplemented with 10% FCS, 0.2 mM 
sodium pyruvate, 0.5 µg/mL FSH, 5 µg/mL LH, 1 µg/mL 17 β-estradiol and 50 µg/mL kanamycin, and incubated 
at 38.5° C for 21 h in a controlled gas atmosphere of 5% CO2 in humidified air66.

The methods for in vitro fertilization (IVF) and culture (IVC) described below have been reproduced from 
Di Francesco et al. 201211. Frozen straw from a bull previously tested for IVF were thawed at 37 °C for 40 s and 
sperm was selected by centrifugation (25 min at 300g) on a Percoll discontinuous gradient (45% and 80%). 
The sperm pellet was re-suspended to a final concentration of 2 × 106 mL−1 in the IVF medium, consisting of 
Tyrode albumin lactate pyruvate67 supplemented with 0.2 mM penicillamine, 0.1 mM hypotaurine and 0.01 mM 
heparin. Insemination was performed in 50 µL drops of IVF medium under mineral oil (5 oocytes per drop) 
at 38.5° C under humidified 5% CO2 in air. Twenty hours after IVF, putative zygotes were removed from the 
IVF medium, stripped of cumulus cells by gentle pipetting and allocated to 20 µ@@L drops of IVC medium, 
i.e. synthetic oviduct fluid (SOF) including essential and non-essential amino acids and 8 mg/mL bovine serum 
albumin68. Culture was carried out under humidified air with 5% CO2, 7% O2 and 88% N2 at 38.5 °C. On day 5 
post-insemination (pi) the cleavage rate was assessed and the embryos transferred into fresh medium for further 
2 days of IVC, when blastocyst rates were recorded.

RNA isolation.  Samples for RNA isolation were obtained from pools (n = 20) of OOs and FCs for both 
conditions (BS and NBS). The methods described below have been reproduced in part from Lange-Consiglio 
et al.69. Total RNA was isolated by NucleoSpin miRNA kit (Macherey–Nagel, Germany), following the protocol 
in combination with TRIzol (Invitrogen, Carlsbad, CA, USA) lysis with small and large RNA in one fraction 
(total RNA). Concentration and quality of RNA were determined by Agilent 2,100 Bioanalyzer (RIN ≥ 6.5 and 
7.5 for OOs and FCs, respectively) (Santa Clara, CA, USA). The isolated RNAs were stored at − 80 °C until use.

Library preparation and sequencing.  In total, 20 libraries of small RNA and 20 libraries of RNA-Seq 
were obtained from five animals per group (n = 5) of two cellular types (OOs and FCs) in both seasons (BS and 
NBS). Small RNA libraries were prepared using TruSeq Small RNA Library Preparation kit, according to manu-
facturer’s instructions (Illumina). Small RNA (sRNAs) libraries were pooled together and purified with Agen-
court AMPure XP (Beckman, Coulter, Brea, CA) (1 Vol. sample: 1.8 Vol. beads) twice69. The methods described 
below have been reproduced in part from Frattini et  al. 201770. RNA-Seq libraries were generated using the 
Illumina TruSeq RNA Sample Preparation v2 Kit but with one-half of the recommended reagent volumes. Con-
centration and profile of libraries were determined by Agilent 2100 Bioanalyzer before library sequencing on a 
single lane of Illumina Novaseq 6000 (San Diego, CA, USA), (Supplementary file 9).

Data analysis.  miRNA analysis.  Illumina raw sequences were quality checked with FastQC (https​://www.
bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/) and trimmed with Trimmomatic (version 0.32)71, then miR-
Deep2 (miRDeep2 (version 2.0.0.5)72 was used for miRNA detection and discovery. Known miRNAs available 
at MirBase (https​://www.mirba​se.org/) were used to support miRNA identification. In particular, Bos taurus 
miRNAs were input to support known miRNA detection and miRNAs from related species (sheep, goat and 
human) were input to support novel miRNA identification. All the identified miRNAs were quantified using the 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.mirbase.org/
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miRDeep2 quantifier module. The Bioconductor edgeR package (version 2.4) was used to identify statistically 
significant differential expression between groups of samples (false discovery rate [FDR] < 0.05)73. Predicted 
miRNA gene targeting of differentially expressed Bos taurus miRNAs (DEmiRNAs) was performed with miR-
Walk2.074, using homologous human miRNAs as input identifiers.

Target genes were submitted to GO analysis. GO classification of the DEGs was performed according to 
canonical GO categories, using the Cytoscape (version.3.2.1) plug-in ClueGO (version 2.3.5) which integrates 
GO and enhances biological interpretation of large lists of genes75. MicroRNA cluster analysis was performed 
with Genesis (version1.8.1)76.

RNA‑seq analysis.  RNA-Seq raw data were trimmed using Trimmomatic (version 0.32)71. Sequences were 
aligned to the buffalo reference genome version UOA_WB_1 (GCF_003121395.1) using STAR_2.3.077. Sub-
sequently, HTSeq-count (version 0.6.1p1)78 was used to count sequences aligned to each gene. The software 
package EdgeR of Bioconductor (version 3.6) was used to estimate differential expression between groups of 
samples73. RNAseq cluster analysis was performed with Genesis (version1.8.1)76. Differentially expressed genes 
DEGs were submitted to GO analysis, using the Cytoscape (version.3.2.1) plug-in ClueGO (version 2.3.5)75. 
Venn diagrams for intersection between DEGs and miRNAs target genes, using the Venn Diagrams software 
(https​://bioin​fogp.cnb.csic.es/tools​/venny​/ version 2.1).

In vitro embryo production.  Differences in cleavage and blastocyst rates between seasons were analyzed by Chi 
square test. The level of significance was set at P < 0.05.

Data availability
RNA-Seq data are available in the Sequence Reads Archive (SRA), BioProject accession number, PRJNA599337. 
Novel miRNA precursors and novel miRNA mature sequences are reported in Supplementary files S10 and S11.
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