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Abstract

This paper addresses a problem belonging to the domain of whale audio
processing, more specifically the automatic classification of sounds produced
by the Mysticete species. The specific task is quite challenging given the
vast repertoire of the involved species, the adverse acoustic conditions and
the nearly inexistent prior scientific work. Two feature sets coming from
different domains (frequency and wavelet) were designed to tackle the prob-
lem. These are modeled by an Echo State Network classifier. The dataset
includes five species (Blue, Fin, Bowhead, Southern Right, and Humpback)
and it is publicly available at http://www.mobysound.org/. We followed a
thorough experimental procedure and achieved more than satisfactory recog-
nition rates.

Keywords: marine mammal acoustic signal processing, multidomain
parameters, reservoir network, deep learning.

1. Introduction

Bioacoustic signal processing has attracted a lot of attention during the
last decade as it is able to offer robust solutions to problems with diverse
needs, e.g. (Holmes et al., 2014} Potamitis et al., | 2007; |Potamitis and Rigakis,
2016)). The ultimate goal of frameworks processing bioacoustic signals is to
provide a complete and accurate picture of the biodiversity of the habitat of
interest towards its conservation (Ntalampiras et al. [2012)). Without such
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automatic frameworks the monitoring process is accomplished by human ex-
perts by thorough observation of the recorded data. Even though the quality
of the work done by a human expert is superior to the services offered by a
machine, there are many drawbacks with respect to monitoring carried out
by humans: @) they require more time as an algorithm is able to run faster
than real-time, b) the needed expeditions are costly or even impossible due
to dangerous, inaccessible areas, c) they are able to analyze a limited num-
ber of habitats d) they may also interfere with the behavior of the species of
interest and alter its behavior.

An application domain falling under the umbrella of bioacoustic sig-
nal processing deals with the automatic categorization of marine mammal
sounds. It comes out from the related literature that the specific domain is
still not well explored with respect to others, such as processing of bird call-
ings (Potamitis et al., [2014; Ranjard et al. 2015). Mainly this is due to the
fact that underwater sound recording requires more sophisticated equipment
and resources in general. However the recent technological advancements
in automatic recording units have facilitated the capturing of underwater
sounds, thus nowadays one may easily have access to vast amount of the as-
sociated audio signals. These databases can be used for the development of
automated methods which achieve biodiversity monitoring towards a better
analysis of underwater life.

This study addresses the problem of classifying sounds coming from mys-
ticetes based on the hypothesis the mammalian cortex uses a form of hierar-
chical decomposition for processing sound stimuli (Shamma;, 2001} |Stephen
V. David and Shamma, 2007). This results on a consistent distribution of
the energy produced by each audio signal with respect to specific parts of
the spectrum. Our aim to design acoustic features able to capture this dis-
tribution and subsequently model them (and/or their evolution in time) for
its automatic classification. The mysticete species included in the present
study are: a) Blue whales, b) Bowhead whales, ¢) Fin whales, d) Humpback
whales and e) Southern Right whales.

The problem is quite challenging since the related signals may exhibit
similar temporal and spectral characteristics. Thus one must search for fea-
tures able to capture even slight differences among the signals belonging to
the above-mentioned species. Another issue is that the data of a specific
class may exhibit distribution with varying characteristics mainly due to the
noise co-existing with the signals of interest.

Here we use information coming both from cepstral and wavelet domains.



Subsequently they are modeled by a method exploiting a discriminative clas-
sifier based on deep learning. The pattern modeling technique is adaptive
while taking into account the following issues: a) limited data associated
with one or more classes, and b) dataset exhibiting imbalances with respect
to one or more classes, i.e. data quantities among the classes are unequal.
We followed a thorough experimental procedure using a publicly available
dataset and reached quite encouraging classification rates.

The rest of this article is organized as follows: Section [2] provides an
overview of the related literature. Section {4 analyses the modules which
comprise the proposed classification framework with special attention to the
universal background and reservoir modeling. The next section examines the
capabilities of the proposed approach in a thorough and concise way. Finally
section [6] offers our conclusions as well as ideas for future works.

2. Related Literature

Processing of sounds coming from mysticete and/or odontocete species
has attracted the interest of the audio signal processing community quite
recently. Halkias et al. (Halkias et al., 2013) designed a method able to
classify mysticete sounds of five species (Blue whale, Bowhead whale, Fin
whale, Humpback whale and Southern Right whale) under the presence of
noise (ambient noise, mechanical noise, other species). Their method is based
on Restricted Boltzman Machine and Sparse Auto-Encoder fed on spectro-
gram ROIs while providing a recognition accuracy of 69% and 80% with and
without the presence of noise respectively. Three time-frequency methods
for recognizing fin and blue whale calls are presented in (Mouy et al.; 2009).
The methods include spectrogram matching, dynamic time wrapping and
vector quantization while the latter two operate on the frequency contour.
The dataset was recorded by the authors while they emphasize on the strong
and weak points of each method.

Study (Shamir et al.; [2014)) processes sounds produced by ten killer whales
and eight pilot whales close to the coasts of Norway, Iceland, and the Ba-
hamas (Whale FM project). They were automatically analyzed and the killer
whales were classified as Icelandic or Norwegian while the pilot ones were sep-
arated into Norwegian long-finned and Bahamas short-finned pilot whales.
The audio features are extracted out of the spectrogram while the classifi-
cation is based on a distance metric weighted by Fisher discriminant scores.
It is interesting to note that the proposed method performed better than



the analysis of the citizens. In (Bahoura and Simard) 2010) the authors used
the short-time Fourier and wavelet packet transforms along with a multilayer
perceptron (MLP) to analyze blue whale calls. The proposed system is able
to classify the vocalizations into A, B and D blue whale classes.

Paper (Murray et al., [1998) employs two types of neural networks (based
on competitive learning and Kohonen feature mapping respectively) in order
to analyse the repertoire of false killer whale vocalizations. The authors used
duty cycle measurements and peak frequency as signal characteristics while
three major categories were discovered: ascending whistles, low-frequency
pulse trains, and high-frequency pulse trains. It should be noted that the
vocalizations were captured by two false killer whales, one male and one
female, located at Sea Life Park, Oahu, Hawaii.

Brown et al. (Brown and Miller, 2007) applied four Dynamic Time Wrap-
ping algorithms on a set of calls by Northern Resident whales which may be
categorized into seven different classes. Their features included the low fre-
quency contour, the high frequency contour, their derivatives, and weighted
sums of the distances corresponding to LFC with HFC, LFC with its deriva-
tive, and HFC with its derivative. Subsequently Brown and Smaragdis
(Brown and Smaragdis, 2009) used hidden Markov models (HMMs) and
Gaussian mixture models (GMMs) to classify seven types of calls coming
from Northern Resident killer whales. Their feature set was a time-frequency
decomposition of the recorded signals.

An interesting approach is presented in (Mellinger and Clark, 2000|) based
on spectrogram correlation. The corpus consisted of bowhead whale (Bal-
aena mysticetus) end notes from songs recorded in Alaska in 1986 and 1988
while the method outperformed three other methods (matched filters, neural
networks, and hidden Markov models).

Roch et al. (M. A. Roch and Hildebrand) 2007)) explain a method for clas-
sification of free-ranging delphinid vocalizations. The feature extraction con-
cerned cepstral vectors associated with multisecond segments. The authors
trained one Gaussian mixture model for each of the following three species:
short-beaked and long-beaked common (Delphinus delphis and Delphinus
Capensis), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose
(Tursiops truncates). Last but not least Wilcock (Wilcockl 2012) followed a
fundamentally different approach and performed tracking of fin whales in the
northeast Pacific Ocean using measurements coming from a seafloor seismic
network.

To the best of our knowledge there are no approaches in the literature
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exploiting a deep learning classifier in combination with a multidomain set
of features for the classification of five Mysticete species.

3. Acoustic features

This section explains the parameterization of the audio signals coming
from the five whale species. Both frequency and wavelet domains were em-
ployed towards obtaining a spherical picture of the involved sound events.

For convenience, the features extracted out of a Blue whale sound event are
depicted in Fig. [1]

3.1. Frequency domain features

The first feature set exploits the spectrogram of the sound event since is
may reveal important information for its characterization. The Fast Fourier
Transform is used while the signal is windowized in order to minimize the
effect of spectral leakages, i.e. diminish the finite length sequence at the
ends aiming at a periodic structure without discontinuities. There exists
a gamut of window functions with very different spectral properties, e.g.
main lobe widths and side lobe amplitudes (Harris, |1978). Here we have
employed the following windowing techniques to reduce edge effects in the
FFT: a) blackman, b) hamming, ¢) hanning, d) and rectangular.

Since classification of whale sounds is a relatively new task for the audio
signal processing community and a standard windowing technique has not
been established, we performed a series of examinations to determine the
optimal one. Early experimentations showed that Blackman windowing offers
the best spectral representation with respect to classification accuracy, thus
it is favored in this work. As one may see in Fig. [1| the high energy parts of
the spectrum are more emphasized while using Blackman window type than
the Hamming one (Hamming was chosen since it is commonly used in audio
processing applications). Thus the final feature vector is the energies of the
short time Fourier transform after it is Blackman windowed.

3.2. Wawvelet domain features

This group is extracted after a critical band-based multiresolution anal-
ysis of the signal takes place. Wavelets have become a common tool in
many signal processing applications (bioacoustic signal enhancement (Ren
et al., |2008), audio fingerprinting (Baluja and Covell, 2008), speech/music
discrimination (Ntalampiras and Fakotakis| [2008)) etc.). The uniqueness of



the wavelet transform come from its ability for processing time series, which
include non stationary power at many different frequencies. While the Fourier
transform is based on smooth and predictable sinusoid functions, wavelets
tend to be irregular and asymmetric. It is a dynamic windowing technique
processing low and high frequency information content with different levels
of analysis.

Wavelet packet (WP) analysis breaks up the signal and transforms it
into shifted and scaled variants of the original (or mother) function. In this
article we employed the Daubechies 1 (or Haar) function. The proposed
methodology applies the discrete wavelet transform three subsequent times
which is equivalent to a three-stage filtering while we retain both low and
high frequency content. The feature extraction process is depicted in Fig. [2|

With this set we wish to obtain a vector with a complete analysis of the
audio signal across different spectral areas while they are approximated by
WP. This set takes into account that not all parts of the spectrum contain
valuable information while some parts are highly contaminated with noise.
After manual inspection of the recordings, we employed a filterbank with
the frequency ranges denoted in Table 1 using Gabor bandpass filters based
on a Gaussian kernel. Subsequently we extract three-level wavelet packets
out of each spectral band while applying downsampling as Nyquist theorem
requests, in order not to end up having the double amount of data. During
the next stage we compute the autocorrelation envelope area with respect to
each segmented wavelet coefficient and we normalize it by half the segment
size. Finally we form a vector comprised of N normalized integration param-
eters, where N is the total number of the frequency bands multiplied by the
number of the wavelet coefficients (5 x 8 = 40). This is the WP-integration
feature vector and the block diagram for its computation is demonstrated
in Fig. 2l They capture the variations exhibited by each wavelet coefficient
within a group of predefined frequency bands. The normalized autocorrela-
tion envelope area was chosen as the whale signals show differences in the
content of the frequency bands we utilized.

4. The Classification Framework

We decided to apply a classification methodology approaching the prob-
lem from the following perspective: the Reservoir Network (RN) tries to
determine the hyperplanes which separate the feature space while projecting
them to a multidimensional space. They basically comprise recurrent neural



networks, i.e., a deep learning architecture whose their main purpose is to
capture the characteristics of high-level abstractions existing in the acquired
data while designing multiple processing layers of complicated formations, i.e.
non-linear functions. The advantage of RN is that the calculations involved
in its readout layer are linear, thus of limited computational complexity and
relatively small duration of the training process. Reservoir computing argues
that since back propagation is computationally complex but typically does
not influence the internal layers severely, it may be totally excluded from the
training process. On the contrary, the readout layer is a generalized linear
classification /regression problem associated with low complexity. In addition
any potential network instability is avoided by enforcing a simple constraint
on the random parameters of the internal layers.
In the following we provide a brief description of the RN:

4.1. Reservoir network

The trend in acoustic modeling suggests the usage of Reservoir Com-
puting (RC) techniques (Triefenbach et al., 2013). An RN comprises an
a-priori fixed Recurrent Neural Network (RNN), the output layer of which
is linear. An RN, whose topology is depicted in Fig. [3, includes neurons
with non-linear activation functions which are connected to the inputs (in-
put connections) and to each other (recurrent connections). These two types
of connections have randomly generated weights, which are kept fixed dur-
ing both the training and operational phase. Finally, a linear function is
associated with each output node.

Its parameters are the weights of the output connections and are trained
to achieve a specific result, e.g. that a particular output node produces high
values for observations of a particular class. The output weights are learned
by means of linear regression and are called read-outs since they "read” the

Table 1: The frequency limits of the wavelet packet integration analysis.

| Band number | Lower (Hz) | Center (Hz) | Upper (Hz) |

1 1 D 10
2 10 15 20
3 20 25 30
4 30 35 40
5 40 45 50




reservoir state. Details about the RN training and the echo state property
can be found in (Lukoeviius and Jaeger, |2009).

As a general formulation of the RNs, we assume that the network has
K inputs, G neurons (usually called reservoir size), M outputs while the
matrices Wi, (K X G), W,.es(G x G) and W,,,,(G x L) include the connection
weights. The RN system equations are the following:

2(k) = fos(Winu(k — 1) + Wyesz(k — 1)) (1)
y<k) = fout(Wout>x(k)a (2>

where u(k), (k) and y(k) denote the values of the inputs, reservoir outputs
and the read-out nodes at time k respectively. f.., and f,,; are the activation
functions of the reservoir and the output nodes, respectively. In this work
we consider f..s(z) = tanh(x) and f,u:(z) = x and we fix L = 5 equal to the
number of the sound classes.

Linear regression is used to determine the weights W,

1
Wour = argm&n(NtrHXW—DH2+6HWH2) (3)
Wowr = (XTX +el)Y(XTD), (4)

where XW and D are the computed vectors, I a unity matrix, N the
number of the training samples while € is a regularization term.

The recurrent weights are randomly generated by a zero-mean Gaussian
distribution with variance v, which essentially controls the spectral radius
(SR) of the reservoir. The largest absolute eigenvalue of W, is proportional
to v and is particularly important for the dynamical behavior of the reser-
voir (Jaeger, 2002; Verstraeten et al.l 2007)). W;, is randomly drawn from a
uniform distribution [—InputScalingFactor, +InputScalingFactor], which
emphasises/deemphasises the inputs in the activation of the reservoir neu-
rons. The significance of the specific parameter is decreased as the reservoir
size increases.

In this work the RN is used for assigning classes to a certain sequence of
features coming from audio signals. To this end it is trained so as to achieve
an output state where a particular output node is high for observations of a
specific class (e.g. hungry, sleepy, etc.) and low for observations of any other
class. Thus, the regression layer minimizes the mean squared error between
Y (read-out vector) and d; (desired output), where all the elements belonging
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to d; are -1, except the one corresponding to the desired state which is equal
to +1. Following the work presented in (Richard and Lippmann, (1991) the
read-out layer y; , = 0.5 4 0.5y, , well approximates the posterior probability
vector P(q|u;), where g corresponds to any given data class.

At this point a small adjustment was introduced ensuring that the proba-
bilities are positive. The read-outs are calculated using the following formula:

1
iy = max(%,é),o <d<<1 (5)
and the probability is
P(qi, w) Yi
Pu|q) = ———~=P(u;) = =2 P(uy), 6
( t‘Qt) P<Qt> ( t) P(%) ( t) ( )

where P(gq;) comprises the mean of P(q;|u;) over the training data associated
with a specific class. Finally the class associated with the highest P(q|u;) is
assigned to the novel audio signal.

5. Experimental Set-up and Results

This section details the dataset used for the experiments, the parameter-
ization of the feature extraction and pattern recognition mechanisms, as well
as classification results of the systems considered in this work.

5.1. The dataset

We employed the database of the Cooperative Institute for Marine Re-
sources Studies (Oregon State University and NOAA/PMEL) which is pub-
licly available at http://www.mobysound.org/. The following five species
were considered: Blue whales, Bowhead whales, Fin whales, Humpback whales,
and Southern Right whales. The recordings are annotated using Region of
Interest boxes on the spectrograms of the audio signals. Inside the recordings
there may be present more than one call while the annotation files provide
the start and end times along with lowest and highest frequency of the call.
The sound files are provided in WAVE (.wav) or AIFF (.aif) format. Unlike
(Halkias et al., 2013)) we employed the entire dataset, even though it is highly
unbalanced (see Table [2)) since our methodology may address this issue. Fur-
thermore Table [2| includes the average SNR of each class of the dataset, the
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Table 2: The characteristics of the dataset of the Cooperative Institute for Marine Re-
sources Studies (Oregon State University and NOAA /PMEL) which is publicly available
at http://www.mobysound.org/|

’ Mpuysticete class \ SNR (dB) \ Duration (s) ‘
Blue Whale 8.4 22680
Bowhead Whale 16.3 5040
Fin Whale 18.7 9720
Humpback Whale 27.9 3300
Southern Right Whale 12 78

difference of which complicates the automatic categorization of the signals.
It should be mentioned that we chopped the recordings according to their
respective labels in time and used them without artificially adding any noise
source. This is motivated by the fact that sound recognition assumes signals
coming from a specific class follow a consistent pattern, which is learned when
both feature extraction and modeling phases operate on the structure of the
sound event alone. In addition the recordings were normalized for removing
any possible DC-offset. It should be noted that the ten-fold cross valida-
tion partition scheme was employed and kept the same during the entire
experimental campaign.

Our methodology was applied to two tasks: a) on specific frequency range
and b) on all five species following the experimental set-up presented in
(Halkias et al., [2013). The second task is only an exemplary scenario of the
capabilities of the proposed framework since it is impossible for the same
microphone to capture sounds coming from all these species at the same
habitat.

Some of the recordings may be of poor quality, however they could be
useful for creating an automatic call recognition system since training data
similar to the ones captured in real-life are required. The dataset includes
long periods of time where no calls of interest occur, a case which is usually
encountered as the events of interest are rather scattered. Furthermore each
recording may include calls from one or more individuals in the present of
noise and/or interfering sounds, a characteristic which makes the problematic
quite challenging and allows us to thoroughly examine the capabilities of the
proposed methodology.
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Table 3: The average recognition rates (in %) with respect to every feature set, while the
highest one is emboldened. Each experiment was repeated 50 times while the considered
species are the following: Bowhead, Humpback, Southern Right, Blue, and Fin.

Feature Set

Frequency | Wavelet | Concatenation

Classifier

| Reservoir Network [781+£09[732+08]| 81.3+0.8

Table 4: The confusion matrix which includes the classification rates reached by the RN
modelling the concatenated feature set.

Responded
Bowhead | Humpback S. Right Blue Fin

Presented

Bowhead 76.2 £0.5| 81£03 7+02 72+19 1.5£0.6
Humpback 121+15 | 70.8 £0.3| 94+£08 77+ 1.2 0+ 0.7
S. Right 7.6 £ 0.3 77+08 |79.8+ 0.9 0+04 4.5 £ 0.6
Blue 10.2 £ 0.3 0£15 75+04 [82.3+05| 0£14
Fin 83 +£04 4402 0+0.8 6.7+07 |81 +1.9

5.2. Framework parametrization

The feature extraction methods operated on a frame of 30ms with 10ms
overlap, thus a eliminating the existence of possible misalignments. The FFT
size, where applicable, was 512 while the testing protocol was the 30-fold cross
validation. Both the training and the testing sets were kept constant between
different framework configurations in order to derive comparable results.

The parameters of the RN were selected by means of exhaustive search.
They were taken from the following sets: SR € {0.8,0.9,0.95,0.99}, L €
{100, 500, 1000, 5000, 10000}, and InputScalingFactor € {0.1,0.5,0.7,0.95,0.99}.
The implementation of the RN was based on the echo state network toolbox
which is available at http://reservoir-computing.org/software. Model
training and parametrization are the most computationally intensive parts of
the methodology proposed here, however they are performed only once and
off-line.

5.3. FExperimental results and analysis

The experimental campaign is comprised of two phases: a) the first one
includes all the five mysticete species and b) the second one concerns the clas-
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sification of species with acoustic content ranging within specific frequency
boundaries, thus a smaller amount of classes is taken into account. It should
be noted that the first phase comprises a hypothetical scenario since is highly
unlikely that the selected five species will co-exist in the same habitat, how-
ever it may be useful to provide indications regarding the efficacy of the
acoustic characterization of whale vocalizations.

The concentrated results of the first phase are tabulated in Table 3] It
includes the average recognition rates with respect to each feature set, while
it considers all the species (Bowhead, Humpback, Southern Right, Blue, and
Fin). The confidence intervals computed over 50 iterations per experiment
are also shown. As we can see the concatenated feature set provides bet-
ter performance. Furthermore the set derived from the frequency domain
achieves superior recognition rates with respect to the one based on the
wavelet domain. The performance of the system is placed at quite satisfac-
tory levels (average rate is equal to 78%) due to the simultaneous usage of
sound parameters coming from multiple domains. This fact suggests that
the feature sets exhibit complementary characteristics which are beneficial
and in the end, lead to higher classification rates.

Interestingly the RN offers very good classification accuracy showing that
when a vast amount of data is available, the RN technique is able to learn
to discriminate the data belonging to different classes, i.e. the boundaries
within the high-dimensional feature space.

Moving on, we employed confusion matrices which may provide a better
understanding of the system learning capacities. Following the results of the
first experimental phase, we employed the RN operating on the concatenated
feature space for the purposed of the second one. The involved tasks are two:
a) classification between the Southern Right, Humpback, Bowhead species
(Table[6), and b) classification between the Blue and Fin species (Table [5).
The proposed approach reaches quite high recognition rates: 78.7% for the
first task and 91.8% for the second one. The discrimination between Blue
and Fin whales is more than satisfactory while the species with the lowest
rate is the Humpback whale with 72+0.9% since it is misinterpreted for the
Bowhead species. The species with the highest recognition accuracy is the
Blue whale and the one with the lowest the Humpback.

Overall we infer that the proposed system achieves quite high recognition
rates considering the acoustic similarities between the repertoire of different
or even the same species. This fact is actually a challenge also for trained
human annotators. A direct comparison with the work reported in (Halkias
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et al.| 2013) is not feasible since both training sets and regimes are different.
The present framework captures diverse characteristics of the audio content
combined with a powerful pattern recognition algorithm, which are essential
for a reliable discrimination.

6. Conclusions

This article analysed a novel methodology for the automatic classification
of Mysticete sounds. It has proven to be able to provide encouraging classi-
fication rates in multiple tasks including 2, 3 and 5 classes. The system can
handle more species given an adequate amount of related training data. It
may comprise a useful tool towards research conducted on as well as off the
field. An interesting point is that even though the RN is basically untrained
(only the readout layer is trained by means of linear regression) it performs
in a quite satisfactory manner.

The article provided a good proof of concept of the applicability of the
audio recognition technology onto the specific problematic, which may en-
courage further research in this thematic. Future work includes a) the
development of a statistical noise elimination mechanism, b) the design of a
preprocessing stage for discriminating between known and unknown (previ-
ously seen and not seen) data for deciding whether the specific data sequence
can be processed by the system or it is part of a completely new class (nov-
elty detector (Pimentel et al., [2014))), and ¢) derive a metric measuring the
distance between the unknown data and forming new classes (which may be
new species or previously unseen parts of the repertoires of known species)
since it is unrealistic to assume that we have gathered data representing every
manifestation of the Mysticete species.

Table 5: The confusion matrix which includes the classification rates reached by the RN
modelling the concatenated feature set while the considered species are Blue and Fin
whale.

Responded
Blue Fin
Presented
Blue 92 £ 0.3 8§ £ 0.5
Fin 854+021]91.5+04

13



Acknowledgment

The author would like to dedicate this work to Mrs. Marigianna Kotta of
the IOW Leibniz Institute for Baltic Sea Research (http://www.io-warnemuende.
de/en_index.html).

In addition, the author is thankful to Sarah Heimlich, Holger Klinck and
Dave Mellinger for http://www.mobysound. org/ which provided the dataset
for conducting the experiments included in this work.

References

Bahoura, M., Simard, Y., 2010. Blue whale calls classification using short-
time fourier and wavelet packet transforms and artificial neural network.
Digital Signal Processing 20 (4), 1256 — 1263.

Baluja, S., Covell, M., 2008. Waveprint: Efficient wavelet-based audio finger-
printing. Pattern Recognition 41 (11), 3467 — 3480.

Brown, J. C., Miller, P. J. O., 2007. Automatic classification of killer whale
vocalizations using dynamic time warping. The Journal of the Acoustical
Society of America 122 (2), 1201-1207.

Brown, J. C., Smaragdis, P., 2009. Hidden markov and gaussian mixture
models for automatic call classification. The Journal of the Acoustical So-
ciety of America 125 (6).

Halkias, X. C., Paris, S., Glotin, H., 2013. Classification of mysticete sounds
using machine learning techniques. The Journal of the Acoustical Society
of America 134 (5).

Table 6: The confusion matrix which includes the classification rates reached by the RF
fusion modeling the concatenated feature set while the considered species are Southern
Right, Humpback and Bowhead whale.

Responded
Southern Right | Humpback | Bowhead
Presented
Southern Right 80 + 1 132+ 06 | 68402
Humpback 121 £ 0.4 72 +£09 | 159+04
Bowhead 8.3+ 0.2 76 +0.3 | 84.1 + 0.7

14


http://www.io-warnemuende.de/en_index.html
http://www.io-warnemuende.de/en_index.html
http://www.mobysound.org/

Harris, F., Jan 1978. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE 66 (1), 51-83.

Holmes, S. B., Mcllwrick, K. A., Venier, L. A., 2014. Using automated sound
recording and analysis to detect bird species-at-risk in southwestern ontario
woodlands. Wildlife Society Bulletin, n/a-n/a.

Jaeger, H., 2002. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the echo state network approach. Tech. rep.,
Fraunhofer Institute AIS, St. Augustin-Germany.

Lukoeviius, M., Jaeger, H., 2009. Reservoir computing approaches to recur-
rent neural network training. Computer Science Review 3 (3), 127 — 149.

M. A. Roch, M. S. Soldevilla, J. C. B. E. H., Hildebrand, J. A., 2007. Gaus-
sian mixture model classification of odontocetes in the southern california

bight and the gulf of california. The Journal of the Acoustical Society of
America 121 (3), 1737-1748.

Mellinger, D. K., Clark, C. W., 2000. Recognizing transient low-frequency
whale sounds by spectrogram correlation. The Journal of the Acoustical
Society of America 107 (6), 3518-3529.

Mouy, X., Bahoura, M., Simard, Y., 2009. Automatic recognition of fin and
blue whale calls for real-time monitoring in the st. lawrence. The Journal
of the Acoustical Society of America 126 (6).

Murray, S. O., Mercado, E., Roitblat, H. L., 1998. The neural network clas-
sification of false killer whale (pseudorca crassidens) vocalizations. The
Journal of the Acoustical Society of America 104 (6).

Ntalampiras, S., Fakotakis, N., 2008. Speech/music discrimination based on
discrete wavelet transform. In: Proceedings of the 5th Hellenic Conference
on Artificial Intelligence: Theories, Models and Applications. SETN ’08.
Springer-Verlag, Berlin, Heidelberg, pp. 205-211.

URL http://dx.doi.org/10.1007/978-3-540-87881-0_19

Ntalampiras, S., Potamitis, 1., Fakotakis, N., 2012. Acoustic detection of
human activities in natural environments. J. Audio Eng. Soc 60 (9), 686—
695.

URL http://www.aes.org/e-1ib/browse.cfm?elib=16373

15


http://dx.doi.org/10.1007/978-3-540-87881-0_19
http://www.aes.org/e-lib/browse.cfm?elib=16373

Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L., 2014. A review
of novelty detection. Signal Processing 99 (0), 215 — 249.
URL http://www.sciencedirect.com/science/article/pii/
S5016516841300515X

Potamitis, 1., Ganchev, T., Fakotakis, N.; Feb 2007. Automatic acoustic
identification of crickets and cicadas. In: Signal Processing and Its Appli-
cations, 2007. ISSPA 2007. 9th International Symposium on. pp. 1-4.

Potamitis, 1., Ntalampiras, S., Jahn, O., Riede, K., 2014. Automatic bird
sound detection in long real-field recordings: Applications and tools. Ap-
plied Acoustics 80 (0), 1 — 9.

Potamitis, 1., Rigakis, 1., Aug 2016. Large aperture optoelectronic devices to
record and time-stamp insects wingbeats. IEEE Sensors Journal 16 (15),
6053-6061.

Ranjard, L., Withers, S. J., Brunton, D. H., Ross, H. A., Parsons, S., 2015.
Integration over song classification replicates: Song variant analysis in the
hihi. The Journal of the Acoustical Society of America 137 (5).

Ren, Y., Johnson, M. T., Tao, J., 2008. Perceptually motivated wavelet
packet transform for bioacoustic signal enhancement. The Journal of the
Acoustical Society of America 124 (1).

Richard, M., Lippmann, R., 1991. Neural net classifiers estimate posterior
probabilities. Neural Computation 3 (4), 461483.

Shamir, L., Yerby, C., Simpson, R., von Benda-Beckmann, A. M., Tyack, P.,
Samarra, F., Miller, P., Wallin, J., 2014. Classification of large acoustic
datasets using machine learning and crowdsourcing: Application to whale
calls. The Journal of the Acoustical Society of America 135 (2), 953-962.

Shamma, S.,; 2001. On the role of space and time in auditory processing.
Trends in Cognitive Sciences 5 (8), 340-348.

Stephen V. David, N. M., Shamma, S. A., 2007. Estimating sparse spectro-
temporal receptive fields with natural stimuli. Network: Computation in
Neural Systems 18 (3), 191-212.

16


http://www.sciencedirect.com/science/article/pii/S016516841300515X
http://www.sciencedirect.com/science/article/pii/S016516841300515X

Triefenbach, F., Jalalvand, A., Demuynck, K., Martens, J.-P., Nov 2013.
Acoustic modeling with hierarchical reservoirs. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on 21 (11), 2439-2450.

Verstraeten, D., Schrauwen, B., DHaene, M., Stroobandt, D., 2007. An ex-
perimental unification of reservoir computing methods. Neural Networks
20 (3), 391 — 403, jce:title;Echo State Networks and Liquid State Ma-
chinesj/ce:title;.

Wilcock, W. S. D., 2012. Tracking fin whales in the northeast pacific ocean
with a seafloor seismic network. The Journal of the Acoustical Society of
America 132 (4).

17



Time domain represenation of a Blue whale sound event
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Figure 1: A representation of the feature sets used in this work. Both frequency and
wavelet domains are considered.
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Figure 2: The block diagram of the process extracting the wavelet packet integration
feature set.
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Figure 3: A standard reservoir network consisting of three layers: a) the input, b) the
reservoir and ¢) the readout. The second layer includes neurons with non-linear activation
functions. The weights of the input and the recurrent connections are randomly fixed.
The weights to the output nodes are the only ones being trained.

19



	Introduction
	Related Literature
	Acoustic features
	Frequency domain features
	Wavelet domain features

	The Classification Framework
	Reservoir network

	Experimental Set-up and Results
	The dataset
	Framework parametrization
	Experimental results and analysis

	Conclusions

