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1. Introduction

The main result of this paper concerns the validity of the comparison principle

u ≤ v on ∂Ω ⇒ u ≤ v in Ω (1.1)

when u and v are viscosity solutions of variable coefficient second order gradient free differential
inclusions

(u(x),D2u(x)) ∈ Θ(x) and (v(x),D2v(x)) < [Θ(x)]◦ for each x ∈ Ω, (1.2)

where Ω ⊂ RN is a bounded domain and Θ : Ω ( R × S(N) is a suitable set valued map. We will
show that the comparison principle holds if Θ is a proper elliptic map which is Hausdorff continuous
(see Theorem 1.1 below). Proper ellipticity of the map means that Θ takes values in the proper elliptic
subsets of R×S(N). As formalized in Definition 2.1, this means that each Θ(x) is a non empty, closed,
and proper subset of R × S(N) which is Q-monotone; that is,

Θ(x) + Q ⊂ Θ(x) where Q := {(s, A) ∈ R × S(N) : s ≤ 0, A ≥ 0} := N × P, (1.3)

where S(N) denotes the space of symmetric N×N matrices with its natural partial ordering. Hausdorff
continuity just means that Θ is continuous as a map from Euclidian space into the metric space of
closed subsets of R × S(N) equipped with the Hausdorff distance (see Definition 3.1 and the remarks
which follow). For proper elliptic maps, we will show in Proposition 3.4 that this (locally uniform)
continuity is equivalent to the statement that: for each Ω′ ⊂⊂ Ω and η > 0, there exists δ = δ(η,Ω′) > 0
such that for each x, y ∈ Ω′

|x − y| < δ ⇒ Θ(x) + (−η, ηI) ⊂ Θ(y). (1.4)

Our main result will then be used to establish the validity of the comparison principle for second
order gradient-free fully nonlinear PDEs of the form

F(x, u(x),D2u(x)) = 0, x ∈ Ω, (1.5)

where F is a continuous function of its arguments. The Eq (1.5) we treat will be proper elliptic in
a sense which is inspired by Krylov’s general notion of ellipticity [18]. More precisely, one shifts
attention from the Eq (1.5) to the differential inclusion

(u(x),D2u(x)) ∈ ∂Θ(x) for each x ∈ Ω, (1.6)

where one requires that

∂Θ(x) ⊂ Γ(x) := {(r, A) ∈ R × S(N) : F(x, r, A) = 0} for each x ∈ Ω. (1.7)

If Θ is a proper elliptic map, then the inclusion (1.7) is called a proper elliptic branch of the Eq (1.5).
We will give sufficient conditions on the operator F which ensure the existence of a continuous proper
elliptic map Θ such that the branch condition (1.7) holds and for which viscosity solutions u, v of
the differential inclusion (1.2) correspond to admissible viscosity subsolutions, supersolutions of the
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differential equation. In this way, the comparison principle for the Eq (1.5) follows from the validity
of the comparison principle for (1.2).

In order to carry out this program, we will treat operators F which are proper elliptic in the sense
that

F(x, r, A) ≤ F(x, r + s, A + P) for each (r, A) ∈ Φ(x), (s, P) ∈ Q = N × P; (1.8)

where either

Φ is a Hausdorff continuous proper elliptic map on Ω (constrained case) (1.9)

or
Φ(x) = J = R × S(N) for each x ∈ Ω (unconstrained case). (1.10)

The notion of admissibility mentioned above uses Φ as an additional constraint on the test functions
(or test jets) used in the viscosity formulation of subsolutions and supersolutions. In the unconstrained
case (1.10), this constraint is silent and one recovers the classical viscosity formulations. On the other
hand, the constrained case (1.9) arises in situations where F(x, ·, ·) is suitably monotone only on proper
subsets Φ(x) ( R × S(N), and the admissibility constraint is essential. Treating such situations in a
general and coherent way is a main motivation of the present work.

Before giving additional details of the possible applications to PDEs, we discuss the comparison
principle (1.1) in the framework of nonlinear potential theory: given a Θ-subharmonic function u and a
Θ-superharmonic function v; that is, upper semicontinuous and lower semicontinuous functions u and
v on Ω satisfying (1.2) in a viscosity sense (see Definition 2.4), we look for monotonicity and regularity
properties on Θ that guarantee the validity of (1.1). This program was initiated systematically in the
groundbreaking work of Harvey and Lawson [12] for differential inclusions

D2u(x) ∈ Θ and D2v(x) < Θ◦ for each x ∈ Ω;

that is, in the context of a pure second order constant coefficient potential theory in which the elliptic
map appearing in the inclusion does not depend on the x variable. Such a potential theory might come
from a purely second order operator of interest. In this situation, which corresponds to Θ(x) = R × Θ

on Ω in (1.2), it has been proven that the mere monotonicity assumption Θ + P ⊂ Θ for all P ≥ 0
is sufficient for the comparison principle to hold. The introduction of a genuine x-dependence and
further constraints on (u(x),Du(x)) poses then the natural question of what are minimal conditions on
the map Θ that guarantee the validity of the comparison principle. An important step in this program
has been settled in a subsequent work [13] for general differential inclusions involving the full 2-jet
of u on Riemannian manifolds; the approach in [13] is based on the reduction of the x-dependent case
to a constant map (called constant coefficient subequation) of the form (u(x),Du(x),D2u(x)) ∈ F ⊂
R×RN ×S(N), for which a general theory is developed. We mention that in the case of constant maps
F on Euclidean space, further generalizations in the direction of minimal monotonicity assumptions
on F are a work in progress [7]. While the general approach of [13] covers a wide variety of situations,
it requires implicit assumptions on the x-dependence in the problem. In partial contrast, [8] has been
devoted to the search for more explicit conditions in the special case of (u,Du)-independent inclusions
D2u(x) ∈ Ψ(x) ⊂ S(N), with a particular focus placed on the minimal assumptions on the set-valued
map Ψ needed for the comparison principle. A main aim of the present work is to generalize results
of [8] to Du-independent inclusions of the form (1.2), which also allow for constraints on u(x), and
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again with the purpose of identifying monotonicity and regularity properties of Θ as a set-valued map
that lead to comparison principles. We finally mention that a recent work [15] addresses similar (and
additional) issues for maps of the form F (x) = {(u, p, A) : F(u, p, A) ≥ f (x)}, namely for maps F that
are given by superlevel sets of a proper elliptic operator. For gradient-free operators, results obtained
in [15] fit into our theory.

We now explain how we aim to prove the comparison principle (1.1) for a variable coefficient
gradient-free potential theory determined by Θ. We follow the approach initiated in [12] as continued
in [8]. There are three main ingredients in this approach: monotonicity, duality and continuity. The
natural monotonicity in this context is to require that Θ(x) in Q-monotone in the sense (1.3). For the
PDE applications, when Θ is suitably associated to a differential operator F = F(x, r, A), this
Q-monotonicity reflects the typical monotonicity properties of properness (decreasing in r) and
degenerate ellipticity (increasing in A) for F. The natural notion of duality involves the Dirichet dual
Θ̃ of Θ, defined pointwise by

Θ̃(x) := − [Θ(x)◦]c , x ∈ Ω (1.11)

and introduced by Harvey and Lawson in [12]. The dual map Θ̃ is proper elliptic if and only if Θ

is. Moreover, v is Θ-superharmonic if and only if ũ = −v is Θ̃-subharmonic. The first step in the
monotonicity-duality approach for comparison (1.1) is to prove the relevant subharmonic addition
theorem, which in this setting means (see Theorem 5.2): given a Θ-subharmonic function u and a
Θ-superharmonic function v

u is Θ-subharmonic, ũ = −v is Θ̃-subharmonic ⇒ u + ũ is Q̃-subharmonic. (1.12)

It is worth noting that Q̃ is a constant map, even when Θ and Θ̃ are not. The subharmonic addition
theorem reduces the comparison principle (1.1) to the validity of the zero maximum principle (see
Theorem 4.1): for every w which is Q̃-subharmonic on Ω

w ≤ 0 on ∂Ω ⇒ w ≤ 0 in Ω. (1.13)

Our proof of (1.13) exploits the following characterization of Q̃-subharmonics as those functions w
whose positive part satisfies a comparison principle with respect to affine functions a: for all open
subsets X of Ω,

w+ ≤ a on ∂X ⇒ w+ ≤ a on X. (1.14)

The proof of the fundamental subharmonic addition theorem (1.12) relies on a reduction to semi-
convex functions. To perform this reduction, based on sup-convolution approximations, one needs
some control on how the proper elliptic sets Θ(x) behave as x varies in Ω. In particular, one needs to
control the distance between Θ(x) and Θ(y) as subsets of R × S(N). We will prove that a sufficient
regularity condition is to requires the Hausdorff continuity of Θ taking values in the closed subsets of
R×S(N), thus generalizing the analogous condition in [8] for maps with values in the closed subsets of
S(N). Once the reduction to semi-convex functions is available, the subharmonic addition theorem is
obtained by means of Dirichlet duality and a Jensen-type lemma on the passage of almost everywhere
to everywhere information (see Lemma 5.4). Our main comparison result, generalizing the one in [8]
for set-valued maps in S(N), is the following result (see Theorem 5.1 for the proof).
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Theorem 1.1 (Comparison principle: potential theoretic version). Let Θ be a Hausdorff continuous
proper elliptic map on Ω. Then the comparison principle holds; that is, if u ∈ USC(Ω) and v ∈ LSC(Ω)
are Θ-subharmonic and Θ-superharmonic respectively in Ω (in the sense of Definition 2.4), then

u ≤ v on ∂Ω ⇒ u ≤ v in Ω.

We now return to the discussion of some possible applications of our potential theoretic result
to fully nonlinear PDE. There is an extensive literature for treating general fully nonlinear elliptic
equations via viscosity methods, and several attempts to restate or relax standard structural conditions
(such as those stated in [9]) have been proposed. For example, when the equation lacks of strict
monotonicity in the u-variable, as in u-independent equations, one can rely on some strict monotonicity
(in some direction) with respect to the Hessian variable, see e.g., [2, 3, 17]. As noted above, we are
particularly interested in the constrained case where F(x, ·, ·) is proper elliptic only when restricted to
some admissibility constraint set Φ(x) ( R × S(N). By exploiting Krylov’s idea of shifting the focus
to the level sets of the operator F, the potential theoretic approach of Harvey and Lawson furnishes
an elegant and unified framework to treat viscosity solutions with admissibility constraints in many
situations that would otherwise require ad-hoc adjustments for a given operator F of interest.

In the constrained case, a first general application to PDEs based on the comparison principle for
differential inclusions developed here, is a comparison principle for the Eq (1.5) under the following
assumptions on F: there exists a proper elliptic map Φ : Ω → ℘(R × S(N)) such that for each x ∈ Ω

one has
F(x, r, A) ≤ F(x, r + s, A + P) for each (r, A) ∈ Φ(x), (s, P) ∈ Q = N × P; (1.15)

there exists (r, A) ∈ Φ(x) such that F(x, r, A) = 0; (1.16)

∂Φ(x) ⊂ {(r, A) ∈ R × S(N) : F(x, r, A) ≤ 0} for each x ∈ Ω; (1.17)

and for each Ω′ ⊂⊂ Ω and each η > 0 there exists δ = δ(η,Ω′) such that

F(y, r − η, A + ηI) ≥ F(x, r, A) ∀(r, A) ∈ Φ(x),∀x, y ∈ Ω′ with |x − y| < δ. (1.18)

The condition (1.15) states that F(x, ·, ·) is proper elliptic if restricted to Φ(x). The conditions (1.16)
and (1.17) guarantee that the constraint Φ(x) is compatible with the zero locus of the operator F, so
that the map defined by

Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0} (1.19)

is proper elliptic and defines a proper elliptic branch of (1.5) (see Theorem 6.3). The condition (1.18)
is a sufficient condition for Θ to be a Hausdorff continuous proper elliptic map, so that the comparison
principle of Theorem 1.1 for Θ-sub/superharmonic functions can be applied (see Theorem 6.8). One
then obtains the comparison principle for admissible viscosity solutions to the PDE (see Definition 6.4),
provided that a mild non-degeneracy assumption on F holds (see formula (6.21) in the correspondence
principle of Theorem 6.5). The resulting comparison principle is stated in the main Theorem 6.13,
which also covers the unconstrained case where Φ(x) = R × S(N) for all x ∈ Ω.

Remark 1.2. Our main structural condition (1.18) reflects a precise geometrical property of the
associated map Θ, which, in some cases, is weaker than the general classical conditions in [9] (as will
be noted for the Eq (1.21) below). Such improvements using our method were also seen for the
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reduced class of equations F(x,D2u) = 0 (see Remark 5.1 of [8]). The condition (1.18) can be
regarded as a joint strict monotonicity with respect to (r, A) and regularity with respect to the x
variable. On the other hand, the structural condition (1.18) is not necessary for Θ to be continuous.
Moreover, in some cases it may be easier to check directly the continuity of Θ by using Remark 6.9.
An important example where this occurs is given below in (1.22).

We now discuss various illustrations of our approach, in both constrained and unconstrained cases,
where we will apply our method to two interesting model equations and their generalizations. An
interesting feature of the methods presented here is how both situations can be placed into the same
general framework.

In the constrained case, we will prove a comparison principle for equations arising in the study of
hyperbolic affine hyperspheres. The relevant equation can be written in the form

[−u(x)]N+2 det D2u(x) = h(x), x ∈ Ω, (1.20)

where h ≥ 0 is the negative of the curvature (when constant). These equations are proper elliptic on
Φ := Q and are particularly degenerate (a lack of strict monotonicity properties) for vanishing
curvatures. The comparison principle for (1.20) is given in Theorem 6.14. This result is then
generalized in Theorem 6.16 to the following class of perturbed Monge-Ampère equations

g(m(x) − u(x)) det
(
D2u(x) + M(x)

)
= h(x), (1.21)

where g,m,M are continuous functions, and g(·) is increasing and positive on some open interval
(r0,∞). For a perturbation matrix M which is merely continuous, the Eq (1.21) does not, in general,
satisfy the standard structural condition (3.14) of Crandall-Ishii-Lions [9].

In the unconstrained case, we present a new comparison principle for the special Lagrangian
potential equation

N∑
i=1

arctan
(
λi(D2u(x))

)
= h(x), (1.22)

where {λi(A)}Ni=1 are the eigenvalues of A ∈ S(N) and the phase h takes values in the interval I :=
(−Nπ/2,Nπ/2). This equation for h fixed is proper elliptic (but possibly highly degenerate) on all of
Φ := R × S(N). The Eq (1.22) with constant phases h(x) ≡ θ was introduced by Harvey-Lawson [11]
in the study of calibrated geometries and existence and uniqueness of viscosity solutions in this case is
known from their work (see [12] and [16]). The inhomogeneous equation also has a natural geometric
interpretation (see, for example the discussion in [16]), but it is less well understood. A key feature in
the theory is played by the special phase values

θk := (N − 2k)π/2 for k = 1, . . .N − 1, (1.23)

which determine the phase intervals

Ik :=
(
(N − 2k)

π

2
, (N − 2(k − 1))

π

2

)
with k = 1, . . .N. (1.24)

In Theorem 6.18, we show that the comparison principle holds if h is continuous and takes values in
any one of the phase intervals (1.24); that is, if

h(Ω) ⊂ Ik for any fixed k = 1, . . . ,N. (1.25)
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Our proof involves a delicate argument to show that the natural proper elliptic map

Θ(x) :=

(r, A) ∈ R × S(N) :
N∑

i=1

arctan
(
λi(A)

)
− h(x) ≥ 0

 , x ∈ Ω (1.26)

is Hausdorff continuous if (1.25) holds and hence the comparison principle for (1.22) follows from
Theorem 1.1.

It is important to note that the comparison principle (and much more) is known in the special case for
h taking values in the top phase interval I1 = ((N − 2)π/2,Nπ/2) as shown in Dinew, Do and Tô [10].
An alternate proof is given by Harvey and Lawson [16] which makes use of the notion of tameness of
the operator G(A) :=

∑N
i=1 arctan

(
λi(A)

)
on the subequation G(θ) := {A ∈ S(N) : G(A) ≥ θ}).

It is also important to note that while the operator

F(x, r, A) :=
N∑

i=1

arctan
(
λi(A)

)
− h(x) (1.27)

is proper elliptic on all of Φ = R × S(N), it fails to satisfy our regularity condition (1.18) if h takes on
any of the special values θk in (1.23). Indeed, we will show that the proper elliptic map Θ in (1.26) fails
to be Hausdorff continuous if any continuous (and non constant) h takes on any of the special values
(see Proposition 6.17). This leaves open the question whether comparison also holds for continuous h
which takes on a special phase value (see Open Question on page 23 of [16]).

We have focused attention on proper elliptic pairs (F,Θ) which are compatible in the sense that (see
Remark 6.6):

∂Θ(x) = {(r, A) ∈ Θ(x) : F(x, r, A) = 0} , ∅, for each x ∈ Ω. (1.28)

This ensures the correspondence between Θ subharmonics/superharmonics and admissible viscosity
subsolutions/supersolutions of the equation determined by the operator F. Hence, given F one can pass
to the potential theory determined by Θ and then “come back” to the admissible viscosity formulation
for the operator F. However, in situations in which (F,Θ) are a proper elliptic pair, but the compatibility
(1.28) fails, one could decide to use the potential theory determined by Θ as a replacement for a
viscosity solution treatment of the equation. In the constrained case, compatibility fails if the non-
degeneracy condition (6.21) fails.

As a final introductory remark, we have limited the present investigation to the validity of the
comparison principle (1.1). Our comparison principles would yield uniqueness results for the
Dirichlet problem on Ω in both the PDE and potential theoretic settings. In particular, we leave the
important and interesting question of existence for the Dirichlet problem for a future work. An
important feature of the methods pioneered by Harvey and Lawson is the determination (in terms of
Θ) of the suitable boundary convexity needed to obtain existence. The reader might wish to
consult [8, 12, 13, 15] for the use of a Perron method for existence in many situations which would
cover some of the equations and potential theories considered here. Finally, the use of viscosity
solutions with admissibility constraints has been extended to include some elements of nonlinear
spectral theory in [4], including characterization of principal eigenvalues and existence of associated
principal eigenfunctions by maximum principle methods.

Mathematics in Engineering Volume 3, Issue 4, 1–45.



8

2. Proper elliptic maps and their subharmonics

In all that follows, Ω ⊂⊂ RN will be a bounded open connected set and S(N) will denote the space
of symmetric N × N matrices, which carries the usual partial ordering of the associated quadratic
forms and λ1(A) ≤ · · · ≤ λN(A) denote the ordered eigenvalues of A ∈ S(N). We will denote by
℘(R × S(N)) := {Φ : Φ ⊂ R × S(N)} and use the notations Φ,Φ◦ and Φc for the closure, interior and
complement of Φ ∈ ℘(R × S(N)). We will also make use of spaces of semicontinuous functions

USC(Ω) = {u : Ω→ [−∞,∞) : u(x0) ≥ lim sup
x→x0

u(x), ∀ x0 ∈ Ω}

and
LSC(Ω) = {u : Ω→ (−∞,∞] : u(x0) ≤ lim inf

x→x0
u(x), ∀ x0 ∈ Ω}.

2.1. Proper elliptic maps and their duals

We begin with the definition of the class of set valued maps we will use, where we denote by

P := {P ∈ S(N) : P ≥ 0} = {P ∈ S(N) : λ1(P) ≥ 0}, (2.1)

N := {s ∈ R : s ≤ 0}, (2.2)

and
Q := N × P = {(s, P) ∈ R × S(N) : s ≤ 0 and P ≥ 0}. (2.3)

Definition 2.1. A map Θ : Ω→ ℘(R × S(N)) is said to be a proper elliptic map if for each x ∈ Ω, one
has

Θ(x) is a closed, non empty and proper subset of R × S(N) (2.4)

and
Θ(x) + Q ⊂ Θ(x); (2.5)

that is, if (r, A) ∈ Θ then (r + s, A + P) ∈ Θ(x) for each s ≤ 0 and P ≥ 0. We will also say that Θ(x) is
Q-monotone if (2.5) holds.

If E := {Φ ⊂ R × S(N) : Φ is closed, non empty and proper with Φ + Q ⊂ Φ} , then a proper
elliptic map is just a set valued map taking values in E, the collection of proper elliptic sets. Note that
a proper elliptic map is strict as a set-valued map, namely it satisfies Θ(x) , ∅ for each x ∈ Ω (see
Chapter 1 of Aubin and Cellina [1] for the elementary notions concerning set-valued maps).

An important example is provided by the constant map Θ(x) = Q for all x ∈ Ω with Q defined by
(2.3). Clearly the Q-monotonicity (2.5) is related to the monotonicity properties of F(x, r, A) for proper
and degenerate elliptic Eq (1.5). Notice that if Θ = Θ(x, A) independent of r ∈ R then we can identify
Θ with an elliptic map in the sense of [8] and if Θ = Θ(A) is also independent of x we can identify Θ

with an elliptic set (Dirichlet set) in the sense of [12].
A class of dual maps using the Dirichlet dual, introduced by Harvey-Lawson [12], plays an essential

role in this theory.

Definition 2.2. Let Θ : Ω→ ℘(R×S(N)) be a proper elliptic map. The dual map Θ̃ : Ω→ ℘(R×S(N))
is defined pointwise by

Θ̃(x) = [−Θ(x)◦]c
= − [Θ(x)◦]c . (2.6)
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An essential example is given by the dual to constant map Q, which is the constant map Θ̃(x) = Q̃

for each x ∈ Ω where
Q̃ = {(r, A) ∈ R × S(N) : r ≤ 0 or A ∈ P̃} (2.7)

and
P̃ = {(A ∈ S(N) : λN(A) ≥ 0}, (2.8)

as a simple calculation shows. We record the following elementary properties which will be used
throughout.

Proposition 2.3. Let Θ : Ω → ℘(R × S(N)) be a proper elliptic map. Then the following properties
hold.

(a) The dual Θ̃ : Ω→ ℘(R × S(N)) is a proper elliptic map. Moreover an arbitrary map Θ will be a
proper elliptic map if its dual map is.

(b) The dual of Θ̃ is the map Θ.
(c) The sum of Θ and Θ̃ satisfies

Θ(x) + Θ̃(x) ⊂ Q̃, for each x ∈ Ω. (2.9)

Moreover, (r, A) ∈ Θ(x) if and only if (r + s, A + B) ∈ Q̃ for each (s, B) ∈ Θ̃(x).
(d) For each x ∈ Ω one has

∂Θ(x) = Θ(x) ∩
(
−Θ̃(x)

)
. (2.10)

(e) For each x ∈ Ω one has
Θ(x) = Θ(x)◦ (2.11)

Proof. The claims (b) and (d) follow directly from the pointwise definition of the dual map (2.6). For
the claim (e), recall that by definition the set Θ(x) is closed in the natural topology of R×S(N) for each
x ∈ Ω, where Θ(x) has non empty interior. Each (r, A) ∈ Θ(x) can be written as the limit as ε → 0+ of
(r − ε, A + εI) ∈ Θ(x) + (N◦ × P◦), and Θ(x) + (N◦ × P◦) = [Θ(x)]◦. The claims (a) and (c) make use
of various known identities for elliptic sets and elliptic maps as presented in [12] and [8]. �

2.2. Weakly subharmonic functions associated to proper elliptic maps

The main concept in this paper concerns the Θ-subharmonic functions on a domain Ω which are
determined by a proper elliptic map Θ on Ω. These upper semicontinuous functions are defined in a
pointwise and viscosity sense by requiring that the relevant second order subdifferential lies in Θ(x).
Following the approach of Harvey and Lawson, the natural class of Θ-superharmonic functions will
be characterized in terms of the Θ̃-subharmonic functions with respect to the dual map (see Definition
2.4 and Remark 2.7). For u twice differentiable, to be Θ-subharmonic on Ω means that

Jxu := (u(x),D2u(x)) ∈ Θ(x), ∀x ∈ Ω; (2.12)

that is; that the (reduced) 2-jet Jxu lies in the constraint set Θ(x) for each x ∈ Ω. We will say that u
is strictly Θ-subharmonic in Ω if Jxu ∈ [Θ(x)]◦ for all x ∈ Ω. For u ∈ USC(Ω), one makes use of a
viscosity definition. To this end, for each fixed x0 ∈ Ω, consider the upper test jets

J+
x0

u := {(ϕ(x0),D2ϕ(x0)) : ϕ is C2 near x0, u ≤ ϕ near x0 with equality in x0} (2.13)
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and the lower test jets

J−x0
u := {(ϕ(x0),D2ϕ(x0)) : ϕ is C2 near x0, u ≥ ϕ near x0 with equality in x0}. (2.14)

Definition 2.4. Let Θ be a proper elliptic map on Ω and x0 ∈ Ω.

(a) A function u ∈ USC(Ω) will be called Θ-subharmonic in x0 if

J+
x0

u ⊂ Θ(x0), (2.15)

and u is said to be Θ-subharmonic in Ω if (2.15) holds for each x0. The spaces of all such functions
will be denoted by ΘSH(x0) and ΘSH(Ω) respectively.

(b) A function u ∈ LSC(Ω) will be called Θ-superharmonic in x0 if

J−x0
u ⊂ [Θ(x0)]◦]c. (2.16)

(c) A function u ∈ C(Ω) will be called Θ-harmonic in Ω if it is both Θ-subharmonic and
Θ-superharmonic in Ω.

A few remarks about Definition 2.4 are in order.

Remark 2.5. In the differential inclusion (2.15) there is no constraint made in the gradient variable,
which corresponds to the gradient free equations that we treat here. If one denotes by J2 = R × RN ×

S(N) the space of 2-jets with jet coordinates J = (r, p, A) ∈ J2, then the inclusion (2.15) is equivalent
to

J2,+
x0

u ∈ F (x0) (2.17)

with a constraint set
F (x0) := {(r, p, A) ∈ J2 : (r, A) ∈ Θ(x0)} (2.18)

that is a subset of the (full) 2-jet space and where

J2,+
x0

u := {(ϕ(x0),Dϕ(x0),D2ϕ(x0)) : ϕ is C2 near x0, u ≤ ϕ near x0 with equality in x0}.

is the set of second order superjets. The reduced formulation (2.15) will be used throughout to simplify
notation and to emphasize the gradient independent nature of the equations we consider.

Remark 2.6. Many equivalent choices for the upper/lower test functions ϕ which compete in (2.13),
(2.14) could be used in Definition 2.4. For example, one could use upper test jets J+

x0
u corresponding

to ϕ = Q a quadratic polynomial. One could also assume that (u − Q) has a strict maximum (of zero)
in x0 where for some ε > 0

(u − Q)(x) ≤ −ε|x − x0|
2 for each x near x0 with equality at x0, (2.19)

or assume that
(u − Q)(x) ≤ o(x − x0)2 for each x near x0 with equality at x0. (2.20)

In all cases, the resulting spaces ΘSH(x0) and ΘSH(Ω) remain the same. For a proof, see Lemma C.1
of [7] which treats general pointwise inclusions in the form (2.17).
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Remark 2.7. Since [Θ(x0)◦]c = −Θ̃(x0) and J+
x0

(−u) = −J−x0
u, one has

u ∈ LSC(Ω) is Θ-superharmonic in x0 if and only if −u ∈ Θ̃SH(x0); (2.21)

that is, Θ-superharmonicity can be expressed in terms of subharmonicity for the dual map.

Remark 2.8. The following coherence principle for the classical and weak notions of
Θ-subharmonicity holds: let u ∈ USC(Ω) be twice differentiable in x0 ∈ Ω ∗. Then

u ∈ ΘSH(x0)⇔ (u(x0),D2u(x0)) ∈ Θ(x0).

The forward implication makes use of the Taylor expansion for u and the fact (2.11), while the reverse
implication uses only the positivity property Θ(x)+ ({0}×P) ⊂ Θ(x) for each x ∈ Ω, which is contained
in (2.5). For more details see Remark 2.7 of [7].

We will now give a useful alternate characterization of the spaces of Θ-subharmonic functions
which exploits a pointwise characterization of subaffine functions. We recall that if X ⊂ RN is open,
w ∈ USC(X) is said to be subaffine on X if for each domain Ω ⊂⊂ X and each affine function a one has

w ≤ a on ∂Ω ⇒ w ≤ a on Ω. (2.22)

If (2.22) holds for each Ω, we write w ∈ SA(X), where one knows that for w ∈ USC(X)

w ∈ SA(X) ⇔ w ∈ P̃(X), (2.23)

which means that for each Ω ⊂⊂ X and for each x0 ∈ Ω and for each upper test function ϕ for w at x0

one must have
D2ϕ(x0) ∈ P̃ = {A ∈ S(N) : λN(A) ≥ 0}. (2.24)

One also knows that w ∈ SA(X) if and only if for each x0 ∈ X there is no triple (ε, ρ, a) with ε, ρ > 0
and a affine such that

(w − a)(x0) = 0 and (w − a)(x) ≤ −ε|x − x|2 for x ∈ Bρ(x0). (2.25)

We will write w ∈ SA(x0) if (2.25) holds.
The following lemma gives a pointwise characterization of the space Q̃SH(Ω). Additional

characterizations and properties of Q̃SH(Ω) will be briefly discussed in Section 4.

Lemma 2.9. Given w ∈ USC(Ω) and x0 ∈ Ω, one has w ∈ Q̃SH(x0) if and only if

w(x0) ≤ 0 or w ∈ SA(x0). (2.26)

Proof. Assume that w ∈ Q̃SH(x0) but that (2.26) fails; that is,

J+
x0

w ⊂ Q̃ (2.27)

and
w(x0) > 0 and w < SA(x0). (2.28)

∗u(x) = u(x0) + 〈p, x − x0〉 + 1
2 〈A(x − x0), x − x0〉 + o(|x − x0|

2) as x → x0 for some (p, A) ∈ RN × S(N). Hence u is differentiable in
x0 with p = Du(x0) and we denote by D2u(x0) the matrix A.
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Combining (2.28) with the pointwise characterization (2.25) one must have a triple (ε, ρ, a) such that

a(x0) = w(x0) > 0 and w(x) ≤ a(x) − ε|x − x0|
2 for x ∈ Bρ(x0). (2.29)

The function ϕ(·) := a(·)− ε| · −x0|
2 is then a C2 upper test function for w at x0 and hence by (2.27) one

must have
Jx0ϕ = (a(x0),−2εI) ∈ Q̃ = {(r, A) ∈ R × S(N) : r ≤ 0 or A ∈ P̃},

but r = a(x0) > 0 by (2.29) and λN(−2εI) < 0 so A = −2εI < P̃, a contradiction.
On the other hand, if (2.26) holds, but w ∈ Q̃SH(x0) fails, there must be an upper test function ϕ for

w at x0 which is C2 near x0 and satisfies

(w − ϕ)(x0) = 0 and (w − ϕ)(x) ≤ 0 near x0 (2.30)

with
Jx0ϕ = (ϕ(x0),D2ϕ(x0)) < Q̃ = {(r, A) ∈ R × S(N) : r ≤ 0 or A ∈ P̃}; (2.31)

that is,
ϕ(x0) > 0 and D2ϕ(x0)) < P̃. (2.32)

One has w(x0) = ϕ(x0) > 0 by the first condition in (2.30) and (2.32) . Hence (2.26) implies that
w ∈ SA(x0) and hence D2ϕ(x0) ∈ P̃ by (2.23) (and in particular (2.24)), but this contradicts the second
condition in (2.32). �

We are now ready for the alternate characterization.

Theorem 2.10. Let Θ be a proper elliptic map on Ω.

(a) A function u ∈ USC(Ω) is Θ-subharmonic in x0 ∈ Ω if and only if

u + v ∈ Q̃SH(x0) for every v which is C2 near x0 with Jx0v ∈ Θ̃(x0). (2.33)

(b) A function u ∈ LSC(Ω) is Θ-superharmonic in x0 ∈ Ω if and only if

−u + v ∈ Q̃SH(x0) for every v which is C2 near x0 with Jx0v ∈ Θ(x0). (2.34)

Proof. Since (b) is equivalent to the statement that −u ∈ Θ̃SH(x0), claim (b) follows from claim (a) by
duality since the dual of Q̃(x0) is Q(x0). We argue by contradiction.

Assume first that u ∈ ΘSH(x0) but that (2.33) fails; that is, one has

J+
x0

u ⊂ Θ(x0), (2.35)

but there exists v which is C2 near x0 satisfying

Jx0v ∈ Θ̃(x0), (u + v)(x0) > 0 and u + v < SA(x0), (2.36)

where the last condition in (2.36) means that there is a triple (ε0, ρ, a) with

(u + v − a)(x0) = 0, and (u + v − a)(x) ≤ −ε0|x − x0|
2 for x ∈ Bρ(x0), (2.37)
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where (2.37) also holds with ε in place of ε0 for each ε ∈ (0, ε0]. For each such ε > 0, consider the
function vε defined by

vε := v + εQx0 − ε with Qx0(x) :=
1
2
|x − x0|

2. (2.38)

Since Jx0v ∈ Θ̃(x0) by (2.36) one has for every ε > 0

Jx0vε = Jx0v + (−ε, εI) ∈ [Θ̃(x0)]◦ = −[Θ(x0)]c

while
(u + vε)(x0) = (u + v)(x0) − ε > 0 if ε < (u + v)(x0)

and using (2.37) with the affine function aε := a − ε one has

(u + vε − aε)(x0) = 0 and (u + vε − aε)(x) ≤ −
ε

2
|x − x0|

2, ∀ x ∈ Bρ(x0).

Hence with 0 < ε < (u + v)(x0), the function ϕε := −vε + aε is an upper test function for u at x0 and
satisfies

Jx0ϕε = −Jx0v + (a(x0),−εI) ∈ Θ(x0) (2.39)

by (2.35). However, since a(x0) > 0 by (2.36) and (2.37), then (2.39) yields

− Jx0v = Jx0ϕε + (−a(x0), εI) ∈ [Θ(x0)]◦, (2.40)

which means Jx0v ∈ −[Θ(x0)]◦ = Θ̃(x0)c which contradicts the first condition in (2.36).
On the other hand, if (2.33) holds, but u < ΘSH(x0), then there exists ϕ which is C2 near x0 and

satisfies for some ρ > 0

(u − ϕ)(x) ≤ (u − ϕ)(x0) = 0 for each x ∈ Bρ(x0). (2.41)

and
Jx0ϕ < Θ(x0), (2.42)

For each ε > 0 consider the function vε := −ϕ + ε − εQx0 with Qx0 as in (2.38). These vε are C2 near
x0 and satisfy

Jx0vε = −Jx0ϕ + (ε,−εI), (2.43)

where, by (2.42), one has −Jx0ϕ ∈ −[Θ(x0)]c = [Θ̃(x0)]◦ and hence

Jx0vε ∈ Θ̃(x0) for each suffiently small ε > 0. (2.44)

However, using (2.41) and the definitions of vε and Qx0 , one has

(u + vε)(x0) = (u − ϕ)(x0) + ε = ε > 0, (2.45)

(u + vε − ε)(x0) = (u − ϕ)(x0) = 0 (2.46)

and
(u + vε − ε)(x) = (u − ϕ − εQ0)(x) ≤ −

ε

2
|x − x0|

2, ∀ x ∈ Bρ(x0). (2.47)

The formulas (2.46)–(2.47) with the triple (ε/2, ρ, ε) show that (u + vε) < Q̃SH(x0), which combined
with (2.45) says that u + vε < Q̃(x0) and hence (2.44) contradicts (2.33) for the function vε with ε > 0
and small. �
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We will often use this characterization to show that that u ∈ USC(Ω) belongs to ΘSH(Ω) by using
an argument by contradiction. We formalize this in the following remark.

Remark 2.11. Given u ∈ USC(Ω) and x0 ∈ Ω. If u < ΘSH(x0) then there exists a function v which is
C2 near x0 with Jx0v ∈ Θ̃(x0) and there exists a triple (ε, ρ, a) such that

(u + v)(x0) > 0 and
{

(u + v − a)(x0) = 0
(u + v − a)(x) ≤ −ε|x − x0|

2, ∀ x ∈ Bρ(x0)
, (2.48)

since (2.48) is the meaning of u + v < Q̃SH(x0) (see Lemma 2.9 and (2.25)). Moreover, by reducing ε
and altering the affine function a if need be, we can assume that v satisfies the stronger condition

Jx0v ∈ [Θ̃(x0)]◦ = −[Θ(x0)c]. (2.49)

by considering the perturbation vε := v + εQx0 − ε used in the proof of Theorem 2.10.

3. Continuity of proper elliptic maps

In preparation for the comparison principle for proper elliptic maps and their applications to
comparison principles for admissible viscosity solutions for proper elliptic branches of second order
gradient free fully nonlinear Eq (1.5), we present a few elementary properties of Θ-subharmonic
functions associated to proper elliptic maps. These properties will be needed in the proof of the
subharmonic addition theorem (1.12) (which is stated in Theorem 5.2) and these properties depend on
various degrees of continuity of the proper elliptic maps Θ.

We begin with describing the notion continuity that we will require, that of Hausdorff continuity.
Given Φ ⊂ R × S(N) and ε > 0 we will denote by

NεΦ = {(s, B) ∈ R × S(N) : ||(s, B) − (r, A)|| < ε for some (r, A) ∈ Φ} =
⋃

(r,A)∈Φ

Bε(r, A),

the ε-enlargement of the subset Φ where ||(r, A)|| := max
{
|r|, max

1≤i≤N
|λi(A)|

}
gives a norm on R × S(N).

Proper elliptic maps take values in E ⊂ K(R × S(N)), where K(R × S(N)) are the closed subsets of
R×S(N). One knows that (K(R×S(N)), dH ) is a complete metric space with respect to the Hausdorff
distance defined by

dH (Φ,Ψ) := inf{ε > 0 : Φ ⊂ Nε(Ψ) and Ψ ⊂ Nε(Φ)}. (3.1)

See Proposition 7.3.3 and Proposition 7.3.7 of Burago, Burago and Ivanov [5] for details on this
structure, where we note that since the subsets of R × S(N) need not be bounded, the metric can take
on the value +∞; in particular, one has

dH (Φ, ∅) = +∞ for each non empty Φ ∈ K(R × S(N)) (3.2)

and with J := R × S(N) one has

dH (Φ,J) = +∞ for each closed Φ ( J . (3.3)
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Definition 3.1. An arbitrary map Θ : Ω → K(R × S(N)) will be called Hausdorff continuous on Ω if
for each x ∈ Ω and η > 0 there exists δ = δ(x, η) > 0 such that

dH (Θ(x),Θ(y)) < η for each y ∈ Ω such that |x − y| < δ. (3.4)

The following (elementary) remark will have important consequences for the continuity of proper
elliptic maps.

Remark 3.2. An arbitrary map Θ : Ω → K(R × S(N)) is Hausdorff continuous on Ω if and only if Ω

is locally uniformly Hausdorff continuous; that is, for any Ω′ ⊂⊂ Ω:

for each η > 0 there exists δ = δ(η,Ω′) > 0 such that
dH (Θ(x),Θ(y)) < η for each x, y ∈ Ω′ such that |x − y| < δ.

(3.5)

Indeed, if Θ is continuous on Ω ⊂ RN taking values in the metric space (K(R × S(N)), dH ), the Heine-
Cantor theorem gives the uniform continuity of Θ on Ω′ compact (and hence on Ω′). On the other
hand, with x ∈ Ω arbitrary, it is enough to consider Ω′ = Bρ(x)(x) ⊂⊂ Ω to find the continuity of Θ at x.

Remark 3.3. From here on, we will use the shorter term continuous in place of Hausdorff continuous
for maps Θ : Ω→ K(R × S(N)).

For proper elliptic maps, (local) uniform continuity has useful equivalent formulations.

Proposition 3.4. Let Θ be a proper elliptic map on Ω and let Ω′ ⊆ Ω. Then the following are
equivalent:

(a) Θ is uniformly continuous on Ω′, that is (3.5) holds;
(b) For for each η > 0 there exists δ = δ(η,Ω′) > 0 such that

Θ(Bδ(x)) ⊂ Nη(Θ(x)) for each x ∈ Ω′; (3.6)

(c) For for each η > 0 there exists δ = δ(η,Ω′) > 0 such that for each x, y ∈ Ω′

|x − y| < δ ⇒ Θ(x) + (−η, ηI) ⊂ Θ(y). (3.7)

The proof follows easily from the definitions of proper ellipticity and continuity for maps Θ : Ω→

K(R×S(N)). See the proof of Proposition 3.3 in [8] for the analogous result for uniformly continuous
elliptic maps Θ, which take values in K(S(N)). Notice by interchanging the roles of x and y in (3.7),
one also must have Θ(y) + (−η, ηI) ⊂ Θ(x) if |x − y| < δ.

Remark 3.5. Property (b) of Proposition 3.4 is precisely the notion that the set valued map Θ : Ω′ →

℘(R × S(N)) is uniformly upper semicontinuous on Ω′ (see Chapter 1 of Aubin and Cellina [1] for the
elementary notions concerning set-valued maps, including their semi-continuity). Hence, Proposition
3.4 says that for proper elliptic maps the (local) uniform upper semicontinuity of Θ as a set-valued
map is equivalent to the (local) uniform continuity of the function Θ taking values in the metric space
(K(R × S(N)), dH ). Property (c) in terms of translations by multiples of (−1, I) is the form in which
we will normally use the (local) uniform continuity.

We now show that continuity of Θ passes to the dual map and that uniform continuity extends to the
boundary.
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Proposition 3.6. Let Θ : Ω→ E ⊂ K(R × S(N)) be an elliptic map. Then,

(a) Θ is (uniformly) continuous on Ω if and only the dual map Θ̃ is (uniformly) continuous on Ω.
(b) If Θ is uniformly continuous on Ω, then Θ extends to a uniformly continuous elliptic map on Ω.

Proof. A straightforward adaptation of Proposition 3.5 of [8], which can be proven using the
formulation (3.7), shows that Θ is uniformly continuous on Ω if and only the dual map Θ̃ is. It is
worth noting that the δ, η relation is the same for Θ and its dual. Finally, a map that is merely
continuous on Ω is uniformly continuous on Ω′, for any Ω′ ⊂⊂ Ω, thus its dual Θ̃ is continuous on Ω,
which completes part (a).

Part (b) can be proven using the argument in [8, Proposition 3.10]; that is, for any x0 ∈ ∂Ω, define
Θ(x0) in the usual way as the limiting set of the Cauchy sequence {Θ(xk)}, where {xk} ⊂ Ω is an arbitrary
sequence converging to x0. Then, one can verify that properties (2.4) and (2.5) pass to the limit. �

We conclude this section with the elementary properties of Θ-subharmonic functions associated to
continuous proper elliptic maps.

Proposition 3.7. Let Θ be a continuous elliptic map on Ω.

(1) (Maximum Property) u, v ∈ ΘSH(Ω) ⇒ max{u, v} ∈ ΘSH(Ω);
(2) (Sliding Property) u ∈ ΘSH(Ω) ⇒ u − m ∈ ΘSH(Ω) for each constant m ≥ 0;
(3) (Families Locally Bounded Above Property)

Let F ⊂ ΘSH(Ω) be a non empty family of functions which are locally uniformly bounded from
above. Then the upper envelope u := sup

f∈F
f has upper semicontinuous regularization †

u∗ ∈ ΘSH(Ω).

If, in addition, Θ is uniformly continuous on Ω,

(4) (Uniform Translation Property) All sufficiently small translates of u ∈ ΘSH(Ω) have a fixed small
quadratic perturbation which is Θ-subharmonic on the domain of the translate. In particular, for
each η > 0 if δ = δ(η) > 0 is chosen as in the formulation (3.7) of uniform continuity then ‡.

uy;η := u(· + y) +
η

2 (| · |2 − ω) ∈ ΘSH(Ωδ), ∀ y ∈ Bδ(0), (3.8)

with
Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} and ω := 2 + sup

x∈Ω
|x|2 (3.9)

(5) (Existence of Bounded Θ-harmonics) There exist smooth bounded Θ-harmonic functions on Ω of
the form

ϕ(·) := −τ +
τ

2
| · |2

for each sufficiently large τ.

Moreover, one also has the properties (1)–(5) for Θ̃-subharmonic functions since Θ̃ is (uniformly)
continuous if Θ is by Proposition 3.6

†We recall that u∗(x) := lim sup
r→0+

{u(y) : y ∈ Ω ∩ Br(x)} for each x ∈ Ω.
‡If Θ is a constant elliptic map, then a stronger consequence than (4) follows, namely uy = u(· − y) ∈ ΘSH(Ωδ) for all y ∈ Bδ(0). This

property plays a key role in [12] but may fail if Θ is not constant.

Mathematics in Engineering Volume 3, Issue 4, 1–45.



17

Proof. We will make use of the characterization formula (2.33) and argue by contradiction (as
discussed in Remark 2.11) to prove the Maximum Property (1) and the Sliding Property (2). If (1)
were false, then w := max{u, v} < ΘSH(x0) for some x0 ∈ Ω and there exist ϕ which is C2 near x0 with
Jx0ϕ ∈ Θ̃(x0) and a triple (ε, ρ, a) such that

(w + ϕ)(x0) > 0 and
{

(w + ϕ − a)(x0) = 0
(w + ϕ − a)(x) ≤ −ε|x − x0|

2, ∀ x ∈ Bρ(x0)
. (3.10)

Since u, v ≤ w everywhere, in (3.10) we can replace w with u when w(x0) = u(x0) or w with v when
w(x0) = v(x0) to contradict u, v ∈ ΘSH(x0).

Similarly, if (2) were false, then for some x0 ∈ Ω there exist ϕ which is C2 near x0 with Jx0ϕ ∈ Θ̃(x0)
and a triple (ε, ρ, a) such that

(u − m + ϕ)(x0) > 0 and
{

(u − m + ϕ − a)(x0) = 0
(u − m + ϕ − a)(x) ≤ −ε|x − x0|

2, ∀ x ∈ Bρ(x0)
. (3.11)

Setting ϕ̃ := ϕ −m in (3.11) gives a contradiction to u ∈ ΘSH(x0) since Jx0ϕ̃ = Jx0ϕ + (−m, 0) ∈ Θ̃(x0).
For the Families locally Bounded Above Property (3), using the characterization (2.33), it suffices

to show that for each fixed x0 ∈ Ω and each fixed v which is C2 near x0 with Jx0v ∈ Θ̃(x0) one has

w∗ := u∗ + v ∈ Q̃SH(x0), (3.12)

where w∗(x) = (u+v)∗(x) for all x ∈ Ω by the continuity of v. We will use an argument by contradiction
to show that (3.12) holds.

First, we will show that there is a family of quadratic perturbations of w∗ which are Q̃-subharmonic
in each x0 ∈ Ω fixed. Using the local uniform continuity of Θ̃ with any sequence {ε j} j∈N such that
ε j ↘ 0 as j→ +∞, one has the existence of δ j = δ j(ε j/2) for which

Jx0v +

(
−
ε j

2
,
ε j

2
I
)
∈ Θ̃(x) for each x ∈ Bδ j(x0). (3.13)

Take δ j even smaller (if necessary) so that the C2 function satisfies

v(x) − v(x0) −
ε j

2
|x − x0|

2 −
ε j

2
≤ 0 and D2v(x) − D2v(x0) +

ε j

2
I ≥ 0, ∀ x ∈ Bδ j(x0). (3.14)

With Qx0(·) := 1
2 | · −x0|

2, consider the sequence of functions

w j := sup
f∈F

(
f + v + ε jQx0 − ε j

)
= u + v + ε jQx0 − ε j j ∈ N. (3.15)

For each j ∈ N and each f ∈ F ⊂ ΘSH(Ω) fixed, the characterization (2.33) says that the function
f + v + ε jQx0 − ε j (competing in the defintion of w j) is Q̃-subharmonic in Bδ j(x0)) provided that

Jx(v + ε jQx0 − ε j) ∈ Θ̃(x) for each x ∈ Bδ j(x0)), (3.16)

which does hold. In fact,

Jx

(
v + ε jQx0 − ε j

)
=

(
v(x) +

ε j

2
|x − x0|

2 − ε j,D2v(x) + ε jI
)
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which can be written as the sum[
Jx0v +

(
−
ε j

2
,
ε j

2
I
)]

+

(
v(x) − v(x0) −

ε j

2
|x − x0|

2 −
ε j

2
,D2v(x) − D2v(x0) +

ε j

2
I
)
,

which by (3.13) and (3.14) belongs to Θ̃(x) + Q ⊂ Θ̃(x) for each x ∈ Bδ j(x0). Hence (3.16) holds and
each w j is the sup over a family of Q̃-subharmonic functions. Property (3) for the constant coefficient
gradient free proper elliptic map Q̃ on the open set Bδ j(x0) then gives (see Proposition D.1 (G) of [7]):

w∗j ∈ Q̃SH(Bδ j(x0)), j ∈ N, (3.17)

and hence by (3.15) and (3.12) one has

w∗j = u∗ + v + ε jQx0 − ε j = w∗ + ε jQx0 − ε j ∈ Q̃SH(Bδ j(x0)), ∀ j ∈ N. (3.18)

We are now ready to prove that (3.12) holds. If (3.12) were false, then there exists a triple (ε, ρ, a)
such that

w∗(x0) > 0, (w∗ − a)(x0) = 0 and (w∗ − a)(x) ≤ −ε|x − x0|
2, ∀ x ∈ Bρ(x0). (3.19)

Take j∗ large enough to ensure that

ε j∗ ≤ ε and ε j∗ < w∗(x0) (3.20)

so that
w∗j∗(x0) = w∗(x0) − ε j∗ > 0 (3.21)

and with the affine function ã(·) := a(·) − ε j∗ one has

(w∗j∗ − ã)(x0) = 0 and (w∗j∗ − ã)(x) ≤ −
ε

2
|x − x0|

2, ∀ x ∈ Bρ(x0). (3.22)

The relations in (3.21) and (3.22) say that w∗j∗ < SA(x0) which contradicts (3.17).
For the Uniform Translation Property (4), we begin by noting that uy;η is well defined and upper-

semicontinuous on Ωδ for each η > 0 and y ∈ Bδ(0). It remains to show that for each x0 ∈ Ωδ if
v ∈ C2(Ω) satisfies

Jx0v ∈ Θ̃(x0) and (uy;η + v)(x0) > 0 (3.23)

then
uy;η + v ∈ SA(x0). (3.24)

Define the test function v̂y;η by v̂y;η(x) := v(x − y) +
η

2 (|x − y|2 −ω) with ω as in (3.8)–(3.9). Notice that

Jx0+yv̂y;η =

(
v(x0) +

η

2
(|x0|

2 − ω),D2v(x0) + ηI
)

(3.25)

where η

2 (|x0|
2 − ω) ≤ −η. Hence (3.25) yields

Jx0+yv̂y;η = Jx0v + (−η, ηI) +

(
η

2
(|x0|

2 − ω) + η, 0
)
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and hence for each η > 0, y ∈ Bδ(0) one has

Jx0+yv̂y;η ∈ Θ̃(x0 + y) +

(
η

2
(|x0|

2 − ω) + η, 0
)
∈ Θ̃(x0 + y) (3.26)

by the uniform continuity of Θ̃ and the non positivity of η

2 (|x0|
2 − ω) + η. In addition one has

u(x0 + y) + v̂y;η(x0 + y) = uy;η(x0) + v(x0) > 0 (3.27)

where the positivity comes from (3.23). Since x0 + y ∈ Ω, one has u ∈ ΘSH(x0 + y) and hence (3.26)
and (3.27) give u + v̂y;η ∈ SA(x0 + y) and hence

u(· + y) + v̂y;η(· + y) ∈ SA(x0). (3.28)

However, using the definitions

u(· + y) + v̂y;η(· + y) = uy;η(·) + v(·),

and hence (3.28) gives the needed conclusion (3.24).
For the existence of bounded Θ-harmonic functions in (5), it suffices to show that there exists τ such

that
Jxϕ = (−τ, τI) ∈ Θ(x) ∩ Θ̃(x), ∀ x ∈ Ω. (3.29)

Moreover, it suffices to construct τ such that (−τ, τI) ∈ Θ(x) holds, since a corresponding τ̃ can be
constructed for Θ̃ (which is also uniformly continuous by Proposition 3.6 (a)) and hence one can take
the maximum of τ and τ̃ by the monotonicity of proper elliptic maps.

Note that Θ extends to a uniformly continuous map on Ω by Proposition 3.6 (b), which is compact.
Since Θ(y) is a proper elliptic set for each y ∈ Ω, there exists ty such that

(−t, tI) ∈ Θ(y) for each t ≥ ty. (3.30)

Indeed, pick any (ry, Ay) ∈ Θ(y) and define ty := max{−ry, λN(Ay)} and one has

(−ty, tyI) = (ry, Ay) + (−ry − ty, tyI − Ay) ∈ (ry, Ay) + Q ⊂ Θ(y).

Using the uniform continuity of Θ with η = 1, there exists δ = δ(1) > 0 such that

Θ(y) + (−1, I) ∈ Θ(x) for each x, y ∈ Ω with |x − y| < δ. (3.31)

Since Ω is compact there exists a finite open covering {Bδ(yk)}nk=1 with yk ∈ Ω. Combining (3.30) and
(3.31), one has for each x ∈ Ω

(1 + t)(−1, I) ∈ Θ(x) provided that t ≥ T := max
1≤k≤n

tyk .

Picking τ = 1 + T yields the desired conclusion (−τ, τI) ∈ Θ(x) . �

A pair of remarks are in order concerning the properties (1)–(5) of Proposition 3.7.
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Remark 3.8. The properties (1) and (2) hold for arbitrary proper elliptic maps Θ since they are purely
pointwise statements that require no regularity of Θ. The argument used for property (3) does not really
require continuity (3.4). It would suffice to ask that there exists δ j = δ j(ε j, x0,D2v(x0)) such that (3.13)
holds. This is because the argument in purely local near each fixed x0, and fixed element of Θ̃(x0). On
the other hand, uniform continuity is really used for properties (4) and (5).

Remark 3.9. The maximum property (1), sliding property (2) and the bounded Θ, Θ̃-subharmonics in
property (5) will be used to make suitable truncations in the reduction of the Subharmonic Addition
Theorem for semi-continuous functions to the case in which the functions are bounded from below
(see Lemma 5.5 below). On the other hand, the families locally bounded above property (3) and the
uniform translation property (4) will be used in the proof of the Subharmonic Addition Theorem in the
case of functions which are bounded from below (see Lemma 5.6 below).

4. A maximum principle for Q̃-subharmonic functions

In this section, we discuss some fundamental properties of the space of Q̃-subharmonic functions
which play a key role in our treatment of the comparison principle. We begin by noting that the space
Q̃SH(X) with X ⊆ RN open has also been studied in [7] in the context of constant coefficient (and
gradient free) subequation constraint sets. There one finds additional characterizations such as

w ∈ Q̃SH(X) ⇔ w ∈ SA+(X) ⇔ w+ ∈ SA(X), (4.1)

where w+ is the positive part of w, SA(X) are the subaffine functions satisfying the comparison principle
(2.22) for each Ω ⊂⊂ X and each affine function a. The space SA+(X) consists of the subaffine plus
functions on X in which one uses positive affine functions a in the comparison principle (2.22); that is,
w ∈ USC(X) is subaffine plus on X if for each Ω ⊂⊂ X and each affine function a which is non-negative
on Ω, one has

w ≤ a on ∂Ω ⇒ w ≤ a on Ω.

The equivalence (4.1) is discussed and proven in [7] (see Theorem 9.7).
An important property of subaffine plus functions is the validity of the following zero maximum

principle, which is a comparison principle between the subaffine plus functions w and 0.

Theorem 4.1. For each w ∈ USC(Ω) ∩ Q̃SH(Ω), one has

w ≤ 0 on ∂Ω ⇒ w ≤ 0 on Ω, (4.2)

Proof. Once the equivalence (4.1) is established, it is sufficient to observe that since w ∈ USC(Ω) and
w ≤ 0 on Ω, by a standard compactness argument one has that for all ε > 0 there exists δ = δ(ε) > 0
such that w ≤ ε in a neighborhood of ∂Ω. Then, since w is subaffine plus on Ω, the comparison
principle with the affine function a ≡ ε holds, hence w ≤ ε on Ω. Letting ε→ 0 gives the result. �

Remark 4.2. Combining Theorem 4.1 with Theorem 2.10(a) immediately gives the following
comparison result for proper elliptic maps Θ on Ω between viscosity subharmonics and classical
superharmonics: for each pair u ∈ USC(Ω) ∩ ΘSH(Ω) and v ∈ C2(Ω) ∩C(Ω) ∩ Θ̃SH(Ω) one has

u + v ≤ 0 on ∂Ω ⇒ u + v ≤ 0 on Ω, (4.3)
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since w := u + v ∈ USC(Ω) ∩ Q̃SH(Ω). The main result of this paper will be to show that a continuity
property on Θ ensures that (4.3) continues to hold if v is merely USC(Ω) ∩ Θ̃SH(Ω).

Finally, we note that since the constant proper elliptic map Q̃ is trivially uniformly continuous on
Ω, we have the validity of all of the properties of Proposition 3.7. In addition, one has the following
property for decreasing limits, which plays a key role in the proof of the comparison principle in the
next section.

Lemma 4.3. If {wn}n∈N ⊂ Q̃SH(Ω) is a decreasing sequence, then

w := lim
n→+∞

wn ∈ Q̃SH(Ω).

Proof. This is a special case of Proposition B.1 (E) of [7] for the constant coefficient gradient free
subequation constraint set

F := {(r, p, A) ∈ R × RN × S(N) : (r, A) ∈ Q̃}.

�

5. The comparison principle for continuous proper elliptic maps

The purpose of this section is to prove the following comparison principle in nonlinear variable
coefficient gradient-free potential theory.

Theorem 5.1 (Comparison principle: potential theoretic version). Let Θ be a continuous proper elliptic
map on Ω. Then the comparison principle holds; that is, if u ∈ USC(Ω) and v ∈ LSC(Ω) are Θ-
subharmonic and Θ-superharmonic respectively in Ω, then

u ≤ v on ∂Ω ⇒ u ≤ v in Ω. (5.1)

Proof. By exploiting Harvey-Lawson duality and the zero maximum principle for Q̃-subharmonic
functions (Theorem 4.1), the proof of Theorem 5.1 reduces to the proof of the following result. Recall
that v is Θ superharmonic if and only if ũ = −v is Θ̃-subharmonic.

Theorem 5.2 (Subharmonic Addition). Let Θ be a uniformly continuous proper elliptic map on an
open set X ⊂⊂ RN . For each pair of functions, u, ũ ∈ USC(X) one has

u ∈ ΘSH(X) and ũ ∈ Θ̃SH(X) ⇒ u + ũ ∈ Q̃SH(X) (5.2)

Indeed, let u and v be as in the statement of Theorem 5.1 and assume the validity of Theorem 5.2.
Set ũ := −v ∈ USC(Ω) ∩ Θ̃SH(Ω). The comparison principle (5.1) is then equivalent to

u + ũ ≤ 0 on ∂Ω ⇒ u + ũ ≤ 0 in Ω. (5.3)

Now set w := u + ũ, and consider an arbitrary open set X ⊂⊂ Ω. Since Θ is uniformly continuous on
X, one has that w ∈ Q̃SH(X) by Theorem 5.2. Since X ⊂⊂ Ω is arbitrary, w ∈ Q̃SH(Ω), and (5.3) is a
consequence of the zero maximum principle Theorem 4.1 for w. This completes the proof of Theorem
5.1, modulo the proof of Theorem 5.2. �
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Proof of Theorem 5.2. The proof involves three steps:

1). prove (5.2) under the additional assumption that u, ũ are semi-convex and hence almost
everywhere twice differentiable (Lemma 5.3 and Lemma 5.4);

2). reduce the general case to the case of u, ũ bounded from below by suitable truncations and limit
procedures (Lemma 5.5);

3). prove (5.2) for u, ũ semi-continuous and bounded below by taking decreasing limits of suitable
quadratic perturbations of sup-convolution approximations which are semi-convex and locally
subharmonic (Lemma 5.6).

Step 1: Prove (5.2) in the special case of u, ũ semi-convex on X ⊂⊂ RN for an arbitrary proper elliptic
map (not necessarily continuous).

Recall that if λ > 0, a function u : X → R is said to be λ-semi-convex if u+λQ0 is a convex function,
where Q0(x) = 1

2 |x|
2.

Lemma 5.3. Let Θ be a proper elliptic map on X ⊂⊂ RN . If u, ũ ∈ USC(X) are λ-semi-convex, then
(5.2) holds; that is,

u ∈ ΘSH(X) and ũ ∈ Θ̃SH(X) ⇒ u + ũ ∈ Q̃SH(X). (5.4)

Moreover, one has the comparison principle (5.1) on X for u and v := −ũ ∈ LSC(X) which is Θ-
superharmonic in X.

Proof. The functions u, ũ and u + ũ are all semi-convex and hence twice differentiable almost
everywhere in X by Alexandroff’s theorem. Since u ∈ ΘSH(X) and ũ ∈ Θ̃SH(X), the coherence
property of Remark 2.8 yields

Jx0u ∈ Θ(x0) and Jx0 ũ ∈ Θ̃(x0) for almost every x0 ∈ X.

Property (2.9) of Proposition 2.3 then gives §

Jx0(u + ũ) ∈ Q̃ for almost every x0 ∈ X. (5.5)

The desired conclusion (5.4) is reached by applying the following lemma to w := u + ũ, which is a
version of Jensen’s lemma on the passage of almost everywhere to everywhere information ¶. �

Lemma 5.4. Let w ∈ USC(X) be 2λ-semi-convex. Then w ∈ Q̃SH(X) provided that

Jxw ∈ Q̃ for almost every x ∈ X. (5.6)

Proof. By the pointwise characterization of Lemma 2.9, one needs only to show that

w(x0) ≤ 0 or w ∈ SA(x0) for each x0 ∈ X. (5.7)

Define X+ := {x ∈ X : w(x) > 0}, which is open since w is continuous, and it suffices to show that

w ∈ SA(x0) for every x0 ∈ X+. (5.8)
§The formula Θ(x0) + Θ̃(x0) ⊂ Q̃ for each x0 is known as the jet addition theorem which follows from Harvey-Lawson duality and

the invariance property Θ(x0) + Q ⊂ Θ(x0) (see Section 6 of [7]).
¶See [14] for a discussion on the equivalence of the Slodkowski and Jensen lemmas.
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Since w is twice differentiable almost everywhere, the hypothesis (5.6) yields

w(x) ≤ 0 or D2w(x) ∈ P̃ for almost every x ∈ X.

and hence one has
D2w(x) ∈ P̃ for almost every x ∈ X+. (5.9)

For w ∈ USC(X+) and semi-convex, the condition (5.9) gives the needed property (5.8) by applying
Lemma 7.3 of [12] (see also Lemma 4.10 of [8]). We note only that the main idea is to pass a lower
bound on the largest eigenvalue from a set of full measure to the entire domain X+, where the condition
D2w(x) ∈ P̃ means precisely λN(D2w(x)) ≥ 0 and the tool used is Slodkowski’s largest eigenvalue
theorem [19]. �

Step 2: For upper semi-continuous u, ũ and Θ uniformly continuous on X, reduce to the special case
of u, ũ bounded from below.

Lemma 5.5. Let Θ be a uniformly continuous proper elliptic map on X. If the subharmonic addition
theorem

u ∈ ΘSH(X) and ũ ∈ Θ̃SH(X) ⇒ u + ũ ∈ Q̃SH(X) (5.10)

holds for each pair u, ũ ∈ USC(X) which are bounded from below, then (5.10) holds for each pair
u, ũ ∈ USC(X).

Proof. If either u or ũ is not bounded from below on X, consider the sequences in USC(X)

um := max{u, ϕ − m} and ũm := max{̃u,−ϕ − m} for each m ∈ N, (5.11)

where ϕ is the bounded Θ-harmonic function constructed in Proposition 3.7 (5). These sequences
will be bounded from below since ϕ and −ϕ are. By parts (1) and (2) of Proposition 3.7, one has
um ∈ ΘSH(X) and ũm ∈ Θ̃SH(X) for each m ∈ N. Assuming the (5.10) holds for pairs which are
bounded below, one has

wm := um + ũm ∈ Q̃SH(X) for each m ∈ N, (5.12)

but wm ↘ w := u + ũ as m → +∞ and hence u + ũ ∈ Q̃SH(X) by the Decreasing Limit Property of
Lemma 4.3 for Q̃SH(X). �

Step 3: Prove (5.2) for u, ũ ∈ USC(X) which are bounded below with Θ uniformly continuous on X.
The idea of the proof is to use the sup convolution and suitable quadratic perturbations to build

regularizing sequences for u and ũ which are semi-convex and locally Θ and Θ̃-subharmonic
respectively. The subharmonic addition theorem holds along the approximating sequences which tend
to u + ũ ∈ Q̃SH(X) by the Decreasing Limit Property of Lemma 4.3.

We begin by recalling that if u ∈ USC(X) and bounded on X, for each ε > 0, one defines the
sup-convolution uε by

uε(x) = sup
z∈RN

{
u(x − z) −

1
ε
|z|2

}
∀x ∈ X, (5.13)

where one extends u to be −∞ outside of X. The function defined in (5.13) satisfies the following
well-known properties (cf. Theorem 8.2 of [12], for example):

uε decreases to u as ε→ 0
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and
uε is 2

ε
-semi-convex.

For u ∈ ΘSH(X) bounded with |u| ≤ M on X, consider the family of quadratic perturbations uε(·) + η(| ·
|2 − ω) with η > 0 small and ω := 2 + supx∈X |x|

2 is the parameter introduced in (3.8)–(3.9).

Lemma 5.6. For every η > 0 there exists ε = ε(η) > 0 such that

uε(·) + η(| · |2 − ω) ∈ ΘSH(Xδ), ∀ ε ∈ (0, ε(η)], (5.14)

where
δ :=

√
2εM and Xδ := {x ∈ X : dist(x, ∂X) > δ}

Proof. Indeed, the Uniform Translation Property (4) of Proposition 3.7 says that for each η > 0 there
exists δ = δ(2η) > 0 such that

uz,η(·) := u(· − z) + η(| · |2 − ω) ∈ ΘSH(Xδ), ∀ z ∈ Bδ(0). (5.15)

Moreover, as noted in Proposition 3.6, the η, δ relation is the same for the dual map Θ̃ and hence there
is an analogous family {̃uz,η}z∈Bδ(0) associated to ũ which will be Θ̃-subharmonic.

Now, for ε > 0, consider the collection

F :=
{

u(· − z) −
1
ε
|z|2 + η(| · |2 − X), |z| < δ

}
. (5.16)

Since −1
ε
|z|2 ≤ 0 for each z, Proposition 3.7 (2) gives F ⊂ ΘSH(Xδ) and the collection is locally

uniformly bounded from above. By Proposition 3.7 (3), the Perron function defined for x ∈ Xδ by

uεη(x) := sup
|z|<δ

{
u(x − z) −

1
ε
|z|2 + η(|x|2 − ω)

}
= sup
|z|<δ

{
u(x − z) −

1
ε
|z|2

}
+ η(|x|2 − ω) (5.17)

will admit an upper semicontinuous regularization [uεη]
∗ which belongs to ΘSH(Xδ).

It is not hard to see that for small ε one has that uεη is semi-convex and hence continuous so that
uεη = [uεη]

∗ ∈ ΘSH(Xδ) and the claim (5.14) follows. Indeed, by choosing ε ∈ (0, δ2(η)/2M) the values
of z with |z| ≥ δ do not compete in the sup which defines the sup-convolution uε in (5.13) and hence
the first term in (5.17) is uε(x) and one has the following identity on Xδ(η):

uεη(x) = uε(·) + η(| · |2 − ω) for ε ∈ (0, ε̄] with ε̄ =
δ2(η)
2M

, (5.18)

which gives the semi-convexity and continuity of uεη. �

Armed with Lemma 5.6, we complete Step 3 of the proof of Theorem 5.2 by fixing a sequence
{η j} j∈N with η j → 0 as j → +∞ and select ε j := min{η j, ε̄(η j)} so that δ j := δ(ε j) =

√
2ε jM → 0+

and Ωδ j ↗ Ω. The corresponding approximating sequences {uε j
η j} and {̃uεη j

} defined by (5.18) are 2/ε j-

semi-convex and Θ, Θ̃-subharmonic in Ωδ j . By Lemma 5.3 one has w j := uε j
η j + ũεη j

∈ Q̃SH(Ω j). By

construction w j ↘ u + ũ and Ωδ j ↗ Ω and hence u + ũ ∈ Q̃SH(Ω) by applying the Decreasing Limit
Property of Lemma 4.3. �
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5.1. Comparison with local continuity in r

We conclude the section by observing that in order to prove comparison, our continuity demands on
Θ can be slightly reformulated in ways that might be useful for applications. Recall that by Proposition
3.4 (c), uniform continuity of Θ on X ⊂⊂ Ω is equivalent to the following property: for all η > 0,
∃ δ = δ(η, X) such that

x, y ∈ X, |x − y| < δ⇒ Θ(x) + (−η, ηI) ⊂ Θ(y). (5.19)

Assume now that Θ satisfies for each X ⊂⊂ Ω

for all R > 0 large and η > 0, ∃ δ = δ(R, η, X) such that
x, y ∈ X, |x − y| < δ⇒ Θ(x) ∩ ([−R,R] × S(N)) + (0, ηI) ⊂ Θ(y).

(5.20)

Theorem 5.7. Let Θ be a proper elliptic map on Ω that satisfies (5.20) for each X ⊂⊂ Ω. Then
the comparison principle holds; that is, if u ∈ USC(Ω) and v ∈ LSC(Ω) are Θ-subharmonic and
Θ-superharmonic respectively in Ω, then

u ≤ v on ∂Ω ⇒ u ≤ v in Ω.

This comparison principle might be useful in order to obtain comparison principles fro certain
PDEs; for example, see Remark 6.21. Its proof is based on two observations. First, under the
assumption (5.20), one can define for all M > 0 a uniformly continuous map ΘM on X ⊂⊂ Ω that
agrees with Θ for values in [−M,M] × S(N) in the codomain. Second, Θ-subharmonic functions that
are bounded in the sup-norm by M are ΘM-subharmonic. One then concludes by a standard truncation
argument and the comparison principle for continuous elliptic maps on Ω, which are locally
uniformly continuous.

Let
ΘM(x) := {(r, A) : (ψM(r), A) ∈ Θ(x)} ∀x ∈ X,M > 0,

where

ψM(r) :=

r if |r| ≤ M,

M if |r| > M.

By the fact that ψM is continuous and odd, it is straightforward to check that

Θ̃M(x) = {(r, A) : (ψM(r), A) ∈ Θ̃(x)} ∀x ∈ X,M > 0.

Lemma 5.8. For all M > 0 large, ΘM defined above is a proper and uniformly continuous elliptic map
on each X ⊂⊂ Ω.

Proof. First, we observe that ΘM(x) is non-empty. Indeed, by Proposition 3.7 (5), there exists τ > 0
such that (−τ, τI) ∈ Θ(x) for all x ∈ X. Hence, for all M ≥ τ, ψM(−τ) = −τ, so (−τ, τI) ∈ ΘM(x) for all
x. To prove that ΘM(x) , R × S(N), one argues similarly via a couple (r, A) < Θ(x) for all x. Proper
ellipticity easily follows from the monotonicity of ψM and the degenerate ellipticity of Θ(x).

Continuity of Θ can be obtained by the alternative characterization stated in Proposition 3.4. Fix
any η > 0, and from (5.20) let δ = δ(R, η) be such that

x, y ∈ Ω, |x − y| < δ⇒ Θ(x) ∩ ([−R,R] × S(N)) + (0, ηI) ⊂ Θ(y).
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Let (r, A) ∈ ΘM(x), so (ψM(r), A) ∈ Θ(x). Note that |ψM(r)| ≤ M, so
(ψM(r), A) ∈ Θ(x) ∩ ([−R,R] × S(N)). Hence, for |x − y| < δ,

(ψM(r), A) + (0, ηI) ∈ Θ(y),

that in turn gives (r, A + ηI) ∈ ΘM(y). By ellipticity of ΘM(y), one has (r − η, A + ηI) ∈ ΘM(y), that
finally yields ΘM(x) + (−η, ηI) ⊂ ΘM(y) for all |x − y| < δ. �

Lemma 5.9. Let u ∈ USC(X) be such that |u| ≤ R for some R > 0. If u is Θ-subharmonic (Θ̃-
subharmonic), then u is ΘR-subharmonic (Θ̃R-subharmonic).

Proof. Fix any x0 ∈ X, and let ϕ be C2 near x0, ϕ(x0) = u(x0), and u − ϕ have a local maximum at x0.
Since |u(x0)| ≤ R, ϕ(x0) = ψR(ϕ(x0)), hence

(ψR(ϕ(x0)),D2ϕ(x0)) = (ϕ(x0),D2ϕ(x0)) ∈ Θ(x),

that gives J+
x0

u ⊂ ΘR(x). The proof for Θ̃R-subharmonic functions is completely analogous. �

We conclude with the proof of the comparison principle.

Proof of Theorem 5.7. Arguing as in Lemma 5.5, with X ⊂⊂ Ω arbitrary, it is enough to consider a
pair of functions u, v ∈ USC(X) which are bounded from below (and above). Hence, we assume that
for some R > 0, |u|, |v| ≤ R on Ω. By Lemma 5.9, u and v are ΘR-subharmonic and Θ̃R-subharmonic
respectively. Since ΘR is a uniformly continuous elliptic map on X by Lemma 5.8, by the subharmonic
addition theorem 5.2 u − v ∈ Q̃SH(X) for each X ⊂⊂ Ω and hence u − v ∈ Q̃SH(Ω). The comparison
principle for u, v on Ω then follows from the zero maximum principle (Theorem 4.1).

�

6. Comparison principles for admissible solutions of proper elliptic PDEs

Armed with the potential theoretic comparison principle for continuous proper elliptic maps
developed in previous sections, we derive comparison principles for some fully nonlinear second
order PDEs. The equations we treat will have variable coefficients and will be gradient-free and
proper elliptic (which, in general, may require the imposition of an admissibility constraint in order to
ensure the needed monotonicity). The strategy we employ will be to determine structural conditions
on the defining operator F for the PDE which allow us to define a proper elliptic map Θ whose
subharmonics/superharmonics correspond to viscosity subsolutions/supersolutions of the PDE (with
perhaps admissibility constraints on the upper and lower test jets used in the viscosity formulation).
We call this the correspondence principle (see Theorem 6.5). That being done, an additional
condition will be placed on the operator F in order to ensure that Θ is continuous. This additional
structural condition involves some mild regularity and strict monotonicity assumptions on F (see
property (6.35)). Hence the comparison principle for the PDE follows directly from the comparison
principle for continuous proper elliptic maps Θ given in Theorem 5.1.

While we have no complete recipe to associate a (continuous) proper elliptic map Θ to any given
operator F, we are able to complete the program described above for a large class of equations that
enjoy suitable monotonicity properties on proper elliptic subsets of R × S(N). We call this the
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constrained case and this will be developed in Section 6.1 below. Moreover, in the unconstrained
case, when no admissibility constraint is needed, we will show that a natural choice of Θ can be made
so that the correspondence principle holds without admissibility constraints on the upper and lower
test jets in the (standard) viscosity formulation (see Remark 6.7). Finally, we will present some
comparison principles for two examples of fully nonlinear PDEs (one constrained and one
unconstrained), to illustrate how our general theory applies in specific situations.

6.1. Proper elliptic branches and admissible viscosity solutions of PDEs

We begin with the notion of proper ellipticity for a nonlinear equation

F(x, u(x),D2u(x)) = 0, x ∈ Ω (6.1)

where F : Ω × R × S(N)→ R is a continuous function satisfying

Γ(x) := {(r, A) ∈ R × S(N) : F(x, r, A) = 0} , ∅ for each x ∈ Ω. (6.2)

We will call such an F a gradient-free operator.

Definition 6.1. Let F be a gradient-free operator. The equation (6.1) determined by F is said to be
proper elliptic if there exists a proper elliptic map Θ : Ω→ ℘(R × S(N)) such that

∂Θ(x) ⊂ Γ(x), x ∈ Ω. (6.3)

In that case one calls the differential inclusion

Jxu = (u(x),D2u(x)) ∈ ∂Θ(x), x ∈ Ω (6.4)

a proper elliptic branch of the equation (6.1) defined by Θ.

Notice that the definition depends only on the sets Γ(x) and not on the particular form of the operator
F, which was the insight of Krylov [18] for his general notion of ellipticity. Recall that Θ is a proper
elliptic map if for each x ∈ Ω

Θ(x) ( R × S(N) is closed and non-empty (6.5)

and
Θ(x) + Q ⊂ Θ(x) where Q = N × P = {(r, A) ∈ R × S(N) : r ≤ 0, A ≥ 0}. (6.6)

For gradient-free equations, ellipticity in the sense of Krylov requires only the weaker monotonicity
assumption Θ(x) + ({0} × P) ⊂ Θ(x) for each x ∈ Ω. Notice also that a given F may admit many
branches as Θ need not be unique. See section 2 of [18] for a discussion of this point.

Next, we turn to the question of structural conditions on F for which proper elliptic branches can be
defined. We will start by asking that at least some proper elliptic map Φ exists along which F is proper
elliptic (Q-monotone). One might think of the maximal such proper elliptic map Φ. Subsequently, we
will examine further conditions on the pair (F,Φ) for which there is a natural proper elliptic map Θ

which determines a proper elliptic branch of the Eq (6.1).
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Definition 6.2. Let F be a gradient-free operator. We say that F is proper elliptic if there exists a
proper elliptic map Φ : Ω→ ℘(R × S(N)) such that

F(x, r + s, A + P) ≥ F(x, r, A) ∀x ∈ Ω, (r, A) ∈ Φ(x), (s, P) ∈ Q. (6.7)

In this case (F,Φ) will be called a proper elliptic pair.

Given a proper elliptic pair (F,Φ), in general, Φ will not satisfy the branch condition ∂Φ(x) ⊂ Γ(x).
We will examine one general situation in which a suitable subset Θ(x) of Φ(x) for each x ∈ Ω does
indeed determine a proper elliptic branch of (6.1).

Before stating a general result, a simple example is instructive. Consider the following Monge-
Ampère equation

− u(x) det(D2(x)) = f (x), x ∈ Ω, (6.8)

where f is continuous and nonnegative. The operator F(x, r, A) = −r det(A) − f (x) is clearly Q
monotone on all of Q = N × P; that is, for each x ∈ Ω, (r, A) ∈ Q and (s, P) ∈ Q one has

F(x, r + s, A + P) = −(r + s) det(A + P) − f (x) ≥ −r det(A) − f (x) = F(x, r, A).

Hence for the proper elliptic map defined by Φ(x) = Q for each x ∈ Ω one has that (F,Φ) is a proper
elliptic pair. In addition, it is clear that this constant map Φ is the maximal map for which F restricted
to Φ is Q-monotone. Now, for each x ∈ Ω one has

Γ(x) = {(r, A) ∈ R × S(N) : −r det(A) = f (x)}

while
∂Φ(x) = {(r, A) ∈ N × P : r = 0 or A ∈ ∂P}

and hence F(x, r, A) = f (x) for each (r, A) ∈ ∂Φ(x) and the branch condition ∂Φ(x) ⊂ Γ(x) holds only
at points where f (x) = 0. This suggests reducing Φ to

Θ(x) := {(r, A) ∈ Q : −r det(A) − f (x) ≥ 0},

where one easily checks that (F,Θ) is a proper elliptic pair and that ∂Θ(x) ⊂ Γ(x) so that Θ defines an
elliptic branch of (6.8).

We now give the general statement suggested by this example, where we recall that Γ(x) = {(r, A) ∈
R × S(N) : F(x, r, A) = 0}.

Theorem 6.3 (Proper elliptic branches). Let (F,Φ) be a proper elliptic pair; that is, the gradient-free
operator is Q-monotone when restricted to the proper elliptic map Φ in the sense (6.7). Assume that
the following two conditions hold:

Φ(x) ∩ Γ(x) , ∅ for each x ∈ Ω; (6.9)

∂Φ(x) ⊂ {(r, A) ∈ R × S(N) : F(x, r, A) ≤ 0}. (6.10)

Then, the map Θ : Ω→ ℘(R × S(N)) defined by

Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0} (6.11)

is a proper elliptic map and Θ defines a proper elliptic branch of the PDE (6.1) determined by F; that
is,

∂Θ(x) ⊂ Γ(x) (6.12)

Mathematics in Engineering Volume 3, Issue 4, 1–45.



29

Proof. This is a generalization of [8, Proposition 5.1]. For each x ∈ Ω, Θ(x) , ∅ by the first condition
(6.9) and is not all ofR×S(N) since Φ(x) is a proper subset (by Definition 2.1). Moreover Θ(x) is closed
since Φ(x) is closed and F is continuous, where it would suffice to have F(x, ·, ·) upper semicontinuous
for each x fixed. Hence Θ satisfies the property (2.4) of a proper elliptic map. For the Q-monotonicity
condition (2.5), notice that for each x ∈ Ω and for each (r, A) ∈ Θ(x) ⊂ Φ(x) one has

(r, A) + (s, P) ∈ Φ(x), for each s ≤ 0 and P ≥ 0

by the Q-monotonicity property of Φ. Using the Q-monotonicity of F restricted to Φ (6.7) and the
definition (6.11) of Θ one has

F(x, r + t, A + P) ≥ F(x, r, A) ≥ 0,

and hence Θ is a proper elliptic map.
It remains only to check that Θ defines a branch; that is, that (6.12) holds. One easily checks that

∂Θ(x) is the union of two sets

∂Φ(x) ∩ {(r, A) ∈ R × S(N) : F(x, r, A) ≥ 0} (6.13)

and
Φ(x) ∩ {(r, A) ∈ R × S(N) : F(x, A) = 0}, (6.14)

which yields (6.12) if the branch condition (6.10) holds since Φ(x) is closed by definition. �

In addition to the equation (6.8) mentioned above, examples of equations for which this proposition
applies include elliptic equations with F = F(x, A) independent of r as treated in [8]. Additional
examples, where one also has the comparison principle, will be given in the next subsection.

Now that a proper elliptic branch of the PDE (constrained by Φ) is defined by the map Θ in (6.11),
we turn to the definition of Φ-admissible viscosity sub/supersolutions to the equation (6.1), with the
idea of establishing the equivalence between such admissible sub/supersolutions and
Θ-sub/superharmonics (Definition 2.4) for the map Θ. We will again make use of the upper and lower
test jets, which we recall are defined for each fixed x0 ∈ Ω by

J+
x0

u := {(ϕ(x0),D2ϕ(x0)) : ϕ is C2 near x0, u ≤ ϕ near x0 with equality in x0} (6.15)

and
J−x0

u := {(ϕ(x0),D2ϕ(x0)) : ϕ is C2 near x0, u ≥ ϕ near x0 with equality in x0}. (6.16)

Definition 6.4. Let F : Ω × R × S(N)→ R be continuous and Φ : Ω→ ℘(R × S(N)) a proper elliptic
map.

(a) One says that u ∈ USC(Ω) is a Φ-admissible viscosity subsolution of (6.1) in Ω if for every x0 ∈ Ω

one has
(r, A) ∈ J+

x0
u ⇒ F(x0, r, A) ≥ 0 and (r, A) ∈ Φ(x0) (6.17)

(b) One says that u ∈ LSC(Ω) is a Φ-admissible viscosity supersolution of (6.1) in Ω if for every
x0 ∈ Ω one has

(r, A) ∈ J−x0
u ⇒ F(x0, r, A) ≤ 0 or (r, A) < [Φ(x0)]◦ (6.18)
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One says that u ∈ C(Ω) a Φ-admissible viscosity solution of (6.1) in Ω if both conditions (a) and (b)
hold.

Notice that for Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0}, the Φ-admissible subsolution condition
(6.17) is equivalent to

J+
x0

u ⊂ Θ(x0), (6.19)

which defines u ∈ USC(Ω) being Θ-subharmonic in x0 (see Definition 6.4). On the other hand, recall
that u ∈ LSC(Ω) is Θ-superharmonic in x0 if

J−x0
u ⊂ ([Θ(x0)]◦)c . (6.20)

Under an additional hypothesis of non degeneracy, the condition (6.20) is equivalent to the condition
(6.18).

Theorem 6.5 (Correspondence principle). Let (F,Φ) be a proper elliptic pair and let Θ be the
corresponding proper elliptic map defined by (6.11); that is,

Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0}.

Then the following equivalences hold.

(a) A function u ∈ USC(Ω) is a Φ-admissible viscosity subsolution of (6.1) in Ω if and only if u ∈
ΘSH(Ω) (u is Θ-subharmonic in Ω).

(b) A function u ∈ LSC(Ω) is a Φ-admissible viscosity supersolution of (6.1) in Ω if and only if
−u ∈ Θ̃SH(Ω) (u is Θ-superharmonic in Ω) provided that the following non-degeneracy condition
is satisfied:

F(x, r, A) > 0 for each x ∈ Ω and each (r, A) ∈ [Θ(x)]◦. (6.21)

Proof. The equivalence of part (a) has been noted above. For the equivalence of part (b), notice that
the Φ-admissible supersolution condition (6.18) is clearly equivalent to

J−x0
u ⊂ ([Φ(x0)]◦)c

∪ {(r, A) ∈ R × S(N) : F(x0, r, A) ≤ 0} (6.22)

and by comparing (6.22) with (6.20), it suffices to show that for each fixed x ∈ Ω one has

([Θ(x)]◦)c
= ([Φ(x)]◦)c

∪ {(r, A) ∈ R × S(N) : F(x, r, A) ≤ 0}. (6.23)

Making use of the duality Θ̃(x) := − ([Θ(x)]◦)c, by negating the elements in (6.23), it suffices to show
that

Θ̃(x) = Ψ(x) where Ψ(x) := Φ̃(x) ∪ {(r, A) ∈ R × S(N) : F(x,−r,−A) ≤ 0}. (6.24)

We calculate directly the dual Θ̃(x) using the property [Θ̃(x)]◦ = −[Θ(x)]c which follows from the
reflexivity of Θ(x). By definition, we have

Θ(x) = Φ(x) ∩ {(r, A) ∈ R × S(N) : F(x, r, A) ≥ 0}, x ∈ Ω,

and hence
[Θ(x)]c = [Φ(x)]c ∪ {(r, A) ∈ R × S(N) : F(x, r, A) < 0}, x ∈ Ω.
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Hence
−[Θ(x)]c = [Φ̃(x)]◦ ∪ {(r, A) ∈ R × S(N) : F(x,−r,−A) < 0}, x ∈ Ω,

which yields

[Θ̃(x)]◦ = [Φ̃(x)]◦ ∪ {(r, A) ∈ R × S(N) : F(x,−r,−A) < 0}, x ∈ Ω

Now we take the closure in R × S using the property (2.11) for the proper elliptic maps Θ̃ and Φ̃ to
conclude

Θ̃(x) = Φ̃(x) ∪ {(r, A) ∈ R × S(N) : F(x,−r,−A) < 0}, x ∈ Ω (6.25)

We just need to check now that Ψ(x) as defined in (6.24) equals Θ(x) as calculated in (6.25). By the
continuity of F one clearly has Θ̃(x) ⊂ Ψ(x). For the reverse inclusion it suffices to show that

(r, A) ∈ R × S(N) with F(x,−r,−A) ≤ 0 ⇒ (r, A) ∈ Θ̃(x). (6.26)

By the non degeneracy condition (6.21), (−r,−A) < [Θ(x)]◦ which by duality means
(r, A) ∈ − ([Θ(x)]◦)c = Θ̃(x), as needed. �

A few observations about this correspondence principle are in order.

Remark 6.6. For F,Φ and Θ as in Theorem 6.5, if one also assumes the branch condition (6.10), then
Θ defines a proper elliptic branch of the PDE (6.1) by Theorem 6.3. Moreover, by adding in the non
degeneracy condition (6.21) (which is not required for the Correspondence Principle of 6.5) it follows
that

∂Θ(x) = {(r, A) ∈ Θ(x) : F(x, r, A) = 0} = Θ(x) ∩ Γ(x), ∀ x ∈ Ω (6.27)

and
c0 := inf

(r,A)∈Θ(x)
F(x, r, A) is finite (c0 = 0). (6.28)

Hence, borrowing the terminology of [7] in the constant coefficient setting, we can say that (F,Θ) is a
(constrained case) compatible proper elliptic pair for which the correspondence principle holds.

Next, we briefly discuss the “standard” case in which there is no a priori need to impose
admissibility constraints. In this case we will derive a correspondence principle between standard
viscosity subsolutions (supersolutions) of proper elliptic operators and Θ-subharmonic
(superharmonic) functions under mild non-degeneracy conditions (see (6.29) and (6.30)).

Remark 6.7 (The unconstrained case). If F is a gradient-free operator (F continuous with Γ(x) , ∅)
which is proper elliptic on all of R × S(N); that is,

F(x, r + s, A + P) ≥ F(x, r, A) ∀ x ∈ Ω, (r, A) ∈ R × S(N), (s, P) ∈ Q,

then there is no need to constrain F to some proper subset of the gradient-free jet spaceJ := R×S(N)
in order for F to be Q-monotone. In this case, by letting Φ = J in Definition 6.4 one recovers
usual notion of viscosity subsolutions and supersolutions since the condition (r, A) ∈ J in (6.17)
holds trivially and the possibility (r, A) < [J]◦ = J cannot occur. We will say that (F,J) is an
(unconstrained case) compatible proper elliptic pair.

Now, if one defines the map Θ : Ω→ ℘(R × S(N)) as before with Φ ≡ J ; that is,

Θ(x) := {(r, A) ∈ J : F(x, r, A) ≥ 0}, (6.29)
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then Θ(x) will be closed by the continuity of F and non empty as Γ(x) , ∅. In addition, Θ(x) will be a
proper subset of J if

the fiber {(r, A) ∈ J : F(x, r, A) < 0} is not empty for each x ∈ Ω. (6.30)

Hence Θ will be a proper elliptic map since for each x ∈ Ω, the Q-monotonicity of F on all ofJ yields
the Q-monotonicity of Θ(x). Finally, in this case, the non-degeneracy condition (6.21) becomes

∂Θ(x) = {(r, A) ∈ Θ(x) : F(x, r, A) = 0} = Γ(x) (6.31)

and so (F,Θ) is a compatible pair in the sense (6.27)–(6.28). Hence one has correspondence principle
between Θ-superharmonic functions and standard (unconstrained) viscosity supersolutions of the PDE
(6.1).

6.2. Comparison principles for PDEs from potential theoretic comparison

In the previous subsection, we have discussed fiberwise properties (i.e., for x ∈ Ω fixed) of the
operator F(x, ·, ·) that ensure that the map Θ (defined by (6.11) in the constrained case and by (6.29)
in the unconstrained case) is: 1) proper elliptic, 2) defines a proper elliptic branch of the PDE (6.1)
and 3) satisfies the correspondence principle (of Theorem (6.5) in the constrained case and of Remark
6.7 in the unconstrained case). We now discuss structural conditions on F as x varies which will
ensure that the associated proper elliptic map Θ is continuous. Combining this continuity with the
correspondence principle of Theorem 6.5 will then yield the validity of the comparison principle for
(Φ-admissible) viscosity solutions of the PDE (6.1), by applying the potential theoretic version of
comparison (Theorem 5.1) for continuous proper elliptic maps.

Theorem 6.8 (Continuity of proper elliptic maps). Let F ∈ C(Ω×R×S(N)) be a gradient-free operator
and Θ : Ω→ ℘(R × S(N)) be a proper elliptic map of the form

Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0} (6.32)

where either
Φ is a continuous proper elliptic map on Ω (constrained case) (6.33)

or
Φ(x) = J = R × S(N) for each x ∈ Ω (unconstrained case). (6.34)

Assume that the pair (F,Φ) satisfies the following regularity condition: for every Ω′ ⊂⊂ Ω and for
every η > 0, there exists δ = δ(η,Ω′) > 0 such that

F(y, r − η, A + ηI) ≥ F(x, r, A) ∀(r, A) ∈ Φ(x),∀x, y ∈ Ω′ with |x − y| < δ. (6.35)

Then, the proper elliptic map Θ is continuous.

Proof. We will show that Θ is locally uniformly continuous. Since Θ is assumed to be proper elliptic,
by Proposition 3.4, it suffices to show that for every fixed Ω′ ⊂⊂ Ω and for every fixed η > 0, there
exists δΘ = δΘ(η,Ω′) > 0 such that for each x, y ∈ Ω′

|x − y| < δΘ ⇒ Θ(x) + (−η, ηI) ⊂ Θ(y). (6.36)
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In the constrained case (6.33), we have the validity of (6.36) with Φ in place of Θ for some δΦ =

δΦ(η,Ω). It suffices to choose δΘ = min{δΦ, δ}. Indeed, for each pair x, y ∈ Ω′ with |x − y| < δΘ, pick
an arbitrary (r, A) ∈ Θ(x) so that (r, A) ∈ Φ(x) and F(x, r, A) ≥ 0, which by the continuity of Φ and the
regularity property (6.35) yields

(r − η, A + ηI) ∈ Φ(y) and F(y, r − η, A + ηI) ≥ F(x, r, A) ≥ 0, (6.37)

which yields the inclusion in (6.36).
In the unconstrained case (6.34), the constant map Φ ≡ J is trivially continuous ((6.36) for Φ holds

for every δΦ > 0 and hence it suffices to choose δΘ = δ and use the regularity condition (6.35)). �

Before moving on to comparison principles, a few remarks are in order.

Remark 6.9. In Theorem 6.8, the structural condition (6.35) on F is merely sufficient to ensure that a
proper elliptic map Θ given by (6.32) is continuous. The (locally uniform) continuity of Θ is equivalent
to the statement that: for every Ω′ ⊂⊂ Ω and for every η > 0, there exists δ = δ(η,Ω′) > 0 such that
∀x, y ∈ Ω′ with |x − y| < δ one has

F(x, r, A) ≥ 0 and (r, A) ∈ Φ(x) ⇒ F(y, r − η, A + ηI) ≥ 0. (6.38)

This condition is weaker, in general, than the structural condition (6.35) and hence useful to keep in
mind for specific applications (see, for example, the proof of Theorem 6.18). On the other hand, the
structural condition (6.35) can be more easily compared to other structural conditions on F present in
the literature.

Remark 6.10. In Theorem 6.8 we have assumed that Θ defined by (6.32) is a proper elliptic map. By
what we have done previously, we have sufficient conditions which guarantee that Θ is indeed proper
elliptic. In particular, it is enough to assume that

F(x, r + s, A + P) ≥ F(x, r, A) ∀x ∈ Ω, (r, A) ∈ Φ(x), (s, P) ∈ Q = N × P (6.39)

in order to ensure the needed Q-monotonicity of each Θ(x). Each Θ(x) will be closed (by the continuity
of F) and non-empty provided

Γ(x) ∩ Φ(x) , ∅ for each x ∈ Ω. (6.40)

The remaining condition Θ(x) ( R × S(N) is always satisfied in the constrained case (Θ(x) ⊂ Φ(x) (
R × S(N)). In the unconstrained case, one need only assume

{(r, A) ∈ J : F(x, r, A) < 0} , ∅ for each x ∈ Ω. (6.41)

Remark 6.11. The importance of having Θ be proper elliptic on Ω is twofold. On the one hand,
we can exploit the formulation (3.7) for proper elliptic maps, which makes the regularity condition
(6.35) a natural one. On the other hand, proper ellipticity on all of Ω rules out the possibility that
Θ(x) = R × S(N) on some proper subset Ω′ of Ω but with Θ proper elliptic on Ω \ Ω′. In such a case,
by picking any x ∈ Ω′ and y ∈ Ω \ Ω′, since Θ(y) ( R × S(N), dH (R × S(N),Θ(y)) = +∞, as noted in
(3.3). This holds for pairs x, y which are arbitrarily close.
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Remark 6.12. As a final comment, we note that when the pair (F,Φ) is proper elliptic, the condition
(6.35) is restrictive only for η > 0 small. Indeed, if for some η∗ > 0, and for each η ∈ (0, η∗], there
exists δ = δ(η,Ω) > 0 such that (6.35) holds, the proper ellipticity (6.39) implies that (6.35) continues
to hold for each η > η∗ by taking δ(η,Ω′) = δ(η∗,Ω′).

We conclude this subsection by stating a comparison principle for viscosity solutions of PDE (6.1)
in both constrained and unconstrained cases.

Theorem 6.13 (Comparison principle: PDE version). Given F ∈ C(Ω × R × S(N),R) and Φ : Ω →

℘(R × S(N)) where either

Φ is a continuous proper elliptic map on Ω (constrained case) (6.42)

or
Φ(x) = J = R × S(N) for each x ∈ Ω (unconstrained case) (6.43)

and let Θ : Ω→ ℘(R × S(N)) be defined by

Θ(x) := {(r, A) ∈ Φ(x) : F(x, r, A) ≥ 0}. (6.44)

Assume that F restricted to Φ is proper elliptic; that is,

F(x, r + s, A + P) ≥ F(x, r, A) ∀x ∈ Ω, (r, A) ∈ Φ(x), (s, P) ∈ Q (6.45)

and that the pair (F,Φ) satisfies the regularity property (6.35); that is, for every Ω′ ⊂⊂ Ω and for every
η > 0, there exists δ = δ(η,Ω′) > 0 such that

F(y, r − η, A + ηI) ≥ F(x, r, A) ∀(r, A) ∈ Φ(x),∀x, y ∈ Ω′ with |x − y| < δ. (6.46)

Assume the non-empty condition (6.9); that is,

Γ(x) ∩ Φ(x) , ∅ for each x ∈ Ω (6.47)

and the non-degeneracy condition (6.21); that is,

F(x, r, A) > 0 for each x ∈ Ω and each (r, A) ∈ [Θ(x)]◦. (6.48)

Moreover, in the constrained case (6.42) assume the branch condition (6.10); that is,

∂Φ(x) ⊂ {(r, A) ∈ R × S(N) : F(x, r, A) ≤ 0}. (6.49)

and in the unconstrained case (6.43) assume the properness condition (6.30); that is,

{(r, A) ∈ J : F(x, r, A) < 0} , ∅ for every x ∈ Ω. (6.50)

Then, the map Θ is a continuous proper elliptic map and defines a proper elliptic branch of the PDE
(6.1); that is,

F(x, u(x),D2u(x)) = 0, x ∈ Ω (6.51)

and for every bounded domain Ω the comparison principle for the PDE (6.51) holds; that is,

u ≤ v on ∂Ω ⇒ u ≤ v in Ω. (6.52)

if u is a Φ-admissible viscosity subsolution of (6.51) in Ω and u is a Φ-admissible viscosity
supersolution of (6.51) in Ω.
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Proof. In the constrained case (6.42), the map Θ defined by (6.44) is a proper elliptic map and defines
a proper elliptic branch of (6.51) by applying Theorem 6.3, where one uses (6.45), (6.47) and (6.49).
The non-degeneracy condition (6.48) then yields the correspondence principle of Theorem 6.5. Hence
the comparison principle (6.52) follows from the potential theoretic version of comparison (Theorem
5.1).

In the unconstrained case (6.43), the map Θ defined by (6.44) is proper elliptic, as discussed in
Remark 6.7, where one uses (6.45), (6.47) with Φ(x) = J for each x ∈ Ω and the properness
condition (6.50). Using the non-degeneracy condition (6.48), which in this case means (6.31), one has
the correspondence principle between Θ subharmonics/superharmonics and standard viscosity
subsolutions/supersolutions of the PDE (6.51) (as noted in Remark 6.7). Hence, again, comparison
for the PDE (6.51) reduces to the validity of Theorem 5.1. �

6.3. Comparison in the constrained case

We now focus our attention on specific examples. We consider first the validity of the comparison
principle for an interesting prototype equation that is defined by an operator that is proper elliptic only
when constrained to certain proper subsets of R × S(N). We will consider the equation

[−u(x)]N+2 det D2u(x) = h(x), x ∈ Ω, (6.53)

where
h ∈ C(Ω) and h ≥ 0 on Ω. (6.54)

When h is positive constant, this kind of Monge-Ampère equation is important in the question of the
completeness of the affine metric of hyperbolic affine spheres as treated by Cheng and Yau in [6]. In
particular, for any negative constant L, a necessary and sufficient condition for the graph of v to be
a hyperbolic affine sphere with affine mean curvature L and center at the origin is that its Legendre
transform u = v∗ satisfies (see section 5 of [6]):

det D2u(x) =

[
L

u(x)

]N+2

, x ∈ Ω,

which is equivalent to (6.53) for u > 0 with L = −h < 0. Here, we consider the case of h being a
function of the x variable, possibly vanishing on Ω. Clearly,

F(x, r, A) := (−r)N+2 det A − h(x)

fails to satisfy proper ellipticity conditions on the whole R × S(N). Still, F restricted to Q = N × P

satisfies (6.45). We can prove the following comparison result.

Theorem 6.14. Suppose that h satisfies (6.54). Then, the map Θ : Ω→ ℘(R × S(N)) defined by

Θ(x) := {(r, A) ∈ Q : (−r)N+2 det A ≥ h(x)}

is a continuous proper elliptic map and defines a proper elliptic branch of (6.53). Moreover, for any
Q-admissible viscosity subsolution u and any Q-admissible viscosity supersolution v of (6.53) (in the
sense of Definition 6.4),

u ≤ v on ∂Ω ⇒ u ≤ v in Ω.
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Proof. To show that the comparison principle holds, it is sufficient to check all the assumptions of
Theorem 6.13 in the constrained case. First, Q is x-independent, so it is clearly Hausdorff continuous.
The monotonicity condition (6.45) is easily verified: F(x, r, A) is decreasing in r and increasing in A if
r ≤ 0 and A ≥ 0; that is, if (r, A) ∈ Q. For all x ∈ Ω, (r, A) =

(
− (h(x))

1
N+2 , I

)
∈ Q satisfies F(x, r, A) = 0,

hence the non-empty condition (6.47) holds. Moreover, since ∂Q = ({0} × P)∪ (N × ∂P), F(x, ·, ·) ≤ 0
on ∂Q for each x, we have the branch condition (6.49). To check the regularity condition (6.46), note
that for η > 0,

F(y, r − η, A + ηI) = (−r + η)N+2 det(A + ηI) − h(y) ≥
(−r + η)N+2 det A + ηN(−r + η)N+2 − h(y) ≥ F(x, r, A) + η2N+2 − h(y) + h(x),

for all (r, A) ∈ Q and y ∈ Ω. For any fixed Ω′ ⊂⊂ Ω, by the uniform continuity of h on Ω′, it is sufficient
to pick |x − y| < δ and δ = δ(η,Ω′) > 0 small enough to have η2N+2 − h(y) + h(x) ≥ 0. Similarly, the
non-degeneracy condition (6.48) is satisfied. Indeed, for any (r, A) ∈ [Θ(x)]◦, (r + η, A− ηI) ∈ Θ(x) for
small η > 0. As before,

F(x, r, A) = F(x, r + η − η, A − ηI + ηI) ≥ F(x, r + η, A − ηI) + η2N+2 > 0,

The comparison principle thus follows from Theorem 6.13.
�

Remark 6.15. Note that Θ(x) = {F(x, ·, ·) ≥ 0} ∩ (N × S(N)) ∩ (R × P), in other words

(r, A) ∈ Θ(x) ⇔ min{F(x, r, A),−r, λ1(A)} ≥ 0.

Moreover, it can be easily checked that Q-admissible viscosity subsolutions and supersolutions of
(6.53) are equivalent to standard viscosity subsolutions and supersolutions (i.e., with no additional
restrictions on the upper and lower test functions ϕ) of

min{F(x, u(x),D2u(x)), −u(x), λ1(D2u(x))} = 0,

which can be seen as a Bellman equation, or an obstacle problem for the fully non-linear equation
(6.53). Indeed, classical solutions to min{F(x, u,D2u),−u, λ1(D2u)} = 0 are actually (convex) solutions
to min{F(x, u,D2u),−u} = 0.

Of course, the Eq (6.53) is just a prototype of equations for which the product structure is
amenable to our methods. For example, one can obtain comparison principles for equations of the
form g(x, u)F(x,D2u) = h(x), assuming that g(x, ·) is decreasing and and that F(x, ·) is increasing,
with some strictness in at least one of the two variables, to guarantee the validity of (6.35). General
examples of such F can be found in [8, Section 5]. In particular, our methods naturally cover more
general equations of the form

g(m(x) − u(x)) det(D2u(x) + M(x)) = h(x), (6.55)

where g,m,M are continuous functions, and g(·) is increasing and positive on some open interval
(r0,∞). We stress that mere continuity with respect to x for g,m,M is sufficient here, while the
application of general arguments in [15] involving jet-equivalence may require further regularity
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properties of data, as Lipschitz continuity. See Definition 2.9 of [15]. Note also that the Eq (6.55) is a
generalized version of an example discussed in [8, Remark 5.10], where it is pointed out that
condition (6.35) allows one to treat some cases in which the standard Crandall-Ishii-Lions condition
(see [9, Condition (3.14)]) does not hold.

Theorem 6.16. Suppose that h ∈ C(Ω) is non-negative, m ∈ C(Ω), M ∈ C(Ω;S(N)) and g ∈ C(R)
satisfies

g(·) is increasing, g(r0) = 0 and g > 0 on (r0,∞) for some r0 ∈ R. (6.56)

Then, the map Θ : Ω→ ℘(R × S(N)) defined by

Θ(x) := {(r, A) ∈ Φ(x) : g(m(x) − r) det(A + M(x)) ≥ h(x)} (6.57)

where
Φ(x) := {(r, A) ∈ R × S(N) : g(x) − r ≥ r0 and A + M(x) ≥ 0} (6.58)

is a continuous proper elliptic map and defines a proper elliptic branch of (6.55). Moreover, for any
Φ-admissible viscosity subsolution u and any Φ-admissible viscosity supersolution v of (6.55) (in the
sense of Definition 6.4),

u ≤ v on ∂Ω ⇒ u ≤ v in Ω.

Proof. We apply Theorem 6.13 in the constrained case, where one needs to check that the needed
conditions hold. First, one easily checks that Φ defined by (6.58) a proper elliptic map; that is, each
Φ(x) is a non-empty, closed proper subset of R × S(N) which is Q-monotone, where we note that

Φ(x) := {(r, A) ∈ R × S(N) : r ≤ m(x) − r0 and A ≥ −M(x)} (6.59)

so that (r, A) ∈ Φ(x) yields (r + s, A + P) ∈ Φ(x) for each s ≤ 0 and P ≥ 0. The proper elliptic map Φ

is continuous, as one sees by using the local uniform continuity of m and M to show the local uniform
continuity of Φ in the sense of (3.7) in the characterization of Proposition 3.4. Hence (6.42) holds.

Next, the operator F defined by

F(x, r, A) := g(m(x) − r) det(A + M(x)) − h(x) (6.60)

is Q-monotone in the sense (6.45) since (r, A) ∈ Φ(x) and (s, P) ∈ Q = N × P yields

m(x) − (r + s) ≥ m(x) − r ≥ r0 ⇒ g(m(x) − (r + s)) ≥ g(m(x) − r) ≥ 0

as g is increasing and non-negative on [r0,+∞) by (6.56), while

A + P + M(x) ≥ A + M(x) ≥ 0 ⇒ det(A + P + M(x)) ≥ det(A + M(x)) ≥ 0.

The non-empty condition (6.47) holds since for each x ∈ Ω, the element

(rx, Ax) :=
m(x) − r0 − 1,

(
h(x)

g(r0 + 1)

)1/N

I − M(x)
 ∈ Φ(x)

gives

F(x, rx, Ax) := g(m(x) − rx) det(Ax + M(x)) − h(x) = g(r0 + 1)
h(x)

g(r0 + 1)
− h(x) = 0,
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where g(r0 + 1) > 0 in view of the positivity assumption in (6.56).
For the branch condition (6.49), since Φ(x) = (N + m(x) − r0) × (P − M(x)), one has

∂Φ(x) = (m(x) − r0) × (P − M(x)) ∪ (N + m(x) − r0) × (∂P − M(x)),

and hence F(x, ·, ·) ≤ 0 on ∂Φ(x) for each x.
For the regularity property (6.46); that is, for Ω′ ⊂⊂ Ω and η > 0 arbitrary, there exists δ =

δ(η,Ω′) > 0 such that

F(y, r − η, A + ηI) ≥ F(x, r, A) ∀(r, A) ∈ Φ(x),∀x, y ∈ Ω′ with |x − y| < δ, (6.61)

one makes use of the local uniform continuity of m,M and g together with the monotonicity of g and
det on Φ(x). Indeed, pick δ = δ(η,Ω′) > 0 so that for each x, y ∈ Ω′ with |x − y| < δ one has:

m(y) − m(x) +
η

2
≥ 0, M(y) − M(x) +

η

2
I ≥ 0, h(x) − h(y) + g(r0 + η/2)

(
η

2

)N
≥ 0, (6.62)

where g(r0 + η/2) > 0 by (6.56). Since g is increasing on [r0,+∞), the first condition in (6.62) together
with m(x) − r ≥ r0 if (r, A) ∈ Φ(x) yields

g(m(y) − r + η) ≥ g(m(x) − r + η/2) ≥ g(r0 + η/2) > 0. (6.63)

Similarly, since det is increasing on P, the second condition in (6.62) together with A + M(x) ∈ P for
(r, A) ∈ Φ(x) yields

det(A + ηI + M(y)) ≥ det(A + (η/2)I + M(x)) ≥ det(A + M(x)) ≥ 0. (6.64)

Using (6.63), (6.64) and the inequality det(A + B) ≥ det(A) + det(B) for A, B ≥ 0, one finds

F(y, r − η, A + ηI) = g(m(y) − r + η) det(A + ηI + M(y)) − h(y) ≥

g(m(y) − r + η)
[
det

(
A +

η

2
I + M(y)

)
+

(
η

2

)N
]
− h(y) ≥

g(m(x) − r + η/2) det (A + M(x)) + g(r0 + η/2)
(
η

2

)N
− h(y)

≥ g(m(x) − r) det (A + M(x)) − h(x) = F(x, r, A),

where we have also used the third condition in (6.62) in the last inequality.
Finally, the non-degeneracy condition (6.48) follows from the structure of F(x, ·, ·) on Θ(x). Indeed,

if (r, A) ∈ [Θ(x)]◦, one must have both

m(x) − r > r0 and hence g(m(x) − r) > 0 by (6.56) (6.65)

and
A + M(x) ∈ P◦ and hence det(A + M(x)) > 0. (6.66)

Consequently, in the equation

F(x, r, A) = g(m(x) − r) det(A + M(x)) − h(x) = 0, (6.67)

if (r, A) ∈ [Θ(x)]◦, then one must have h(x) > 0. However, in this case by the positivity in (6.65) and the
strict monotonicity of det on P◦ one cannot preserve F(x, ·, ·) ≥ 0 in a neighborhood of (r, A) ∈ [Θ(x)]◦.

�
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6.4. Comparison in the unconstrained case

As a final illustration of our method, we will prove a new comparison principle for the
inhomogeneous special Lagrangian potential equation

N∑
i=1

arctan
(
λi(D2u(x))

)
= h(x). (6.68)

where
λ1(A) ≤ λ2(A) ≤ · · · ≤ λN(A) (6.69)

are the ordered eigenvalues of A ∈ S(N) and h ∈ C(Ω). As noted in the introduction, while this
equation is proper elliptic on all of R×S(N), its treatment is delicate due to the degeneracies when the
operator G : S(N)→ I = (−Nπ/2,Nπ/2) defined by

G(A) :=
N∑

i=1

arctan
(
λi(A)

)
, A ∈ S (N) (6.70)

takes on one of the special phase values

θk := (N − 2k)π/2 for k = 1, . . .N − 1, (6.71)

which determine the phase intervals

Ik :=
(
(N − 2k)

π

2
, (N − 2(k − 1))

π

2

)
with k = 1, . . .N. (6.72)

As discussed in the introduction, we will make a contribution to the following Open Question (page
23 of [16]): does the comparison principle hold for each continuous phase function h taking values in
I? For h taking values in the top phase interval I1, this is known (see [10] or [16]). We will show that
the comparison principle holds if h takes values in any one of the phase intervals Ik with k ∈ {1, . . . ,N}.
We will also show that our method breaks down if h takes on one of the special phase values θk.

We begin by embedding the PDE (6.68) into its natural potential theoretic framework. For the pure
second order operator (6.70) consider the map Θ : Ω→ ℘(R × S(N)) defined by

Θ(x) := {(r, A) ∈ R × S(N) : G(A) ≥ h(x)}. (6.73)

One easily checks that Θ is a proper elliptic map and defines a proper elliptic branch of (6.68). Indeed,
each Θ(x) is closed by the continuity of G and h, Θ(x) is non-empty since

(rx, Ax) ∈ Θ(x) for each rx ∈ R and Ax = tan
(
h(x)
N

)
I,

and Θ(x) ( R ×S(N) since one easily finds (r, A) such that G(A) − h(x) < 0 by using the monotonicity
of G on all of S(N). The operator F(x, r, A) := G(A) − h(x) is clearly proper elliptic on R × S(N) so
that Θ(x) is Q-monotone. Finally, Θ defines a branch of (6.68) since

∂Θ(x) = {(r, A) ∈ R × S(N) : G(A) = h(x)}. (6.74)
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Having embedded the PDE problem into its natural potential theoretic framework, the main point
is to verify the continuity of the map Θ. This is delicate since the operator G degenerates on level sets
{A ∈ S(N) : G(A) = θk} for each k = 1, . . . ,N − 1. We will show that Θ is continuous if h avoids the
special phase values θk and hence the comparison principle follows from Theorem 5.1. The key idea
in the proof is that if h ∈ C(Ω) avoids each special phase value, then h maps compact subsets of Ω

into a compact subset Σ of some open phase interval Ik, which yields a locally uniform bound on at
least one eigenvalue of A ∈ G−1(Σ) (see Lemma 6.19 below). It is perhaps instructive to first show how
continuity fails nearby a point x0 where h (non constant) does take on a special phase value, and hence
our method breaks down.

Proposition 6.17 (Failure of continuity). Let h ∈ C(Ω) and suppose that there exists a convergent
sequence {xn}n∈N ⊂ Ω with limit x0 ∈ Ω such that for some k = 1, . . . ,N − 1

h(x0) = θk := (N − 2k)
π

2
(6.75)

and
either h(xn) > θk for every n ∈ N or h(xn) < θk for every n ∈ N. (6.76)

Then the proper elliptic map Θ is not continuous.

Proof. By Proposition 3.4(c) with Ω′ any neighborhood of x0 and η = 1, it suffices to show that either

Θ(x0) + (−1, I) 1 Θ(xn) for each n ∈ N. (6.77)

or
Θ(xn) + (−1, I) 1 Θ(x0) for each n ∈ N. (6.78)

We treat first the case h(xn) > θk. By the definition of Θ, in order to show (6.77) it suffices to exhibit a
sequence {An} ⊂ S(N) such that

G(An) ≥ h(x0) = θk and G(An + I) < h(xn). (6.79)

One such sequence is provided by the block diagonal matrices

An :=
[
−anIk 0

0 bnIN−k

]
, n ∈ N, (6.80)

where Ik ∈ S(k) is the identity matrix and an, bn > 0 are to be chosen suitably large, but are constrained
to satisfy

G(An) = (N − k) arctan (bn) − k arctan (an) = θk, (6.81)

so that the first condition in (6.79) holds. By making use of the mean value theorem one finds ξn ∈

(−an,−an + 1) and ηn ∈ (bn, bn + 1) such that

G(An + I) = (N − k) arctan (bn + 1) + k arctan (−an + 1)

= (N − k) arctan (bn) +
N − k
1 + η2

n
+ k arctan (−an) +

k
1 + ξ2

n
,

Mathematics in Engineering Volume 3, Issue 4, 1–45.



41

which by (6.81) yields

G(An + I) = θk +
N − k
1 + η2

n
+

k
1 + ξ2

n
. (6.82)

If one sends an to +∞ then by (6.81) and the definition of θk one must have

arctan (bn)→
1

N − k

(
θk +

kπ
2

)
=
π

2

and hence also bn goes to +∞. This also forces ξ2
n and η2

n to infinity. Hence by choosing an large enough
one can make the right hand side of (6.82) smaller than h(xn), where h(xn) > θk by hypothesis.

Similarly, in the case h(xn) < θk, one can show that (6.78) holds by exhibiting a sequence {An}n∈N ⊂

S(N) such that
G(An) ≥ h(xn) and G(An + I) < θk = h(x0). (6.83)

Again we take An of the form (6.80) with the constraint (6.81) replaced by

G(An) = (N − k) arctan (bn) − k arctan (an) = h(xn) < θk, (6.84)

so that the first condition in (6.83) holds. By choosing an and bn large enough, the same mean value
argument used above gives

G(An + I) = h(xn) +
N − k
1 + η2

n
+

k
1 + ξ2

n
< θk

so that the second condition in (6.83) holds, which completes the proof. �

On the other hand, if h avoids the special phase values, then the proper elliptic map Θ is continuous.

Theorem 6.18. Suppose that h ∈ C(Ω) satisfies

h(Ω) ⊂ Ik :=
(
(N − 2k)

π

2
, (N − 2(k − 1))

π

2

)
for some fixed k ∈ {1, . . . ,N}. (6.85)

Then, the proper elliptic map Θ defined in (6.73) is continuous, and defines a proper elliptic branch of
(6.68). Moreover, for any viscosity subsolution u and any viscosity supersolution v of (6.68),

u ≤ v on ∂Ω ⇒ u ≤ v in Ω.

Proof. We have already discussed the claims that Θ is proper elliptic and defines a proper elliptic
branch of (6.68). Moreover, the branch condition (6.74) is precisely the needed non-degeneracy
condition (6.31) which ensures the correspondence principle between viscosity supersolutions and
Θ-superharmonic functions (as discussed in Remark 6.7).

Hence, in order to have the comparison principle for Θ-sub/superharmonic functions, it suffices to
verify that Θ is a continuous map (in order to apply the potential theoretic comparison Theorem 5.1).

To prove that Θ is indeed continuous, one can argue as follows. By Remark 3.2 and Proposition
3.4(c), the proper elliptic map Θ will be continuous on Ω if for each Ω′ ⊂⊂ Ω and each η > 0 there
exists δ(η,Ω′) > 0 such that for each x, y ∈ Ω′ with |x − y| < δ

(r, A) ∈ Θ(x) ⇒ (r + η, A + ηI) ∈ Θ(y), (6.86)
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which in terms of the special Lagrangian potential operator G requires showing that for each η > 0 and
each pair x, y ∈ Ω′ with |x − y| < δ one has the implication

G(A) − h(x) ≥ 0 ⇒ G(A + ηI) − h(y) ≥ 0. (6.87)

Notice that the continuity of h and condition (6.85) shows that h
(
Ω′

)
is a compact subset of the open

set Ik and hence
h
(
Ω′

)
⊂ [α, β] ⊂ (θk+1, θk) = Ik for some α, β ∈ Ik. (6.88)

Hence there exists ε > 0 (depending on Ω′ and h) such

h
(
Ω′

)
+ γ ⊂ [α, β + ε] ⊂ (θk+1, θk) = Ik for all γ ∈ [0, ε]. (6.89)

There are two cases to consider for the pair (x, A) in (6.87); namely,

G(A) ≥ h(x) + ε and h(x) ≤ G(A) < h(x) + ε. (6.90)

In the first case of (6.90), using the monotonicity of G and the uniform continuity of h on Ω′, one
has

G(A + ηI) − h(y) ≥ G(A) − h(y) ≥ h(x) − h(y) + ε ≥ 0

for each x, y ∈ Ω′ with |x − y| ≤ δ = δ(Ω′), but independent of η > 0.
For the second case of (6.90), we make use of the following fact. See Figure 1 which represents the

case of dimension N = 2 for the interval I1 = (0, π).

G−1(Σ0)
λ1

λ2

G−1(Σ1)
λ1

λ2

Figure 1. Gray regions are examples of G−1(Σ) in the half-plane {λ2 ≥ λ1} ⊂ S(2). On the
left Σ0 = [π/6, π/2] ⊂⊂ I1 = (0, π), while on the right Σ1 = [0, π/2] ( I1. Note that in the
first case λ1(A) is bounded uniformly for A ∈ G−1(Σ0), while in the latter case one can find
sequences {An} ⊂ G−1(Σ1) such that λ1(An)→ −∞ and λ2(An)→ +∞ as n→ ∞.

Lemma 6.19. For any Σ compact in Ik open, the set G−1(Σ) = {A ∈ S(N) : G(A) ∈ Σ} satisfies the
following property: there exists C = C(Σ) > 0 such that

if A ∈ G−1(Σ), then |λ j(A)| ≤ C for some j = jA ∈ {1, . . . ,N}. (6.91)

Mathematics in Engineering Volume 3, Issue 4, 1–45.



43

We postpone the proof of the Lemma, proceeding with the analysis of the remaining case h(x) ≤
G(A) ≤ h(x) + ε; that is,

A ∈ G−1([h(x), h(x) + ε]
)
.

By (6.89), we have [h(x), h(x) + ε] ⊂
⋃

γ∈[0,ε]{h
(
Ω′

)
+ γ} =: Σ is compact in Ik open and hence by

Lemma 6.19 we have λ jA(A) ≤ C = C(Σ) for some jA ∈ {1, . . . ,N} . The mean value theorem then
implies

arctan
(
λ jA(A + ηI)

)
= arctan

(
λ jA(A) + η

)
= arctan

(
λ jA(A)

)
+

1
1 + ξ2η (6.92)

for some ξ ∈ (λ jA , λ jA + η). We have |ξ| ≤ C + η by (6.91) and hence for η ≤ η∗ := C we have
(1 + ξ2)−1 ≥ (1 + 4C2)−1. Therefore, for η ∈ (0, η∗) by the monotonicity of arctan and (6.92) we have

G(A + ηI) − h(y) ≥ arctan
(
λ jA(A + ηI)

)
+

∑
j, jA

arctan
(
λ j(A)

)
− h(y)

≥ G(A) +
η

1 + 4C2 − h(y) ≥ G(A) − h(x) ≥ 0

for all x, y ∈ Ω′ with |x − y| < δ(η,Ω′) to ensure |h(x) − h(y)| < (1 + 4C2)η, which we can do by the
local uniform continuity of h. The same δ also works for η > η∗ as G is increasing. This completes the
proof of the continuity (6.86) modulo the proof of Lemma 6.19. �

Proof of Lemma 6.19. We argue by contradiction. Let {An}n∈N ⊂ G−1(Σ) be a sequence such that
|λ j(An)| → +∞ for all j = 1, . . . ,N. The set of all possible accumulation points of {G(An)}n∈N is
{(N − 2k)π/2 : k = 0, 1, . . . ,N}, which correspond to subsequences with

λ1(An`), . . . , λk(An`)→ −∞ and λk+1(An`), . . . , λN(An`)→ +∞.

Since such accumulation points do not belong to Ik ⊃ Σ, they also do not belong to Σ, and therefore
G(An) < Σ for n large enough, which contradicts An ∈ G−1(Σ). �

We conclude with a pair or remarks concerning possible generalizations.

Remark 6.20. Note that (6.68) is u-independent. It is still interesting to observe how non-degeneracy
properties of the operator G and regularity of the inhomogeneous term affect continuity of the
associated elliptic map Θ. We also point out that our comparison results could be easily extended to
cover more general u-dependent equations of the form

G(D2u(x)) = h(x, u(x)), (6.93)

under the assumption that h is continuous, monotone in the second variable, and satisfies h(Ω×R) ⊂ Ik

for some k.

Remark 6.21. The comparison principle stated in Theorem 5.7, that uses a slightly relaxed version of
Hausdorff continuity (5.20), might be useful in situations where terms of the form g(x, u) appear in the
equation. For c ∈ C(Ω), c ≥ 0, consider for example the proper elliptic map

Θ(x) := {(r, A) ∈ R × S(N) : tr(A) − c(x)r ≥ 0},
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which defines a proper elliptic branch of the linear PDE

∆u(x) − c(x)u(x) = 0.

To check Hausdorff continuity, for any given η > 0, and (r, A) ∈ Θ(x),

tr(A + ηI) − c(y)(r − η) = tr(A) − c(x)r + [c(y) − c(x)]r + η(N + c(y))
≥ [c(y) − c(x)]r + η(N + c(y)).

Then, one has for general c that [c(y)− c(x)]r + η(N + c(y)) ≥ 0 for x close to y , that is (r− η, A + ηI) ∈
Θ(y), only if r lies in a bounded subset of R. This is precisely what (5.20) requires, while Θ would fail
to satisfy the stronger Hausdorff continuity (unless c is constant over Ω).
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