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Abstract 

National governments and international organizations, such as the 

European Commission, are promoting the increased use of information 

and communication technologies to assist scientists in the “mining” 

of knowledge. A typical workflow for a hydrogeologist consists of 

investigating and reporting hydrogeological processes in a study 

area, from data collection to model-based analysis. While 

hydrogeologists may feel insufficiently skilled to undertake the 

self-automatizing and digitizing process, the digitalization of the 

above-mentioned workflow can be easily obtained by means of agile 

and parsimonious methodologies based on free and open-source 

software, and by using existing standards. This route is demonstrated 

for the digitalization of a vadose-zone monitoring system, where a 

large number of raw data related to water infiltration through the 

vadose zone are collected. The main aspects of the proposed 

methodology are a structured database (DB) where field data are 

stored, and a Python script to manage and process the available data. 

The structured DB was designed to store data recorded by field 

sensors and to generate inputs to run a transfer-function-based model 

to simulate percolation to the water table. Field data and model 

outputs were also exploited to automatically generate summary 

reports, like plots and table statistics. The proposed methodology 

can be generalized to other hydrogeological processes and case 

studies, as it is based on commonly available standards, basic 

knowledge of data-storage and data-management, and elementary 

programming skills to connect the different components of its suite. 
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1. Introduction 

During the last decades, scientists have been experiencing an 

exponential growth of collected data, due to the rapid rise in use 

of digital technologies. Management of large volumes of data requires 

efficient system automation in all kinds of applications, from 

industrial engineering to web-based services for smart cities, from 

building automation systems to robotics (e.g., Xiao and Fan 2014; 

Androniceanu 2019; Biffl et al. 2019). The field of geosciences is 

not an exception. This is mostly due to the advancements in data 

acquisition and transmission from ground sensors, remote sensing and 

satellite technologies. Besides raw data (i.e., field data), large 

amounts of model-derived data are also available (e.g., data about 

climate projections). In some cases, such data are shared by means 

of public data repositories (Essawy et al. 2016). Because of the 

increased complexity and resolution of the available datasets, there 

is a growing need for improved data analytics tools, in support of 

understanding geo-environmental processes (Guru et al. 2009). 

Information and communication technologies (ICTs) may assist 

geoscientists in “mining the knowledge”, i.e., fully exploit 

information contained in the available data by means of computer 

science and programming (Babovic 2005).  

Policies and standards to address integrated water resources 

management strategies have been formalized by governmental and non-

governmental organizations, including the Consortium of Universities 

for the Advancement of Hydrologic Science, Inc. (CUAHSI 2020a), the 

International Network of Basin Organizations (INBO 2018), and the 
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United Nations Educational, Scientific and Cultural Organization 

(UNESCO 2019)). In general, standards and protocols aim to achieve 

the integration of vast amounts of data collected from many different 

sources, while rendering the accumulated data easily shared among 

different users (Fletcher and Deletic 2007).  

In hydrogeology, automatizing data processing is of outmost 

importance when dealing with large datasets, including spatially 

extended, heterogeneous, high frequency variables, such as those 

coming from satellite analysis (e.g., Brodaric et al. 2018) or from 

vadose-zone hydrology studies (e.g., Sophocleous 2002; Skolasińska 

2006; Pedretti et al. 2011; Blackmore et al. 2018). ICT tools may 

facilitate the fulfillment of a digital workflow usually carried out 

by a hydrogeologist to investigate a physical process in a study 

area. A simple and general workflow may consist of multiple steps, 

including (1) data collection and pre-processing, (2) data sharing 

and publication, (3) data analysis and post-processing, and (4) 

reporting. All the workflow steps are strictly interconnected: for 

instance, any update in the available dataset or in its 

interpretation triggers enhancements in the conceptual and numerical 

models.  

The authors contend that the hydrogeologist may feel insufficiently 

skilled from a computational perspective to digitalize water-related 

information on his/her own. On one hand, this suggestion could be 

justified by the fact that, traditionally, programming skills are 

necessary to interface data and models (e.g., Bakker 2014). On the 

other hand, the hydrogeologist may overestimate the resources 
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required to create ICT-based tools, e.g., the estimated time to build 

up an efficient and reliable tool, or the estimated costs to purchase 

the needed tools. 

The main objective of this paper is to show that the full 

digitalization of the hydrogeological workflow can be fulfilled by 

means of a lightweight and relatively agile deployment based on 

existing standards, open-source software and a straight-forward 

scripting-based approach. Such a simple parsimonious methodological 

approach for leveraging data can cover all the steps of the workflow, 

from data collection, to data analysis and hydrogeological 

modelling, to automated reporting. This bridges any gap likely to 

occur in the hydrogeological workflow, mostly due to data redundancy 

and lack of data harmonization.  

To demonstrate the actual applicability of an agile and parsimonious 

digitalization methodology using a real-life problem, this paper 

presents an application to a simple case study focusing on the 

interpretation of infiltration through the vadose zone in a well-

instrumented area in northern Italy. Here, multiple ground sensors 

and a weather sensor were installed to obtain time-series of 

hydrological and hydrogeological variables controlling the 

infiltration process, including soil moisture content and pressure 

at different depths and rainfall intensity. The data were used to 

run a simple transfer-function-based model to obtain a soil water 

balance.
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2. Materials and methods 

 

2.1 Four-steps workflow 

A simple four-steps workflow was considered for descriptive purposes 

and to allow for generalization of the conclusions of this work, 

noticing however that other steps may be included in case of 

differently formulated, more complex workflows. 

(1) Data collection and pre-processing.  Accessing reliable, up-to-

date and relevant data is of utmost importance when dealing with 

integrated water resources management (Patterson et al. 2017; INBO 

2018). In most cases, such need is threatened by several issues: (a) 

production and use of data by different institutions, using different 

standards and tools for different purposes; (b) lack of protocols 

for data management and exchange, which makes data often sparse, 

non-homogeneous or non-comparable; (c) scarce financial and human 

resources to invest in data collection systems. Recently, advances 

in data logging technology have been made to assist field data 

collection. These advances involve equipment that is programmed and 

connected to sensors installed in the field. As an example, Ogilvy 

et al. (2009) developed the ALERT technology, which allows quasi 

real-time measurements of geoelectric, hydrologic and other 

properties. Such technology is based on the use of electrodes, 

permanently buried in shallow trenches or attached to borehole 

casing, which may be remotely interrogated by wireless telemetry to 

provide volumetric images of the subsurface. More recently, some 

researchers have developed automated systems with an Arduino 
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microcontroller for in-situ measurement of soil infiltration rate 

applied to single-ring (Di Prima 2015) or double-ring infiltrometers 

(Fatehnia et al. 2016). Also, Young et al. (2017) tested low-cost 

robots for remote surface data collection to support water balance 

computations. Furthermore, the use of standardized programming 

languages on small computing platforms represents an advancement in 

the field of software applications for data collection for mobile 

computers. These are developed within geographic information systems 

(GIS) frameworks to account for the spatial dimension of the data 

collection process (e.g., QField 2019). As an example, Vivoni et al. 

(2002) developed a prototype system, the ENVIT Field Notebook Data 

Collection System, to link real-time field data collected from mobile 

devices to a centralized data server located at a remote location. 

Such a link is guaranteed through wireless standards.  

These advancements also have a role in building credibility of data 

use among stakeholders, by means of integrated information systems 

for Quality Assurance and Quality Control (QA/QC; Hudson et al. 1999; 

Refsgaard et al. 2010). In fact, a key role in data pre-processing 

is represented by QA/QC, including identification of missing data 

and errors caused by equipment malfunction, instrument drift, 

improper calibration, vandalism, or other causes (Fletcher and 

Deletic 2007). In some cases, raw data may not be used for defensible 

scientific analysis, unless they undergo a QA/QC process (e.g., 

Horsburgh et al. 2008). Documented experiences (e.g., Hudson et al. 

1999) showed that the development and use of standards for quality 

system concepts, in conjunction with appropriate data management 
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software, can result in increased data quality (“fitness for 

purpose”) and significant cost reductions (e.g., by reducing the 

cost of rework).  

(2) Data sharing and publication. This is of utmost importance to 

ensure reproducible science. As mentioned above, accessing data and 

information is often difficult because of the lack of harmonization 

in data formats, which prevents effective extraction of information 

for specific applications (Liu et al. 2016), and results in poor 

data exchange, the existence of sparse databases that are not freely 

accessible, and data redundancy (INBO 2018). These aspects often are 

exacerbated by the lack of an “Internet of Water” system (Patterson 

et al. 2017), i.e., a structured architecture involving (i) data 

producers collecting data, (ii) data hubs providing data structures 

according to privacy/security protocols for data use and exchange 

(e.g., Water Data Transfer Format; Walker et al. 2009; WaterML 2.0; 

OGC 2014), and (iii) data users.  

In this framework, open repositories (e.g., HydroShare (Horsburgh et 

al. 2016; CUAHSI 2020b)) increase the availability of datasets to 

better support the long series of scientific data. Also, storing 

data in a coherent and logical structure (e.g., a database, DB) 

supported by a computing environment allows one to ensure validity 

and availability. Database management systems (DBMS), often 

integrated within GIS frameworks (Gogu et al. 2001), may serve this 

function, thereby avoiding data redundancy. Examples of application 

of geoDB and DBMS can be found in Georgiadis et al. (1970), Tipping 

(2002), Dìaz et al. (2008), Gao and Zhou (2008), Wu et al. (2008), 
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Popielarczyk and Templin (2014). On a larger scale, WHYCOS (World 

Hydrological Cycle Observing System; WMO 2005) and WINS (Water 

Information Network System (IHP-WINS), UNESCO 2019) are examples of 

programmes dedicated to promoting and facilitating the collection, 

exchange, dissemination and use of water-related information, in 

order to reinforce international cooperation and promote the free 

exchange of water-related data.    

 (3) Data analysis and post-processing. This is needed to investigate 

the spatial and time dimensions of the involved physical processes, 

and to convert raw data into useful information for decision-making 

(Dìaz et al. 2008). Advanced ICT tools, like GIS and programming 

languages, may support this step through data querying and 

exploitation. Computational analysis has grown rapidly in the field 

of water management for data processing and quality analysis (Hutton 

et al. 2016). Furthermore, numerical modelling may serve for 

characterization or forecasting purposes, or to devise management 

strategies. According to the objectives and the scale of the 

investigation, a number of numerical models, either lumped or 

spatially-distributed, are available (Singh 2014).  

The overarching goal of data analysis is the interpretation of the 

involved physical processes. The first fundamental result of data 

analysis consists of the development of a hydrogeological conceptual 

model. The quality of a conceptual model affects the reliability of 

any decision. Any gap in the conceptual comprehension of the 

hydrogeological behavior of a system may pose serious issues while 

setting up a numerical model for management purposes. Also, any 



Accepted ms – Hydrogeology J. – doi: 10.1007/s10040-020-02176-0 

inconsistency in the hydrogeological conceptual model puts in crisis 

the interpretation of the available data. In this context, a 

numerical model can provide useful information on the inadequacy of 

data analysis and conceptual model (Foglia et al. 2007; Guillaume 

et al. 2016) and can help address the integration of the available 

datasets (Chen et al. 2012). This step also includes post-processing 

of the model’s results, by means of mathematical methods, to quantify 

the uncertainty related to model input data and, as a consequence, 

to model outcomes as well (Linde et al. 2017). 

(4) Reporting. This is of utmost importance, either if the objective 

of the investigation is to make an advancement in the knowledge of 

a hydrogeological system, or to support a decision-making process. 

 

2.2 Components of the workflow 

The proposed agile and parsimonious methodology is based on the use 

of commonly available devices for data collection and requires basic 

knowledge about data storage and management, and basic programming 

skills to connect all the components. To provide an example of its 

application, an idealized problem based on the general four-steps 

workflow is addressed. It is noted however that the approach is 

general and any additional phases may be easily added. Once the 

workflow is established, scripting to digitalize all steps is needed. 

The specific components forming the idealized workflow to be resolved 

are divided into two groups (Fig.1), “Data collection and pre-

processing” and “Data storage and exploitation”, corresponding to 

the steps of the workflow reported in section ‘Four-steps workflow’.  
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“Data collection and pre-processing” embeds actions related to data 

acquisition in the field and QA/QC. Data can be of any type, either 

related to groundwater or surface-water quantity, to 

physical/chemical status of the saturated/unsaturated zone (e.g., 

pH, electrical conductivity, dissolved oxygen), or to climate 

conditions (e.g., rainfall rate, air temperature). Data may be 

recorded by a data logger with any time frequency, according to the 

scope of the investigation. This work considered sensors installed 

in the field for data acquisition with a 10-minute frequency, a data 

logger installed in the field communicating with the sensors and 

saving data, and an R (R Core Team 2013) script to periodically 

download data in text file formats and to assign QA/QC flags. 

“Data storage and exploitation” includes a structured DB and a 

scripting tool. The DB is where field data are long-term stored. It 

is constantly updated as soon as new data are downloaded. Scripting 

based on Python language (van Rossum and de Boer 1991) was 

considered, which offers a free and versatile means to: (i) transfer 

the downloaded data from text files to the DB; (ii) query the DB; 

(iii) provide a graphical user interface (GUI) for preparing files 

needed to run a numerical model; (iv) produce a report in pdf format 

containing some statistics about the field data and results of the 

numerical model. 
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The structured DB may be conceived adopting any DBMS, and the 

structure of such DB may be adapted to the amount of data available 

(or likely to be acquired), and to the specific objective of the 

investigation. A DB may store data of any type, e.g.: 

• literature data; 

• data derived from laboratory analysis; 

• data collected in the field by means of analogic instruments (e.g., 

groundwater level data measured through freatimeters in 

wells/piezometers); 

• data acquired by means of sensors and probes installed in the field 

(e.g., rainfall gauge stations, divers).  

The structure of the DB should at least include:  

• a table with the basic information related to the measurement 

points/devices (i.e., wells, piezometers, sensors, etc.). 

Information may include the identifier (ID) assigned to the 

measurement points/devices, coordinates of their location, the time 

frequency of the measurement, and any other information specifically 

related to the measurement points/devices and their installation; 

• a table with values of a certain variable measured by a certain 

measurement point/device on a certain date and time and a QA/QC flag 

column. In a relational DB, such a table is connected to the above-

mentioned one by means of a primary key field, which usually contains 

the ID assigned to the measurement points/devices. 

The structured DB may then be queried, and the data stored within 

it may be used for statistics and analysis, according to the 

objectives of the investigation. Data may also be used for feeding 
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numerical models. In this regard, the Python script allows one to 

retrieve data from the DB and use them to write model files needed 

to run a certain simulation code. Similarly, the Python script allows 

one to retrieve data from the DB and use them to produce a report 

with plots and statistics about the data queried. Python libraries 

are available to serve this function. Among these, Matplotlib (Hunter 

2007) allows one to manage plotting, while Reportlab (ReportLab 2019) 

allows one to produce documents in pdf format. 

Connecting the above components is relatively inexpensive in terms 

of costs and scientific effort. Indeed, costs only derive from 

installation and maintenance of sensor devices and data loggers, 

while running the R and Python scripts requires installation of free 

and open source tools. Scientific effort is mostly related to: (a) 

programming the R script for data download in a text file format and 

for management of the acquisition system, by means of QA/QC flags 

in case of malfunctioning; (b) designing the DB structure; (c) 

programming the Python script to read data from a text file and 

transfer them to the DB, to query the DB and to exploit data for 

feeding models and for automatic reporting. 

 

3. Application  

This study demonstrated the utility of the proposed agile and 

parsimonious approach for the management of the hydrogeological data 

collected from a vadose-zone monitoring station located close to the 

city of Milan (northern Italy). The case study provides a useful 

opportunity to test the proposed solution, as vadose zone hydrology 
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is notoriously characterized by a large number of parameters and 

strong nonlinearity of the governing flow equations (e.g., Richards 

1931).  

The monitoring site is located in the plain surrounding Pozzuolo 

Martesana (20 km east of Milan, Fig.2a). The site covers a green 

(grass) area of approximately 6x6 m2 and is located within a well 

field managed by the local water authority (CAP Holding S.p.A.). The 

geological framework involves a sandy soil with a thickness of about 

1.5 m, above Quaternary gravelly-sandy deposits, which host the 

shallow aquifer. The average groundwater depth below the ground 

surface is about 6 m, with seasonal changes of ±1 m. The base of the 

aquifer, represented by a continuous clay layer, is found at about 

30 m below the ground surface (Fig.2b).  

The monitoring site was equipped to collect data on ever-changing 

dynamics of infiltration rate in the vadose zone, to relate them 

with the rainfall pattern and to validate the soil-water 

characteristic curve of the local soil, initially derived from pedo-

transfer functions. Moreover, through the integration of information 

from the saturated zone and from air and rainfall chemistry, the 

monitoring site is used to support the development of an unsaturated-

saturated flow numerical model to estimate recharge rates of the 

shallow aquifer. Ultimately, the site shall provide information on 

the air-rainfall-infiltration-groundwater path of nitrogen, in order 

to target the topic of vulnerability of the Po Plain aquifers to 

nitrate contamination (Masetti et al. 2009). 
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3.1 Field data collection and pre-processing 

The site is instrumented with a compact weather sensor (WS, Lufft 

WS501-UMB) measuring air temperature, relative humidity, air 

pressure, wind speed, wind direction, and solar radiation. An 

automatic tipping bucket (0.2 mm) rain gauge (RG, Davis Rain 

Collector Vantage Pro2) complements the WS. The WS and the RG are 

installed on different poles, 2.0 m apart, at 2.0 m and 1.5 m above 

ground surface, respectively. To monitor water infiltration and 

redistribution processes in the topsoil layer, six soil moisture and 

temperature sensors (SMT, Truebner SMT100) and six tensiometers (Ts, 

Soilmoisture 2725ARL Jet Fill) equipped with pressure transducers 

(Soilmoisture 5302 Transducer) were installed. Soil moisture sensors 

were positioned along two vertical profiles at a depth of 20 cm, 40 

cm and 80 cm below the ground surface. The two vertical profiles are 

located at a distance of 2.0 m from the WS pole to the south-east 

and to the south-west. Next to each profile, southward, a set of 

three Ts was installed. These were located at an approximate distance 

of 0.6 m from each other. Ideally, each set should have been made 

up of instruments at a depth of 20 cm, 40 cm, 80 cm below the ground 

surface, as for the soil moisture sensors. However, due to stones 

and pebbles present in the soil, it was not possible to dig holes 

of appropriate diameter (around 4 cm) below 40 cm. Therefore, the 

south-east set of Ts counts one instrument at 20 cm of depth and two 

instruments at 40 cm of depth. Conversely, the south-west set of Ts 

counts two instruments at 20 cm of depth and one instrument at 40 

cm of depth.  
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Ts, WS, and RG are connected to a Campbell Scientific data logger, 

while the SMTs are attached to a Truebner TrueLog100. Data are 

acquired with a 10-minute frequency. An illustrative sketch of the 

monitoring site, including all the installed instruments, is 

presented in Fig.2c.  

 

 

 

 

3.1.1 Quality Assurance and Quality Control (QA/QC) 

QA/QC could include any kind of potential variable that could bias 

the quality of the data. Here, some of the key aspects that affect 

directly the test site’s specific system were considered.  

For QA, one essential item of data to retrieve is the voltage status 

of the instruments system in the field. If voltage falls below a 

certain threshold, the correct functioning of sensors and data 

loggers is jeopardized and data are not recorded, resulting in an 

array of missing values in the text files of field data. The 

threshold depends on the configuration of the acquisition system 

(e.g., type of sensor, type of data logger). Anyway, since the 

acquisition system is still in the testing phase, the voltage is 

recorded every 24 hours. As such, any intervention to restore any 

voltage issue is not immediate.  

In order to overcome such limitation, the QC phase is adopted. It 

consists of checking the text files with field data recorded and 

notifying any occurrence of missing or untrusted values. This is 
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done by assigning each data item recorded in the field a quality 

check flag, i.e., an integer value, which can assume three values, 

“0”, “-1” or “1”. Accordingly, “0” is assigned in case of missing 

data, “-1” in case of untrusted data (e.g., this occurs when the 

porous cup dries and the capillary rise drops to values close to 

zero with decreasing water content), or “1” in case data are 

correctly recorded and validated. Since the acquisition system is 

still in the testing phase, the QC procedure is executed manually 

by the field data manager. Anyway, an automatic assignment of a 

quality check flag is foreseen, in order to consolidate the recording 

procedure. 

The quality check flag introduced in this phase is used in the 

subsequent steps (see the following sub-sections) to estimate the 

uncertainty related to the model’s results. In this sense, the whole 

procedure is set to take into account the uncertainty associated to 

field data, which could be further processed.  

 

3.2 Data storage and exploitation 

This phase is entirely managed through a script written in Python3 

programming language. The script is based on three main pillars, 

i.e., functions that allow one to: 

• transfer sensor data from text files to a structured DB; 

• provide a GUI for writing the model files needed to run the AquiMod 

modelling code (Mackay et al. 2014a) for simulating the infiltration 

process through the soil profile and the unsaturated zone; 
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• produce a pdf report with statistics and plots of the available 

data and results obtained after running the AquiMod software.  

 

3.2.1 DB structure 

The structure of the DB (Fig.3) has been conceived for storing data 

monitored by sensors in the field, as described in section ‘Field 

data collection and pre-processing’. Such structure has been set 

using the SpatiaLite DBMS (SpatiaLite Development Team 2011). With 

reference to Fig.3, the SpatiaLite DB includes the following tables: 

• table sensors: this table lists all the sensors installed in the 

field. For each sensor, the following is reported: a name associated 

to that sensor, the type of that sensor, the depth of installation 

below the ground surface (if applicable), the time frequency adopted 

for data acquisition; 

• table sensor_type: this table lists some types of sensors, 

reporting for each of them the measured variable with the related 

units of measurement. The content of the field reporting the type 

of sensor in the sensors table is retrieved from this table through 

a relation between the two tables involved; 

• table pore_pressure: this table reports pore pressure values 

measured by tensiometers T1 through T8 on a certain date and time 

(one measurement every 10 minutes). For each measurement, the 

following is reported: the name of the tensiometer which recorded 

that value (retrieved from the sensors table), the date and time of 

the measurement, the measured value for pore pressure;  
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• table unsat_props: this table reports values for water content in 

the unsaturated zone, soil temperature and electric potential 

measured by SMT sensors, named TDR0 through TDR5, on a certain date 

and time (one measurement every 10 minutes). For each measurement, 

the following is reported: the name of the SMT sensor which recorded 

that value (retrieved from the sensors table), the date and time of 

the measurement, the measured value for water content in the 

unsaturated zone, soil temperature and electric potential; 

• table rainfall: this table reports rainfall rate values measured 

by the RG station on a certain date and time (one measurement every 

10 minutes). For each measurement, the following is reported: the 

name assigned to the RG station (retrieved from the sensors table), 

the date and time of the measurement, the measured value for rainfall 

rate;  

• table meteo_climate: this table reports values for air temperature, 

relative humidity, atmospheric pressure, wind direction, wind 

velocity and solar radiation measured by the WS on a certain date 

and time (one measurement every 10 minutes). For each measurement, 

the following is reported: the name assigned to the WS (retrieved 

from the sensors table), the date and time of the measurement, the 

measured value for the above variables. 

All tables include a quality check field devoted to recording any 

error that occurred during the automatic recording of data in the 

field. Such a quality check field may assume three integer values: 

“0” in case of non-recorded data (e.g., in case of voltage problems 
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for the instruments), “-1” in case of untrusted data (e.g., if the 

porous cup dries), or “1” in case data are correctly recorded. 

Fig.3 reports also the relations among the tables. Such relations 

are represented through arrows oriented from the table where a 

certain information is retrieved from, towards the table where that 

information is needed. 

 

 

 

3.2.2 Data storage 

The structured DB is a *.sqlite file containing all the above-listed 

tables. A Python script was coded to read the text files containing 

the sensors data downloaded and to fill the above-listed tables with 

the information needed. A GUI was also designed using the Qt 

framework (Qt Company 2019; Fig.4). Such GUI requires the path of 

the SpatiaLite DB to be updated and the paths of the text files 

containing sensors data. Such paths may be retrieved using the 

Browse… buttons.  

While the Python script reads the text files containing the sensors’ 

data in the due format, a check is performed on the date-and-time 

field of such files: if the measurement recorded on a certain date 

and time is already present in the due table of the SpatiaLite DB, 

the corresponding line of the text file is skipped. In this way, 

clicking OK in the GUI reported in Fig.4, the SpatiaLite DB may be 

periodically updated with new measurements. Fig.4 also reports the 
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tables of the SpatiaLite DB, which are automatically updated after 

reading the corresponding text file. 

 

 

3.2.3 Connecting the DB to a mathematical model 

The data stored in the SpatiaLite DB were connected to a mathematical 

model for the simulation of groundwater recharge through the soil 

profile and the unsaturated zone. In the example of this study, the 

groundwater recharge process was simulated through transfer 

functions by running the AquiMod modelling code (Mackay et al. 

2014a), although any other mathematical model (e.g., a process-based 

numerical model) could be connected to the DB. AquiMod was selected 

as a free and open source lumped model that simulates soil drainage, 

water flow through the unsaturated zone and groundwater flow. AquiMod 

can be applied to simulate groundwater level time-series at 

observation boreholes. Such levels can be calibrated against field 

data. AquiMod includes three sub-routines:  

• a soil water balance module: rainfall is partitioned among crop 

evapotranspiration, runoff and drainage through the soil profile. 

The algorithm is a simplification of the one developed by Allen et 

al. (1998); 

• an unsaturated-zone balance module: the soil drainage is attenuated 

through the unsaturated zone, using a two-parameter Weibull transfer 

function. As a result of this module, percolation to the water table 

is calculated; 
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• a saturated-zone balance module: percolation to the water table 

is input as a recharge term to the saturated portion of the aquifer. 

Groundwater storage and discharge are simulated, and a mass balance 

equation is solved to calculate groundwater level at observation 

boreholes over the length of the simulation. 

The conceptualization of the AquiMod code fits perfectly with the 

objective of the case study, i.e., the need to understand the 

hydraulic behavior of the aquifer, in view of investigating the 

spreading of pollutants (e.g., nitrate) through the unsaturated 

zone. Furthermore, the extent of the study area makes the use of 

lumped codes particularly convenient, at least in a first attempt 

to achieve the objective above by adopting poorly parameterized 

modelling tools.  

Regarding the time dimension of the simulated processes, AquiMod 

allows one to discretize the whole simulation into time-steps, whose 

length is input by the modeler, according to the scope of the 

investigation and to the time scale of the variation of the involved 

processes. 

AquiMod can be run in calibration or evaluation mode. In calibration 

mode, a Monte Carlo parameter sampling algorithm is run using 

multiple unique parameter sets, in order to compare the simulated 

groundwater level time-series against observational data, and to 

evaluate the best fit by means of objective functions. In evaluation 

mode, fixed parameter sets are specified by the modeler and AquiMod 

is run to calculate groundwater level time-series for that specific 

parameter set. In both cases, the AquiMod source code needs model 
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files, i.e., formatted text files containing information about the 

running settings.  

Model files must have a specific structure. As such, a Python script 

was coded to retrieve and process data stored in the SpatiaLite DB, 

in order to generate the model files with the required structure. A 

GUI was also designed using the Qt framework (Fig.5). Such GUI 

requires the User to input the path of the SpatiaLite DB to be 

queried, and parameters and settings needed to run the AquiMod code.  

 

 

 

The GUI reported in Fig.5 is made of five parts: 

• in the upper part, the User must select the time-step length (days 

or months options are available), the starting and lasting dates of 

the simulation, and the simulation mode (evaluation or calibration). 

The time-step length and the starting and lasting dates of the 

simulation are used to define the time discretization of the model: 

the simulation starts from the starting date selected by the User 

and ends in the lasting date selected by the User. The starting and 

lasting dates of time-steps in the middle are determined according 

to the time-step length defined by the User. Data stored in the 

SpatiaLite DB are averaged (e.g., soil moisture, pore pressures, air 

temperature) or summed (rainfall) over the length of each time-step. 

While retrieving the data from the SpatiaLite DB, a check is made 

over the quality check fields of each table of the averaged variables 

(i.e., soil moisture, pore pressures, air temperature): if the 
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content of the quality check field is “0” (meaning missing data) or 

“-1” (meaning untrusted data), a linear interpolation is made to 

fill the gap, using the last value recorded right before the gap and 

the first one recorded right after the gap. It must be noted that 

this interpolation procedure is not applicable for the rainfall 

values, which are summed over the length of each time-step. As such, 

a check is made internally to the Python script: if some gaps occur 

in the rainfall time-series (i.e., if the content of the quality 

check field is “0” or “-1”), then the User is asked to edit the 

starting and lasting dates in the GUI, in order to get a simulation 

period including trusted rainfall data only;  

• the following three parts are related to the simulation of: the 

soil water balance module, the unsaturated-zone balance module and 

the saturated-zone balance module. These are checkable, meaning that 

defining the needed parameters for simulating each module is not 

mandatory. As such, if the Soil profile option is not checked, 

rainfall will be applied to the unsaturated zone as a whole. 

Similarly, if the Unsaturated zone option is not checked, the 

drainage term through the soil profile or the rainfall as a whole 

will be an input to the water table. Finally, if the Saturated zone 

option is not checked, the groundwater level will not be simulated. 

Parameters needed in the Soil profile section are soil and crop 

properties, to determine evapotranspiration and runoff rates. The 

Python script internally computes potential evapotranspiration 

required by the AquiMod algorithm by using the Thornthwaite equation 

(Thornthwaite 1948), exploiting the air temperature values stored in 
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the SpatiaLite DB. Parameters needed in the Unsaturated zone section 

are related to the computation of the Weibull probability density 

function. Parameters needed in the Saturated zone section are related 

to the geometry and hydraulic properties of the aquifer.  

For each of the required parameters, in case the model is run in 

calibration mode, the User may define minimum and maximum values to 

let parameters vary between such limits. Also, for each of these 

three sections, the User may define a Parameters variation (%) 

factor. This will be used in the Python script to internally vary 

each of the defined parameters by such percentage, in order to 

perform runs with different sets of parameters; 

• the last part is related to the solver settings. Here the needed 

parameters are: 

- the Number of runs of the model; 

- the Spin-up period, i.e., the number of time-steps during which 

an initial wetting-up period of the soil profile and of the 

unsaturated zone occurs; 

- the Objective function for evaluating the model outputs against 

the observed levels; 

- the Threshold for the objective function that must be reached 

in calibration mode, for the parameter set of the simulation 

to be stored; 

- the Maximum number of acceptable models, i.e., the maximum 

number of parameter sets that exceed the acceptable threshold 

that will be output when running in calibration mode. 
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After filling the GUI reported in Fig.5 and clicking OK, a sub-

folder renamed AquiMod_files is created by the Python script within 

the folder where the *.sqlite DB file is located. Such sub-folder 

is populated with sub-folders and model files containing information 

defined by the User through the GUI reported in Fig.5 and formatted 

as required by the AquiMod algorithm. A sub-folder renamed Output 

is also created within the AquiMod_files one. This will be populated 

with output files generated after running the AquiMod executable. 

The latter must be run independently from the GUI reported in Fig.5. 

To do so, the AquiMod executable, freely available for download from 

the AquiMod website, must be installed as detailed in the AquiMod 

User Manual (MacKay et al. 2014b), and run specifying the whole path 

of the AquiMod_files sub-folder. 

The approach detailed in this sub-section allows one to connect a 

hydrological model on one side to a relational DB on the other, 

through a loose coupling strategy (Brimicombe 2003; Goodchild 1992; 

Nyerges 1991), where the two components are treated independently 

and interaction between them is managed through manually-enabled 

file exchange. 

Due to the specific aims of the case study, the following limitations 

result from the application of the GUI (Fig.5): 

• the Python script only implements the Q1K1S1 component of AquiMod 

for the saturated zone (MacKay et al. 2014b), where the aquifer is 

represented as a single layer with a single discharge outlet. Also, 

the α parameter which determines the hydraulic conductivity 
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variation with depth has been set to 1, meaning that the hydraulic 

conductivity increases with elevation; 

• potential evapotranspiration is computed using the Thornthwaite 

equation, by exploiting the air temperature values stored in the 

SpatiaLite DB; 

• different sets of model parameters may be defined just using the 

Parameters variation (%) factor; 

• time-steps length is the same, as defined by the User, all over 

the simulation length. 

Anyway, these limitations concern only the GUI shown in Fig.5. The 

User can manually edit the model files generated within the 

AquiMod_files sub-folder as needed. 

 

3.2.4 Modelling results 

Fig.6 reports results of the AquiMod application to the case study 

between February 4th, 2019 and June 10th, 2019. The model was run in 

evaluation mode and the three components (soil, unsaturated zone, 

saturated zone) were simulated. The simulation period was 

discretized into time-steps 15-days long and average values of 

climate data stored in the SpatiaLite DB were calculated internally 

to the Python script. No gaps occurred in the time-series of rainfall 

and climate data in the simulation period.  

As a result of the soil component (Fig.6a), the following may be 

inferred about the water budget at the end of the simulation period, 

considering that the budget terms were averaged over 15-day time-

steps. The total rainfall was worth about 290.0 mm. This was 
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partitioned between superficial runoff (23.5 mm) and percolation to 

the unsaturated zone (54.8 mm), while a water deficit of about 29.4 

mm occurred, which did not satisfy the vegetation need for 

evapotranspiration (226.8 mm). The water deficit term is calculated 

in AquiMod as the difference between the actual evapotranspiration 

from the soil profile and the rainfall.    

The effective infiltration reaching the water table (i.e., the net 

aquifer recharge) is a fraction of the percolation. The effective 

infiltration results from the application of a Weibull-based 

transfer function, which simulates the attenuation of the soil 

drainage through the unsaturated zone. For this modeling exercise, 

the shape (𝜇) and scale (𝜎) parameters of the adopted Weibull 

distribution were set to 𝜇 = 6.0 and 𝜎 = 3.0. Fig.6b reports the 

time plot of the effective infiltration with respect to rainfall. 

An effective infiltration of about 45.5 mm to the water table was 

simulated, resulting in decreasing groundwater head from 117.0 m to 

115.8 m with respect to the mean sea level (Fig.6c).  

 

 

 

3.2.5 Data analytics and reporting 

The final step of the proposed methodology concerns the automated 

production of a report with statistics and plots of data and the 

models’ results. To this end, a Python script was coded to generate 

a pdf report for the case study. Two Python libraries were used: 
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Matplotlib (Hunter 2007) for 2D plotting, and ReportLab (ReportLab 

2009) for generating pdf files. 

A GUI was also designed using the Qt framework (Fig.7). Such GUI 

requires:  

• the path of the SpatiaLite DB to be queried; 

• the logo to be printed in the first page of the pdf report. This 

may be retrieved using the Browse… button; 

• the list of authors of the report, with the related institutions; 

• an image of the study area. This may be retrieved using the Browse… 

button.  

 

 

After clicking OK in the GUI reported in Fig.7, the Python script: 

• queries the different tables of the SpatiaLite DB; 

• computes statistics (i.e., minimum, maximum and average values) 

about rainfall rate, air temperature, pore pressure and soil water 

content over the monitoring period; 

• produces time plots of the above variables over the monitoring 

period; 

• accesses the AquiMod model files and the output files produced 

after running the AquiMod executable;  

• produces plots of (a) the water budget of the soil profile, (b) 

the water budget of the unsaturated zone, and (c) the groundwater 

level simulated in the study area, over the simulation period 

(Fig.6). 



Accepted ms – Hydrogeology J. – doi: 10.1007/s10040-020-02176-0 

All the plots and statistics listed above are printed in a *.pdf 

file generated and saved in a sub-folder renamed pdf_report within 

the folder where the *.sqlite DB file is located. The plots produced 

are also saved as *.png files in a sub-folder renamed plots within 

the pdf_report sub-folder. 

The generated pdf report includes: 

• a first page displaying the logo selected through the GUI, a title 

of the report internally specified in the Python script, the list 

of authors and institutions defined through the GUI, and the current 

date internally specified in the Python script; 

• a section reporting a description of the study area, including the 

image selected through the GUI, and of the objectives of the 

investigation; 

• a part about the analysis of the sensors’ data. This includes:  

- statistics and time plots of rainfall and air temperature over 

the monitoring period; 

- statistics of pore pressure and a composite time plot of pore 

pressure and rainfall values over the monitoring period; 

- statistics and time plots of water content values over the 

monitoring period; 

• a part about the AquiMod model. This includes: 

- a general description of model settings, including a table with 

time discretization; 

- a description and a bar chart with the water balance of the 

soil profile (Fig.6a); 
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- a description and a composite time plot of the effective 

infiltration and rainfall through the unsaturated zone over the 

simulation period (Fig.6b); 

- a description and a time plot of the groundwater level simulated 

over the simulation period (Fig.6c); 

- a plot which compares the groundwater level simulated and the 

groundwater level measured over the simulation period. Such 

plot is complemented by an analysis of residuals. This part is 

included in the pdf report in case the model is run in 

calibration mode. This is not the case of this example, but the 

structured DB is set to include also a table renamed gw_level, 

with the same general structure as the tables described above 

(Fig.3), and a field containing groundwater level data. If the 

model is run in calibration mode, groundwater level data are 

averaged over the length of each time-step, in order to perform 

the comparison with the simulated values. Also, if missing or 

untrusted groundwater level data occur in the gw_level table, 

a linear interpolation is performed internally to the Python 

script to fill the gaps; 

- a post-processing section, where a preliminary evaluation of 

the error introduced in the model is made, in cases of missing 

or untrusted climate data. Should this be the case, such error 

is estimated by calculating, for each time-step, the percentage 

of records in the meteo_climate table where the content of the 

quality check field is “0” or “-1”. 
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Model settings are retrieved from the AquiMod model files generated 

in the AquiMod_files sub-folder. Similarly, the different components 

of the water balance of the soil profile, and time-series of the 

effective infiltration through the unsaturated zone and of the 

simulated groundwater level are retrieved from output files 

generated after running the AquiMod executable independently of the 

Python GUI. 

Fig.8 shows two extracts of the pdf report produced. The whole report 

is presented in the electronic supplementary material (ESM). 

 

 

The Python script is coded so that the User may easily modify the 

content of the pdf report (i.e., sentences, sections ordering). Since 

Python is an open source programming language, this can be done by 

simply editing a Python file with any text editor.  

Even if the selected time-series to test the approach and to run the 

AquiMod analysis were complete and not affected by errors, this study 

finally addressed a hypothetical application in which some gaps occur 

in the time-series of air temperature data to showcase the ability 

of the proposed approach to account for QA/QC analysis. 

Identical model settings and input data were adopted, as the ones 

described in the previous sections (i.e., model running between 

February 4th, 2019 and June 10th, 2019, with time-steps 15 days long, 

and the same parameter values set for the soil, unsaturated zone and 

saturated zone components, and for the solver). The time-series of 

the reference air temperature data were then modified, assuming a 
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first gap due to “missing data” lasting two days, on February 10th-

12th, 2019 (during time-step 1), and a second gap due to “untrusted 

data” lasting five days, on March 20th-25th, 2019 (during time-steps 

3 and 4; Fig.9a). 

A framed text including a printout of the percentage of 

missing/untrusted data over the length of each time-step where the 

above gaps occur is included in the last section of the generated 

pdf report (Fig.9b). The main purpose of this printed percentage is 

to warn the reader about the magnitude of the potential errors 

affecting the water budget calculations, providing a first-cut and 

preliminary evaluation of the uncertainty that may affect the model’s 

results. The modeler is required to run a thorough post-processing 

analysis and to develop more robust uncertainty indicators to assess 

and quantify the types of errors that can affect the water budget 

calculation.   

 

 

 

4. Conclusions 

The workflow carried out by a hydrogeologist may consist of multiple 

steps, from data collection to data exploitation and analysis, from 

the definition of a hydrogeological conceptual model to mathematical 

modelling and reporting the results of the investigation. As 

governments and administrations are increasingly fostering data 

digitalization and ICTs, developing a fully-digital workflow 
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requires integrating the expert knowledge of a groundwater scientist 

with computing and programming skills.  

The present work demonstrates that simple and inexpensive tools may 

be applied to create an agile and parsimonious methodology that 

connects multiple parts of the workflow. The proposed approach is 

based on existing data management standards and free and open source 

software tools, like DBMS and Python programming language.  

Basic programming skills and a wise use of existing standards and 

open source resources can be applied to: 

• harmonize data, usually available in different formats and from 

different sources, by means of DBMS, thus avoiding data redundancy; 

• easily query and manage data, by means of data analytics tools for 

computing statistics and plotting. The automation of data analysis 

by means of script coding allows one to rapidly update statistics 

and plots as soon as new data are available, and to timely highlight 

any inconsistency in the time/space trends of the collected data;  

• facilitate the interaction between the available data and numerical 

models, as script coding allows one to retrieve data from a 

structured DB and to organize them in model files with specific 

formats, as required by the selected simulation model; 

• automate and customize the reporting step, generating data plots, 

statistics and the models’ results, according to the objectives of 

the investigation. This also results in facilitating the timely 

update of a report as soon as new data are available; 

• provide a preliminary estimate of the uncertainty that affects the 

models’ results, based on the calculation of the percentage of 
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missing/untrusted data occurring in the time-series of climate data. 

The proposed approach was demonstrated by applying it to a simple, 

real-world case study, with the aim of investigating the infiltration 

mechanism through the unsaturated zone.  

The Python programming language for script coding can interact with 

libraries suited for designing GUIs (e.g., the Qt framework). As 

such, the source code can be used straightforwardly. This guarantees 

the portability of the proposed methodology, as it is based on 

existing data management standards and on the application of free 

and open source tools. This means that the suite of the methodology 

(i.e., the structured DB where data are stored, and the Python script 

with its GUI) may be easily shared and used by water managers and 

experts of the water sector. The proposed approach may be easily 

reproduced and adapted to any case study, as it is based on the use 

of commonly available devices for data collection, and it requires 

basic knowledge about the commonly available standards for data 

storage and management, and basic programming skills to connect the 

different components of its suite.      
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FIGURE CAPTIONS: 

 

Fig. 1 Components of the proposed agile and parsimonious methodology 

 

 

Fig. 2 a) Topographical map of the study area; b) simplified 

geological section; c) illustrative sketch of the monitoring site; 

depths indicated next to each tensiometer represent the exact 

location of the respective porous cup (length = 9 cm) 
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Fig. 3 The structure of the SpatiaLite DB adopted to store the 

sensors’ data 

 

 

Fig. 4 The graphical user interface (GUI) used to update the 

SpatiaLite DB 
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Fig. 5 The GUI used to generate model files for AquiMod 
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Fig. 6 Results of the AquiMod application. (a) Water budget of the 

soil profile; (b) time plot of the effective infiltration through 

the unsaturated zone with respect to rainfall; (c) time plot of the 

groundwater level simulated 
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Fig. 7 The GUI used to generate an automated pdf report 
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Fig. 8 Two extracts of the pdf report produced. (a) Plot of the 

rainfall data over the simulation period; (b) extract of the part 

related to the AquiMod model 
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Fig. 9 (a) Plot of the air temperature data over the simulation 

period. The gaps in the time-series are evident; (b) extract of the 

pdf report related to the estimation of the error that affects the 

models’ results 


