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Abstract Endothelial cells (ECs) are sentinels of cardiovascular health. Their function is reduced by the presence of cardio-
vascular risk factors, and is regained once pathological stimuli are removed. In this European Society for Cardiology
Position Paper, we describe endothelial dysfunction as a spectrum of phenotypic states and advocate further studies
to determine the role of EC subtypes in cardiovascular disease. We conclude that there is no single ideal method
for measurement of endothelial function. Techniques to measure coronary epicardial and micro-vascular function
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are well established but they are invasive, time-consuming, and expensive. Flow-mediated dilatation (FMD) of the
brachial arteries provides a non-invasive alternative but is technically challenging and requires extensive training and
standardization. We, therefore, propose that a consensus methodology for FMD is universally adopted to minimize
technical variation between studies, and that reference FMD values are established for different populations of
healthy individuals and patient groups. Newer techniques to measure endothelial function that are relatively easy to
perform, such as finger plethysmography and the retinal flicker test, have the potential for increased clinical use
provided a consensus is achieved on the measurement protocol used. We recommend further clinical studies to es-
tablish reference values for these techniques and to assess their ability to improve cardiovascular risk stratification.
We advocate future studies to determine whether integration of endothelial function measurements with patient-
specific epigenetic data and other biomarkers can enhance the stratification of patients for differential diagnosis, dis-
ease progression, and responses to therapy.
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1. Defining endothelial function and
dysfunction

1.1 What is endothelial dysfunction?
The vascular endothelium acts a semipermeable barrier to regulate an
exchange of fluids, nutrients, and metabolites, and is critical to haemosta-
sis and vascular health. In healthy arteries, endothelial cells (ECs) exist in
a quiescent state that is maintained by laminar blood,1,2 and by circulating
cytoprotective factors such as high-density lipoprotein.3 However, sev-
eral stimuli including chronic disease states,4 metabolic conditions [e.g.
type 2 diabetes mellitus (T2DM), obesity, dyslipidemia], smoking,5 and
disturbed blood flow6–8 interrupt the quiescent phenotype and drive EC
dysfunction.9,10 In 1998, Hunt and Jurd10 defined dysfunctional ECs by five
key characteristic mechanisms: (i) loss of vascular integrity, (ii) increased
expression of adhesion molecules, (iii) pro-thrombotic phenotype, (iv)
production of cytokines, and (v) upregulation of human leucocyte antigen
molecules. It is now known that EC dysfunction is not a single-pathological
state but instead represents a spectrum of phenotypes associated with
pathophysiologically heterogeneous alterations in vascular tone, perme-
ability, inflammation, and de-differentiation, leading to the loss of homeo-
static functions of endothelium (Figure 1). Indeed, recent single-cell RNA
sequencing studies have revealed multiple distinct EC subtypes for in-
stance with aneurysms and atherosclerosis, thus emphasizing the hetero-
geneity of ECs in diseased tissues.11–14 Aside from tissue-resident
endothelium, EC dysfunction also involves changes in circulating endothe-
lial colony-forming cells (ECFCs) and endothelial-derived micro-vesicles
(EMVs) that have major roles in cardiovascular health and disease.

1.2 Vascular tone, nitric oxide, and
superoxide anion
In physiological conditions, maintenance of appropriate endothelial func-
tion provides vasorelaxant and protective properties through release of
vasoactive substances such as nitric oxide (NO), prostacyclin (PGI2),
and/or endothelium-derived hyperpolarizing factor.4,9,10 For their dis-
covery of NO as a signalling molecule in the cardiovascular system, Ferid
Murad, Robert Furchgott, and Louis Ignarro earned the Nobel Prize for
medicine in 1998. NO, a gaseous mediator produced by ECs, is gener-
ated from the nitrogen atom of L-arginine and O2,

15 and catalysed by en-
dothelial nitric oxide synthase (eNOS).16 While primarily defined
through its regulation of vasorelaxation and vascular tone, NO exerts
several atheroprotective effects including protection against oxidative
stress, platelet activation and aggregation, inflammation, and smooth

muscle cell (SMC) proliferation.17 However, the bioavailability of NO is
reduced by numerous cardiovascular risk factors.18 eNOS dimer is the
main contributor to homeostatic NO in healthy cells. In pathology, when
important co-factors such as tetrahydrobiopterin (BH4) are depleted,
eNOS becomes uncoupled, and its monomers contribute to reactive
oxygen species (ROS) production19 which is a driver of EC dysfunction.
Reduced bioavailability of NO can also be due to oxidative inactivation.
Indeed, loss of BH4 is often linked to vascular oxidative stress, character-
istic for all major clinical risk factors for atherosclerosis, including diabe-
tes, hypertension, hypercholesterolaemia, and smoking.20 In human
vasculature, endothelial and smooth muscle NADPH oxidases contribute
to superoxide anion production.21–23 Rapid scavenging of NO by super-
oxide with generation of strongly prooxidant peroxynitrite (ONOO-)
remains the principal mechanism of endothelial dysfunction in wide range
of clinical conditions. ONOO- is in turn able to oxidize BH4 to BH2 con-
tributing to eNOS uncoupling.24 In some cases, eNOS substrate L-argi-
nine or co-factor NADPH bioavailability may be limited, or eNOS
expression inhibited by epigenetic modifications, including miRNA. The
relative importance of these distinct mechanisms of loss of NO bioavail-
ability may differ in individual patients leading to the need for precision
medicine approaches. These could be achieved by biomarker screening,
such as plasma BH4, miRNA, L-arginine allowing for targeted approach
to pathology underlying the dysfunction. Lack of bioavailability of other
mediators, such as prostacyclin, can provide an important factor in the
pathogenesis of vascular disease. For example, cardiovascular effects of
Cox-2 inhibitors have been linked to loss of vascular PGI2 production
which promoted development of endothelial dysfunction.25

1.3 Vascular permeability and
inflammation
It is well recognized that pro-atherogenic stimuli and cardiovascular risk
factors, including diabetes, obesity, and smoking cause functional and
structural changes in the permeability properties of the endothelium.
These alterations are characterized by a rise in the movement of plasma
across the vessel wall and into the surrounding tissues, comprehensively
reviewed elsewhere.26 Numerous studies show that endothelial perme-
ability, inflammation, and atherosclerosis are inextricably linked.
Interleukin (IL)-1b is a cytokine that is activated by the NLRP3 inflamma-
some, a master regulator involved in innate immunity. Thus, as a result of
NLRP3 inflammasome/IL1b activation by cholesterol crystals, lipids and
triglyceride-rich lipoproteins, pathogen-associated molecular patterns,
and disturbed blood flow,27–34 ECs will be activated and express adhe-
sion molecules (e.g. vascular adhesion molecule-1, inter-cellular cell
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..adhesion molecule-1, E-selectin) to drive vascular inflammation and ath-
erosclerosis initiation and progression. Mendelian randomization studies
have now shown strong links between specific inflammatory
proteins and lipid metabolism in patients with an inflammatory status,
providing the impetus to develop novel systemic and vascular immuno-
modulatory approaches to address the public health challenge of cardio-
vascular disease (CVD). Thus, genetic screens linking metabolic and
plasma proteomic profiles with causal effects are becoming an attractive
approach in the cardiovascular precision medicine arena35,36 and may
provide both novel targets and/or an improved prognostic tool for
stroke, ischaemic heart disease, and T2DM.37

1.4 Phenotypic plasticity
The full details of EC plasticity are outside the scope of this ESC Position
Paper but have been extensively reviewed elsewhere.38–40 It is now

established that endothelial-to-mesenchymal transition (EndMT), a pro-
cess characterized by loss of EC markers, gain of mesenchymal markers,
activation, and delamination, is of particular relevance in atherosclero-
sis.40 Endothelial-lineage tracing studies from the Simons laboratory
revealed that ECs activated in response to TGFb signalling undergo
EndMT leading to migration, de-differentiation, and contribution
to plaque formation and progression.41 Kovacic et al.42 used
endothelial-specific lineage-tracking, to show that EndMT-derived fi-
broblast-like cells are present in atherosclerotic lesions, and co-
express endothelial and fibroblast/mesenchymal proteins, a recog-
nized hallmark of EndMT. Further studies have revealed that EndMT
is driven by disturbed flow, oxidative stress, and hypoxia42–44; all of
which trigger progression of atherosclerosis. However, the contribu-
tion of EndMT-derived cells to plaque development is an area of on-
going investigation.

Figure 1 Endothelial dysfunction describes multiple phenotypic states. Left panel: In homeostatic conditions, the healthy endothelium regulates the physi-
ological vascular function and structure through multiple beneficial effects of nitric oxide (NO), hydrogen sulphide (H2S), and carbon monoxide (CO), as de-
tailed in the text. Right panel: Dysfunctional endothelium is characterized by decreased production of NO and chronic increase of reactive oxygen species
(ROS) able to overwhelm the intra-cellular antioxidant defence leading to onset and progression of atherosclerosis. AA, amino acids; EndMT, endothelial–
mesenchymal transition; eNOS, endothelial nitric oxide synthase.
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..1.5 Organ-specific EC specialization
ECs are specialized in different vascular beds, such as the unique vascula-
ture of the kidneys or the blood–brain barrier. Specific subtypes of ECs
have also been found in adipose tissue, gut, and other tissues, and multi-
ple distinct EC subtypes have been revealed by single-cell sequencing in
aorta13 and atherosclerotic plaques.11 Unravelling the as yet unknown
molecular pathways that specify and sustain each organ functional and
structural diversity will set the stage for deciphering the pathogenesis of
several disorders, allowing future attempts at reversal of endothelial dys-
function and improved patient outcome. At the same time, while molec-
ular mechanisms appear to differ between different vascular beds,
clinically measured vascular dysfunction can correlate between different
arterial beds45 as well as between arterial and venous endothelium46 sug-
gesting that endothelial dysfunction can be systemic.

1.6 ECFCs and EMVs
ECFCs comprise a heterogeneous population of cells that have distinct
roles in angiogenesis and vascular repair. A number of reports suggest
their numbers increase with disease activity in patients with vasculitis and
other vascular disorders and that progenitor repair cells become
exhausted in disease (Figure 2).47,48 ECFCs can be cultured from patients
and analysed for pathophysiological properties and epigenetic markers
and this approach has the potential to inform precision cardiovascular
medicine. EMVs are extracellular vesicles of 0.2–5 lm diameter that are
produced by ECs in response to a variety of stimuli.49 They can exert
paracrine and autocrine actions on vascular cells with the potential to
modulate key intra-cellular signalling pathways, promoting disease pro-
gression via transfer of a range of bioactive molecules (growth factors,
proteases, and microRNAs) to adjacent cells (Figure 2).

1.7 Summary
Although a conventional definition of endothelial dysfunction has fo-
cused on NO dysregulation and an altered redox status,50 EC dysfunc-
tion involves a range of plastic phenotypic states with inflammation and
enhanced permeability. Indeed, it is clear from recent studies that ECs as-
sume multiple diverse phenotypes associated with various disease states
including hypertension, atherosclerosis, and the development of heart
failure (Figure 1). This is exemplified by fate mapping and single-cell
RNAseq studies that have revealed multiple EC phenotypes associated
with health and disease11–14 and recent insights into the function of
ECFCs and EMVs in CVD (Figure 2). Together, these findings have led to
growing interest in assessing endothelial function by a range of traditional
and novel methods, discussed below, to inform about individual patient
risk, to guide best therapy, clinical management, and ultimately to estab-
lish whether it is feasible to target endothelial dysfunction and attenuate
CVD progression.51,52 This could enhance the field in applying novel en-
dothelial function tests and endothelial damage biomarkers to innovate a
more personalized approach to cardiovascular medicine.

2. Measuring endothelial function

The ideal method to assess endothelial function should be non-invasive,
easy to use, prospectively validated in different cohorts and ethnic
groups, with an incremental value over standard, clinically established
risk markers, cost-effective, measured according to methodological con-
sensus and providing reference values as a basis for treatment.53,54 Both
invasive and non-invasive methods to assess vascular endothelial function

have their advantages and disadvantages (Table 1). The basic principle of
these methods, however, is similar. Healthy arteries dilate in response to
reactive hyperaemia via increased shear stress (flow-mediated vasodila-
tation) or in response to endothelium-dependent vasodilators, such as
acetylcholine (Ach), bradykinin, or serotonin, via release endothelium-
derived vasoactive substances, for example, NO.55 In disease states, this
process of endothelial-dependent dilatation may be reduced or absent.
It should be noted that vascular responses are not only determined by
local function at the point of measurement but also by the structure and
physiology of resistance arteries and micro-vasculature. Furthermore,
vascular dysfunction can also be endothelium-independent function via
alterations in vascular structure and SMC function rather than changes in
EC. Responses to exogenous NO donors (e.g. glycerol-trinitrate) or vas-
odilators acting directly on vascular smooth muscle (e.g. adenosine) can
be compared to differentiate endothelium-dependent from
endothelium-independent responses. This section focuses on methods
which are already established and which have the perspective to be
implemented in clinical practice. Research methods, such as infusion of
NO synthase inhibitors, such as L-NMMA, are out of the scope of this
paper and will not be discussed in detail. It should be noted that our as-
sessment of the various methods for quantifying endothelial function
should not be interpreted as a recommendation of any particular prod-
uct or technology manufacturer.

2.1 Coronary circulation
2.1.1 Coronary epicardial function
Coronary endothelial function is assessed by performing measurements
in both epicardial and resistance vessels. Although these methods are in-
vasive, they have the advantage of measuring EC function directly in a
clinically important vascular bed. Vasomotor responses of epicardial cor-
onary arteries are measured using quantitative coronary angiography or
intra-vascular ultrasound (IVUS) to quantify changes in vessel diameters
in response to endothelium-dependent pharmacological interventions.
Vessels and segments with an intact endothelium vasodilate in response
to Ach and other endothelial-stimulating substances, whereas vessels
with dysfunctional endothelium will exhibit reduced vasodilatation or va-
soconstriction due to a direct activation of muscarinic receptors on vas-
cular SMCs.56,57 The observation that endothelial-dependent flow-
mediated dilatation (FMD) of coronary epicardial vessels is impaired in
atherosclerosis58,59 inspired studies of responses to flow in the periph-
eral vasculature later as a potential surrogate indicator of coronary ar-
tery disease (CAD) (see below). Finally, it should be mentioned that this
technique should be used with caution, as serious (although rare) side
effects may occur that carry risks for the patient, such as severe coronary
vasoconstriction or the induction of arrhythmias.

2.1.2 Coronary micro-vascular function
Changes in coronary blood flow (CBF) have been suggested as a surro-
gate parameter for micro-vascular function.60 Coronary flow reserve
(CFR) is defined as the ratio of maximal CBF during maximal coronary
hyperaemia in response to a stimulus (such as adenosine infusion, pacing,
or exercise), divided by the resting CBF. This maximal blood flow re-
sponse (CFR) is both endothelium and non-endothelium dependent and
a CFR <2.0 is considered abnormal.61 There are no invasive methods for
measuring CBF directly in clinical practice. Instead, wire-based Doppler
flow velocity or thermodilution techniques are used as surrogates but
these are technically challenging and can lack reproducibility. Thus, there
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..is a need for an accurate method for measurement of volumetric CBF.
To determine endothelium-dependent micro-vascular function, the per-
centage increase in CBF in response to endothelial-dependent vasodila-
tion is analysed. Non-invasive functional tests have also been developed
to assess the coronary micro-vasculature, which include positron emis-
sion tomography,62 myocardial perfusion imaging,63 blood oxygen level-
dependent MRI,64 and echocardiography.63

2.2 Peripheral techniques to assess
endothelial function
The abovementioned invasive techniques may be suitable for patients re-
quiring coronary angiography for other clinical indications. However, in-
vasive functional coronary angiograms may not be indicated or feasible
for assessment of vascular function in the asymptomatic patient. Because
of this, non- or less-invasive surrogate techniques have been developed
to quantify macro-vascular as well as micro-vascular endothelial

function.65–67 While these techniques can be used to assess the general
function of the vasculature, they do not provide information on local vas-
cular dysregulation, for example, dysfunction at branch and bends ex-
posed to disturbed shear stress.68–70

2.2.1 Plethysmography of the forearm circulation
This technique measures changes in forearm blood flow by plethysmog-
raphy in both arms in response to vasoactive substances which are intro-
duced via a cannulated brachial artery.71,72 An advantage is that
responses to vasoactive hormones or drugs can be quantified therefore
providing information on both endothelial-dependent and endothelial-
independent vasodilation. The infused hormones and drugs have negligi-
ble systemic effects, and therefore, the contralateral limb can be used as
an internal control. A disadvantage is that this technique is considered
semi-invasive nature due to the reliance on arterial cannulation.

Figure 2 Schematic representation of the endothelial factors underlying cardiovascular risk. ECFCs, endothelial colony-forming cells; EMVs, endothelial
micro-vesicles; EndMT, endothelial–mesenchymal transition; FMD, flow-mediated dilatation; HSPG, heparan sulphate proteoglycans; IL, interleukin; MØ,
macrophage; MR-proADM, mid-regional pro-adrenomedullin; NO, nitric oxide; oxLDL, oxidized low-density lipoprotein; ROS, reactive oxygen species;
TGFb, transforming growth factor beta.
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2.2.2 Flow-mediated vasodilation of brachial artery
Due to its non-invasive approach, flow-mediated vasodilatation (FMD)
of the brachial artery has become the most widely used technique to
evaluate endothelial function. The technique quantifies the ability of
larger conduit arteries to dilate in response to reactive hyperaemia after
a brief (5 min) suprasystolic occlusion of the brachial artery using a blood
pressure cuff. The resultant reactive hyperaemia causes an increase in
endothelial shear stress in upstream artery, which in turn stimulates re-
lease of NO. Celermajer et al.73 were the first to evaluate this response
in vivo by measuring changes in the diameter of the brachial artery by ul-
trasound, later shown to be NO-dependent,74–76 although other

vasodilator pathways may be involved.77 Of note, FMD assessment of
peripheral endothelial function has been shown to correlate with coro-
nary artery endothelial function.65,67 Although FMD may appear to be a
simple technique, it is challenging and necessitates extensive training of
operators and standardization.78–81 This is outlined in dedicated guide-
lines78,81–83 which highlight the critical importance of image acquisition
and site selection, study preparation, cuff occlusion time, sphygmoma-
nometer probe position, and application of edge-detection software.
These guidelines are of critical importance, as they emphasize the need
to standardize protocols and technology to improve reproducibility and
data interpretation of FMD.84 The semi-automatic measurement of

..............................................................................................................................................................................................................................

Table 1 Techniques used in to assess endothelial function

Technique Vascular bed Advantages Disadvantages

Coronary epicardial

function

Epicardial macro-vascular

Conduit arteries

Assessment directly in the coronary vascular

bed

Gold standard

Invasive

Expensive

Time intensive

Limited to those undergoing coronary

angiography

Impractical for serial measurements

Coronary micro-vascular

function

Coronary micro-vascular

Resistance arteries

Assessment in the coronary micro-

vasculature

Invasive

Expensive

Time intensive

Limited to those undergoing coronary

angiography

Impractical for serial measurements

Venous plethysmography Forearm vasculature

Micro-vasculature

Easy access

Correlation with invasive vascular function

Possibility to infuse vascular-active substan-

ces directly

Contralateral arm as a control

Invasive (cannulation of the brachial artery)

Time-consuming

Flow-mediated vasodila-

tion of brachial artery

Brachial artery

Conduit artery

Easy access

Correlation with invasive epicardial vascular

function

Many outcome studies

Inexpensive

Possibility to assess other important parame-

ters (flow, baseline arterial diameters,

flow-mediated constriction)

Inter- and intra-observer variability

Difficult to perform

Need for standardization

Different protocols

Finger plethysmography Finger

Micro-vasculature

Easy to access and perform

Low inter- and intra-observer variability

Correlation with invasive micro-vascular vas-

cular function

Dependent on different non-endothelial

factors

Lack of normal/reference values and of ran-

domized clinical trials addressing prospec-

tive validation, incremental value, and

clinical outcome

High costs per measurement system

Retinal endothelial

function

Retinal arterioles Easy access

Partial correlation with invasive vascular

function

Sensitive to interventions

Inter- and intra-observer variability

Training needed to perform

Need for standardization

Different protocols

Lack of normal/reference values and of ran-

domized clinical trials addressing prospec-

tive validation, incremental value, and

clinical outcome
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.
brachial FMD with self-adjusting ultrasound probes and automatic edge
detection of the arterial wall will likely facilitate the usage in clinical prac-
tice and has already established reference values for a Japanese popula-
tion.85 While FMD assesses the function of conduit arteries, the stimulus
for FMD is an important parameter of peripheral micro-vascular function
because reactive hyperaemia is dependent on maximal forearm resis-
tance.86,87 Indeed, shear stress and velocity changes induced by hyperae-
mia have shown stronger correlations with cardiovascular risk factors
than FMD88 and these parameters also predict cardiovascular out-
comes.89,90 Moreover, baseline brachial artery diameter measurements
per se have been shown to correlate with clinical outcomes.91,92 This
finding reveals a significant limitation of the in vivo assessment of
endothelium-dependent vasodilation. In contrast to the ex vivo situation,
the baseline arterial tone cannot be standardized. Therefore, the amount
of additional dilatation depends on the initial diameter of the vessel and
could paradoxically show poor FMD in a situation of initial vasodilation
due to a well-functioning endothelium (e.g. in pregnancy or in hyperther-
mia). These influencing factors strongly warrant a strict standardization
of the measurement environment (e.g. room temperature, resting
phase) and the consideration of clinical conditions that may influence
baseline diameter and vasodilation.81

2.2.3 Finger plethysmography
Endothelial function measurement using peripheral arterial tonometry
was first used by Bonetti et al.93,94 to identify patients with early coronary
atherosclerosis. A device has been developed to quantify pulsatile arte-
rial volume changes by finger plethysmography. Plethysmographic
recordings of the finger arterial pulse wave amplitude are captured with
pneumatic probes.94 In this technique, increased arterial blood volume in
the fingertip leads to increased pulsatile arterial column changes, thereby
increasing the measured signal. Similar to FMD, a pressure cuff is placed
on the arm and used to induce reactive hyperaemia in one arm. It is nota-
ble that measurements in the contralateral arm serve as an internal con-
trol that can be used to correct for any changes in vascular tone that
may occur during the test. An index between the two arms is, therefore,
calculated as a marker for endothelial function. It should be noted how-
ever that pulse amplitude augmentation in response to reactive hyperae-
mia is a complex response because it integrates changes due to altered
flow in addition to vessel dilatation and it is only partially NO-depen-
dent.95 Further studies demonstrated that impaired digital EC function
correlates with coronary micro-vascular function in patients with early
atherosclerosis66 and that this parameter predicts cardiovascular
events.96 In two large cross-sectional studies (>1900 patients in the
Framingham cohort97,98 and >5000 individuals in the Gutenberg Heart
Study99), vascular dysfunction measured by digital plethysmography was
associated with multiple cardiovascular risk factors but had little or no
correlation with FMD, suggesting that these measurements provide in-
formation on different aspects of vascular biology. A disadvantage of the
proprietary device is the high cost per measurement system, the lack of
reusability, and the limited parameters offered for further analysis.
Moreover, we recognize that technologies such as finger plethysmogra-
phy that rely on a small number of device manufacturers may be more
vulnerable to commercial factors.

2.2.4 Retinal endothelial function
For the assessment of the retinal endothelial function, several types of
provocation are possible including flicker light.100 The vessel’s reactions
are at least partially dependent on NO release and partially attributed to

neurovascular coupling.100,101 Solid data for patient groups are still lack-
ing, partly due to variation in the flicker response between individuals
due to variation in the baseline diameter of retinal vessels.102,103

Moreover, a consensus on the protocol used in order to achieve a better
comparability of study results, is still lacking.104 These concerns should
be addressed, as should the study of larger and more representative
groups of individuals and patient cohorts before recommendations for
wider use in clinical practice and prevention can be made. Nevertheless,
flicker-induced dilatation of retinal vessels has been shown to depend on
age and gender in individuals free of major risk factor burden and preva-
lent disease.105 It is impaired in patients with obesity,104,106 renal dis-
ease,107 and diabetes compared to age-matched healthy controls.108,109

In hypertension, flicker-induced dilation is also reduced110,111 and it is as-
sociated with an increase of inflammatory biomarkers.110 Since many of
the studies of retinal flicker rely on a single commercial device, it should
be noted that retinal flicker measurement may be considered less resil-
ient from a commercial perspective than those associated with multiple
industry products.

2.3 Summary
There is not an ideal method for empirical measurement of endothelial
function. Techniques to measure coronary epicardial and micro-vascular
function are well established but they are invasive, time-consuming, and
expensive. Several techniques are available for measurement of reactive
hyperaemia in peripheral arteries, which provide a less-invasive assess-
ment of endothelial function. FMD of the brachial arteries is the most
commonly used, but it is technically demanding and requires a high de-
gree of training and experience to ensure accurate measurements, but
semi-automatic, easier to use tools are approaching. Techniques, such as
finger plethysmography, are easier to use; however, the utility of newer
methods is restricted because of a lack of methodological consensus,
lack of reference values in healthy individuals, and limited validation in
large clinical trials.

3. Endothelial dysfunction and
arterial disease

3.1 Arterial hypertension
Hypertensive patients have impaired endothelial-dependent vasodilata-
tion both in coronary arteries112 and in the forearm113 (see
Supplementary material online, Table S1), and data from the Framingham
offspring cohort suggest that the degree of endothelial dysfunction is
positively associated with the severity of hypertension.114 However, in a
cohort of 3500 ethnically diverse persons from the Multi-Ethnic Study of
Atherosclerosis, until now the largest clinical study in the field, impaired
FMD was not a significant independent predictor of hypertension devel-
opment, after adjustment for co-variables.115 A possible explanation for
these seemingly disparate observations is that the interaction between
EC function and hypertension may vary between populations. This
underscores the importance of developing reference FMD values for dif-
ferent populations. It is also plausible that stratification of patients (e.g.
using omics/epigenetics data or via analysis of ECFCs or EMVs) may iden-
tify sub-groups where FMD values are more accurately coupled to dis-
ease risk116 (see Section 4).
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3.2 Diabetes
Diabetes is associated with a two- to four-fold increased risk of CVD,
mainly attributable to hyperglycaemia, dyslipidaemia, and oxidative
stress.117 Endothelium-dependent vasodilation in peripheral118 and cor-
onary119 arteries of patients with T2DM is blunted (see Supplementary
material online, Table S2), principally due to loss or reduction of NO.120

The relationship between insulin resistance and endothelial dysfunction
is complex and endothelial dysfunction probably precedes the onset of
T2DM. Indeed, polymorphisms of eNOS are multivariable predictors of
incidence of T2DM.121 Several mechanisms of endothelial dysfunction
are proposed in the setting of DM including: increased oxidative
stress,122 uncoupling of eNOS,123 pro-inflammatory activation of EC,124

mitochondrial dysfunction,125 impaired endothelial repair potential,126

and increased permeability.127,128 Although the role of endothelial dys-
function in pathogenesis of micro- and macro-vascular complications is
well-documented, endothelium-dependent peripheral vascular tests do
not appear to improve risk stratification in patients with T2DM.129,130

However, given the range of endothelial mediators and their multiple
mechanisms of action which contribute to endothelial abnormalities,
FMD may not represent the most appropriate measure of the early signs
of endothelial metabolic disturbances.

3.3 Coronary artery disease
Multiple studies have addressed the hypothesis that endothelial dysfunc-
tion may improve risk stratification above well-established risk scores/
factors for CAD (see Supplementary material online, Table S3), thereby
offering the possibility of early and personalized therapy. Consistent with
this concept, peripheral macro-vascular endothelial dysfunction, esti-
mated by FMD91,131,132 or finger plethysmography133 was demonstrated
to independently predict major adverse cardiac events (MACE) in sev-
eral populations at risk for CAD. Moreover, a recent systematic review
and meta-analysis including 35 FMD studies and 6 peripheral arterial to-
nometry studies found that these tests provided a similar prognostic
value in predicting cardiovascular events.134 In contrast, three large
prevention trials failed to confirm the predictive value of FMD (macro-
vascular endothelial dysfunction), but instead found that markers of
micro-vascular endothelial dysfunction (hyperaemic velocity in FATE89

and invasive forearm technique with Ach in PIVUS135) were associated
with increased MACE risk and improved risk discrimination substantially,
independent of established risk scores. The reason why FMD had prog-
nostic value in some, but not in all populations is uncertain, but could be
related to differences in the age and physical activity of the populations
that were studied.89,131,132,136 It is also plausible that FMD may predict
cardiovascular risk in a proportion of patients but not in others. It follows
that integrating FMD measurements with patient-specific genetic and
epigenetic characteristics may provide a personalized approach for pre-
dicting cardiovascular risk.

3.3.1 Ischaemia and no obstructive CAD
A substantial proportion of patients, especially women with anginal
symptoms and myocardial ischaemia, have an absence of flow-limiting
obstruction in the epicardial arteries at coronary angiography.137,138 This
syndrome has been increasingly recognized and recently termed as
Ischemia and No Obstructive Coronary Artery disease (INOCA) or
Angina and No Obstructive Coronary Artery (ANOCA) disease. The
pathophysiology of INOCA includes dysfunctionality in coronary macro-
vascular (i.e. epicardial coronary arteries) and/or micro-vascular com-
partment (i.e. small intramural pre-arteriolar coronary arteries). Bairey

Merz et al.139 have identified a series of investigations to define INOCA
including measurement of endothelial dysfunction. A panel of invasive
measurements includes coronary vasomotor testing with intra-coronary
adenosine (to measure CFR that estimates endothelium-independent
micro-vascular function), Ach (to measure endothelium-dependent cor-
onary vasoreactivity) and nitroglycerin (to measure endothelium-
independent macro-vascular function; see Supplementary material
online, Table S4). Coronary endothelial dysfunction is defined as
micro-vascular, if the change in CBF in response to Ach is <50%, and
macro-vascular in case of Ach-induced epicardial vasoconstriction.140

The results of such testing should help to guide therapy in individual
patients, for example, to determine whether micro-vascular endothelial
dysfunction is involved.

3.3.2 Chronic coronary syndromes and progression to
plaque instability
Coronary macro- and micro-vascular endothelial dysfunction can predict
acute vascular events independently of conventional CAD risk factors
and angiographically proven coronary atherosclerosis. For example, al-
though patients with high-risk coronary anatomy (left main stenosis and
three vessels with CAD) were excluded,141 the detection of micro-
vascular endothelial dysfunction was associated with a 2.4-fold increase
in event rates, while the detection of epicardial endothelial dysfunction
was associated with a 1.4-fold elevation of event rates (independently
from other risk factors and presence of CAD). These associations point
to the importance of coronary endothelial dysfunction for the transition
from a stable to unstable form of atherosclerotic disease. Furthermore,
peripheral endothelial dysfunction (brachial plethysmography) distin-
guished subjects at a higher risk for cardiac and total vascular events in
populations with documented CAD, highlighting the importance of sys-
temic endothelial changes in plaque progression.142 Atherosclerosis is a
focal disease143 and it is therefore noteworthy that coronary segments
with a higher degree of endothelial dysfunction are associated with more
vulnerable plaque containing a necrotic core (evaluated by IVUS70) sug-
gesting that localized EC dysfunction may predict focal progression into
culprit lesions and acute coronary syndromes.

3.3.3 Acute coronary syndromes (STEMI, NSTEMI, and
MINOCA)
The pathophysiological mechanism underlying type 2 myocardial infarc-
tion (MI) is an acute mismatch between oxygen supply and demand, lead-
ing to acute ischaemic myocardial injury.144 Mechanisms include
coronary artery spasm and/or coronary micro-vascular dysfunction.144

During the course of atherosclerosis, local inflammation and oxidative
stress affect endothelial function and promote plaque vulnerability, with
consequent platelet adhesion, vasospasm, stasis, and coronary thrombo-
sis, leading to acute coronary syndrome.145 Importantly, endothelial dys-
function is present not only at the site of the culprit lesion but also in
distant, non-culprit coronary arteries, even with normal angiographic ap-
pearance.146 Aggravation also occurs in peripheral endothelial dysfunc-
tion after acute coronary syndrome and its normalization predicts a
lower risk of future events.147 Relatively few studies have correlated en-
dothelial dysfunction with MI with Non-Obstructive Coronary Arteries
(MINOCA) which arises, due to either atherosclerotic plaque disruption
and coronary thrombosis (i.e. type 1 MI), or coronary vasospasm (i.e.
type 2 MI), along with other possible causes. In the Stockholm
Myocardial Infarction with Normal Coronaries (SMINC) study, periph-
eral micro-vascular endothelial function was normal in MINOCA
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.
patients compared to controls.148 Overall, although micro-vascular dys-
function is presumed to be a causal component in ACS, both in type 1
and even more frequently in type 2 MI, there are uncertainties whether
it is a contributor or a biomarker of disease risk.

3.4 Summary
There is a wealth of evidence that endothelial dysfunction is a key player
in the initiation of atherosclerosis and plaque progression. Endothelial
dysfunction in coronary macro- or micro-vascular compartments may
predict and/or drive disease progression into culprit lesions, acute coro-
nary syndromes, and INOCA. Consistent with this, endothelial dysfunc-
tion has been demonstrated in asymptomatic individuals with risk factors
for atherosclerosis (i.e. before clinical manifestation of the diseases) and,
large clinical trials demonstrated that micro-vascular endothelial dysfunc-
tion can independently predict MACE in populations at risk for CAD.
However, there are several examples in the literature where the corre-
lation between EC dysfunction and disease risk varies considerably be-
tween studies. This can be partly attributed to technical considerations,
thereby underlying the importance of methodological consistency, but
may also be related to biological factors that vary between individuals
and/or between populations therefore requiring a precision medicine
approach.

4. Endothelial function in precision
medicine

4.1 Can endothelial function
measurements be used to stratify patients
for therapy?
Results from most clinical trials have documented that despite the suc-
cessful control of cardiovascular risk factors achieved with cardiovascu-
lar drugs, the impact on cardiovascular morbidity and mortality
reduction is limited (�20–45%). Consequently, tools that might enable
identification of those patients who develop future events, despite opti-
mal treatment are urgently needed. Several findings support the possibil-
ity that endothelial function could be used to identify patients that
remain at high cardiovascular risk. For example, among 251 Japanese
men with newly diagnosed stable CAD and concurrent impaired brachial
artery FMD, those whose endothelial function did not improve after
6 months of optimized pharmacological treatment showed a significant
higher event rate of cardiovascular events (26%) in the 31 months
follow-up compared to those with improved endothelial function
(10%).149 On the other hand, EC function can also identify patients with
favourable responses to lifestyle changes, such as increased exercise, or
pharmacological interventions. For example, moderate aerobic physical
exercise can improve endothelium-dependent vasodilation, not only in
healthy middle-aged men150 but also in patients with arterial hyperten-
sion,151 CAD,152 and chronic heart failure.153 Endothelial function has
also been improved by weight reduction either by diet154,155 or bariatric
surgery,156 dietary interventions with foods rich in polyphenols (fruits,
green tea, and cocoa)157,158 as well as smoking cessation.159 Beyond life-
style interventions, the first finding that EC function measurements can
be used to monitor pharmacological responses was obtained from con-
trolled studies with statins.160,161 The mechanism is likely related to the
documented anti-inflammatory and antioxidant properties of statins that
result in improved availability of vascular NO.162 Endothelial function
can also be used to monitor responses to other drugs with an effect on

cardiovascular risk factors163 and some diabetes modulating drugs such
as metformin164 or glitazones.164–166

4.2 Integrating endothelial functional
measurements with biomarkers of vascular
function
Genetic and epigenetic differences contribute to variation in endothelial
function both in healthy individuals and in patients with CVD. Therefore,
the ability to delineate patients at high cardiovascular risk and identify
responders and non-responders to therapy can potentially be enhanced
by integrating endothelial function measurements with genomic and epi-
genomic datasets. Non-coding RNAs are epigenetic markers of potential
clinical use due to their high plasma stability and advances in experimen-
tal techniques used in their assessment. For example, the detection of
specific circular RNAs and microRNAs in plasma has been linked to
CAD and ACS167 and Sapp et al.168 found that alterations in miR-126-5p
correlated with endothelial function in response to exercise in healthy
individuals. There may also be value in quantitation of classical markers
such as sICAM, sVCAM, IL-6, IL-8, IL-12, hsCRP, and NO for integration
with endothelial function assessment. There is also considerable interest
in using circulating EMVs and ECFCs as a surrogate of endothelial
health.169 For example, anti-inflammatory treatment of patients with sys-
temic lupus erythematosus simultaneously improved endothelial func-
tion and reduced EMV levels170 suggesting that EMV levels may report
on vascular function. Of particular note, a recent study from Zacharia
et al.171 found that endothelial function correlated with circulating
micro-vesicles in patients with ACS. Moreover, studies of circulating
ECFCs revealed that they correlate with enhanced micro-vascular func-
tion and repair in patients with acute MI.172,173 These tools will signifi-
cantly contribute to the field of precision medicine and identify patients
at high risk of developing both micro- and macro-vascular
complications.174

4.3 Summary
Measurement of endothelial function can be used to monitor responses
to lifestyle changes and pharmacological intervention, and can identify
patients that remain at residual risk despite optimal therapy. The prog-
nostic value of endothelial function measurement may be enhanced by
integration with patient-specific information from omics and epigenetic
studies and/or from analysis of the physiology of EMVs and ECFCs.
These data may be combined through an algorithm that will enhance risk
stratification and improve patient management.175,176

Supplementary material

Supplementary material is available at Cardiovascular Research online.

Consensus statements

(1) Endothelial dysfunction does not describe a single endothelial pheno-
type but is characterized by a spectrum of phenotypic states, exempli-
fied by multiple EC subsets and plasticity in atherosclerosis. The
vascular biology community should delineate the contribution of vari-
ous EC dysfunctional states to CVD and develop new technologies to
measure pathogenic EC subsets in the clinic.

(2) FMD of the brachial arteries, the most commonly used measure of en-
dothelial function, predicted cardiovascular risk in some large clinical
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.
trials but not others. Thus, we recommend that a consensus,
semi-automated methodology is adopted in future studies to minimize
technical variation, and that reference FMD values are established for
different populations.

(3) Newer techniques to measure endothelial dysfunction that are rela-
tively easy to perform, such as finger plethysmography and the retinal
flicker test, have the potential for increased clinical use provided a con-
sensus is achieved on the measurement protocol used. In addition,
larger clinical studies are needed to establish reference values and to as-
sess their clinical utility.

(4) Future work should determine whether the prognostic value of endo-
thelial function measurement can be enhanced by integration with
patient-specific information from omics and epigenetic studies and/or
from analysis of patient-derived EMVs and ECFCs.
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Nitric oxide is responsible for flow-dependent dilatation of human peripheral con-
duit arteries in vivo. Circulation 1995;91:1314–1319.

75. Joannides R, Richard V, Haefeli WE, Linder L, LüScher TF, Thuillez C. Role of basal
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