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Abstract

A semi-classical theory of coherent light scattering from an elongated sample of cold atoms exposed to an o�-res-

onant laser beam is presented. The model, which is a direct extension of that of the collective atomic recoil laser,

describes the emission of two superradiant pulses along the sample's major axis simultaneous with the formation of a

bidimensional atomic grating inside the sample. It provides a simple physical picture of the recent observation of

collective light scattering from a Bose±Einstein condensate [Science 285 (1999) 571]. In addition, the model provides an

analytical description of the temporal evolution of the scattered light intensity which shows good quantitative agree-

ment with the experimental results of Inouye et al. Ó 2001 Elsevier Science B.V. All rights reserved.

PACS: 42.50.Fx; 42.50.Vk; 03.75.Fi
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1. Introduction

Recent experiments by Inouye et al. at MIT [1]
have demonstrated the formation of atomic matter
waves in a cigar-shaped Bose±Einstein condensate
(BEC) pumped by an o�-resonant laser beam, to-
gether with highly directional scattering of light
along the major axis of the condensate. This
emission has been interpreted as superradiant
Rayleigh scattering, and some theoretical work
describing this experiment has been recently pub-
lished [2,3]. In particular, the work of Moore and
Meystre [2] describes the Rayleigh scattering in a

BEC using a model which extends the collective
atomic recoil laser (CARL) model originally pro-
posed by Bonifacio et al. [4±7] to include a quan-
tum-mechanical description of the centre-of-mass
motion of the atoms in the condensate [8,9]. The
conclusions of Ref. [8] were that the original CARL
theory, which treats the atomic centre-of-mass
motion classically, fails when the temperature of
the atomic sample is below the recoil temperature
Tr � �hxr=kB, where xr � �hj~qj2=2m is the recoil fre-
quency, m is the atomic mass, ~q �~k ÿ~ks is the
di�erence between the pump and scattered wave
vectors and kB is Boltzmann's constant. However,
the cubic dispersion relation derived in Ref. [8]
reduces to that of the original semiclassical CARL
model for large atomic densities. More speci®cally,
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the quantum corrections to the classical motion are
negligibly small when the CARL parameter q in the
free electron laser (FEL) limit [6,7], roughly inter-
preted as the average number of photons scattered
per atom, is much greater than one. This suggests
that a fully quantum-mechanical description of the
atomic centre-of-mass motion may not be neces-
sary in order to describe the main experimental
results of Ref. [1], i.e. the temporal evolution of the
scattered light intensity and the spatial grating in
the condensate. We are aware that a semiclassical
theory is necessarily limited in its description of the
radiation statistics and the quantum degenerate
nature of the condensate, which require a full
quantum analysis. Nevertheless, we consider the
semiclassical approach useful in order to give an
intuitive description of the physical mechanism
underlying the observed e�ects. We stress however
that in spite of its simplicity, the semiclassical
model produces good quantitative agreement with
the experimental results of Ref. [1].

2. Model

The model described is bidimensional and
semiclassical. We represent the cigar-shaped
atomic sample as an ellipsoid with length L and
diameter W, where L� W as shown in Fig. 1. The
sample is exposed to a classical plane wave radia-
tion electric ®eld ~E0�y; t� � x̂E0 eik�yÿct� � c:c:, po-
larised along the x̂-axis and incident along the axis
ŷ, with E0 real and constant and where k � x=c.
We assume that, due to the elongated geometry of
the atomic sample, the scattering along the ẑ-axis
dominates over that in other directions, as has
been explicitly discussed in Ref. [2], where a full
multi-mode theory has shown that mode compe-
tition results in light scattering only within the
geometric angle W =L. Hence, we assume that the
scattered radiation consists of two radiation pulses
propagating along the ẑ-axis, with electric ®elds
polarised as the incident ®eld:

~E�z; t� � x̂�E1�z; t�eik�zÿct� � E2�z; t�eÿik�z�ct� � c:c:�;
�1�

where E1;2�z; t� are slowly varying complex ampli-
tudes.

The atomic sample is described as a collisionless
gas of atoms, each with two internal energy levels.
The internal evolution of each atom is described
by the density matrix elements qmn (m, n � 1, 2) for
the lower, (1), and upper, (2), levels. The o�-
diagonal elements q12 � q�21 describe the dipole
moment induced by the radiation ®elds via the
relation ~d � x̂l�q12 � c:c:�, where l is the dipole
matrix element. The diagonal elements q11 and q22

describe the probability of an atom being in the
lower or in the upper level, respectively. The o�-
diagonal elements may be described conveniently
as a sum of three polarisation waves:

q12 � S0�z; t�eik�yÿct� � S1�z; t�eik�zÿct�

� S2�z; t�eÿik�z�ct�; �2�

where Sk�z; t� (k � 0, 1, 2) are slowly varying
complex functions. The dipole moment of each
atom contributes to the macroscopic polarisation

Fig. 1. The geometry of the scattering experiment. The ®lled

ellipsoid, representing the atomic condensate with dimensions L

and W, is illuminated with a single o�-resonant laser beam of

electric ®eld E0 polarised along the x̂-axis and propagating

along the �ẑ-axis. The geometry favours the emission of the

oppositely directed superradiant pulses E1 and E2 along the

major axis of the condensate.
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of the atomic sample described by ~P � n�~x�~d,
where n�~x� is the atomic density. This polarisation
is a source for the radiation ®eld via Maxwell's
wave equation which yields, in the usual slowly
varying envelope approximation,

oE1

ot

�
� c

oE1

oz

�
eikz � oE2

ot

�
ÿ c

oE2

oz

�
eÿikz

� ixl
2�0

n�~x� S0 eiky
� � S1 eikz � S2 eÿikz

	
; �3�

where we have neglected the terms proportional to
e�2ixt. We assume that the atomic sample can be
described as a collection of N point particles with
positions~xj, so that n�~x� �PN

j�1 d�3��~xÿ~xj�. Mul-
tiplying both sides by e�ikz and integrating over the
ẑ-axis from zÿ Dz=2 to z� Dz=2, where Dz � k=2,
Eq. (3) yields

oE1;2

ot

�
� c

oE1;2

oz

�
Dz � ixl

2�0

XN

j�1

S0 eik�y�zj�� � S1;2

� S2;1 e�2ikzj
	
d�xÿ xj�d�y ÿ yj�;

�4�

where the upper sign corresponds to the ®rst
subscript and we have assumed the ®eld ampli-
tudes E1;2 are spatially slowly varying over Dz.
Assuming also that E1;2 are independent of x and
y, we can integrate on the plane �x; y� over the
section A � pW 2=4 of the condensate, so that Eq.
(4) becomes

oE1;2

ot

�
� c

oE1;2

oz

�
� ixl�n

2�0

S0 eik�y�z�
 � S1;2

� S2;1 e�2ikz
�
; �5�

where �n � N=ADz is the average density and
h::i � �1=N�PN

j�1�::�j.
In this model the atomic centre-of-mass motion

is treated classically, with each atom described as a
point particle with a given position and momen-
tum. The radiation ®elds drive the centre-of-mass
motion of the atoms via the force

~F � 0; ~d � o�
~E0 �~E�

oy
; ~d � o�

~E0 �~E�
oz

 !
:

Neglecting the fast-varying temporal terms, the
equations for the atomic velocity components are:

m
dvy

dt
� iklE0 S�0

� � S�1 eik�yÿz� � S�2 eik�y�z� ÿ c:c:
�
;

�6�

m
dvz

dt
� ikl S�1E1

� ÿ S�2E2 � S�2E1 e2ikz ÿ S�1E2 eÿ2ikz

� S�0 E1 eik�zÿy�� ÿ E2 eÿik�y�z��ÿ c:c:
	
:

�7�
We assume that the detuning d � xÿ xa between
the optical ®elds and the atomic resonance is much
larger than the natural line width of the atomic
transition, c, so that the atoms always remain in
their lower internal energy states (q11 � 1 and
q22 � 0). Moreover, assuming that the scattering
time scale is much longer than the relaxation time
cÿ1, we can adiabatically eliminate the atomic
polarisations, i.e. Sk � i�l=�h�Ek=�c� id� � Xk=2d,
where Xk � 2lEk=�h, jXkj is the Rabi frequency for
the ®eld k and k � 0; 1; 2. With these approxima-
tions, Eqs. (6) and (7) yield:

m
dvy

dt
� ÿi�hk�X0=4d� X1eik�zÿy�� ÿ X�2eik�z�y� ÿ c:c:

�
;

�8�

m
dvz

dt
� i�hk�X0=4d� X1eik�zÿy�� � X�2eik�z�y� ÿ c:c:

�
� i��hk=2d� X1X

�
2e2ikz

� ÿ c:c:
�
: �9�

It is seen that the interference between the pump
and the scattered ®elds forms two bidimensional
periodic potentials V1;2�y; z� / jE0E1;2j cos�k�z �
y� � /1;2� in the plane �ŷ; ẑ�, where /1;2 are the
phases of the complex amplitudes E1;2. A weaker
1D potential V3�z� / jE1E2j cos�2kz� /1 ÿ /2�
forms along the ẑ-axis due to the interference of
the two counterpropagating scattered ®elds. If the
pump intensity is large enough, we can assume
E0 � E1;2 and neglect the ponderomotive potential
V3. Then, Eqs. (8), (9) and (5) can be conveniently
written in the following dimensionless form [5]:

dh1;2

dt
� p1;2; �10�

dp1;2

dt
� � A1;2e�ih1;2

� � c:c:
�
; �11�

oA1;2

ot
� oA1;2

oz
� he�ih1;2i; �12�
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where h1;2 � k�z� y�, p1;2 � �m=�hkq��vz � vy� and
A1;2 � ÿ2i��0=�hxnq�1=2

E1;2 are scaled atomic posi-
tion, atomic momentum and ®eld amplitude vari-
ables respectively. The dimensionless time and
space coordinates, t � xrqt and z � xrqz=c, are
scaled in terms of the collective recoil bandwidth,
qxr, where xr � �hk2=m is the single-atom recoil
frequency and q � �X0=2d�2=3�xl2n=�0x2

r �h�1=3
is

the dimensionless CARL parameter [6,7]. At t � 0,
the atoms are assumed to be randomly distributed
in position and have zero momentum, and the
amplitudes of the scattered ®elds are set to zero.

3. Analysis

In this simple model the two scattered ®elds are
uncoupled and symmetric. For each ®eld �1; 2�
individually, Eqs. (10)±(12) are formally identical
to those which describe pulse propagation in a
high gain FEL [7]. It is already known that they
admit a self-similar solution of the form A1;2�z; t� �
� zA�u�, where u � �����jzjp �t � z� and A�u� is the
solution of a set of ordinary di�erential equations
[10]. This self-similar solution describes the su-
perradiant emission of radiation pulses whose
duration decreases in proportion to the fourth root
of the peak intensity. The pulse shape can be ap-
proximated by a hyperbolic secant function, fol-
lowed by some non-linear `ringing', similar to that
which occurs in super¯uorescence from inverted
two-level atoms [11].

A simpler model can be obtained by approxi-
mating the spatial derivative in the ®eld equation
(12) by a damping term [13] i.e.

dA1;2

dt
� he�ih1;2i ÿ jA1;2; �13�

where j � c=2xrqL and L=c is the transit time of
the photon along the major axis of the condensate.
In this approximation, the ®nite interaction time
due to the escape of radiation from the atomic
sample is represented by an incoherent decay of
the ®eld amplitude in the sample at a rate c=2L,
half the inverse of the radiation `lifetime' in the
atomic sample. A more general treatment where
the radiation is scattered in a direction making
an angle w with respect to the ẑ-axis should
give j � �c=2xrq��j sin wj=W � j cos wj=L� [12]. As

L� W , the radiation is least strongly damped
along the major axis of the sample.

An approximate solution to Eqs. (10), (11) and
(13) can be found assuming j� 1 and adiabati-
cally eliminating the ®eld variables, i.e. A1;2 �
jÿ1hexp��ih1;2�i. In this limit, the rate of change of
the average scaled momentum is �d=dt�hp1;2i �
�2jjA1;2j2. A third-order analysis of the equations
in the mean-®eld limit (i.e. with radiation propa-
gation modelled by the damping term) gives the
following approximate solution:

jA1;2j2 � 1

2j2
sech2 �t

h
ÿ tD�=

������
2j
p i

�14�

and

hp1;2i � �
���
2

j

r
1
n
� tanh �t

h
ÿ tD�=

������
2j
p io

; �15�

where tD � ÿ
������
2j
p

ln�jb0j=
���
2
p � is the delay time of

the peak and b0 � hexp��ih1;2�t � 0��i is the initial
bunching, which can be assumed to be �1=

����
N
p

for
a condensate of N atoms. In the linear regime the
exponential gain is

G � xrq
��������
2=j

p
� �3c=d�

������������������������������������
�2I0N=mx��k2=A�

q
; �16�

whereas the peak value of the scattered intensity is

Ipeak � �c=d�2��3=2p��k2=A�N �2I0; �17�
where I0 � 2c�0jE0j2 is the pump intensity, A is the
cross-sectional area of the condensate and c �
l2k3=6p�h�0 is the natural decay rate of the atomic
transition.

4. Comparison with the MIT experiment

In the MIT experiment, a sodium BEC was
exposed to a single o�-resonant laser pulse red
detuned by d=2p � 1:7 GHz from the 3S1=2 !
3P3=2 transition, with k � 0:589 lm and natural
width c � 0:31� 108 sÿ1. The recoil frequency is
xr � 3� 105 sÿ1. We assume that the condensate
had a diameter of 20 lm and a length of 200 lm,
approximately N � 5� 105 atoms participate in
the emission of a scattered radiation pulse. The
dimensionless parameters are q � 44� I1=3

0 and

168 N. Piovella et al. / Optics Communications 187 (2001) 165±170



j � 5:5� 104 � Iÿ1=3
0 , where I0 is the pump inten-

sity in mW cmÿ2. As I0 > 1 and consequently
q� 1, the results of Ref. [8] indicate that quantum
e�ects due to atomic di�raction should be negli-
gibly small for this experiment, even though
T � Tr. As j� 1, the atoms emit two superradi-
ant pulses along the major axis of the condensate.
The gain is approximately G � 82� ����

I0

p
, where G

is given in msÿ1, whereas the peak occurs after a
time tD � ln�2N�=G � �170=

����
I0

p � ls, in good
agreement with the measured values of Ref. [1].
Furthermore, from Eq. (15) the modulus of the
average atomic velocity is v � ��hk=m�qjhp1;2ij �
�k=2p�G � 0:7

����
I0

p
cm sÿ1. Fig. 2 shows the tem-

poral evolution of the main peak of the scattered
intensity, as given by the approximate formula
(14), for the parameters of the MIT experiment
and three di�erent values of the incident intensity,
3.8 mW cmÿ2 (solid line), 2.4 mW cmÿ2 (dashed
line) and 1.4 mW cmÿ2 (dotted line).

In addition to the temporal evolution of the
scattered radiation pulses, there are other predic-
tions of this semiclassical model which are con-
sistent with the results of the MIT experiment:
Firstly, superradiance is observable only if the
Doppler broadening of the atomic resonance is
su�ciently small that rtsr � 1, where r is the rms
spread of the gaussian spectral distribution and
tsr � 1=G is the superradiant time [11]. The ob-
served spectral width of the Bragg resonance of
the BEC of approximately 5 kHz [14] (corre-
sponding to a velocity spread of few mm sÿ1) yields
rtsr � 0:16� Iÿ1=2

0 . We observe that, using r �
k�kBT=m�1=2

, a temperature of only 1 lK (ap-
proximately the BEC transition temperature for
the MIT experiment) would increase the frequency
spread by a factor of 15, enough to destroy the
superradiant emission. This explains why super-
radiant emission was observed only at the ex-
tremely low temperatures below the threshold for
Bose±Einstein condensation [1]. Secondly, super-
radiant emission parallel and antiparallel to the
ẑ-axis induces an average atomic velocity ~v1;2 �
�G=k��ŷ � ẑ�, respectively at 45° with respect to the
negative (positive) direction of the ẑ-axis, as ob-
served in the MIT experiment. We assume the
existence of two distinct families of atoms inter-
acting with the two independent superradiant

pulses A1 and A2. However di�erent orders of
atomic velocity, i.e. ~vm;n � m~v1 � n~v2, with m, n
integers, have also been observed. More precisely,
the orders (2, 0), (ÿ1, 1), (0, 2), (2, 1) and (1, 2)
other than the usual �1; 0� and �0; 1�, have been
clearly observed in the experiment after increasing
the exposure time to the laser source and letting
the atomic cloud expand ballistically after the in-
teraction [1]. The formation of this momentum
grating can be explained as a sequential superra-
diant scattering process in which the atoms emit m
pulses along the positive ẑ and n pulses along the
negative ẑ-axis, acquiring a total recoil velocity
~vm;n. The extremely narrow resonance line allows
the atoms to emit up to three sequential superra-
diantly scattered pulses before rt � 1, which is
consistent with the observation of the atomic
momentum distribution.

5. Conclusions

In conclusion, we have presented a semiclassi-
cal model describing the superradiant Rayleigh
scattering from a BEC observed in Ref. [1]. The
model is much simpler than those previously used

Fig. 2. Temporal evolution of the main peak of the scattered

intensity as given by the approximate formula (14), for the

parameters of the MIT experiment and three di�erent values of

the incident intensity, 3.8 mW cmÿ2 (±±), 2.4 mW cmÿ2 (± ± ±)

and 1.4 mW cmÿ2 (� � �).
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to explain the results of Ref. [1] as the atomic
centre-of-mass motion is treated classically. The
evolution of the scattered intensity and the atomic
motion due to recoil as calculated from this sim-
ple model are in quantitative agreement with the
experimental results. The fact that quantum cen-
tre-of-mass e�ects such as atomic di�raction are
negligible is a consequence of the high density of
the condensate. In our model the BEC is essen-
tially described as a collisionless Doppler-free
atomic gas. The results presented here suggest that
together with its high density, the most important
property of the condensate with regard to super-
radiant light scattering is its very low temperature
rather than its quantum degenerate nature. In this
respect the situation is similar to that of ultraslow
propagation of light in a BEC [15]. Subsequent
observations of ultraslow propagation in a hot
vapour [16] demonstrated that the signi®cant
property of the BEC was that it was a Doppler-
free optical medium rather than a quantum de-
generate one.
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