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Abstract In applied psychological, behavioral and sociological research the
majority of data are typically mixed (continuous and discrete) or, if contin-
uous, they violate the normality condition. Given a dependent and an in-
dependent variables: a) both the variables may appear with distinct values
(continuous variables); b) the dependent variable may present distinct values
(continuous variable) and the independent variable tied values (discrete vari-
able); ¢) the dependent variable may present tied values (discrete variable)
and the independent variable distinct values (continuous variable). The de-
pendence relationship between the variables could be assessed through the
common correlation coefficients, i.e., the Pearson’s, Spearman’s and Kendall’s
coefficients, jointly with a recently revisited monotonic dependence coefficient,
called “Monotonic Dependence Coefficient”. But, the choice of the most suit-
able dependence measure in different scenarios may become problematic.
The aim of the paper is to show which dependence measure to use to dis-
cover dependence relationships. A flow tree displaying how to find the best
dependence measures is proposed by means of a Monte Carlo simulation study.
Both Normal and non-Normal distributions producing continuous and discrete
data, together with the possibility of transforming discrete data into continu-
ous ones, are considered. Finally, validation of simulation findings on real data
is also introduced.
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1 Introduction and literature review

Dependency relationships take place in various scenarios of our daily life, such
as for instance, in natural, sociological, educational, medical and several fur-
ther contexts. In social science research, applied scholars and methodologists
became familiar with coefficients for studying dependence relationships (see
e.g., Mari and Kotz, 2001). Given two variables, X and Y whose underly-
ing joint distribution is Normal, the Pearson’s correlation coefficient (Pearson
1907) appears as the most suitable index to measure the dependence relation-
ship between two variables, as it corresponds to a parameter of a bivariate
Normal distribution.

In psychological research, the available data may make the use of the Pear-
son’s correlation coefficient problematic. The main drawbacks may occur in
two situations: 1) at least one of the two distributions has a discrete nature
or 2) one or both of the two distributions are continuous but non-Normal (see
e.g. Blanca et al. 2013 and more recently Bishara et al. 2018). In the former
case, categorizing one measurement variable tends to reduce the magnitude
of the Pearson’s coefficient (see e.g. Bedrickt 1995). In the latter case, being
the Pearson’s coefficient a measure of linear dependence, it might be not the
optimal choice. In any case, the awareness of the partial inadequacy of the
Pearson’s coefficient led researchers to introduce new measures or specific ad-
justments when dealing with mixed and non-normally distributed data.
Regarding the first issue, some authors propose the use of the Spearman’s
(Spearman 1904) or Kendall’s (Kendall 1938) correlation coefficients. More
recently, Denuit and Lambert (2005) suggest to transform discrete variables
into continuous variables, by simply adding a uniform random component to
the discrete variable categories before the calculation of the indices.

In presence of non-normally distributed data, Bishara and Hittner (2015) use
the Pearson’s coefficient to assess the dependence relationship after resorting
to some ad-hoc transformations able to convert the continuous sample distri-
bution into distributions whose shape is approximately Normal. Some other
researchers exploit bootstrap procedures to reach an unbiased estimation of
the linear dependence relationship (for a review, see e.g. Rasmussen 1987;
Sideridis and Simos 2010).

This paper presents a further extension in the field of dependence analysis
when mixed and non-normal data are involved. We start from the previous
concerns on the Pearson’s correlation coefficient and wonder how to assess a
general monotonic dependence relationship between two observed variables, Y
and X, looking for an index which can work also when the Pearson’s coefficient
partially fails. Recently, a novel non-parametric index, called “Monotonic De-
pendence Coefficient” (henceforth denoted with M DC), suitable in catching
any monotonic dependence relationship between two variables, was introduced
by Ferrari and Raffinetti (2015). It fulfills some interesting properties: it de-
tects any monotonic dependence relationship and can be also used for discrete
dependent or independent variables, appearing as an attractive alternative to
the Pearson’s, Spearman’s and Kendall’s correlation coefficients.
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Here, we aim at drawing up a flow tree representing the procedures for de-
tecting the most suitable dependence measures, i.e. measures able to catch the
actual dependence relationship between the variables, even when some pieces
of information in data are lost or latent. This is obtained through a Monte
Carlo simulation study, by generating normally and non-normally distributed
variables and accounting for the multiple scenarios which may arise in the data
collection process (that is, when both variables are continuous or when only
one of the two variables is continuous and the other is recorded on the discrete
scale).

The paper is organized as follows. We first recall the main features of the
Pearson’s, Spearman’s, Kendall’s and M DC' coefficients. Due to the concerns
about these coefficients when at least one of the two variables is expressed
on discrete scale and the data are tied, we resort also to the approach of De-
nuit and Lambert (2005), based on the transformation of the discrete variable
into continuous variable. After, we also introduce a statistical test to evaluate
whether the difference in the Monte Carlo values of the considered coefficients
is significant. Consequently, a flow tree for the choice of the most appropriate
index in relation to the different scenarios is provided. The paper ends with
an application to real data and with some brief conclusions.

2 Proposal
2.1 Dependence measures

In applied research, a care analysis of the data to be examined is required in
order to select the most suitable measure for the assessment of dependence
relationships. Given a dependent (Y) and an independent (X) variables, the
usual scenarios which may arise are:

— scenario a): both the variables have distinct values. We refer to this as
scenario with continuous variables;

— scenario b): only the dependent variable has distinct values, while for the
independent variable tied data are observed. We call this situation contin-
uous/discrete scenario;

— scenario ¢): only the dependent variable has tied data, while the indepen-
dent variable has distinct values. This scenario is defined as discrete/continuous
scenario.

If data are continuous, as in scenario a), the Pearson’s (r), Spearman’s (rg),
Kendall’s (1) coefficients are computed by resorting to the following formulas:

= iz (zi —7)(yi — 9)
Vit (@i =22V (i — 9)?

where T and g are the sample means,

fori=1,...,n, (1)
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rg=1- fori=1,...,n, (2)

where r(z) and r(y) are the ranks of the values of X and Y

_2(C-D)
= n(n—1)" 3)

where C and D are the number of concordant and discordant® pairs of ¥
and X.
The M DC coefficient, proposed by Ferrari and Raffinetti (2015), is formulated
by comparing the distance between the so-called concordance curve and the
Lorenz curve (see, e.g. Lorenz 1905). Specifically, given a dependent variable
Y and an independent variable X, the Lorenz curve is obtained by ordering
the Y values according to the corresponding non-decreasing ranks, while the
concordance curve is built by ordering the Y values according to the non-
decreasing ranks of X. If Y is a real-valued variable, in order to build a
Lorenz curve lying within the unit square, the transformation Y =Y — v,
where yog = min(0, Ymin) and Ymin is the lowest negative value of Y, is
taken into account. The Ly Lorenz curve corresponds to the set of points
(i/n, 3251 Y(y/ 2iz1 Y()) and the C' concordance curve is given by the set

of points (i/n, > ;_, yf;")/ S yfi)), wherei=1,...,n,j=1,...,i, y*’s are
the y%’s values ordered according to the ranks of variable X and y'(f.)’s are the
y'’s values ordered in non-decreasing sense?. A graphical representation of the
two curves, together with the LlY dual Lorenz curve, obtained by reordering
the Y variable values in non-increasing sense, is provided in Figure 1.

The M DC coefficient is defined as the ratio between the sum of the dis-
tances between the points lying on the bisector curve and the those lying on the
concordance curve and the sum of the distances between the points lying on
the bisector curve and those lying on the Lorenz curve. Through some mathe-
matical manipulations (see, Ferrari and Raffinetti 2015), the M DC' coefficient
can be expressed as

_ 23 iy —n(n+ 1)(My — o)
2321y — n(n+ 1)(My —yo)

The M DC coefficient appears as a map that measures the co-variation
(association) between the variables. Thus, it presents some similarities with

MDC

(4)

1 Note that a pair of observations is said to be concordant if, given two variables Y and
X, the observation with larger value of Y corresponds to the observation with larger value
of X. Analogously, if the observation with larger value of Y corresponds to the observation
with smaller value of X, the pair of observations is said to be discordant (see e.g. Denuit
and Lambert 2005).

2 For the sake of simplicity, the Y variable values are ordered directly with respect to
the X variable values, as originally suggested by Schezhtman and Yitzhaki (1987), while in
Ferrari and Raffinetti (2015) they were reordered according to the Y values coming from
the least-squares linear regression model Y =&+ BX.
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Fig. 1: The Ly Lorenz curve, L/Y dual Lorenz curve and the C' concordance
curve.
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the Spearman’s and Kendall’s correlation coefficients. On the one hand, the
M DC' measure exploits the ranks to re-order the Y variable values. On the
other hand, it focuses on the concordance/discordance between the dependent
variable Y values, arranged in non-decreasing sense, and the same Y values
arranged according to the non-decreasing ranks of the independent variable
X.

All the above coefficients take values -1 and +1 as lower and upper bounds
corresponding to a perfect inverse and direct dependence relationship (specif-
ically, linear relationship for Pearson’s coefficient), respectively, crossing the
value zero in the case of independence between the variables.

While r, rg and 7 are interdependence indices, since they evaluate how the two
variables relate to each other, M DC' is an asymmetric coefficient and for this
reason it is sensitive to the choice of the dependent and independent variables.
Clearly, if the role of the variables is inverted, the results about the dependence
relationship between the variables might change, making the index a proper
dependence measure. Moreover, the M DC' coefficient catches any monotonic
dependence relationship as well as rg and .

If data are specified through a continuous dependent variable and a discrete
independent variable, as in scenario b), the Pearson’s correlation coefficient
preserves its expression in (1), while the computation of the Spearman’s and
Kendall’s coefficients has to be based on the equations reported below:
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where 7(z) and 7(y) are the average ranks of X and Y and tied values are

assigned a rank equal to the average of their positions in the ascending order
of the values,

rs =

- D
T = 2C ) fori=1,...,n

Vn2—n—3" si(si—1)y/n2—n-3 t(t—l)
(6)

where s; and t; are the number of tied x; and y; values in the i-th tied
group, respectively, while M DC' is defined as

k ng L
22 =1 2ty 1 iy —n(n+ 1)(My —yo)
237 iyl —n(n+1)(My — yo)

where, given k£ ordered categories Xi,...,Xg,..., Xy, with g = 1,...,k,
is the cumulative frequency of the first g categories and gjz is the average
of the Y values corresponding to X,. Trivially, if g = k then nj, = n (Ferrari
and Raffinetti 2015).

Finally, if data are structured as in scenario ¢), once again the Pearson’s and
MDC coefficients are computed as in (1) and (4), while the Spearman’s and
Kendall’s coefficients refer to formulas (5) and (6). In this last case, we do not
resort to the M DC' coefficient formula in (7), since this formula accounts for
tied values only on the independent variable as happens in scenario b).

It is worth remarking that when one of the two variables is expressed through
a discrete scale, the Pearson’s, Spearman’s and Kendall’s coefficients never
reach the extreme bounds -1 and +1. On the contrary, the M DC' coefficient
may reach the extreme bounds only in scenario c). For the sake of clarity,
three simple toy examples of positive dependence are introduced with the aim
of specifying a situation in which all the four indices take value +1 and two
situations in which they take multiple values.

MDC =

(7)

*

— First toy example: let Y and X be two variables such that Y = {1,2,3,4,5}
and X = {2,3,4,5,6}. No tied data are involved. By denoting with M DCy|x
the M DC coefficient of Y given X, the results are MDCyx = 1,7 =1,
rs = 1 and 7 = 1. All the indices reach the upper bound due that
the relationship between Y and X is perfectly linear and correspond-
ing to Y = X + 1. By taking into account the M DC' coefficient fea-
ture of being an asymmetric index, let us reverse the conditioning be-
tween the variables by computing the value of M DCx y. In such a case
MDCx)y = MDCy|x = 1 since no tied data are present.

— Second toy example: let Y and X be two variables such that Y = {1, 2, 3,4, 5}
and X = {2,3,5,6,8}. As in the first example, no tied values appear but
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the relationship between Y and X is monotonic but not perfectly linear.
Thus, MDCy|x = MDCx|y =rs =71 =1, while r =0.9934 < 1.

— Third toy example: let Y and X be two variables such that Y = {1, 2, 3,4, 5}
and X = {2,2,4,5,6}. Tied vales are present in X. MDCyx, r, rs
and 7 reach values smaller than +1, and more exactly M DCy | x = 0.95,
r = 09723, rs = 0.9747 and 7 = 0.9487. In such a case M DCy x takes
values which are intermediate with respect to those of the Pearson’s and
Spearman’s coefficients and that of the Kendall’s coefficient. Nevertheless,
if we reverse the conditioning by taking into account the X and Y variables
as the dependent and the independent variables, respectively, it derives that
MDCx )y =1, being X perfectly depending on Y.

Remark 1 The MDC coefficient appears as a predictability measure of a
variable given the other, since it provides the increase of predictability of Y
due to the knowledge of X. The more the Y values ordered according to the non-
decreasing ranks of X approaches to the Y wvalues arranged in non-decreasing
sense, the more variable X predicts variable Y. Contrary to the Goodman and
Kruskal’s asymmetric predictability measure (see, e.g. Goodman and Kruskal
1954), which finds application in the case of categorical variables, the M DC
coefficient is employed in the case of continuous and mized variables.

In order to account for the effects on the dependence coefficient behavior
if specific adjustments are applied to discrete data, the proposal of Denuit
and Labert (2005) (henceforth denoted with D&L) is considered. The D&L
approach addresses to transform discrete variables into continuous variables.
Specifically, let X be a discrete variable taking non-negative integers as values
belonging to a subset ¥ of the set of natural numbers N and such that fx(z) =
P(X =), for x € ¥. In order to define the corresponding continuous variable
X*, D&L propose the following continuous-ation procedure:

X' =X+(U-1), (8)

where U is a continuous random variable taking values in the range (0,1),
independent of X and with a strictly increasing cumulative density function
Fy(u) on (0, 1) sharing no parameters with the distribution of X. It results that
X is “continued” by U producing the continuous variable X*. Trivially, X* <
X almost surely and its distribution function (cumulative density function)
for z* € R is

Fx-(2") = Pr(X* <2%) = Fx([2"]) + Fu(z" = [2"]) fx ([2"] + 1), (9)
where [z*] is the integer part of z* € R. As argued by D&L, the most

natural choice for U is the uniform distribution on (0, 1), such that Fy(z* —
[z*]) = ™ — [2*]. Thus, expression in (9) becomes

Fxe(2%) = Fx([z7]) + (2" = [2"]) fx ([z7] + D). (10)
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Remark 2 Several surveys gives rise to ordinal data, typically expressed through
the Likert-type scales (see, e.g. Likert, 1932). Trivially, the dependence rela-
tionship in presence of an ordinal independent variable and a continuous de-
pendent variable may be measured by resorting to the MDC' formula in (7).
In the case of an ordinal dependent variable and a continuous independent
variable, a novel formalization of the M DC' coefficient was introduced by Raf-
finetti (2019), who replaced the ordered categories of the dependent variable
with the average of the continuous independent variable values corresponding
to a specific ordered category of the dependent variable.

2.2 Simulation design

In this Section, an extensive Monte Carlo simulation study, considering both
different distributions generating the data and various measurement scales
adopted to collect the data, is built. More precisely, we assume that the two
observed variables are derived by either Normal or non-Normal distributions.
In both situations, we first consider the data just as they are. This is the case
of continuous-continuous variables (scenario a), labeled as “CC”).

Then we assume that the dependent variable is continuous but the indepen-
dent variable is collected as a discrete variable (scenario b), labeled as “CD”).
Finally, the case where the dependent variable is recorded as a discrete variable
and the independent variable is maintained continuous is taken into account
(scenario ¢), labeled as “DC”).

Since the involved discrete variable is generated from a continuous variable,
recalling the proposal of D&L to transform the discrete variables into con-
tinuous variables, scenarios b) and c) are replicated in order to include the
“continuous-sation” of the discrete variable as possible sub-scenarios. We de-
note with labels “CD-D&L” (scenario b)) and “DC-D&L” (scenario c)) these
possible sub-scenarios. It is worth noting that the first and second letters of
the labels always refer to the nature of the dependent and independent vari-
ables, respectively.

We then proceed to data generation. Data are first generated from bivariate
Normal distributions with multiple values of the pairwise correlation coeffi-
cient p. The pairwise correlation coefficient takes the role of benchmark for
the relationship between the variables, which in such a case is linear. In order
to account for the several degrees of linear dependence between the variables,
the pairwise correlation coefficient p is set equal to p = {0.1,0.3,0.5,0.7}, to
include the cases of weak, low, medium and high dependence between the vari-
ables. Thus, samples of size equal to 500 are drawn and the process is iterated
10,000 times.

If on the one hand, scenario a) is easier to build, on the other hand scenarios
b) and c) deserve care not only in terms of the data generation process, but
also in terms of the computation of the considered dependence coefficients.
Since one of the two variable has discrete nature, we follow the proposal by
Ferrari and Barbiero (2012) for generating correlated discrete variables coming
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from Normal distributions, which was further translated into the “GenOrd” R
package (see, e.g. Barbiero and Ferrari 2015). The crucial point here is the
presence of only one discrete variable. In order to deal with this issue, an “ad
hoc” adjustment of the GenOrd package is implemented.

The discretization process is extended both to asymmetrical and uniform dis-
crete variable distributions. Moreover, the case of non-normally distributed
data is also considered in our simulation study. The first contribution in gen-
erating non-Normal variables is due to Fleishman (1978) who defined, in the
univariate case, a non-Normal variable Y as a linear combination of the first
three powers of a standard Normal variable X, that is

Y =a+bX +cX?+dX3, (11)

where the constants a, b, ¢ and d are determined by expanding (11) to
express the first four moments of the non-Normal variable Y in terms of the
fourteen moments of X which are known constants. Through some manipula-
tions, the values of the constants a, b, ¢ and d can be obtained as the solutions
of a system of non-linear equations. Thus, the univariate non-Normal variable
can be generated transforming the Normal variable by resorting both to the
constants a, b, ¢, d and equation (11). Vale and Maurelli (1983) developed the
same method for generating multivariate non-Normal distributions with spec-
ified inter-correlations and marginal means, variances, skewness, and kurtosis.
The two parameters affecting the normality condition are skewness and kur-
tosis, where the kurtosis is measured by the parameter “excess of kurtosis”.
The more the excess of kurtosis moves from value 0, the more the normal-
ity condition becomes weaker. This occurs also for the skewness parameter.
A value different from zero of skewness leads to an asymmetrical distribu-
tion. The conditions to obtain data from non-Normal distributions include, in
addition to those already specified for drawing normally distributed data, the
determination of the skewness v and kurtosis x parameters which are set equal
toy=(1,1) and k = (5.5,5.5). The R code written by Zopluoglu (2011) and
referring to the Vale and Maurelli’s procedure is then employed.
In order to provide a summary of the main simulation study settings, an out-
line is provided in Table 1.
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3 Simulation results
3.1 Simulation results under normality

The simulation findings, when data are generated from Normal distributions,
are displayed in Figures 2, 3, 4 and 5, which report the boxplots of the Monte
Carlo values taken by the four indices in each drawn sample. Each figure,
corresponding to the different values of the pairwise correlation coefficient
p = {0.1,0.3,0.5,0.7}, graphically denoted with the red dashed line, is split
into three main boxes. The first main box shows scenario a) (“CC”). The
second main box is devoted to scenario b) and includes two sub-boxes where
the two different ways of proceeding when handling mixed data are taken into
account. Specifically, in the first and second sub-boxes we consider the cases
where the discrete variable nature is preserved (“CD”) and it is transformed
into a continuous variable through the approach of D&L (“CD-D&L”). The
third main box, referred to scenario c¢) (“DC”, if the discrete variable nature
is preserved and “DC-D&L”, if it is transformed into a continuous variable
through the approach of D&L), is structured as scenario b). Without loss of
generality, we discretize one of the two variables into four asymmetrical and
uniform categories. The probability distribution associated with the four asym-
metrical (p,) and uniform (p,,) categories are defined as p, = {0.1,0.2,0.3,0.4}
and p, = {0.25,0.25,0.25,0.25}. For the sake of brevity, we report only the
boxplots corresponding to the case of four asymmetrical categories. This be-
cause, even if the values of the indices are different, their behavior in presence
of uniform categories is similar to that of asymmetrical categories. By looking
at boxplots in Figures 2, 3, 4 and 5, the Monte Carlo distributions of the con-
sidered coefficients are symmetrical, as confirmed by the Monte Carlo median
and mean values included in Table 2.Table 2 highlights also a further interest-
ing issue concerning the variability of the indices, measured by the standard
deviation (sd). In general, as the pairwise correlation coefficient increases, the
variability reduces in magnitude.

Since scenario a) reflects the case of normally distributed data, the sample
Pearson’s-r correlation coefficient entirely catches the linear dependence rela-
tionship and this translates into an overlapping between the Monte Carlo r
median (and mean) value and the value of the pairwise correlation coefficient
p. Analogously, the M DC coeflicient also appears as an unbiased estimator of
p. A comparison between the two indices in terms of efficiency is then interest-
ing. The M DC' coefficient presents a Monte Carlo standard deviation a little
bit higher that that associated with the Pearson’s-r correlation coefficient, but
this difference is close to zero. Thus, both the r and M DC' coefficients may
be equally used to measure the existing linear dependence relationship.
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Fig. 2: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and

c) for four categories, asymmetrical discrete variable - Normal distribution,
p=0.1.
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Fig. 3: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and

¢) for four categories, asymmetrical discrete variable - Normal distribution,
p=0.3.
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Normal Distribution - rho=0.5
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Fig. 4: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and
c) for four categories, asymmetrical discrete variable - Normal distribution,

p = 0.5.
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Fig. 5: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and
¢) for four categories, asymmetrical discrete variable - Normal distribution,

p=0.7.
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As expected, the Spearman’s correlation coefficient takes a Monte Carlo

median (and mean) value which is slightly lower than the actual value of the
population parameter p. The bias is more evident for the Kendall’s correlation
coefficient. In addition, the Kendall’s correlation coefficient has the lowest
variability, taking values concentrated around the Monte Carlo median (mean)
value, which is very far from the fixed parameter p.
The Monte Carlo coefficient performance reflects what exactly happens in
theory. The relation p, < ps < p, where p, p, and pg correspond to the
population Pearson’s, Kendall’s and Spearman’s correlation coeflicients (see
e.g., McNeil, 2005), also holds on average for the Monte Carlo sample indices,
encouraging us to state that the sample M DC unknown behavior is similar
to that of the sample Pearson’s correlation coefficient, resulting

T<rs<r=MDC. (12)

Scenario b) deserves more space for discussion. As one variable takes dis-
crete nature, we expect that both the Pearson’s and M DC Monte Carlo me-
dian (and mean) value decreases in magnitude with respect to the fixed pair-
wise correlation coefficient. Actually, as highlighted by Table 2 and Figures
3 and 4, for p = {0.3,0.5}, the best estimator is 7, but rg also seems work-
ing good. On the contrary, the behavior of the M DC' coefficient worsens with
respect to scenario a), since tied data in the independent variable make the
coeflicient unable to completely account for the multiple values of the depen-
dent variable.

If the procedure of D&L is implemented (Figures 2, 3, 4, 5 and Table 2), a
worsening occurs only for r and rg. Indeed, the M DC' coefficient performance
seems not to be affected by the continuous-ation process. In this case, the
M DC coefficient is more robust to the different ways of dealing with discrete
variables.

Last comments address scenario ¢). If the two variables are treated as they
present, the M DC' coefficient reaches a Monte Carlo median value which is
closer than its competitors to the value of p, presenting as the best estimator of
p, even if the M DC standard deviation is a little bit higher than that of r and
rs. These considerations lead us to conclude that generally the relationship

T<rg<r<MDC (13)

in average holds. Only when p = 0.7 (Figure 5), the median value of rg
seems to exceed the median value of r, showing a reverse in the previous
relation, that is

T<r<rg<MDC. (14)

Finally, note that also in this scenario, the D&L continuous-ation process
tends to negatively affect the behavior of all the coefficients.
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3.2 Simulation results under non-normality

A parallel study is carried out on non-normally distributed data. Figures 6, 7,
8 and 9 show the simulation results related to scenarios a), b) and c¢).

Non-Normal Distribution - rho=0.1

08  Scenarioa) Scenario b Scenaroc) |
0s |
%47 : :

B I Eii‘ﬁili 3ﬁi‘§i;a

e
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Fig. 6: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and ¢)
for four categories, asymmetrical discrete variable - Non-Normal distribution,
v=1(1,1), Kk = (5.5,5.5) and p = 0.1.

As well as for the case of normally distributed data, the Monte Carlo distri-
butions associated with the indices are symmetrical and the variability reduces
as p increases (see Table 3).

We remark that in such a case p does not represent the parameter to be esti-
mated, being the underlying data distribution non-Normal. For this reason, it
makes no sense to recall the notion of unbiased and efficient estimator.
Findings referred to scenario a) highlight that in general the M DC and rg
indices reach greater values than those taken by the other competitor coeffi-
cients. In particular, their Monte Carlo median (mean) values are higher than
the values fixed for p. This result is expected. Indeed, the M DC and rg co-
efficients cover a wider concept of dependence, non-limited to the linear one.
Nevertheless, when computed on continuous variables, the Spearman’s coeffi-
cient may not compete with the M DC' coefficient, which appears as the most
informative dependence index. This because it is computed on the observed
values rather than on ranks.
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Non-Normal Distribution - rho=0.3
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Fig. 7: Boxplots of MDC| r, rg, and 7 distributions in scenarios a), b) and c)
for four categories, asymmetrical discrete variable - Non-Normal distribution,
v=(1,1), k = (5.5,5.5) and p = 0.3.

Non-Normal Distribution - rho=0.5
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Fig. 8: Boxplots of MDC, r, rg, and 7 distributions in scenarios a), b) and ¢)
for four categories, asymmetrical discrete variable - Non-Normal distribution,
v=(1,1), k = (5.5,5.5) and p = 0.5.

As for normally distributed data, also in the case of non-normally dis-
tributed data, a novel relation among the indices may be defined as follows:
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Non-Normal Distribution - rho=0.7
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Fig. 9: Boxplots of M DC, r, rg, and 7 distributions in scenarios a), b) and c)
for four categories, asymmetrical discrete variable - Non-Normal distribution,
v=(1,1), k = (5.5,5.5) and p = 0.7.

T<r<rsg<MDC. (15)

Conclusions on the coefficient behavior are not so direct and evident in
scenario b). The M DC coefficient reaches a Monte Carlo median value very
close to those of the Spearman’s coefficient, for p = {0.3,0.5}. Consequently,
MDC and rg may be equivalently used. Nevertheless, if p = 0.7, the Monte
Carlo median value of M DC' is smaller than that of rg, but if p = 0.1, the
Monte Carlo median value of M DC' is greater than that of rg. As expected,
the Pearson’s correlation coefficient takes lower values than those of M DC and
rg, due to both the linearity condition violation outside Normal distributions
and the discretization process of one variable.

Finally, in scenario c¢) the M DC coeflicient shows as the best measure of the
existing monotonic dependence relationship.
Based on the above considerations, the relation

MDC >rg>r>r (16)

is in general fulfilled. Moreover, it also holds when the D&L approach is
implemented.
The previous simulation conditions are set by considering marginal distribu-
tions with the same values of skewness and kurtosis parameters (y = (1,1),
k = (5.5,5.5)). The presence of marginal distributions characterized by equal
values for the skewness and kurtosis parameters makes the specification of the
variable role useless, yielding that each of the two variables may be considered
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as the independent or dependent one. In this case, the asymmetric M DC' in-
dex is not sensitive to the choice of the dependent and independent variables.
Nevertheless, if the marginal distribution skewness and kurtosis parameters
vary, the specification of the dependent and independent variables is required
for the M DC' computation. Let us defined the mixed-case with skewness and
kurtosis parameters set equal to v = (2,1) and £ = (12,5.5), respectively. If
we replicate the simulation conditions (sample size equal to 500, number of
iterations corresponding to 10,000 and p = 0.5), the M DC' coefficient takes
different values depending on the variable which is chosen as the dependent
variable. This result is displayed by the boxplots reported in Figure 10. In
each scenario, the M DC' coefficient is computed by first conditioning variable
Y on variable X (M DCy|x) and then variable X on variable Y (M DCx\y ).
Even if in scenario a), where the variables are preserved with their original
continuous nature, the difference between the two M DC' indices is negligible,
this difference becomes more evident if one of the two continuous variables is
discretized (scenario b) or scenario c)).
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Non-Normal distribution - rho=0.5, Gamma=c(2,1), Kappa=c(12,5.5)
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Fig. 10: Boxplots of M DCy | x, M DCx |y, r, rs and 7 distributions in scenarios
a), b) and ¢) for four categories asymmetrical discrete variable sampling from
Non-Normal distributions, v = (2,1), « = (12,5.5) and p = 0.5.

3.3 Hypotheses testing

To gain more insights into the behavior of the considered indices, we now test
if the differences between their empirical cumulative distribution functions are
significant. The empirical cumulative distribution functions related to scenar-
ios a), b), and ¢) and different values of p are displayed in Figures 11, 12 and
13, if data are normally distributed, and in Figures 14, 15 and 16, if data are
non-normally distributed. Since the approach of D&L does not provide any
improvement in the performance of the considered indices, it is not included
in this additional study.
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Fig. 11:
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Fig. 12: Empirical cumulative density functions - Scenario b) (Normal distri-
bution)
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Fig. 13: Empirical cumulative density functions - Scenario c¢) (Normal distri-
bution)
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Fig. 14: Empirical cumulative density functions - Scenario a) (Non-Normal

distribution)
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Fig. 15: Empirical cumulative density functions - Scenario b) (Non-Normal

distribution)
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Fig. 16: Empirical cumulative density functions - Scenario c¢) (Non-Normal

distribution)
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Through a direct comparison of the empirical cumulative distribution func-
tions of the indices, statements in terms of stochastic dominance can be in-
troduced. The first order stochastic dominance defines an order relationship
between cumulative distribution functions (see e.g. Heathcote et al. 2010).
Given two variables Y and X, let F(x) and F(y) be the associated continu-
ous cumulative distribution functions, such that F(z), F(y) : R — [0,1]. F(x)
dominates F(y) if and only if F(z) < F(y), Vz,y € R. From Figures 11, 12,
13, 14, 15 and 16 one can realise that the Kendall’s coefficient empirical cumu-
lative distribution function is always dominated by the empirical cumulative
distribution functions of each of the other indices. For the remaining indices,
these differences are not so evident. Inferential analyses are then required to
evaluate if these differences may be considered as significant. We resort to
the Page’s test (Page 1963), which is based on punctual comparison of the
coefficient empirical cumulative distribution functions. Following Solaro et al.
(2017), let Farpey, Fry and Fi,.oy be the cumulative distribution functions of
the M DC, r and rs values in each iteration. We test the null hypothesis

Ho 5 F(MDC) = F(r) = F(rs)a (17)

stating that there is no difference between the expected ranks for the three
coefficients in each iteration, against each of the following six ordered alterna-
tive hypotheses:

I=Fupe) > Fy > Fes
2=F) > Faupe) > Fes
3="Fus) > Fu) > Flupe
4= Fupc) > Firs) > Fr
5=Fuy > Fug) > Foupc
6 = F(TS) > F(MDC) > F(T .

)
)
) (18)
)
)
)

The significance level « is set equal to 0.05. For each scenario, we assume
that the choice of the coefficient is detected as the one with the smallest
p-value. In the case of equivalent p-values, the index with the highest test
statistics value is chosen. Results are reported in Table 4.

Table 4: Page’s test results: the number of the alternative hypothesis chosen
varying scenario, p value and distribution

Normal distributions Non-Normal distributions
p 0.1 0.3 0.5 0.7 0.1 0.3 0.5
Scenario a) 1-2 1-2 1-2 1-2 4 4 4
Scenario b) 5 5 5 3 4 4 4-6
Scenario c) 1 1 1 4 1 4 4
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Each cell in Table 4 displays the number assigned to the alternative hy-

pothesis characterized by the smallest p-value among those in (18). Situations,
in which two numbers associated with two alternative hypotheses appear, oc-
cur wether the test results present the same p-values and similar values of the
test statistics. The alternative hypotheses based on the ordering with Fiyrpey,
F(,y and F{,) as the first element are those labeled as 1 and 4, 2 and 5, 3 and
6, respectively.
Beside the above findings, it is crucial to assess how these measures compare
with type-1 (false positive rate) and type-2 (false negative rate) errors. To do
so, we add to the simulation results for the case of normally distributed data
characterized by a pairwise correlation coefficient p = 0.7, a new simulation
corresponding to the case of a pairwise correlation coefficient p = 0.6. When
data follow Normal distributions, the pairwise correlation coefficient essen-
tially coincides with the empirical observed correlation between the variables.
We aim at detecting a linear dependence relationship close to 0.7 and we fix
0.68 as a threshold value. The hypotheses to be tested are:

Hy:pype >0.68 vs Hp:pyupe <0.68
Hy:p>0.68 vs Hp:p<0.68
Hy:ps>068 vs Hi:psg <0.68,

where pypo, p and pg correspond to the population M DC, Pearson’s
and Spearman’s coefficients. Specifically, the false positive rate (type-1 error
rate) is computed on data from Normal distribution with p = 0.7, while the
false negative rate (type-2 error rate) is determined on data from Normal
distribution with p = 0.6. Results are reported in Table 5.

Table 5: Type-1 and type-2 error rates

Type-1 error rate

Type-2 error rate

Scenario a) Scenario b) Scenario ¢) | Scenario a) Scenario b)

Scenario c¢)

MDC 0.1993 0.9961 0.4477 0.0013 0
r 0.1935 0.9620 0.9620 0.0012 0
TS 0.4594 0.9319 0.9319 0.0002 0

0.0010
0
0

From Table 5 it results that the type-1 error related to the M DC' coeffi-

cient is: similar to that associated with the Pearson’s correlation coefficient in
scenario a); the greatest one in scenario b); the smallest one in scenario c).
The type-2 errors are instead close to zero.
The elements for tracing all the possible procedures for the dependence rela-
tionship discovery are now available. Specifically, a flow tree addressing to the
dependence coeflicient correct choice is displayed in Figure 17 for the cases of
normal and non-normal (continuous and discrete) data.
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Fig. 17: A flow tree for discovering dependence relationships with Normal and
non-Normal data - scenario a), scenario b), scenario c).

« MDC
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CC variables

Normal
data?

+ MDC
<1

No Scenario b)
DC variables
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Yes L 5 DC variables

+ MDC

Scenario a) Scenario b) Scenario c)

4 Application to real data

The dataset “Employee Data.sav” from https://www.spss-tutorials.com/
spss- opening-data-with-syntax/ is used to illustrate the coherence be-
tween the simulation results and those obtained on actual data.

The file contains data extracted from a bank’s employee records in an inves-
tigation into discrimination in 1987 and focuses on employees’ gender, edu-
cational degree, employment category, months since hire, previous experience
(months), minority classification (i.e., whether ethnic minority), initial and
current salaries.

In order to accomplish scenario a), we select as variables of interest, the cur-
rent salary (in dollars), which is the dependent variable, and the initial salary
(in dollars), which is the independent variable. The joint distribution of the
initial and current salary is displayed in Figure 18. The skewness and kurtosis
indices are equal to v = (2.11,2.86) and x = (12.17,5.26).

CC variables CD variables DC variables
. o ¢ < MDC STOP
« MDC ° s
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Fig. 18: Joint distribution of current and initial salary.

o

Since the joint distribution of the two considered variables is non-Normal,

the M DC' coefficient seems the most appropriate measure to be used. Com-
puted on data, it detects the existence of a strong monotonic dependence
relationship. Also the Pearson’s-r, Spearman’s-rg and Kendall’s-7 coefficients
are computed (see Table 8) showing the coherence with the ordering arisen
from the simulation study.
Let us now suppose that, for reasons related to the data collection process,
the initial salary is recorded in terms of discrete categories. Thus, the inde-
pendent variable is not expressed by single values, but by tied data even if
its underlying distribution is continuous. This case corresponds to scenario b).
This scenario is built by first splitting the initial salary into three classes and
subsequently by encoding each class by three ordered categories, as illustrated
in Table 6.

Table 6: Distribution of the initial salary variable discretized into three cate-
gories

Categories of initial salary 1 2 3
Distribution 0.20 0.63 0.17
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Due to the non-normality condition of the original variable joint distribu-
tion, we may resort to the use of both the Spearman’s and M DC' coefficients
(see Table 8).

The loss of information when one of the two variables is categorized is also de-
termined. The indices with the smallest loss of information are rg and 7. Even
if the Kendall’s coefficient reports the minimum loss of information, it has not
to be considered as a good measure, since its performance on the original data
is the worst one. The highest loss of information is associated to r, while M DC
leads to an intermediate level, smaller than that of the Pearson’s coefficient
but substantially bigger than that of the Spearman’s coefficient (Table 8).
Finally, in order to determine scenario c¢), let us suppose that the dependent
variable (current salary) is recorded through discrete categories as displayed
in Table 7.

Table 7: Distribution of the current salary variable discretized into three cat-
egories

Categories of initial salary 1 2 3
Distribution 0.55 0.41 0.04

MDC takes value equal to 0.8021, while the remaining coefficients take
values which are far lower. Moreover, the relative loss of information yielded
by the M DC coefficient is the lowest one with respect to the that provided by
the other coefficients (Table 8).

Table 8: Coefficient value in scenario a), coefficient values and loss of informa-
tion in scenarios b) and c)

Scenario a) Scenario b) Scenario c)
Coefficients | Value (v,)) | Value (vy)) %Lii)vb) Value (v)) %
MDC 0.8903 0.7590 0.1475 0.8021 0.0991
T 0.8802 0.7343 0.1658 0.6477 0.2641
Ts 0.8253 0.7526 0.0881 0.6975 0.1548
T 0.6555 0.6325 0.0351 0.5856 0.1066

These findings allow us to conclude that the guidelines suggested by our
proposed tree flow are also fulfilled on real data.
To further investigate the coherence between the results on simulated and real
data and supposing that the distribution generating sample data is unknown,
an additional simulation study based on bootstrap resampling techniques is led
on the available dataset. Then, 10,000 randomly samples for variables Y and
X are drawn, with replacement, from the whole dataset and the value of each
coefficient computed in each selected sample. Table 9 reports the associated
bootstrap estimates with their standard errors (se) and coefficients of variation

(cv).
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Table 9: MDC, r, rg, and 7 in scenarios a), b) and c): original value, bootstrap
estimate, se, and cwv.

Scenario a)

Coefficients | Original Value  Bootstrap estimate  Bootstrap se  Bootstrap cv

MDC 0.8903 0.8897 0.0118 0.0133
r 0.8802 0.8805 0.0167 0.0190
Ts 0.8253 0.8243 0.0186 0.0226
T 0.6555 0.6554 0.0196 0.0299

Scenario b)

Coefficients Original Value  Bootstrap estimate  Bootstrap se  Bootstrap cv

MDC 0.7590 0.7583 0.0195 0.0257
r 0.7343 0.7353 0.0171 0.0233
rs 0.7526 0.7519 0.0222 0.0295
T 0.6325 0.6322 0.0197 0.0312

Scenario c)

Coefficients | Original Value  Bootstrap estimate  Bootstrap se  Bootstrap cv

MDC 0.8021 0.8023 0.0255 0.0318
r 0.6477 0.6489 0.0245 0.0378
TS 0.6975 0.6968 0.0240 0.0344
T 0.5856 0.5855 0.0207 0.0354

In general, from the comparison between the original coefficient values
computed on sample data and their bootstrap values, it appears that typically
the bootstrap estimates are unbiased. Focusing on variability, the M DC index
provides the lowest relative variability (measured by the coefficient of variation
¢v) in scenarios a) and c). In scenario b), the M DC' coefficient of variation is
slightly greater than that of the Pearson’s coefficient, but its value is very close
to that of the Pearson’s coefficient. Thus, the M DC' coefficient results as the
measure that better catches the dependence relationship between the variables
with the smallest relative variability. By combining these considerations with
the simulation study findings, we get a further confirmation of the general
coherence with the guidelines provided by the flow tree.

5 Conclusions

In the paper we provide a flow tree procedure for the discovery of bivariate
dependence relationships. Beside the commonly used correlation coefficients,
i.e., the Pearson’s, Spearman’s and Kendall’s coefficients, the assessment is
extended also to a recently revisited monotonic dependence measure, called
MDC coefficient. The procedure is obtained through the construction of a
Monte Carlo simulation study, involving both the case of data generated from
Normal and non-Normal distributions and observed according to three main
scenarios. Scenario a) addresses the continuous variables, while scenarios b)
and c) deal with the presence of a continuous and a discrete variables. Scenar-
ios b) and c¢) are further extended by considering the case where the discrete
variable is transformed into continuous variable through a specific “continuous-
ation” approach.
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The absence of knowledge on the distribution generating the data leads to
prefer the M DC' coefficient, similar or better than the Pearson’s correlation
coefficient and always better than the Spearman’s and Kendall’s coefficients,
especially if data are continuous and normally distributed or mixed with an
underlying non-Normal distribution.

Our proposal is useful not only from a theoretical view point but also from its
professional implications. Through our flow tree we develop clear guidelines
for the dependence measure optimal choice reducing the risk of biased results.
We believe that the proposed guidelines may find outstanding interest and
applicability in many research fields, such as for instance in Psychology, Edu-
cation and Sociology, where the collection and the analysis of large amounts
of mixed and non-normally distributed data are involved.

Acknowledgements Authors are grateful to the two anonymous reviewers for their helpful
comments and suggestions.
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